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ABSTRACT The proliferation of multimedia devices over the Internet of Things (IoT) generates an
unprecedented amount of data. Consequently, the world has stepped into the era of big data. Recently, on the
rise of distributed computing technologies, video big data analytics in the cloud has attracted the attention of
researchers and practitioners. The current technology and market trends demand an efficient framework
for video big data analytics. However, the current work is too limited to provide a complete survey of
recent research work on video big data analytics in the cloud, including the management and analysis of
a large amount of video data, the challenges, opportunities, and promising research directions. To serve this
purpose, we present this study, which conducts a broad overview of the state-of-the-art literature on video
big data analytics in the cloud. It also aims to bridge the gap among large-scale video analytics challenges,
big data solutions, and cloud computing. In this study, we clarify the basic nomenclatures that govern the
video analytics domain and the characteristics of video big data while establishing its relationship with
cloud computing. We propose a service-oriented layered reference architecture for intelligent video big data
analytics in the cloud. Then, a comprehensive and keen review has been conducted to examine cutting-edge
research trends in video big data analytics. Finally, we identify and articulate several open research issues
and challenges, which have been raised by the deployment of big data technologies in the cloud for video big
data analytics. To the best of our knowledge, this is the first study that presents the generalized view of the
video big data analytics in the cloud. This paper provides the research studies and technologies advancing
the video analyses in the era of big data and cloud computing.

INDEX TERMS Big data, intelligent video analytics, cloud-based video analytics system, video analytics
survey, deep learning, distributed computing, intermediate results orchestration, cloud computing.

I. INTRODUCTION
Videos are generated and uploaded regularly to the cloud.
Many sources include CCTV, smartphones, drones, etc., are
actively contributing to video generation leads to the evolu-
tion of Intelligent Video Analytics (IVA) and management
systems. IVA is a domain that uses advanced computer vision
technologies to process and extract insights from streaming
or stored videos automatically. Over the past two decades,
IVA is extensively rising from real-world needs driving by a
broader range of application domains ranging from security
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and surveillance to transportation and healthcare. The IVA
market is anticipated to rise from 4.9 billion USD in 2020 to
11.7 billion USD by 2025 at a compound annual growth rate
of 19.0% [1].

Video management and services providers such as Face-
book [2], YouTube [3], and Netflix [4] are considered as
valuable sources of large-scale video data. Along with these,
various leading industrial organizations have successfully
deployed video management and analytics platforms that
provide more bandwidth and high-resolution cameras col-
lecting videos at scale and has become one of the lat-
est trends in the video surveillance industry. For example,
more than 400 hours of videos are uploaded in a minute
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on Youtube [5], and more than one hundred and seventy
million video surveillance cameras have been installed in
china only [6]. It has been reported that the data gen-
erated by various IoT devices will see a growth rate
of 28.7% over the period 2018-2025, where surveillance
videos are the majority shareholder [7].

Such an enormous video data is considered as ‘‘big data’’
because a variety of sources generates a large volume of
video data at high velocity that holds high Value. Even though
65% of the big data shares hold by surveillance videos are
monitored, but still, a significant portion of video data has
been failed to notice [8]. That neglected data contain valuable
information directly related to real-world situations. Video
data provide information about interactions, behaviors, and
patterns, whether its traffic or human patterns. However,
handling such a large amount of complex video data is not
worthwhile utilizing traditional data analytical approaches.
Therefore, more comprehensive and sophisticated solutions
are required to manage and analyses such large-scale unstruc-
tured video data.

Due to the data-intensive and resources hungry nature of
large scale video data processing, extracting the insights from
the video is a challenging task. A considerable size of video
data poses significant challenges for video management and
mining systems that require powerful machines to deal with
large-scale video data. Moreover, a flexible solution is nec-
essary to store and mine this large volume of video data
for decision making. However, large-scale video analytics
becomes a reality due to the popularity of big data and cloud
computing technologies.

Cloud computing is an infrastructure for providing con-
venient and ubiquitous remote access to a shared pool of
configurable computing resources. These resources can be
managed with minimal management effort or service [9]. Big
data technologies, such as Hadoop or Spark echo system,
are software platforms designed for distributed computing
to process, analyze, and extract the valuable insights from
large datasets in a scalable and reliable way. The cloud
is preferably appropriate to offer the big data computation
power required for the processing of these large datasets. [10],
Amazon web service [11], Microsoft Azure [12], and Oracle
Big Data Analytics [13] are some examples of video big data
analytics platforms. Large-scale video analytics in the cloud
is a multi-disciplinary area, and the next big thing in big
data, which opens new research avenues for researchers and
practitioners.

This work aims to conduct a comprehensive study on the
status of large scale video analytics in the cloud-computing
environment while deploying video analytics techniques.
First, this study builds the relationship between video big
data and cloud computing and defines the terminologies that
govern the study. Then service-oriented and a layered refer-
ence architecture have been proposed for large-scale video
analytics in the cloud while focusing on architectural proper-
ties like reliability, scalability, fault-tolerance, extensibility,
and intermediate results orchestration. Further, an intensive

survey has been conducted to project the current research
trends in video analytics that encompass the taxonomy of
video analytics approaches, and cloud-based scholarly and
industrial study. Finally, open research issues and challenges
are discussed, with a focus on proposed architecture, i.e., the
deployment of an array of computer vision algorithms for
large-scale videos in the cloud.

A. VIDEO BIG DATA, CLOUD COMPUTING, AND THEIR
RELATIONSHIP
The term big data appeared and popularized by
John R. Masey in the late 1990s [14], which refers to a large
volume of data that are impractical to be stored, processed
and analyzed using traditional data management and process-
ing technologies [15]. The data can be unstructured, semi-
structured, and structured data, but mostly unstructured data
is considered. The definition of big data evolved and has
been described in terms of three, four, or five characteristics.
In literature, among these characteristics, three are shared,
i.e., Volume, Velocity, and Variety, while the others are
Veracity and Value [16]–[19]. Various video stream sources
generate a considerable amount of unstructured video data on
a regular bases and becoming a new application field of big
data. The data generated by such sources are further subject to
contextual analysis and interpretation to uncover the hidden
patterns for decision-making and business purposes.

In the context of a large volume of video data, we specialize
the generic big data characteristics. The size of data is referred
to as Volume [20], but themajority of the shares, i.e., 65%, are
held only by surveillance videos. The type of data generated
by various sources such as text, picture, video, voice, and logs
are known as Variety [20]. The video data are acquired from
multimodal video stream sources, e.g., IP-Camera, depth
camera, body-worn camera, etc., and from different geolo-
cations, which augments the Variety property. The pace of
data generation and transmission is known as Velocity [21].
The video data also possess the Velocity attribute, i.e., the
Video Stream Data Source (VSDS) primarily produce video
stream 24/7 and acquired by the data center storage servers.
Veracity can be defined as the diversity of quality, accuracy,
and trustworthiness of the data [22]. Video data are acquired
directly from real-world domains and meet the Veracity char-
acteristic. The Value refers to contextual analysis to extract
the significant values for decision-making and business pur-
pose [23], [24]. Video data has highValue because of its direct
relation with real-word. Automatic criminal investigation,
illegal vehicle detection, and abnormal activity recognition
are some of the examples of Value extraction. Almost all the
big data properties are dominated by the video data, which
encourage us to give birth to Video Big Data.

These five characteristics impose many challenges on the
organizations when embracing video big data analytics. Stor-
ing, scaling, and analyzing are some apparent challenges
associated with video big data. To cope with these chal-
lenges, converged and hyper-converged infrastructure and
software-defined storage are the most convenient solutions.

152378 VOLUME 8, 2020



A. Alam et al.: Video Big Data Analytics in the Cloud: A Reference Architecture, Survey, Opportunities, and Open Research Issues

Distributed databases, data processing engines, and machine
learning libraries have been introduced to overcome video
big datamanagement, processing, and analysis issues, respec-
tively.

These big data technologies are deployed over a computer
cluster to process and manage a massive amount of video
data in parallel. A computer cluster may consist of few to
hundreds, and even thousands of nodes work together as a
single integrated computing resource, on different parts of
the same program [25], [26]. Deploying an indoor computer
cluster is an option for big data technologies, but hardware
cost and maintenance issues are associated with it. An alter-
native solution can be cloud computing that elegantly reduces
the costs associated with the management of hardware and
software resources [27].

Typically, cloud services are provided on-demand in a
‘‘pay-as-you-go’’ manner for the conveniences of end-users
and organizations [28]. Cloud computing follows the philoso-
phy of the ‘‘as-a-Service’’ and offers its ‘‘services’’ according
to different models, for example, Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS), Software-as-a-Service
(SaaS) [9].

Under IaaS (e.g., Amazon’s EC2), the cloud service
provider facilitates and allows the consumers to provision
fundamental computing resources and deploy arbitrary soft-
ware. In PaaS, the service provider provides a convenient
platform enabling customers to develop, run, and manage
applications without considering the complexities of building
and maintaining the infrastructure. The examples of PaaS
are Google’s Apps Engine and Microsoft Azure. In SaaS,
applications (e.g., email, docs, etc.) are deployed on cloud
infrastructure by service providers and allow the consumer
to subscribe. These applications can be easily accessed
from various client devices using a thin client or program
interfaces [9].

B. RESEARCH OBJECTIVES AND CONTRIBUTIONS
This paper presents a detailed survey and review of
cloud-based large-scale IVA. We also propose big data
technological solutions for the challenges faced by IVA
researchers and practitioners. The contributions of this paper
are listed below:

• We standardize the basic nomenclatures that govern the
IVA domain. The term video big data has been coined
and clarified how it inherits the big data characteristics
while establishing its relationshipwith cloud computing.

• We propose a distributed, layered, service-oriented, and
lambda style [29] inspired reference architecture for
large-scale IVA in the cloud. Each layer of the proposed
Cloud-based Video Analytics System (CVAS) has been
elaborated technologically, i.e., layerwise available big
data technological alternatives. The base layer of the
proposed architecture, i.e., video big data curation layer,
is based on the notion of Intermediate Results (IR)
orchestration, which can play a significant role in the

optimization of the IVA pipeline. Under the proposed
architecture, we perform a thorough investigation of
scalable traditional video analytics and deep learning
techniques and tools on distributed infrastructures along
with popular computer vision benchmark datasets.

• To the best of our knowledge, this is a first surveying
video big data analytics, our research targets the most
recent approaches that encompass broad IVA research
domains like content-based video retrieval, video sum-
marization, semantic-based approaches, and surveil-
lance and security.

• We also investigate how the researchers exploit big data
technologies for large-scale video analytics and show
how the industrial IVA solutions are provided.

• In this study, we further write real word IVA application
areas, which projects the significance of big data and
cloud computing in IVA.

• Finally, we identify the research gap and list several
open research issues and challenges. These research
issues encompass orchestration and optimization of IVA
pipeline, big dimensionality, online learning on video
big data, model management, parameter servers, and
distributed learning, evaluation issues and opportunities,
IVA services statistics maintenance and ranking in the
cloud, IVA-as-a-Service (IVAaaS) and cost model, video
big data management, and privacy, security and trust.

The remaining paper is organized as follows. Section II
and III is about recent studies, and scope and nomenclature,
respectively. Section IV discusses the proposed CVAS. Lit-
erature review has been presented in Section V and VI. The
IVA applications can be seen in Section VII. In Section VIII
several video big data challenges and opportunities are dis-
cussed. Finally, Section IX concludes this study.

II. RECENT STUDIES
Various studies have been conducted that discus video ana-
lytics, which can be classified as IVA and Big data, as shown
in Table 1. In the former class, the surveys overlook the big
data characteristics and challenges of video analysis in the
cloud. The majority of the work focuses on a specific domain
of IVA and the application of video analyses. For instance,
a comprehensive survey was presented by Liu et al. [30],
and Olatunji et al. [31], where they have discussed IVA and
its applications in the context of surveillance conventionally.
Context-Based Video Retrieval (CBVR) was reviewed by
Hu et al. [32], Patel et al. [33], and Haseyama et al. [34].
Similarly, vehicle surveillance systems in Intelligent Trans-
portation System (ITS), abnormal behavior analytics,
in surveillance videos were studied by Tian et al. [35],
and [36], respectively.

Furthermore, big data studies were conducted from differ-
ent perspectives, i.e., cloud computing, ML, mining, multi-
media, and ITS. Hashem et al. [16] and Agrawal et al. [39]
presented research issues and challenges on big data analytics
in the cloud computing. Tsai et al. [38] and Khan et al. [37]
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TABLE 1. Recent surveys related to video big data analytics.

focus on big techniques and general applications along with
challenges. Zhou et al. [40], Che et al. [41], and Pouyan-
far et al. [5] studied and reported the research issues of
big data practices concerning ML techniques, data mining
algorithms, and multimedia data respectively. Zhu et al. [42]
presented a comprehensive study on big data analytics in
ITS, analytical methods and platforms, and categories of big
data video analytics. In the study of big data, IVA has been
overlooked, and minimal discussion can be found in the study
of Khan et al. [37], Tsai et al. [38], Pouyanfar et al. [5],
Zhu et al. [42], H. and Zahid et al. [43].
From the literature, it is clear that the recent studies ignored

large-scale unstructured video analytics in the cloud in the
discussion of big data. Some surveys focus on big data
management and its related tools, while others have limited
investigation of IVA in a particular context. They also do
not consider the growing unstructured videos as video big
data. Unlike existing work, this paper provides a compre-
hensive assessment of state-of-the-art literature and proposes
an in-depth distributed cloud computing-based IVA reference
architecture.

III. SCOPE AND NOMENCLATURE
We clarify some nomenclature being used and scoping this
study. The first one is IVA, which is ‘‘any surveillance
solution that utilizes video technologies to automatically
manipulate and/or perform actions on live or stored video
images [44]’’. The IVA services are implemented through
hardware called Video Analytics System (VAS) [30]. VAS
assist acquires videos continuously and monitors unblink-
ingly. The VAS falls into four categories, i.e., Embedded
Video Analytics System (EVAS), On-site Video Analytics
System (OVAS), Fog-based Video Analytics System (FVAS),
and CVAS.
EVAS embeds IVA solutions and performs video analysis

directly on the edge device, e.g., camera or encoder, and can

FIGURE 1. Geo-distributed video analytics infrastructure.

produce alerts in case of abnormality. EVAS provides very
plain video analytics solutions and can simultaneously per-
form two or three rules on its stream and cannot accomplish
complex algorithms such as fire detection, facial recognition,
or cross video stream analytics. Under OVAS, small and
middle-sized companies consist of networked or wireless
cameras, a network router, a system running the video analyt-
ics and management software (e.g., IBM smart surveillance
system [45], and Zoneminder [46]), and a storage device.
All the cameras send the video data for analytics against
contextual video analytics algorithms andwarn the operator if
anomaly detected. OVAS has many limitations, e.g., mainte-
nance, software up-gradation, expensive hardware, scalabil-
ity, and unable to deal with large-scale video data.

When IVA solutions are provided in fog and cloud comput-
ing environment, then it is called FVAS, and CVAS, respec-
tively. In such environments the IVA solutions are made
available under the as-a-Service (aaS) paradigm, i.e., IVAaaS.
In FVAS, the IVA solutions are geographically distributed and
configured near the edge devices, i.e., video stream sources,
to meet the strict real-time IVA requirements of large-scale
video analytics, which must address latency, bandwidth, and
provisioning challenges. Whereas the CVAS is more suitable
for offline IVA because of the relatively high response time
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FIGURE 2. (a) A generic IVA service pipeline. (b) Hierarchal representation of video units.

and latency. The hierarchy and relation among CVAS, FVAS,
and EVAS is shown in Fig. 1. The batch video data analyt-
ics are performed in the cloud, while the real-time IVA is
performed in the fog. The EVAS can play a passive role in
the proposed architecture, e.g., feed the video streams to the
CVAS if motion is detected.
The scope of this paper is FVAS, and CVAS, i.e., the

real-time and batch IVA solutions are deployed in the fog and
cloud computing environment, respectively, while utilizing
big data computing technology. However, for the ease of
understandability, throughout this paper, we use the notion
of CVAS.

To analyze a video in CVAS, a video undergoes through
different phases, as shown in Fig. 2a. In Fig. 2a, Video
Source are the sources which either generate videos streams
from sources connected directly to real-world domains such
as IP-camera or can be already acquired videos in the form
of datasets residing in a file system. If IVA in the cloud are
performed on real-time video streams, then we called it Real-
time IVA (RIVA) and Batch IVA (BIVA) if performed on
batch videos.

The Ingest phase implement interfaces to acquire
videos from the Video Source. In the context of IVA,
the acquired videos can be represented as a hierarchy,
as shown in Fig. 2b. An acquired video from a Video
Sourcemay be decomposed into its constituent units either
in the temporal or spatial domain. In a video, a frame
represents a single image, whereas a shot denotes a con-
secutive sequence of frames recorded by a single camera.
A scene is semantically related shots in a sequence that
depicts a high-level story. A collection of scenes composes a
sequence/story. Frames and shots are low-level temporal fea-
tures suitable for machines, while scenes and sequence/story
are considered to be the high-level features that are suitable
for human perceptions. Such constituent units are further
subject to low, mid, or/and high-level processing. In low-level
processing, primitive operations (in Transformations
phase) are performed e.g., noise reduction, histogram equal-
izer. The Infer phase encompasses mid and high-level
processing. The mid-level processing extracts features from
the sequence of frames, e.g., segmentation, description, clas-
sification, etc. The high-level processing, make sense of an
ensemble of recognized objects; perform the cognitive func-
tions normally associated with vision. Finally, the extracted

information can be persisted to the data store and/or published
to the end-user.

Furthermore, the basic unit of an IVA service pipeline is an
algorithm, e.g., encoder, feature extractor, classifier, etc. The
input of an algorithm can be a Video Source, keyframes,
or features. Similarly, the output of an IVA algorithm can
be high, mid, or low-features. Throughout this study, all
possible outputs of IVA algorithms are termed as IR.Multiple
algorithms can be pipelined to build a domain-specific IVA
service. The input and output of an IVA service are restricted
to the Video Source and IR, respectively. The User rep-
resents the stakeholder of the CVAS, such as administrator,
consumer, IVA researchers, and practitioners. A Domain
is a specific real-word environment, e.g., street, shop, road
traffic, etc., for which an IVA service needs to be built for
automatic monitoring. Domain knowledge facilities IVA in
discovering interesting patterns from domain video streams.
The combination of software and hardware constitutes s dis-
tributedSystem (cloud environment) where IVA service and
algorithms can run fast. Nevertheless, upgrading existing IVA
algorithms to distributed architecture requires customization
of how IVA algorithms should be implemented and deployed.
Moreover, the specific needs of IVA may require the design
and development of new system architecture. All the symbols
being used in this paper are listed below.

LIST OF ABBREVIATIONS
aaS as-a-Service.
ACID Atomicity, Consistency, Isolation, Durability.
AFS Adaptive Feature Scaling.
AI Artificial Intelligence.
B2B Business-to-Business.
B2C Business-to-Customer.
BIVA Batch IVA.
C2C Customer-to-Customer.
CAP Consistency, Availability, Partition Tolerance.
CBVR Context-Based Video Retrieval.
CCDG Controlled Cyclic Dependency Graph.
CNN Convolutional Neural Network.
CVAS Cloud-based Video Analytics System.
DAG Directed Acyclic Graph.
DBDS Distributed Big Datastore.
DFS Distributed File System.
DMBM Distributed Message Broker Manager.
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DPDS Distributed Persistent Data Store.
EVAS Embedded Video Analytics System.
FVAS Fog-based Video Analytics System.
FVSA Fused Video Surveillance Architecture.
HDFS Hadoop File System.
HOG Histogram of Oriented Gradients.
IaaS Infrastructure-as-a-Service.
IoT Internet of Things.
IR Intermediate Results.
IRM Intermediate Results Manager.
ISDDS Immediate Structured Distributed Data Store.
ITS Intelligent Transportation System.
IVA Intelligent Video Analytics.
IVAAaaS IVA-Algorithm-as-a-Service.
IVAaaS IVA-as-a-Service.
IVAS IVA services.
KCL Knowledge Curation Layer.
L-CVAS Lambda CVAS.
LBP Local Binary Pattern.
LVSM Lifelong Video Stream Monitor.
ML Machine Learning.
OVAS On-site Video Analytics System.
PaaS Platform-as-a-Service.
PCA Principal Component Analysis.
QoS Quality of Service.
RDBMS Relational Database Management System.
RIVA Real-time IVA.
RNN Recurrent neural network.
RVSAS Real-time Video Stream Acquisition and

Synchronization.
SaaS Software-as-a-Service.
SIFT Scale Invariant Feature Transform.
SVM Support Vector Machine.
UPDDS Unstructured Persistent Distributed Data Store.
VAS Video Analytics System.
VBDCL Video Big Data Curation Layer.
VBDML Video Big Data Mining Layer.
VBDPL Video Big Data Processing Layer.
VSAC Video Stream Analytics Consumer.
VSAS Video Stream Acquisition Service.
VSCS Video Stream Consumer Service.
VSDS Video Stream Data Source.
WSL Web Service Layer.

IV. LAMBDA CVAS: A REFERENCE ARCHITECTURE
In this section, we briefly presents the technical details of the
proposed CVAS (called Lambda CVAS (L-CVAS)) and the
technical detail of each layer in the consecutive sub-sections.
Fig. 3 presents the proposed reference cloud-based layered
architecture for distributed RIVA and BIVA. The proposed
L-CVAS architecture consists of five layers i.e., Video Big
Data Curation Layer (VBDCL), Video Big Data Processing
Layer (VBDPL), Video Big Data Mining Layer (VBDML),
Knowledge Curation Layer (KCL), and Web Service Layer
(WSL).

VBDCL is the foundation layer and is responsible for
large-scale big data management throughout the life-cycle of
IVA, i.e., from data acquisition to early persistence to archival
and deletion [47]. VBDPL is responsible for distributed video
pre-processing, feature extraction, etc. The VBDML deploys
IVA algorithms on the top of distributed processing engines
intending to produce high-level semantics from the processed
sequence of frames. On top of the VBDML layer, the KCL
layer has been designed to link the low-level features in
spatial and temporal relation across videos in a multi-stream
environment. KCL deploys a generic video ontology. The
KCL layer maps the extracted IR to the video ontology to
bridge the semantic gap between the low-level features in
Euclidean space and temporal relation across videos while
utilizing semantic rich queries. The proposed architecture
incorporates top-notch functionalities of the above four layers
into a simple unified role base WSL, which enables the
L-CVAS users to manage, built, and deploy a wide array of
domain-specific near RIVA and BIVA services.

All the layers are made available as aaS. These IVAaaS are
provided to the domain experts and allow them to pipelined in
a specific context to built an IVA service. These IVA services
are made available as IVAaaS to which users can subscribe
Video Sources.

Functionalities like security, scalability, load-balancing,
fault-tolerance, and performance are mandatory and com-
mon to all the layers, which are shown as a cross-cutting
in Fig. 3. The cloud infrastructure provides the underlying
hardware and software under IaaS, on which the L-CVAS can
be deployed. The cloud infrastructure is out of the scope of
this paper. It has already been studied in detail in the context
of big data by [16], [36], [39]. However, in the discussion
of IVA in the cloud, some resources like CPU, GPU, FPGA,
HDD, and SSD can be considered.

A. VIDEO BIG DATA CURATION LAYER
Effective data management is key to extract insights from the
data. It is a petascale storage architecture that can be accessed
in a highly efficient and convenient manner. We design the
VBDCL for L-CVAS to efficiently manage video big data.
L-CVAS’s data storage stack consists of three main compo-
nents: Real-time Video Stream Acquisition and Synchroniza-
tion (RVSAS), Distributed Persistent Data Store (DPDS), and
VBDCL Business Logic.

1) REAL-TIME VIDEO STREAM ACQUISITION AND
SYNCHRONIZATION
The real-time video stream needs to be collected from the
source device and forwarded to the executors for on-the-fly
processing against the subscribed IVA service. Handling a
tremendous amount of video streams, both processing and
storage are subject to lose [51]. To handle, large-scale video
stream acquisition in real-time, to manage the IR, anomalies,
and the communication among RIVA services, we design the
RVSAS component while assuming a distributed messaging
system.
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FIGURE 3. Lambda CVAS: A reference architecture for real-time and batch intelligent video analytics in the cloud.

Distributed Message Broker, also known as message-
oriented-middleware [52], is an independent application that
is responsible for buffering, queuing, routing, and delivering

the messages to the consumers being received from the mes-
sage producer [53]. Message broker should be able to handle
permission control and failure recovery. A message broker
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TABLE 2. Popular message-oriented middlewares.

generally supports routing methods like direct worker queue,
and/or publish-subscribe [54]. Similarly, the message con-
sumer component receives the messages from the message
broker either periodically (cron-like consumer) or continu-
ously (daemon-like consumer). Generally and for the sake
of scalability, message consumers are deployed on separate
servers independently of message producers [54]. Some pop-
ular distributed messaging systems are shown in table 2.

RVSAS provides client APIs on the top of a dis-
tributed messaging system for the proposed framework. The
RVSAS component is responsible for handling and collect-
ing real-time video streams from device-independent video
data sources. Once the video stream is acquired, then it
is sent temporarily to the distributed broker server. The
worker system, on which an IVA service is configured,
e.g., activity recognition, reads the data from the dis-
tributed broker and process. The RVSAS component is com-
posed of five sub-modules, i.e., Distributed Message Bro-
ker Manager (DMBM), Video Stream Acquisition Service
(VSAS), Video Stream Consumer Service (VSCS), Interme-
diate Results Manager (IRM), and Lifelong Video Stream
Monitor (LVSM).

a: DISTRIBUTED MESSAGE BROKER MANAGER
DMBM are used to manage the queues in the distributed mes-
sage broker cluster considering RIVA services. Three types
of queues, RIVA_ID, RIVA_IR_ID, and RIVA_A_ID as
shown in Fig. 4, are automatically generated by the DMBM
module on the distributed message broker when a new RIVA
service is created. Here RIVA, ID, IR, and A stands for RIVA
service, unique identifier of the service, IR, and Anomalies,
respectively. These queues are used to hold the actual video
stream being acquired by VSAS, IR produced by an algo-
rithm, and anomalies detected by the video analytics services.

b: VIDEO STREAM ACQUISITION SERVICE
VSAS module is used to provide interfaces to VSDS and
acquires large-scale streams from device-independent video
data sources for on-the-fly processing. If a particular video
stream source is subscribed against an RIVA service, then the
VSAS gets the configuration metadata from the Data Source

FIGURE 4. Real-time Video Stream Acquisition and Sync.

DS in Immediate Structured Distributed Data Store (ISDDS)
and configure the source device for video streaming. After
successful configuring the source device, VSAS decodes the
video stream, detects the frames, and then performs some
necessary operations on each frame such as meta-data extrac-
tion and frame resizing, which is then converted to a formal
message. These messages are then serialized in the form of
mini-batches, compressed, and sent to the Distributed Broker.
If a video-stream source ‘‘C1’’ is subscribed to the RIVA
service ‘‘S1’’ then the VSAS will rout the mini-batch of the
video stream to queue RIVA_1 in the Broker Cluster as
shown in Fig. 4.

c: VIDEO STREAM CONSUMER SERVICE
As the acquired video streams are now residing in the dis-
tributed broker in different queues in the form of mini-
batches. To process these mini-batches of the video stream,
we have different groups of computer cluster know as Video
Stream Analytics Consumer (VSAC) Cluster. On each clus-
ter, three types of client APIs are configured, i.e., RIVA
services, VSCS, and LVSM. Each VSAC cluster has different
domain-specific RIVA services where the VSCS are com-
mon for all. The VSCS assists the RIVA service to read the
mini-batches of the video stream from the respective queue
in the distributed broker for analytics, as shown in Fig. 4.
The VSCSmodule has two main functions. First, this module
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allows RIVA service to read the mini-batches of the video
stream from the respective queue in the distributed broker.
The second task is to save the consumed unstructured video
streams and its meta-data to the row video space in the DPDS
and to the Data Source DS meta-store, respectively.

d: INTERMEDIATE RESULTS MANAGER
During the IVA service life-cycle, a sequence of algorithms
are executed. Thus the output of an algorithm can be the input
of another algorithm. The IR demands proper management in
the distributed environment because one algorithmmay be on
one computer while the other may be on another computer.
Thus we design IRM that sends and gets the IR to and from
the topic RIVA_IR_ID in the distributed broker cluster.
Similarly, this module is also responsible for reading the IR
from the respective queue and persists to the IR data store for
future use so that to avoid recomputation.

e: LIFELONG VIDEO STREAM MONITOR
The domain-specific RIVA service process the video stream
for anomalies or abnormal activities. If anomalies are
detected, then it is sent to the distributed broker queue
(i.e., RIVA_A_ID) by using the LVSM instance. To gen-
erate notification base response, LVSM follow standard
observer-based concept [55]. Based on this approach,
the LVSM module reads the anomalies from the respective
distributed broker queue, i.e., RIVA_A_ID and notify the
clients in near real-time and simultaneously persisted to the
ISDDS.

2) DISTRIBUTED PERSISTENCE DATA STORE
The second component of the VBDCL is DPDS. The DPDS
component provides the facilities of permanent and dis-
tributed big-data persistence storage of both structured and
unstructured data. The DPDS provides abstraction in two
levels on the acquired video data ie. ISDDS and Unstruc-
tured Persistent Distributed Data Store (UPDDS). The phi-
losophy behind DPDS and two levels of abstraction in the
context of L-CVAS is many folds. From the users’ perspec-
tive, the CVAS demands geo-based, real-time, low latency,
and random read-write access to the data in the cloud.
Similarly, the DPDS should also provide high-performance
locality-based access to the data when the other layers deploy
data-intensive IVA services. To meet such a diverse amount
of requirements of the DPDS component, technologically,
a Distributed File System (DFS) and Distributed Big Data-
store (DBDS) can be leveraged.

a: IMMEDIATE STRUCTURED DISTRIBUTED DATASTORE
The ISDDS is provided to manage large-scale structured data
in the distributed environment over DBDS. Because of the
data-intensive operation and according to the requirements of
the other layer, technologically, a distributed big data store,
can be deployed. The ISDDS hosts five types of data. The
detailed description of each type of data has been described
in this section.

L-CVAS provides role-based access to its user. L-CVAS
user logs and the respective role information are maintained
through the User Profile and Logs meta-store. The pro-
posed framework manages two types of video data sources
through the Data Source meta-store. These are video data
sources, for example, IP-cameras, Kinect, body-worn cam-
eras, etc., and batch video datasets. The former one can be
subscribed to RIVA service while the later one is eligible for
BIVA services. The meta-information of these sources, along
with access rights, are managed through the Data Source
meta-store. Administrator and developer roles can develop,
create, and deploy video analytics algorithms through the
L-CVAS. Similarly, different IVA algorithms can be pipelined
into an IVA service. The management of video analytics
algorithms and services is managed through Video Analytics
Algorithm and Servicemeta-store, respectively. As stated that
in IVA pipelining environment, the output of one IVA algo-
rithm can be the output of another algorithm. In this context,
we design a general container called IR datastore to persist
and index the output of an RIVA algorithm, and services.
This datastore is significant and can play a vital role in IVA
pipeline optimization, and fast content-based searching and
retrieval. Finally, the L-CVAS users are allowed to subscribe
to the data sources to the IVA services. The subscription infor-
mation is maintained through the Subscription meta-store,
and the anomalies are maintained through the Anomalies
meta-store.

The ISDDS Data Model of the L-CVAS demands an effi-
cient distributed data store. The distributed data store should
have the ability of horizontal scalability, high availability,
partition tolerance, consistency, and durability. Furthermore,
the data store should fulfill the read/write access demands
of the BIVA operations, and RIVA, interaction, and visual-
ization. It is a fact that traditional relational databases have
little or no ability to scale-out to accommodate the growing
demands of the big data, and resultantly new distributed
data stores have emerged. The distributed data stores can be
grouped into two major categories, i.e., NoSQL (Not Only
SQL) and NewSQL (excluding graph data stores).

NoSQL is a schema-free data store designed to support
massive data storage across distributed servers [62], [63].
The features of NoSQL data stores include horizontal scal-
ability, data replication, distributed indexing, simple API,
flexibility, and consistency [64]. NoSQL lacks true Atom-
icity, Consistency, Isolation, Durability (ACID) transactions,
unlike Relational Database Management System (RDBMS).
In the context of Consistency, Availability, Partition Toler-
ance (CAP) theorem [65], it has to compromise on either
consistency or availability while choosing partition tolerance.
NoSQL can further be categorized as Document, Key-value,
and Extensible stores. A key-value data store is respon-
sible for storing values and indexes for searching. Docu-
ment datastore is used for document storage, indexing, and
retrieval. Extensible data store stores extensible records that
can be partitioned vertically and horizontally across the
nodes.
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TABLE 3. Popular distributed file systems.

TABLE 4. Popular distributed data stores.

NewSQL data stores provide the characteristics of both
NoSQL and RDBMS: ACID transactional consistency of
relational databases with facilities of SQL; and the scalabil-
ity and performance of NoSQL. MySQL Cluster, VoldDB,
ClustrixDB are examples of NewSQL. Some of the popular
NewSQL and NoSQL datastores are shown in Table 4 along
with the respective properties. The ‘A’ and ‘C’ in CAP is not
equal to the ‘A’ and ‘C’ in ACID [66].

b: UNSTRUCTURED PERSISTENT DISTRIBUTED DATASTORE
The UPDDS component built on the top of the DFS such as
Hadoop File System (HDFS) that facilitates permanent and
distributed big-data storage. The data are stored and mapped
systematically according to the business logic of the proposed
system. The UPDDS component is designed to effectively
and dynamically manage the data workload in the life-cycle
of an IVA service. Upon new registration with the L-CVAS,

a formal User Space is created on the top of DFS. The User
Space is managed through the proper hierarchical directory
structure and special read and writes access are granted to the
owner. All the directories are synchronized andmapped in the
corresponding user profile logs. Under the User Space, three
types of distributed directories are created, i.e., Raw Video
Space, Model Space, and Project Space. The hierarchical
structure of the User Space in DFS is shown in Fig. 5.
Raw Video Space is used for the management of the video

data. Raw Video Space is further divided into two types
of video spaces. The first type is a batch video which has
been uploaded to the L-CVAS for batch analytics, where
the second type is acquired and persisted from the VSDS.
The entire acquired stream is time-stamped on persistence.
The granularity level of raw streaming videos is maintained
through video data sources. IVA life-cycle may need different
models for training and testing purposes. The Model Space is
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FIGURE 5. Hierarchical structure of the User Space in DFS.

provided to facilitate the developers to manage the training
and testing model according to the deployed IVA algorithm.
Similarly, a developer can develop a new algorithm or a video
analytics service. The Project Space is provided to manage
the source code of the respective developer and practitioners.

The UPDDS is supposed to be designed on the top of DFS.
In this context, diverse types of open source DFS have been
developed. The implementation quality of big data applica-
tions is relative to the storage tier’s file system. From an archi-
tectural perspective, working and handling large volumes
and throughput of data is challenging. Commonly, big data
solutions exploit a cluster of computers, ranging from few to
hundreds of computers, connected through high-speed net-
works while deploying specialized distributed data and man-
agement software. In distributed data-intensive applications,
large-scale data is always moving across the cluster and thus
demands a distributed, scalable, reliable, and fault-tolerant
file system [72] known as DFS. DFS is a file system that
provides access to replicated files across multiple hosts on a
computer network, ensuring performance, data locality, high
availability, scalability, reliability, security, uniform access,
and fault-tolerance. Currently, various DFS are available and
may differ in terms of performance, fault-tolerance, content
mutability, and read/write policy. Some state-of-the-art pop-
ular DFS, which can be used for UPDDS, along with a short
description, are shown in Fig 3.

c: ACTIVE AND PASSIVE DATA READERS AND WRITER
This module gives read-write access to the underlying data
securely according to the business logic of the VBDCL Busi-
ness Logic and according to the registered user access rights.
This sub-module is composed of four types of readers and
writers, i.e., ISDDSActive Data Reader, ISDDS Passive Data
Reader, UPDDS Active Data Reader, and UPDDS Passive
Writer. For real-time, read-write operation over the data resid-
ing in the ISDDS and UPDDS, such as CRUD operation, file
creation, video stream writing to DFS, etc. the active data
reader and writer are used. In the context of offline analytics
over the bulk of videos while using distributed processing
engines. The Passive Data Reader and Writer (PDRW) is
provided to allow processing engines to load the bulk of data
and persist the same to the ISDDS and UPDDS.

3) VBDCL BUSINESS LOGIC
VBDCL Business Logic provides the actual business logic.
It implements six different modules, i.e., User Manager, Data

Source Manager, Model Manager, (R/B)IVA Algorithm and
ServiceManager, (R/B)IVA Service Discovery and Subscrip-
tion Manager, Video Ontology Manager, Cluster Manage-
ment and Monitoring.

The User Manager module encapsulates all the
user-related operations such as new user account cre-
ation, access role assignment, and session manage-
ment. Through the Data Source Manager Model
Manager modules, the user can manage the VSDS, video
data uploading, and model management. The (R/B)IVA
Algorithm and Service Manager are built to man-
age, develop, and deploy new IVA algorithms and ser-
vices, respectively. The former one is provided aaS to the
L-CVAS developers, while the latter one is provided aaS
to the consumers. The developer role can create and pub-
lish a new video analytics algorithm. The algorithm is then
made available aaS to other developers and can use it.
Once IVA services are created, then the L-CVAS users are
allowed to subscribe to the streaming video data sources and
batch data against the provided RIVA and BIVA services,
respectively.

Similarly, the Ontology Manager allows the devel-
oper to get the IR for decision making. The ontology man-
ager provides a secure way of getting the IR and maps it
according to ontology. This module also allows the user to
manage the functionalities of the KCL. Finally, Cluster
Management and Monitoring allows the administra-
tor to monitor the health of the cluster.

B. DISTRIBUTED INTELLIGENT VIDEO ANALYTICS
IVA performs the complex tasks of extracting significant
knowledge and information of interest from the video data,
i.e., structural patterns, behavior patterns, content char-
acteristics, event patterns [73], [74] and their relation-
ship in the form of classification and clustering. Extract-
ing knowledge and information from video big data is
a processing-intensive task. Value extraction from video
big data is behind the capabilities of traditional tools and
demands for technological solutions to meet the processing
requirements.

Therefore, video big data analytics is preferably performed
in the distributed environment in a parallel manner while
utilizing distributed scale-out computing technologies [75],
such as MapReduce and Apache Spark. Distributed IVA not
only significantly improves the performance, but also reduces
the analytics cost. Based on the generic IVA life-cycle and
motivated by scikit-learn [76], the distributed IVA are divided
into two layers, i.e., VBDPL, and VBDML. These two layers
are further elaborated in the following sub-sections.

1) VIDEO BIG DATA PROCESSING LAYER
IVA requires video data pruning and strong feature extraction.
With such intentions, the VBDPL layer consists of three
components, i.e., Video Preprocessing, Feature Extractor, and
Dimensionality Reduction is designed.
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a: VIDEO PREPROCESSING
The quality of data plays an active and significant role
in solving a problem with ML. Raw videos have an
unstructured format and contain noise/uncertainties, mak-
ing it unsuitable for knowledge and information mining.
Video Preprocessing component is designed with
the same objectives and is supposed to deploy several
distributed video preprocessing operations including frame
extraction [77], frame-resizing, frame-conversion from RGB
to grayscale [78], shot boundary detection [79], segmen-
tation [80], transcoding [81], and many more. In the first
step, frames are extracted from a video for processing. Sev-
eral frame selection algorithms are available, for example,
keyframe extraction. The number of frames to be extracted
is dependent on the user objective and task-dependent.
Candidate frames can be all frames, step frames (every sec-
ond frame, fifth frame, etc.) or keyframes [82]. The
spatial operations highly depend on the scenario and objec-
tive. Spatial operations include frame resizing (for reducing
computational complexity), corrections (brightness, contrast,
histogram equalization, cropping, keyframes), mode (RGB,
Grayscale, etc.), and many other operations. Segmentation
is used for various purposes, such as partitioning video into
semantically related chunks.

b: FEATURE EXTRACTOR
The Feature Extractor component implements dis-
tributed feature extraction algorithms. The performance of
ML is highly dependent upon the type of data representa-
tion or features [83]. Features represent the characteristics
of classes in the dataset and have a heavy impact on the
ML algorithm’s generalizability and performance. The data
features that used to train ML models have a huge influence
on the performance of the algorithm. Inappropriate or irrele-
vant features affect the performance of the algorithm. Thus,
feature extraction extracts the features from the raw videos
that can be interpreted by the ML algorithm [84], [85]. In this
context, several feature extraction algorithms have been intro-
duced for video data. These feature extraction approaches can
be categorized into static features of keyframes [86]–[88],
object features [89], [90], dynamic/motion feature extrac-
tion [84], [91], [92], trajectory-based features extrac-
tion [84], [85], [93], [94], and deep learning-based feature
extraction [95]–[103].

c: FEATURE SELECTION AND DIMENSIONALITY REDUCTION
Feature selection and dimensionality reduction reduce the
size of the features. Large sizes of feature sets are expensive
in terms of time for training and/or performing classification
acquired by trained classifiers. For example, Principal Com-
ponent Analysis (PCA) and its variants are used to reduce the
size of features. During feature selection, most relevant fea-
tures are selected by discarding irrelevant and weak features.
The performance of ML classifiers is also directly related
to the quality of features; GIGO (garbage in garbage out).

Inappropriate or partially relevant features can negatively
affect model performance. Therefore, only a limited set of
features should be selected and used for training classifiers.
This is what precisely the purpose of this component is and
deploy different algorithms in this context. Similarly, some
feature reduction techniques available that selects the specific
set of limited features in real-time. For example, Online
Feature Selection selects and inputs a specific number of
small features to the classifiers in real-time [104]. In order
to accelerate the training process, [105] used non-linear and
group-based feature selection techniques, based on Adaptive
Feature Scaling (AFS), to process the data with substan-
tial dimension sizes. [106] proposed an unsupervised fea-
ture reduction technique that selects extremely relevant fea-
tures and indicates suitable weights to the distinctive feature
dimensions.

2) VIDEO BIG DATA MINING LAYER
The VBDML utilizes diverse types of machine-learning
algorithms, i.e., supervised, semi-supervised, and unsuper-
vised algorithms to find different type of information from
the videos [73], [74]. In this context, VBDML layer hosts
three types of components, i.e., Classification, Regression,
Clustering.

Classification component provides variousML algorithms,
e.g., Support Vector Machine (SVM), Nearest Neighbors,
Random Forest, Decision Tree, Naïve Bayes, etc., that identi-
fies that a particular object in a video frame belongs to which
category while using predefined classes. The Regression
component includes different algorithms, e.g., Linear Regres-
sion, Decision Tree Regression, Logistic Regression, and
many more, predicting a continuous-valued attribute associ-
ated with objects rather than discrete values. The Clustering
component encapsulates algorithms, e.g., K-Mean, spectral
clustering, etc., that produces groups of data depending upon
the similarity of data items.

L-CVAS has the ability of BIVA and RIVA. In this con-
text, the VBDML should support batch learning and online
learning. The former case considers the complete training
data to learn and generates models. The batch-learning algo-
rithm is expected to generalize, that usually does not perform
well in the real environment. Unlike batch learning, online
learning continuously learns from new input without mak-
ing any statistical assumptions about the data [107]. In the
context of model generalization, online learning is expected
to work well by accurately predicting the predefined set of
inputs [107]. Online learning is used in the environmentwhen
continuous learning from the data is required to learn new
patterns instead of batch learning.

3) DISTRIBUTED DEEP LEARNING FOR IVA
Handcrafted features, e.g., Scale Invariant Feature Trans-
form (SIFT) [108], Local Binary Pattern (LBP) [109], His-
togram of Oriented Gradients (HOG) [110], etc., generates
high dimensional features vectors and resultantly facing the
issue of scalability. Recently, Convolutional Neural Network
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TABLE 5. Comparision of popular deep learning architectures.

(CNN) based approaches have shown performance superior-
ity in tasks like optical character recognition [111], and object
detection [112]. The motive of the deep learning is to scale
the training in three dimensions, i.e., size and complexity
of the models [113], proportionality of the accuracy to the
amount of training data [114], and the hardware infrastructure
scalability [115]. Results of deep learning are so promising
that soon the deep learning will give equivalent or higher
performance compared to humans when trained over large
data sets [112]. A CNN or ConvNet is a type of neural
network that can recognize visual patterns directly from the
pixels of images with less preprocessing. CNN based video
classification methods have been proposed in the literature
to learn features from raw pixels from both short video and
still images [96], [97], [116], [117]. In the proposed L-CVAS
framework, both the VBDPL, and VBDML are capable to
deploy deep-learning approaches for distributed IVA.
Since on the dawn of deep learning, various open-source

architecture have been developed. Some of the well-known
and state-of-the-art CNN architectures are LeNet-5 [118],
AlexNet [117], ZFNet [119], GoogleNet [120], VGGNet
[121], and ResNet [122]. The comparison of these architec-
tures can be found in Table 5. Similarly, several frameworks
have been developed to eliminate the need for a manual
definition of gradient propagation. Table 6 summarizes these
libraries along with the comparisons.

TensorFlow is a popular deep learning library designed
for ML and deep learning. It supports the deployment of

computation on both CPUs and GPUs. TensorFlow allows
the fast implementation of deep neural networks on the
cloud. TensorFlow is also suitable for other data-driven
research purposes and is equipped with TensorBoard (a visu-
alization tool). Higher-level programming interfaces such
as Luminoth, Kera, and TensorLayer were built on the
top of TensorFlow. Caffe2, developed by Berkeley AI
Research, is another library to build their deep learning
models efficiently along with GPUs’ support in a dis-
tributed environment. PyTorch, maintained by Facebook,
is a scientific computing framework with wide support
for machine learning models and algorithms. PyTorch
offers rich pre-trained models that can be easily reused.
MXNET is a deep learning library suitable for fast numer-
ical computation for both single and distributed ecosys-
tems. Likewise, some more deep learning libraries have
been developed, such as CNTK, Deeplearning4j, Blocks,
Gluon, and Lasagne, which can also be employed cloud
environment.

Big DL models training with large-scale training data is a
challenging task. For example, S Gao at al. [129] utilized six
learning algorithms, i.e., biogeography-based optimization,
particle swarm optimization, genetic algorithm, ant colony
optimization, evolutionary strategy, and population-based
incremental learning, for the best combination of neural net-
work user-defined parameters during training. It is a hectic
job for a single system when the training datasets are large.
Distributed infrastructure with multiple computing nodes
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TABLE 6. Summary of popular deep learning libraries.

FIGURE 6. Scalable deep learning utilizing model distribution.

(equipped with powerful GPUs) is the best option, but it
leads to numerous challenges. First is the effective utiliza-
tion of resources (costly GPU stalling preventions). Second,
the resources are shared among different users in the cloud
for cost reduction and elasticity. Such challenges are attract-
ing the attention of researchers. There are three approaches,
i.e., model, data, and pipeline distribution for leveraging
distributed computing in distributed computing [130], [131].
In the former, the DL model is partitioned in logical frag-
ments, and loaded to different worker agents for training,
as shown in Fig. 6.

In the second approach, the deep learning model is repli-
cated to all the cluster’s worker-agents, as shown in Fig. 7.
The training dataset is partitioned into non-overlapping sub-
dataset, and each sub-dataset are loaded to the different
worker-agents of the cluster. Each worker-agent executes the
training on its sub-dataset of training data. The model param-
eters are synchronized among the cluster worker-agents
to updates the model parameters. The data distribution
approached naturally fits in the distribute computing MapRe-
duce paradigm [131]. The MapReduce splits the input based
on some predefined parameters. The map tasks, then, pro-
cess these chunks in parallel a manner. After processing,
the output is shuffled for relevance and is directed to map
tasks for generating intermediate results. The output from
the map tasks is shuffled for relevance and is given as input
to the reduce tasks for generating intermediate results. The

FIGURE 7. Scalable deep learning utilizing data distribution.

FIGURE 8. Deep learning with pipelining (Figure motivated by [132]).

intermediate results are combined to produce the complete
result. Hadoop and Spark require and process data natu-
rally distributed in the manner and popular research trend
nowadays.

In the third case, the DL model is partitioned, and each
worker-agent loads a different segment of the DL model for
training, as shown in Fig. 8. The training data are given to
the worker-agents that carry the input layer of the DL model.
In the forward pass, the output signal is computed, which
is transmitted to the worker-agents that hold the next layer
of the DL model. In the backpropagation pass, gradients are
calculated starting at the workers that carry the DL model’s
output layer, propagating to the workers that hold the input
layers of the DL model [132].

4) BIG DATA ENGINES, ML LIBRARIES, AND IVA
The VBDPL, and VBDML are assumed to be built on the
top of distributed computing engines. This section overview
some latest big data engines that can be utilized for scale-out
IVA.
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TABLE 7. Comparison of big data engines.

Hadoop MapReduce [144] is a distributed programming
model, developed based on GFS [72], for data-intensive
tasks. Apache Spark follows a similar programming model
like MapReduce but extends it with Resilient Distributed
Datasets (RDDs), data sharing abstraction [134]. Hadoop’s
MapReduce operations are heavily dependent on the hard
disk while Spark is based on in-memory computation, which
makes Spark a hundred times faster thanHadoop [134], [145].
Spark support interactive operations, Directed Acyclic Graph
(DAG) processing, and process streaming data in the form of
mini-batches in near real-time [146]. Apache Spark is batch
centric and treats stream processing as a special case, lack-
ing support for cyclic operations, memory management, and
windows operators. Such issues of Spark has been elegantly
addressed by Apache Flink [135]. Apache Flink treats batch
processing as a special and does not use micro-batching.
Similarly, Apache Storm and Samza is another prominent
solution focused on working with large data flow in real-time.
A brief description and comparison of the open-source big
data frameworks are listed in Table 7.
To achieve scalability, big data techniques can be exploited

by existing video analytics modules. The VBDPL is not
provided by default and needs its implementation on the top
of these big data engines. However, The ML approaches can
be categorized into two classes in the context of VBDML.
One class re-implements the existing ML task by providing a
middleware layer to run them on a big data platform. This
general type of middleware layer provides general primi-
tives/operations that assists in various learning tasks. Users
who want to try different ML algorithms in the same frame-
work can take benefits from it. In the second class, the indi-
vidual video analytics and ML algorithm are executed on a
big data platform that is directly built on top of a big data
engine for better scalability.

Spark MLlib [142], Mahout [138], FlinKML [135] are
list of some open-source ML packages built on the top of

Hadoop, Spark and Flink, respectively, that support many
scalable learning algorithms. For deep learning, various
open-source libraries have been develop including Tensor-
Flow [123], DeepLearning4J [139], Keras [140], Caffe [124],
H20 [147], BigDL [141], and PyTorch [125]. All these
libraries provide support for various ML algorithms and fea-
ture engineering. These libraries introduce an independent
layer between front-end algorithms and a back-end engine to
facilitate the migration from one big data engine to another,
as shown in Table 7. These algorithms can be used to process
large datasets, just like processing it on a single machine
by providing the distributed environment abstraction and
optimization.

5) COMPUTER VISION BENCHMARK DATASETS
In the advancement of IVA, public datasets always play
a vital and active role. Over the year, server benchmark
datasets have emerged. Some of the recent popular datasets
are listed in Table 8. ImageNet [148] is one of the signif-
icant datasets in deep learning and is utilized for training
neural networks such as ResNet, AlexNet, and GoogleNet.
Some more datasets have been developed aiming human
action and motion recognition, including [150], [150],
[152], [155], [156]. Google released YouTube-8M [159]
and consisting of eight million diverse types of automat-
ically labeled videos. Deng A et al. [158] proposed the
HowTo100M dataset comprising of web videos with nar-
rated instructions. Dataset like MediaEval2015 [153], and
Trecvid2016 [150] are designed to support CBVR related
research. For sports IVA, the Sports-1M dataset karpa-
thy2014large is proposed and composed of 487 classes
along with ground truth. YACVID [154] is a labeled image
sequence dataset for benchmarking video surveillance algo-
rithms. All these benchmark datasets are used for differ-
ent IVA, such as action recognition, event detection, and
classification.
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TABLE 8. Popular computer vision benchmark datasets.

C. KNOWLEDGE CURATION LAYER
Videos low-level processing produces feature descriptors
that summarize characteristics of data quantitatively. The
high-level analytics is more associated with the visual data
understanding and reasoning. The features descriptors work
as input to the high-level analytics and generate abstract
descriptions about contents. The difficult problem is to
bridge the semantic gap between the low-level features and
high-level concepts suitable for human perception [160].

With the same indentations, the KCL layer has been pro-
posed under L-CVAS architecture, on the top of VBDML,
which map the IR (both online and offline) into the video
ontology in order to allow domain-specific semantic video
and complex event analysis. The KCL is composed of
five components, i.e., Video Ontology Vocabulary, Video
Ontology, Semantic Web Rules, FeatureOnto Mapper, and
SPARQL queries.
Video Ontology Vocabulary standardizes the

basic terminology that governs the video ontology, such as
concept, attributes, objects, relations, video temporal rela-
tion, video spatial relation, and events. Video Ontology
is a generic semantic-based model for the representation
and organization of video resources that allow the L-CVAS
users for contextual complex, event analysis, reasoning,
search, and retrieval. Semantic Web Rules express
domain-specific rules and logic for reasoning. When videos
are classified and tagged by the VBDML then the respective
IR are persistent to VBDCL and also mapped to the Video
Ontology while using the FeatureOnto Mapper.
Finally, SPARQL based semantic rich queries are allowed
for knowledge graph, complex event reasoning, analysis, and
retrieval.

D. WEB SERVICES LAYER
Finally, to provide the functionality of the proposed L-CVAS
over the web, it incorporates top-notch functionality into
simple unified role-based web services. The Web Service
Layer is built on the top of VBDCL Business Logic.
Sequence diagrams for IVA algorithm and service creation is
shown in Fig. 10. Whereas, role-based use case diagram of
the proposed platform is shown in Fig. 9.

FIGURE 9. Lambda CVAS user roles and use case diagram.

E. IVA SERVICE EXAMPLE SCENARIOS
We show two example scenarios, i.e., how to develop BIVA
and RIVA services under L-CVAS. Hadoop and Spark
MapReduce type operations naturally fit in a BIVA. Fig. 11,
shows the block diagram along with sample script for dis-
tributed BIVA, i.e., object classification, where a DFS is
configured to read and store video files, e.g., in a standard
video file format such as MPEG, AVI, H.264, etc. First,
the videos are loaded, the distributed video transcoding (a
preprocessing algorithm under VBDPL) are performed. For
example, a user uploads a MPEG or other video files to
the DFS. The transcoder algorithm first split the file into
image frames, which may be throttled to key-value frames,
and converts them into a sequence file format. These frames
are then mapped, and features are extracted (utilizing some
feature extractor from VBDPL). The features are then classi-
fied (using a classification algorithm of VBDPL). For each
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FIGURE 10. The sequence diagram for the IVA algorithm and service
creation. In the Actor lifeline, A and D represent Admin and Developer,
respectively. These two roles are allowed to create a new video analytics
algorithm and service.

detected object, a key-value and coordinates of where the
object is located within the image are computed. For each
detected object in each frame, the map element process the
frame. The map operation generates and provides output
as composite visual value pair that includes the visual key,
a time-stamp that identifies the frame, and the coordinates.
The map stages then send the output in the form of a compos-
ite key-value pair to the respective reduce stages. The reduce
stages provide the output to an output stage, which is persisted
in the IR-DS of ISDDS.

FIGURE 11. BIVA service example pipeline under Lambda CVAS.

FIGURE 12. RIVA service example pipeline under Lambda CVAS.

The flow for a single RIVA along with an example
pseudo-code is shown in Fig. 12. TheVSAS component sends
the video stream to the queue in the broker cluster. Then the
consumer service (VSCS) is used to extract the mini-batch
of video streams from the queue and process it. Once the
mini-batch is consumed, then it is transcoded, features are
extracted for classification, and finally, the classification
results are persisted to the required destination (IR-DS and/or
dashboard).

F. EXECUTION SCENARIOS
L-CVAS follows the lambda architecture style [29], and the
execution scenarios undergo through two types of execu-
tion scenarios, i.e., Streaming Execution Scenario, and Batch
Execution Scenario. These two scenarios aim to execute a
massive amount of real-time video stream and batch videos
against the subscribed IVA services. In literature, these exe-
cution scenarios are referred to as Speed Layer, and Batch
Layer respectively [29]. The data of both the scenarios are
managed through a common layer called Serving Layer.
L-CVAS components are deployed on various types of clus-
ters in the cloud, and each cluster is subject to scale-out on-
demand. Fig. 13 illustrates these execution scenarios, and the
explanation is given in the following subsections.

1) STREAMING EXECUTION SCENARIO
L-CVAS is supposed to deploy a pool of contextual RIVA ser-
vices that are made available to the user for the subscription.
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FIGURE 13. Lambda CVAS: Streaming and Batch execution scenarios.

Once a video stream data source is subscribed to service in
the pool of contextual RIVA services, then the life-cycle of
Streaming Execution Scenario encompasses through differ-
ent stages while using distinct L-CVAS components. For the
ease of understandability, these components are deployed on
six types of computing clusters in the cloud, which are labeled
explicitly as ‘P’, ‘V’, ‘K’, ‘S’, ‘N’, ‘I’, as shown
in Fig. 13.

The cluster ‘P’ hosts VSAS and provides interfaces to
external VSDS. On configuration, the video streams are cap-
tured and transformed into a proper message, which is then
grouped into micro-batch, compressed, and loaded to the
respective queue in the cluster ‘K’.

The cluster ‘K’ deploys the distributed messaging sys-
tem, where the acquired video streams, IR, and anomalies
produced by LVSM are buffered. In this context, the cluster
‘K’ is composed of a set of three types of queues for each
service, i.e., RIVA_ID, RIVA_IR_ID, and RIVA_A_ID,
as described in IV-A1.
The mini-batches of video streams residing in the dis-

tributed broker’s RIVA_ID queue need to be persisted
to the UPDDS and ISDDS data stores. For this purpose,
the cluster ‘V’ deploys three types of L-CVAS modules,
i.e., VSCS, Video Processor and Persistence. The
first module allows the cluster ‘V’ to read the video stream
mini-batches from RIVA_ID topics in the Cluster ‘K’. The
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cluster ‘V’ then processes the consumed video data, encodes
it, and extracts the metadata from the video. Finally, the video
stream persistence module saves the video data and the
respective metadata to the UPDDS and ISDDS, respectively.

The cluster ‘S’ is responsible for processing the video
stream in near real-time while using the IVA services. Dif-
ferent stream processing engines, e.g., Apache Spark Stream,
can be used for RIVA. The cluster ‘S’ deploys four types of
L-CVAS modules. The first module is VSCS and is used to
consume the video streams from the RIVA_ID queue in the
cluster ‘K’. The second type of module is RIVA services.
The RIVA service is the actual video stream analytics service
that analyzes the videos. The video RIVA service is loaded
according to the RIVA services subscription contract made
by the L-CVAS user. The RIVA services can be pipelined, and
the IRmight need other applications in the multi-subscription
scenario. Thus the IR producer/subscriber is used to send and
receive the IR according to the application logic to and from
the IR queue in Cluster ‘K’.

The fourth type of module is LVSM producer. The con-
textual IVA services (IVAS) instance deployed in the cluster
‘S’ should have some domain-specific goal and can produce
anomalies if analyzed any. The L-CVAS support real-time
anomalies delivery system. The IVAS sent the anomalies
continuously to the LVSM producer and the LVSM pro-
ducer to the respective anomalies queue RIVA_A_ID in the
cluster ‘K’.

The cluster group ‘I’ read the IR from the RIVA_A_ID
queue in cluster ‘K’ continuously and sent it to the ISDDS’s
IR data store for persistence. If the subscribed service is using
the ontology then the IR are alsomapped to the VidOnto triple
residing in the Knowledge Curation Server ‘T’.

The final type of cluster in the Streaming Execution
Scenario is cluster ‘N’ and is known as Anomalies
Notification Cluster. This cluster aims to read
anomalies from the RIVA_A_ID queue in cluster ‘K’ and
send the same to the ISDDS for persistence and also delivered
in real-time to the video stream source owner in the form of
alerts.

2) BATCH EXECUTION SCENARIO
The L-CVAS architecture is also equipped with BIVA. Unlike
the RIVA, the BIVA is analyzed as an offline manner. The
execution time of offline analytics is proportional to the
video dataset size and the subscribed BIVA service compu-
tation complexity. The Batch execution life-cycle undergoes
through three types of clusters, i.e., ‘R’, ‘M’, ‘B’.
The cluster ‘R’ allows the L-CVAS user to upload the

batch video dataset to the L-CVAS cloud and configure three
types of L-CVAS modules. The first type of service is Batch
Video Acquisition Service, which is used to acquire batch
video datasets. Once uploaded to the node buffer, the batch
dataset is processed by the activated Video Processor to
extract the metadata from the batch videos. After process-
ing the batch video dataset and the respective metadata are
persisted to the UPDDS and ISDDS, respectively. Similarly,

the cluster ‘M’ works the same way as that of cluster ‘R’,
but this one is responsible for model management.

In the batch video analytics, the supporting layers deploy
various contextual multi-domain offline BIVA services. This
cluster loads the instance of the RIVA services as per user
contract and processes the videos in an offline manner. Once
subscribed, this cluster loads the batch video data set and
model from the UPDDS. Similarly, the IR and anomalies
are maintained in the ISDDS. The acquired video streams
residing in the UPDDS is also illegible for offline analytics.

Finally, the Web Server ‘W’ deploys the Web User Inter-
face (as described in IV-D), i.e., allow the users to interact
with L-CVAS.

V. IVA; CONSTITUENTS, AND PREDOMINANT TRENDS
This section review the existing IVA literature and can
be classified into four classes under the umbrella of IVA,
i.e., CBVR, IVA Surveillance and Security, Video Summa-
rization, and Semantics Approaches, as shown in Fig. 14.
We also show that how L-CVAS can be used under these
application areas.

A. CONTENT-BASED VIDEO RETRIEVAL
CBVR has applications from video browsing to intelligent
management of video surveillance and analysis. To uphold
advancement in CBVR, since 2001, the National Institute of
Standards and Technology has been sponsoring the annual
Text Retrieval Conference Video Retrieval Evaluation [161],
[162]. The CBVR is an active research area, and several sur-
veys are available, i.e., [32], [162]–[165]. However, here we
discuss some of the scalable CBVR system being proposed
in the literature.

In literature, some researchers tried to exploit distributed
computing technology for the development of large-scale
CBVR systems. Shang et al. [166] utilize the time-oriented
temporal structure of videos and the relative gray-level inten-
sity distribution of the frames as a feature base. Their method
is expensive in terms of parallel processing due to the video
semantics, and then all the frames of a video must be pro-
cessed within the same execution environment. Hence this
approach is challenging to parallelize accurately and effi-
ciently even for the state-of-the-art big-data frameworks.
Wang et al. [167] proposed a novel MapReduce frame-
work called Multimedia and Intelligent Computing Cluster
for near-duplicate video retrieval for large-scare multimedia
data processing by joining the computing power of CPU’s
and GPU’s to speed up the video data processing. They
extract the keyframes using uniform sampling, store the
keyframes to HDFS, perform local feature extraction using
the Hessian-Affine detector [168] to detect interest points.
K-means clustering over the feature vectors is utilized to
generate visual words following the BoF [169] model, thus
generating BoF-based feature vectors. Ding et al. [170] used
big data processing technologies to design a human retrieval
system on extensive surveillance video data called SurvSurf.
Motion-based segments called M-clop were detected, which
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FIGURE 14. IVA taxonomy based on literature.

were utilized to remove redundant videos. Hadoop MapRe-
duce framework was used to process M-clips for human
detection and motion feature extraction. Vision algorithms
were accelerated by processing only sub-areas with signifi-
cant motion vectors rather than entire frames. Further, a dis-
tributed data store called V-BigTable on top of HBase was
designed to structuralize M-clips’ semantic information and
enables large-scale M-clips retrieval. They stated that Surv-
Surf outperforms the baseline solutions in terms of computa-
tional time and with acceptable human retrieval accuracy.

Authors in [171] proposed Marlin for video big data simi-
larity search. They used parallel computing to extract features
from the acquired video micro-batches, which are then per-
sisted in a distributed feature indexer. The proposed indexer
was able to index incremental updates and real-time queries.
They designed a fine-grained resource allocation with a
resource-aware data abstraction layer over streaming videos
to upsurge the system throughput. They reported Marlin
achieved 25X and 23X speedup against the sequential feature
extraction algorithm and similarity search, respectively. The
challenge of extracting distinctive features is addressed by
Lv et al. [172] for the efficiency of extraction closely related
videos from the large scale data based on local and global
features utilizing Spark. To balance precision and efficiency,
they introduced a multi-feature based distributed system,
including local and global features. They combined local
feature SIFT, Local Maximal Occurrence, and global feature
Color Name. Lastly, they developed the system in a dis-
tributed environment based on Apache Spark. Further, M. N.
Khan et al. [173] proposed FALKON for large-scale CBVR
that utilized distributed deep learning on top of Apache Spark
for accuracy, efficiency, fault tolerance, and scalability. Moti-
vated by the fact that Apache Spark, by default, does not pro-
vide native video data structure, they developed a wrapper on
the top of Spark’s RDD called VidRDD. Utilizing VidRDD,
first, they performed structural analysis on the videos, and
then index the extracted deep spatial and temporal features
in their designed distributed indexer. Finally, they evaluate

their proposed system and show performance improve-
ment in terms of scalability and accuracy. Likewise, Lin
FC. et al. [174] put forward a cloud-based face video retrieval
system while utilizing deep learning. First, pre-processing
operations like termination of blurry images, and face align-
ment are performed. Then the refined dataset is constructed
and used to pre-train the CNNmodels, i.e., ArcFace, FaceNet,
and VGGFace for face recognition. The results of these three
models are compared, and the efficient one was chosen for
the retrieval system development. The input query in their
proposed system is a person’s name. If the system detects a
new person, it performs enrolling that person. Finally, times-
tamped results are returned against a query. A prototype of the
proposed face retrieval systemwas implemented and reported
its recognition accuracy and computational time.

1) CBVR UNDER L-CVAS ARCHITECTURE
L-CVAS provides an elegant and flexible six steps solution
for the implementation and customization of scalable video
indexing and retrieval, as shown in Fig. 15. First, the VSAS
component acquires the video streams from VSDS in the
form ofmini-batches, and in the case of batch analytics, video
data is loaded from the RAW DS and feeds to the VBDPL.
In the second step, VBDPL perform pre-processing oper-

ations and feature extraction. The former one encom-
passes structural exploration of a video, i.e., video scenes,
shots detection, frames, and keyframes extraction, while the
latter one extracts the low-level features. These low-level
features can be keyframes’ static features (texture-based,
color-based, and shape-based), object features, and/or motion
features (trajectory-based, statistics-based, and objects’
spatial relationships-based). The extracted features are
then handed over to the VBDML for classification and
annotation.

In the third step, the semantic and high dimensional video
feature vectors’ indexes make the representative index for
persisted video sequences in IR-DS. The IR-DS is synchro-
nized with RAW-DS.
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FIGURE 15. Components of CBVR under the Lambda CVAS architecture.

In the fourth step, through the WSL, the users are
allowed to query the desired videos. In literature for video
retrieval, various types of queries have been utilized for
video retrieval. The queries can be categorized as Query by
Example, Sketch, Objects, Keyword, and Natural
Language. In theQuery by Example, similar videos or
images to the given sample video or image is extracted using
feature similarity. In Query by Sketch, the features are
extracted from users drawn sketches (sketch represent the
required videos) and compared against the features gener-
ated from the stored videos [175]. In Query by Object,
the user give an object image then the CBVR system search
for all occurrences of the object in the video database [176].
Likewise, the last two approaches use Keywords and
Natural Language [177] as query. Combination-based
Query combines different types of queries for CBVR, was
also adopted by some researchers such as [178], [179].

In the fifth step, the CBVR system search for similar videos
against the user query. For similarity measure approaches
can be classified as feature, text, Ontology and
combination based matching. The similarity measure
depends on the type of query. Feature matching based simi-
larity measure is the average distance between the features of
the corresponding frames [180]. Query uses uses low-level
features for extracting relevant videos. The benefit of this
approach is that the video similarity can be found easily from
the features but is not appropriate for semantic similarity,
which is conversant to users. In text matching based
similarity measure, the name of each concept is matched
with given query terms so that to find the videos that sat-
isfy the query. The best example of this approach is that of
Snoek et al. [181]. This approach is simple, but the query
text must include the relevant concepts to get pleasing search
results. In Ontology-Based Matching, the similarity
between between semantic concepts is measured utilizing
ontology. Query descriptions are enriched from knowledge
sources, such as the ontology of concepts. Adding extra
concepts can improve the retrieval results [182] but can
also decline search results unexpectedly. This approached is
further explained in section V-D. Combination-based
matching ‘‘leverages semantic concepts from a train-
ing collection by learning the combination strategies [86],

and query-class-dependent combination models [179]’’ [88].
Up to some extent, using this approach, the concept weights
can be automated, and hidden semantic concepts can be
handled but are difficult to learn query combination models.

Finally, the ranked result-set is presented to the user
for browsing. To increase efficiency and to optimize the
results of the CBVR system, many researchers use the
obtained relevance feedback from the user. This feedback
can be categorized as explicit, implicit, and pseudo
feedback. In the first case, users are asked to select rel-
evant videos from the previous results actively [183]. The
explicit feedback approach obtains better results than
the other two approaches, but direct user involvement is
required. In the second case, the retrieval results are refined
by exploiting the user’s interactionwith the system, i.e., click-
ing pattern [184]. In the third case, there is no involve-
ment of the users. The user’s feedback is produced through
positive (closely related to the query sample) and negative
sample (different from the query sample) from the previous
retrieval. These samples are directed to the system for the
next search. Yan et al. [185], and Hauptmann et al. [186]
approaches are based on pseudo-relevance feedback
approach. This approach substantially reduces the user inter-
action, but the semantic gap between low and high-level
features obtained from different videos does not always agree
with the similarities between the user-defined videos.

B. REAL-TIME INTELLIGENT VIDEO ANALYSIS AND
SURVEILLANCE
In the context of growing security concerns, the surveil-
lance meant to criminality and intrusion detection. Video
surveillance is not limited to these, but it encapsulates all
aspects of monitoring to capture the dynamics of diverse
application areas, e.g., transportation, healthcare, retail, and
service industries. A generic use case for RIVA has been
shown in section IV-E, Fig. 12. Likewise, domain-specific
RIVA services for security and surveillance can be created
under L-CVAS architecture. In this section, we discuss recent
literature on how the researchers advancing the activity and
behavior analytics in the video streams with the aim of
intrusion and crime detection, scenemonitoring, and resource
tracking.

1) VIDEO SEGMENTATION FOR ACTION RECOGNITION
A combination of numerous actions, objects, and scenes
forms complex events [187]. Video analytics against complex
events is a nontrivial task. Complex event detection demands
the association of multiple semantic concepts because it is
almost impossible to capture the complex event through a
single event class label [188]. Video segmentation is required
to mine informative segments regarding the event happening
in the video. For effective event detection in video segmen-
tation, it is vital to take into account the temporal relations
between key segments in a particular event. The event videos
hold intra-class variation, and several training videos are
required to consider all possible instances of event classes.
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Song and Wu [189] suggested a methodology to extract key
segments automatically for event detection in videos by learn-
ing from a loosely tagged pool of web videos and images.
For the positions of key segments and content depiction in
the video, they used an adaptive latent structural SVMmodel
and semantic concepts, correspondingly. They also developed
two types of models, i.e., Temporal Relation Model and
Segment-Event Interaction Model, for the temporal relations
between video segments, and for evaluating the correlation
between key segments and events respectively. They adapted
labeled videos and images from the Web into their model
and employed ‘N’ adjacent point sample consensus [190]
for noise elimination. A knowledge-base was produced by
Zhang et al. [191] to decrease the semantic gap between
complex events. To effectively model event-centric semantic
concepts, they used a large-scale of web images for learning
noise-resistant classifiers.

Action recognition in videos encompasses both segmen-
tation and classification. Action recognition can be tackled
by sliding windows and aggregation in sequential as well
as isolated manner, or by performing both tasks parallel.
[188], [192] are some of the good examples of video segmen-
tation based event detection. The related literature on video
segmentation based action recognition can be classified as
action segmentation, a depth-based approach, and
deep learning-based motion recognition.

The most popular action segmentation model is dynamic
time warping scheme [193]. Action segmentation
from videos using an appearance-based method considers a
comparison between the start and end frames of contigu-
ous actions. Quantity of movement [194] and KNN along
with HOG [195] are commonly used to identify the start
and stop frames of actions. Similarly, for action recogni-
tion, depth-based approaches have been developed
which consist of binary range-sample feature [196], captur-
ing local motion and geometry information [197], histogram
oriented 4D normal [198], and combination of depth motion
map and HOG [199]. [200]–[202] have applied deep learn-
ing approaches to depth-based action recognition methods.
Besides, formotion recognition,deep learning has been
utilized in many ways. One is a suboptimal way, in which
video represented as still images is fed to the channel of a
CNN [96], [116]. Sometimes video as compact images are
given as input to the already trained CNN to achieve good
performance [203]. Video in the form of a sequence of images
is input to the Recurrent neural network (RNN) for sequential
parsing of video frames for long as well as short-term pat-
terns [204], [205]. In order to introduce a temporal dimension,
video is regarded as a volume and substitutes the 2D filters of
CNN with 3D filters [206], [207].
In many application areas, e.g., resource tracking, action

recognition, human behavior recognition, and traffic control,
object tracking and motion detection in videos are vital. The
process of detecting moving objects in videos is known as
object tracking. For object tracking, initially, the foreground
information is extracted in videos, and then the background

modeling of the scene is captured using a background sub-
traction algorithm, i.e., IAGMM [208], [209]. To increase the
accuracy, subsequently, shadow elimination algorithms are
applied to the foreground frame [210]. A connected compo-
nent algorithm is used to determine the bounding box of an
object. To ensure frame-to-frame matching of the detected
object, a method such as adaptive mean shift [211] can be
used for comparison. Factors like size and distance are used
to object matching between frames. Finally, the occlusion
scheme is used to detect and resolve occlusion. On the
other hand, motion detection can be detected via foreground
images extracted by the GaussianMixtureModel background
and connected component algorithm for noise removal. The
area of detection is refined using a connected component
algorithm and produces the bounding box information of
the moving objects [208]. The output of the detection is
a binary mask representing the moving object for each
frame in a particular sequence. Object detection for moving
objects is challenging, especially in the case of shadows and
cloud movement [212]. The related literature for moving
object detection and classification can be categorized as
a stationary camera with a moving object
and moving objects with moving camera.

a: MOVING OBJECT DETECTION WITH STATIONARY
CAMERA
In fixed camera video, the background image pixels in
each frame remain the same, and thus simple background
subtraction techniques are required. The object detection
approaches using a fixed camera can be grouped as feature-
based, motion-based, classifier-based, and template-based
models [213]. Categorization of object tracking in videos
into point tracking, kernel tracking, and silhouette tracking
as well as feature-based, region-based, and contour-based
was performed by [213], [214] respectively. Unlike a fixed
camera, moving object detection with a moving camera is
relatively challenging because of camera motion and back-
ground modeling for generating foreground and background
pixel fails [215].

• Trajectory classification involves computing long
trajectories for feature point and discriminating tra-
jectories that belong to different objects from those
backgrounds using the clustering method. Some rec-
ommended algorithms include compensating long term
motion based on flow optic technique [216], bag-of word
classifier, and pre-trained CNN method for detecting
moving object trajectories [217].

• In background modeling based methods, for each
sequence, the frame-by-frame background is created
utilizing the motion compensation method. Some pop-
ular algorithms are Mixture of Gaussian [218], com-
plex homography [219], gaussian-based method [220],
adaptiveMoG [221], multi-layer homography trans-
form [222], thresholding [223], and CNN-based
method [224] for background modeling.
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• In extension of background subtraction method, low
rank and sparse matrix decomposition method for static
camera [225] are extended to moving camera. If there
exists coherency between a set of image frames, then a
low-rank representation of the matrix created by these
frames contains the coherency, and the sparse matrix
representation contains the outliers, which represents the
moving object in these frames. Low rank and sparse
decomposition involve segmenting moving objects from
the fixed background by applying principal component
pursuit. It is a valuable technique in background mod-
eling. Mathematical formula and optimization of this
method can be found in [226].

2) BEHAVIOR ANALYSIS
Usually, a camera is mounted nearby the digital displays to
analyze and understand human behavior by investigating user
interfacing with digital display [227]. Commercial tools have
been developed to analyze audience behavior using video
analytics while considering parameters like age, gender, dis-
tance from the display, and sight and spent time. The obtained
data can then be used to improve advertising campaigns in
combination with sales data [228].

Recently, crowd analytic, i.e., human detection and track-
ing, have attracted the attention of the researches. The explo-
ration of both group and individual behavior to govern
abnormality scope the crowd analysis. Congestion analysis,
motion detection, tracking, and behavior analysis are the
main attributes of crowd analytics. While performing crowd
analysis, factors like terrain features, geometrical informa-
tion, and crowd flow can be considered.

For analysis of the crowded scene, motion features
are vital, and can be categorized as flow-based
features, local spatiotemporal features,
and trajectory features [229]. These features have
applications in crowd behavior recognition, abnormality
detection in-crowd, and motion pattern segmentation.

a: FLOW-BASED FEATURES
The flow-based features are pixel-level features, and in lit-
erature, different schemes have been proposed [230], [231],
which be further classified as optical flow, partial
flow, and streak flow. Optical flow technique
encompasses computing pixel-wise motion between succes-
sive frames and can handle multi-camera objection motion.
It has been applied to detection crowd motion and crowd
segmentation [232]. This approach, optical flow, is unable to
capture spatiotemporal attributes of the flow and long-range
dependencies. Particle flow contains moving a grid
of particles with the optical flow and providing trajectories
that maps a particle’s initial position to its future or current
position. It has an application in crowd segmentation and
detection of abnormal behavior [229]. Optical flow is unable
to handle spatial changes. Mehran et al. [231] proposed
streak flow to overcome the shortcomings of particle
flow and to analyzing crowd video while computing motion

field. This approach, streak flow, captures motion informa-
tion similar to particle flow; changes in the flow is faster and
performs well in dynamic motion flow.

b: LOCAL SPATIOTEMPORAL FEATURES
Flow-based features fail on the very crowded scene, and
resultantly local spatiotemporal features techniques are
developed, which are 2D patches or 3D cubes representa-
tion of the scene. Spatiotemporal features can be catego-
rized as spatiotemporal gradients, and motion
histogram. To capture steady-state motion behavior, Kratz
and Nishino [233] used a spatiotemporal motion pattern
model and confirmed the detection of abnormal activities.
On the other hand, motion histogram considers motion
information within the local region. It is not appropriate
for crowd analysis because it takes a substantial amount
of time, and is subject to error. However, some improve-
ments have been shown in the literature to motion histogram,
e.g., [230], [234].

c: TRAJECTORY FEATURES
Trajectory features signify tracks in videos. The distance
between object-based motion features can be extracted from
the trajectories of objects and can be utilized to analyze crowd
activities. The failure to obtain a full trajectory in dense crowd
leads to the concepts of tracklet. The tracklets are extracted
from the dense region and enforce the spatiotemporal corre-
lation between them to detect patterns of behavior. Tracklet is
a fragment of a trajectory obtained within a short period, and
the occurrence of occlusion leads to closure. Tracklets have
been used for human action recognition [31], [235] and for
the representation of motion in crowded scenes [236], [237].

3) ANOMALY DETECTION
Anomaly detection an application area of crowd behavior
analysis and is domain-dependent. Anomaly in a video occurs
when the analyzed pattern drifts from the normal in a training
video. The related literature of anomaly detection can be
categorized into three, i.e.,trajectory-based,global
pattern-based, and grid pattern-based method
of anomaly detection.

a: TRAJECTORY-BASED METHOD OF ANOMALY DETECTION
In trajectory-based anomaly detection, objects are formed
from the segment scenes, and then the object is followed in
the video. A trajectory is caused by the tracked object, which
describes the behavior of the object [238]. For the evalua-
tion of abnormality in trajectory-based methods have been
used i.e., single-class SVM [239], zone-based analysis [240],
semantic tracking [241], String kernels clustering [242],
Spatiotemporal path search [243], and deep learning-based
approach [244] have been used.

b: GLOBAL PATTERN-BASED METHOD OF ANOMALY
DETECTION
In a global pattern-based technique, the video sequence
is analyzed in whole, i.e. low, or medium-level features
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are extracted from video using Spatiotemporal gradients
or optical flow methods [245]. The technique is suitable
for crowd analysis because it does not individually track
each object in the video but is challenging while locat-
ing the position where the anomaly occurred. Approached
used in the global pattern-based method are Gaussian
Mixture Model [246], energy model [247], SFM [248],
stationary-map [249], Gaussian regression [250], PCA
model [251], global motion-map [252], motion influence
map [253], and salient motion map [254].

c: GRID PATTERN-BASED METHOD OF ANOMALY
DETECTION
In a grid pattern-based method, splits frames into blocks
and individually analyze pattern on a block-level basis [255].
If ignoring inter-object connections that lead to process-
ing efficiency. Spatiotemporal anomaly maps, local fea-
tures probabilistic framework, joint sparsity model, mix-
tures of dynamic textures with Gaussian Mixture Model,
low-rank and sparse decomposition, cell-based texture anal-
ysis, sparse coding and deep networks are used in evaluating
grid pattern-based methods [256].

C. VIDEO SUMMARIZATION
Video big data are facing the challenge of sparsity and redun-
dancy, i.e., hours of videos with less meaningful information,
which creates many issues for viewing, mining, browsing,
and storing videos. It has motivated researchers to find ways
to shorten hours of videos and led to the field of video sum-
marization. Video summarization is a process of generating
a shorter video of the original one without spoiling the capa-
bility to comprehend the meaning of the whole video [257].
The video summarization can be classified as Static Video
Abstracts, Dynamic Video Skimming, and Video Synopsis.

1) STATIC VIDEO ABSTRACT
These approaches include a video table of contents, a sto-
ryboard, and a pictorial video summary. For example, Xie
and Wu [258] propose an algorithm to generate a video sum-
mary for broadcasting news videos automatically. An affinity
propagation-based clustering algorithm is used to group the
extracted keyframes into clusters, aiming to keep the relevant
keyframes that distinguish one scene from the others and
remove redundant keyframes. J. Wu et al. [259] were moti-
vated by the notion from high-density peaks search clustering
algorithm. They proposed a clustering algorithm by incorpo-
rating significant properties of video to gather similar frames
into clusters. Finally, all clusters’ centers were presented as
a static video summary. Bhaumik et al. [260] proposed a
summarization technique where they detect keyframes from
each shot that eliminates redundancy at the intra-shot and
inter-shot levels. For frames redundancy elimination, SURF
and GIST feature descriptors were extracted for computing
the similarity between the frames. The quality of the sum-
maries obtained by using SURF andGIST descriptors are also
compared in terms of precision and recall.

Similarly, Zhang et al. [261] propose a subset
selection technique that leverages supervision in the
form of human-created summaries to perform automatic
keyframe-based video summarization. They were motivated
by the intuition that similar videos share similar summary
structures. The fundamental notion is to nonparametrically
transfer summary structures from annotated videos to unseen
test videos. Concretely, for each fresh video, they first com-
pute the frame-level similarity between annotated and test
videos. Then the summary structures are encoded in the
annotated videos with kernel matrices made of binarized
pairwise similarity among their frames. Those structures
are then combined into a kernel matrix that encodes the
summary structure for the test video. Finally, the summary
is decoded by feeding the kernel matrix to a probabilistic
model called the determinantal point process to extract a
globally optimal subset of frames. M. Gygli et al. [262] used
a supervised approach to learn the importance of the global
characteristics in summary by extracting deep features of
video frames. J. Mohan et al. [263] proposed a technique that
utilizes sparse autoencoders. Motion vectors have been used
for the elimination of redundant frames, and then high-level
features are extracted from frames using sparse autoencoders.
These high-level feature vectors are then clustered using the
K-means algorithm. The frames closest to the centroid of
each cluster are selected as keyframes of the input video.
Ji, Zhong, et al. [264] employed tag information, i.e., titles
and descriptions, as the side information for the generation
of summarization. A sparse auto-encoder was used as the
primary model to generate the final summary, where the input
and output were multiple videos and keyframes set, respec-
tively. They fused the visual and tag information to guide
visual features, which constrained the sparse auto-encoder
to select the candidate keyframes.

2) DYNAMIC VIDEO SKIMMING
A summary video is formed from the video segments of the
original video to remove redundancy or to summarize based
on object action or events. As an example of object-based
skimming, Peker et al. [265] proposed a video skimming
algorithm while utilizing face detection on broadcast video
programs. In the algorithm, the attention was given to faces,
as they establish the focus of most consumer video pro-
grams. Ngo et al. [266] represent a video as a complete
undirected graph and exploit the normalized cut algorithm
to form optimal graph clusters. One-shot was taken from
each cluster of visually alike shots to remove duplicate shots.
Xiao et al. [267] mine frequent patterns from a video. A video
shot importance evaluation model is utilized to choose useful
video shots to create a video summary. For personal videos,
Gao et al. [268] developed a video summarization technique,
which encompasses a two-level redundancy detection proce-
dure. First, they terminated redundant video content with the
hierarchical agglomerative cluster method at the shot level.
Then parts of shots were selected, based on the ranking of the
scenes and keyframes, to generate an initial video summary.
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Finally, to terminate the redundant information, a repetitive
frame segment detection step was utilized. They verified
the proposed technique through a prototype while using TV
datasets (movies and cartoons videos) and reported the per-
formance in terms of compression ratio (81%) and recall
(87.4%). In [269], for user-generated video summarization,
both the representativeness and the quality of the selected
segments from an original videowere considered. They stated
that user-generated videos contain semantic and emotional
content, and its preservation is vital. They have designed a
scheme to pick representative segments that include consis-
tent semantics and emotions for the whole video. To ensure
the quality of the summary, they computed quality measures,
i.e., motion and lighting conditions, and integrate them with
the semantic and emotional clues for segment selection.

Ji, Zhong, et al. [270] addresses the issue of supervised
video summarization by formulating it as a sequence-to-
sequence learning problem, where the input and output is a
sequence of original video frames and a keyshot sequence,
respectively. The notion is to learn a deep summarization net-
work with attention mechanism to mimic the way of selecting
the human keyshots. The proposed framework was called
attentive encoder-decoder networks for video summarization.
They utilized the BiLSTM encoder for encoding the con-
textual information among the input video frames. For the
decoder, two attention-based LSTM networks, are explored
by using additive and multiplicative objective functions,
respectively. The results demonstrate the superiority of the
proposed framework against the state-of-the-art approaches,
with remarkable improvements. J. Wu et al. [271] were moti-
vated by the fact that multi-video summarization is signif-
icant for video browsing and proposed a technique where
multi-video summarization was formulated as a graph prob-
lem. They also introduced a dynamic graph convolutional net-
work to measure the importance and relevance of each video
shot locally as well as globally. They adopted two approaches
to address the inherent class imbalance issue of video summa-
rization. Additionally, a diversity regularization to encourage
the model to generate a diverse summary was introduced.
The results demonstrate the effectiveness of our proposed
model in generating a representative summary for multiple
videos with encouraging diversity. Z. Sheng-hua et al. [272]
proposed a deep learning-based dynamic video summariza-
tion model. First, they addressed the issue of the imbalanced
class distribution in video summarization. The over-sampling
algorithm is used to balance the class distribution on train-
ing data. They proposed two-stream deep architecture with
cost-sensitive learning to handle the class imbalance problem
in feature learning. RGB images are utilized to represent
the appearance of video frames in the spatial stream. Likely,
multi-frame motion vectors with deep learning framework
are introduced to represent and extract temporal information
of the input video. Moreover, they stated that the proposed
method highlights the video content with the active level of
arousal in effective computing tasks and can automatically
preserve the connection between consecutive frames.

FIGURE 16. Simultaneous activities display in a video [273].

3) VIDEO SYNOPSIS
In this approach, activities from the stated time interval are
collected and moved in time to form a smaller video synop-
sis showing maximum activity, as shown in Figure 16. The
notion of video synopsis was pioneered by [273] in 2006 and
proposed a two-phase approach, i.e., online and offline. The
former phase includes the queuing of the generated activities.
The later phase started after selecting a time interval of video
synopsis with tube readjustment, background formation, and
object stitching. A global energy function was defined and
encompassing activity, temporal consistency, and collision
cost. Then the simulated annealing method was applied for
energy minimization. The video synopsis domain was further
researched in single and multi-view scenarios. Some recent
examples of a single-view are [274]–[276]. He et al. [274],
[275] brought advancement in activity collision analysis
by describing collision statuses between activities such as
collision-free, colliding in the same direction and opposite
directions. They also offered a graph-based optimization
technique by considering these collision states to improve
the activity density and put activity collisions at the center
of their optimization strategy. Baskurt and Samet [276] con-
centrated on rising robustness of object detection by suggest-
ing an adaptive background generation method. In another
study, Baskurt and Samet [277] planned the object track-
ing method specified for video synopsis requirements. Their
approach focused on long term tracking to represent each
target with just one activity in video synopsis. Single view
scalable approaches for video synopsis were projected by
Lin et al. [278] while utilizing distributed computing technol-
ogy. Their proposed video synopsis approach encompasses
steps like object detection, tracking, classification, and opti-
mization, which were performed in a distributed environ-
ment. Ahmed, S. A. [279] proposed a query-based method
to generate a synopsis of long videos. Objects were tracked
and utilized deep learning for objects classification (e.g.,
car, bike, etc.). Through unsupervised clustering, they iden-
tified regions in the surveillance scene. The source and the
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destination represented spatiotemporal object trajectories.
Finally, user queries were allowed to generate video synopsis
by smoothly blending the appropriate tubes over the back-
ground frame through energy minimization.

Further, the examples ofmulti-view video analytics are that
of [280], [281]. Zhu et al. [280] proposed a framework to gen-
erate a unified synopsis of multi-view videos. The synopsis is
visualized by mapping multiple views to a common ground
plane. Multiple camera activities were allied via trajectory
matching in overlapping camera views. The process of pro-
ducing a synopsis requires a balance among minimizing the
synopsis length, maximizing the information coverage, and
reducing the collision among objects’ track that are presented
concurrently. Likewise, Mahapatra et al. [281] proposed a
multi-camera approach for an overlapping camera network
and modeled the synopsis generation as a scheduling prob-
lem. They utilized three distinct methods, i.e., table-driven
approach, contradictory binary graph coloring approach, and
simulated annealing. Action recognition modules were inte-
grated to recognize significant actions, i.e., walking, running,
bending, jumping, hand-shaking, and one or both hands wav-
ing. The inclusion of such essential actions can help in the
synopsis length reduction while preserving the value. The
synopsis length was further reduced while utilizing a fuzzy
inference system that computes the visibility score for each
object tracking. They stated that through the contradictory
binary graph coloring approach, they achieved a maximum
reduction in synopsis length. Zhang, Z. et al. [282], tried to
address the issue of video synopsis by joint object-shifting
and camera view-switching to show multiple synopsis results
more compactly and understandably. The input videos were
synchronized and grouped the same object in different videos
together. Then they shifted the grouped objects with respect
to the time axis to gain multiple synopsis videos. They con-
structed a simultaneous object-shifting and view-switching
optimization framework to achieve encouraging synopsis
results. To address unified optimization, they further pre-
sented an optimization strategy composed of graph cuts and
dynamic programming.

VIDEO SUMMARIZATION aaS UNDER L-CVAS
Fig. 17 shows the flow of the video summarization flow
under the proposed L-CVAS architecture. Through the WSL,
the user first subscribes to the video data-source to the video
summarization service. Then the user preferences allow the
users to set the parameters required for video summary ser-
vice and personalization. The summary parameters encom-
pass granularity level, type of summary to be performed
(e.g., overview, highlights, synopsis, etc.) and any other as
per the video summary service scenario. The personaliza-
tion can be in terms of specific features of the video, like
people, objects, events, etc. Through the VBDCL, videos
are acquired from the video data-source and sent to the
VBDPL for pre-processing. In pre-processing, video units are
extracted (segmentation, shots, frame extraction, etc.) as per
the requirements of the video summarization service. Then

FIGURE 17. Generic flow of video summarization aaS under Lambda
CVAS architecture.

multiple low and high-level features, such as motion, color,
aesthetics, semantics, etc., are extracted from the video units.
The extracted features from the basic video units are input
to the VBDPL for object/activity identification and cluster-
ing. Once done then the next step is video summarization.
The video summarization phase deploys the actual logic,
i.e., video unit selection, and redundancy removal. The video
unit selection and redundancy removal decide which video
units should be included in the video summary based on unit
significance, summary length, and other user’s parameters.
This block also removes similar video units within the video
summary to achieve the best possible video summary, cover-
ing the required details in the original video. Finally, the sum-
mary results are delivered to the respective user through the
WSL.

D. SEMANTIC-BASED VIDEO ANALYSIS
To bridge the semantic gap and to allow the machine
to understand the visual data, Semantic Web technolo-
gies can be incorporated [160]. Semantic Web unlocked
a new avenue for knowledge-based computer vision while
enabling data exchange between video analysis systems
in an open and extensible manner. The scientific commu-
nity has exploited the Semantic Web concept for intel-
ligent video analytics to bridge the so-called semantic
gap between the low-level features and high-level human-
understandable concepts. State-of-the-art scholarly work can
roughly be classified as semantic-based low-level, mid-level,
high-level analysis, and semantic-based video search and
retrieval.

1) SEMANTIC-BASED LOW-LEVEL ANALYSIS
Semantic-based low-level analysis refers to the formaliza-
tion of the extracted objects of interest from the videos.
It then performs reasoning on formalization such as detec-
tion and tracking across domain-specific videos [283], [284].
Dasiopoulou et al. [285] proposed a multimedia ontology
for domain-specific video analysis. In semantic concepts,
they consider object attributed, low-level features, spatial
object relations, and the processing approaches while defin-
ing F-logic rules for reasoning that govern the applica-
tion of analysis methods. García et al. [286] proposed a
knowledge-based framework for video object segmentation,
where relationships among analysis phases are utilized. The
main contribution is to provide a detailed description of the
scene at low, mid, and high semantic levels through an ontol-
ogy. The notion is to offer the semantic rich description of a
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scene via an ontology that includes occurrences in the scene
from high to low semantic level, controls iterative decisions
on every stage. The low-level analysis modules (background
subtraction, short-term change detection, point or region
tracking, etc.) are provided with a structure to collaborate and
achieve consistently, and contextual results. The results of the
vision algorithms are mapped to the ontology, representing
low-level scene occurrences. The following stages build Point
Hypothesis Maps and Region Hypothesis Maps. These were
the most probable occurrences of each point and region. The
points and regions are coded according to the ScenePoint
and SceneRegion hierarchies of the analysis ontology. The
quality of the results was evaluated through a feedback path.
Gomez et al. [287] proposed a computer vision framework
for surveillance and consists of two layers, i.e., the tracking
layer and a context layer. The proposed framework relies on
an ontology-based representation of the scene in combination
with contextual information and sensor data. The notion is the
application of logical reasoning initiating from the acquired
data from a classical tracker intending to construct an onto-
logical model of the objects and the activities happening in
the area of observation. Reasoning procedures were utilized
to detect and predict tracking errors, sending feedback to the
tracker to adjust the low-level image processing algorithms.
Vision operation, like movement detection, blob-track asso-
ciation, and track and trajectory generation, were performed
in the tracking layer. The context layer was supposed to
produce a high-level interpretation of the scene. RACER
reasoner [288] was utilized for scene interpretation since it
allows abductive reasoning. Abductive rules are defined in
the proposed framework to interpret what is happening in the
scene from the primary tracking data.

2) SEMANTIC-BASED MID AND HIGH-LEVEL ANALYSIS
Atomic events such as loitering, fall, direction changes, group
formations, and separations [289], and ‘‘complex’’ events
such as aggressions, fights, thefts, and other general suspi-
cious events [290], [291] falls in mid and high-level video
analytics, respectively.

The utilization of semantic technology for video event
representation in surveillance videos was initiated by Video
Event Representation Language [292]. The main idea is to
model simple events in a hierarchical framework intended
for detecting complex events. They stated that the sequence
of simple events (car door opening, leaving a car, car door
closing, walking and opening a building door, and entering a
building) forms complex events (a person arrived through a
car and entered a building). They usedAllen’s interval algebra
to handle temporal relationships between subevents. They
clarified their proposed application through the detection
of an example event in a surveillance video, i.e., accessing
a secure zone by entering behind an authorized individ-
ual. For complex events recognition in surveillance videos,
Snidaro et al. [293] proposed an ontology and is composed
of three high-level concepts, i.e., background, entities, and
events. The event class, high-level in subclasses, describes

simple events, spatial events, and transitive events, allow-
ing to show how complex events can be described through
simple events sequencing. The event concept is composed
of sub-concepts that represent simple events, spatial events,
and transitive events. The focus was on complex events,
which can be achieved by sequencing simple events. San-
Miguel et al. [294] propose an ontology for representing the
prior knowledge related to video event analysis. Such knowl-
edge is described in terms of scene related entities (Object,
Event, and Context), and system-related entities. The key
contribution of the work is the integration of different types of
knowledge in an ontology for detecting the objects and events
in a video scene. In the same direction, Greco et al. [295]
proposed a hybrid approach for simple abnormal (person
falling) and complex abnormal events (person aggression)
recognition using semantic web technologies. They mod-
eled the extracted general tracking information to the pro-
posed tracking ontology for advanced reasoning. The data
from the videos were obtained using the tracking compo-
nent (frames, bounding box), knowledge about the scene
(static and dynamic objects, occluding objects), Situations
and Events (people leaving the scene, falling ground, fight-
ing). For event detection, SPIN rules and functions are used
while SPARQL queries are employed for analytics tasks. The
system has proven to successfully recognize mid-level events
(ex. people falling to the ground) and high-level events (ex.
person being attacked) on the PETS2016 dataset.

Researches also utilized semantic technologies aiming to
address the issue of human activity recognition in daily living.
In this context, Chen et al. [296] introduced a method for
activity recognition while using ontological model, represen-
tation, and reasoning. They analyzed the nature and charac-
teristics of daily life activities and modeling related concepts
through ontologies. The authors describe the algorithms of
activity recognition making full use of the reasoning power
of semantic modeling and representation. They claimed that
the proposed ontological models for daily life activities
could easily be customized, deployed, and scaled up. Like-
wise, [297], an approach exploiting the synergy between
the semantic technologies and tracking methods have been
presented for object labeling. The work aims to augment and
comprehend situation awareness, as well as critical alerting
conditions. The unmanned aerial vehicles with an embedded
camera were utilized to recognize moving and stationary
objects along with relations between them. Contextual infor-
mation was used for abnormal event detection. A prototype
was designed and used a drone to capture videos on the
University of Salerno. They stated that the proposed system
could recognize an abnormal event by means of SWRL rules
associated with mid-level activities, such as ball kicking by a
human and a car passing through the same road.

3) SEMANTIC-BASED VIDEO RETRIEVAL
Some researchers exploited semantic technologies for video
search and retrieval purposes. In this regard, Yao et al. [298]
proposed the image to text framework to extract events from
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TABLE 9. Scholarly state-of-the-art-work CVAS.

images (or video frames) and then provide semantic and
text annotations. The And-or-Graph incorporates vocabular-
ies of visual elements like objects and scenes along with
stochastic image grammar that identifies semantic relations
among the visual elements. In this way, low-level image
features are linked with high-level concepts, and the parsed
image can be transformed into semantic metadata to form
the textual description. Video contents are expressed in both
OWL and text format, and then the users are allowed to
search images and video clips through keyword searching
and semantic-based querying. Xue et al. [299] proposed an
ontology-based content archive and retrieval framework for
surveillance videos. A surveillance ontology was proposed
that represents semantic information of video clips as a
resource ontology. Such an ontology models the basic feature
description in the low level, the video object description in
the mid-level, and event description in the high-level. The
proposed system was tested for object and event retrieval,
such as walking and car parking.

Furthermore, Xu et al. in [300] and [301] propose amethod
to annotate video traffic events while considering their

spatial and temporal relations. They introduced a hierarchi-
cal semantic data model called structural video description,
which consists of three layers, i.e., pattern recognition layer
(ontological representation from the video the extracted video
concepts), video resources layer (links video resources with
their semantic relations), and demands layer (retrieval inter-
face). They defined various concepts in the ontology, such
as persons, vehicles, and traffic signs that can be used to
annotate and represent video traffic events. Besides, the spa-
tial and temporal relationships between objects in an event
are defined. As a case study, an application to annotate and
search traffic events is considered. Sah et al. [302] proposed
a multimedia standard-based semantic metadata model and
annotate globally inter-operable data about abnormal crowd
behaviors from surveillance videos. Similar efforts are made
by Sobhani et al. [303] and proposed an advanced intelligent
forensic retrieval system by taking advantage of an ontologi-
cal knowledge representation while considering the UK riots
in 2011 as a use case. Similarly, A. Alam et al. [304] proposed
a layered architecture for large-scale distributed intelligent
video retrieval while exploiting deep-learning and semantic
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approaches called IntelliBVR. The base layer is responsible
for large-scale video data curation. The second and third
layers are supposed to process and annotate videos, respec-
tively while using deep learning on the top of a distributed
in-memory computing engine. Finally, the knowledge cura-
tion layer, where the extracted low-level and high-level fea-
tures are mapped to the proposed ontology, can be searched
and retrieved using semantic rich queries. Finally, they pro-
jected the effectiveness of IntelliBVR through experimental
evaluation.

VI. STATE-OF-THE-ART CVAS
In this section, we review the start-of-the-art CVAS. This dis-
cussion also supports our claim on the relationship between
video big-data analytics and cloud computing. The discussion
is further divided into two subsections, i.e., Scholarly CVAS
and Industrial CVAS.

A. SCHOLARLY CVAS
In this subsection, we explore academic research trends (sum-
marized in table 9) that how scientific community investigate
and proposed cloud-based IVA solutions while utilizing big
data technologies. In this direction, Ajiboye, S.O. et al. [305]
stated that the network video recorder is already equipped
with intelligent video processing capabilities but complained
about its limitations, i.e., isolation, and scalability. To resolve
such issues, they proposed a general high-level theoretical
architecture called Fused Video Surveillance Architecture
(FVSA). The design goals of the FVSA were cost reduc-
tion, unify data mining, public safety, and scalable IVA.
The FVSA architecture consists of four-layer, i.e., Applica-
tion layer (responsible for system administration and user
management), Services Layer (for storage and analytics),
Network Layer, and Physical Layer (physical devices like
camera, etc.). They guaranteed the compatibility of FVSA
with the hierarchical structure of computer networks and
emerging technologies. Likewise, Lin, C.-F. et al. [306]
implemented a prototype of a cloud-based video recorder
system under glsIaaS while using big data technologies like
HDFS and Map Reduce. They showed the scalable of video
recording, backup, and monitoring features only without
implementing any video analytics services. Similarly, Liu,
X. et al. [307] also came out with a cloud platform for large
scale video analytics and management. They stated that the
existing work failed to design a versatile video management
platform in a user-friendly way and to effectively use Hadoop
to tune the performance of video processing. They success-
fully develop a cloud platform and the same big data tech-
nologies, i.e., Hadoop andMapReduce. They alsomanaged to
develop three video processing services, i.e., video summary,
video encoding and decoding, and background subtraction.

Tan, H. et al. [105] used Hadoop and MapReduce for fast
distributed video processing and analytics. They developed
two video analytics services, i.e., face recognition andmotion
detection, by using JavaCV. Furthermore, Ryu, C., et al. [308]
proposed a cloud video analytics framework using HDFS and

MapReduce along with OpenCV [309] and FFmpeg for video
analytics. They implemented face recognition and tracking
algorithm and reported the scalability of the system and the
accuracy of the algorithm. Ali M. et al. [310] proposed
an edge enhanced stream analytics system for video big
data called RealEdgeStream. They tried to investigate video
stream analytics issues by offering filtration and identifica-
tion phases to increase the value and to perform analytics
on the streams, respectively. The stages are mapped onto
available in-transit and cloud resources using a placement
algorithm to satisfy the Quality of Service constraints rec-
ognized by a user. They demonstrate that for a 10K element
data streams, with a frame rate of 15-100 per second, the job
completion took 49% less time and saves 99% bandwidth
compared to a centralized cloud-only based approach.

White et al. [311] researched MapReduce for IVA
services, which comprises classifier training, clustering,
sliding windows, bag-of-features, image registration, and
background subtraction. However, experiments were per-
formed for the k-means clustering and Gaussian back-
ground subtraction only. Tan and Chen [105] presented
face detection, motion detection, and tracking using
MapReduce-based clusters on Apache Hadoop. They uti-
lized JavaCV since Hadoop is developed and designed for
Java. Pereira, R. el al. [312] proposed a cloud-based dis-
tributed architecture for video compression based on the
Split-Merge technique while using the MapReduce frame-
work. They stated that they optimized the Split-Merge
technique against two synchronization problems. The first
optimization problem was split and merge video fragments
without loss in synchronization, whereas the second opti-
mization problem is the synchronization between audio and
video can be greatly affected, since the frame size of each one
may not be equal. Similarly, Liu et al. [313] used Hadoop and
MapReduce for video sharing and transcoding purposes.

Zhang, W. et al. [51] proposed a cloud-based architecture
for large scale intelligent video analytics called BiF. BiF
combines the merits of RIVA and BIVA while exploiting
distributed technologies like storm and MapReduce, respec-
tively. BiF architecture considered non-functional architec-
tural properties and constraints, i.e., usability, scalability,
reliability, fault tolerance, data immutability, re-computation,
storing large objects, batch processing capabilities, streaming
data access, simplicity and consistency. The BiF architecture
consists of four main layers, i.e., data collection layer, batch
layer, real-time layer, and serving layer. The data collection
layer collects the streaming video frames from the input video
sources (camera). The data collection layer forwards the
video frames to the batch layer and streaming layer for batch
processing and real-time analytics, respectively. The service
layer is to query both batch views and real-time views and
integrate them to answer queries from a client. To evaluate
the performance of the BiF architecture, they developed a
video analytics algorithm, which was able to detect and count
faces for a specific interval of time from the input source.
During the evaluation, they showed that BiF is efficient in
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terms of scalability and fault tolerance. Zhang et al. [319]
introduced Apache Kafka and Spark Streaming framework
for efficient real-time video data processing. They also pro-
posed a fine-grained online video stream task management
scheme to boost resource utilization and experimented with
license plate extraction and human density analysis.

Azher et al. [318] proposed CVAS for RIVA and BIVA
while using Spark Stream and Spark, respectively. They
implemented IVA services such as human action recognition
and face recognition services, respectively. In another work,
Azher et al. [320] proposed a novel feature descriptor to
recognize human action on Spark while utilized the Spark
MLlib [142] to recognize the action from the feature vector
generated by ALMD [320]. Wang et al. [321] also performed
human action recognition on Spark. The aim was to speed
up some key processes, including trajectory-based feature
extraction, Gaussian Mixture Model generation, and Fisher
Vector encoding. Distributed video processing called stream-
ing video engine is also introduced in [322] for distributed
IVA framework at Facebook scale against three major chal-
lenges, i.e., low latency, application-oriented flexibility, and
robustness to faults and overload.

Zhang et al. [316], [317] stated that the historical video
data could be used with the updated video stream to know
the current status of an activity, e.g., status of traffic on the
road, and to predict future. To make it possible, they pro-
posed a video cloud-based service-oriented layered architec-
ture called Depth Awareness Framework and consists of four
layers, i.e., data retrieval layer, offline video analytics layer,
online video processing layer, and domain service layer. The
data service layer is supposed to hander large-scale video data
and Webcam Stream. The offline layer is used to perform
the operation on the batch videos, whereas online processing
occurs in a real-time video processing layer. On the top of
the proposed cloud platform, they implemented deep con-
volution neural network for obtaining in-depth raw context
data inside the big video, and a deep belief network-based
method to predict workload status of different cloud nodes,
as part of knowledge on a system running status. They pre-
pared a dataset consisting of seven traffic videos, each of
size 2GB. During the evaluation, they stated the improvement
in object prediction accuracy, fault tolerance, and scalabil-
ity. Zhang et al. [323] performed pedestrian recognition on
real-time video data using deep learning. Here, the CNN net-
work is improved to fine-CNN, which consists of a nine-layer
neural network. Moreover, the Apache Storm framework,
along with a GPU-based scheduling procedure, is presented.

B. INDUSTRIAL CVAS
Various leading industrial organizations have successfully
deployed CVAS. Some of the most popular are briefly
described in the following subsections.

1) GOOGLE VISION
On March 8, 2017, at the Google Cloud Next confer-
ence in San Francisco, Google announced the release of

the IVA REST API [327]. The API lets the developer
recognize objects in videos automatically and can detect
and tag scene changes. Furthermore, it enables the users
to search and discover the unstructured video contents by
providing information about entities (20,000 labels). Its
main features are label detection, explicit content detection,
shot change detection, and regionalization [330]. It exploits
deep-learning models and is built on the top of the Ten-
sorFlow framework. The Google IVA APIs is targeting the
unstructured video content analytics rather than surveil-
lance and security. The application domains of the API
can be large media organizations that want to build their
media catalogs or find easy ways to manage crowd-sourced
content. It can also be helpful for product recommenda-
tions, medical-image analysis, fraud detection, and many
more.

2) IBM CVAS
In April 2017 at the National Association of Broad-
casters Show, IBM announced CVAS services [331].
BlueChasm, [328] development team, came up with a pro-
totype app, known as ‘‘VideoRecon,’’ that combines IVA via
IBM Watson and IBM cloud stack. The IBM CVAS service
can extract metadata like keywords, concepts, visual imagery,
tone, and emotional context from video data. The IBMCVAS
allows the users to upload video footage to the IBM Clever-
safe object storage [332] and subscribe to a service. When
an object or event of interest is detected, the VideoRecon
service creates a tag along with a timestamp of the point
in the video when either the object was recognized or the
event occurred. The tags are then stored in the IBM Cloudant
fully managed NoSQL JSON document store [333] for future
use.

3) AZURE CVAS
Microsoft Azure, a cloud computing service launched
in 2010, startedmedia services that enable developers to build
scalable media management and delivery applications [329].
Media Services is based on REST APIs that enable the
users to securely manage video or audio content for both
on-demand and live streaming delivery to clients. Recently,
they provide CVAS APIs to the customers for (R/B)IVA (as
shown in Table 10).

4) CITILOG CVAS
Citilog [324], also known as CT-Cloud, provides intelligent
video analytics and surveillance solutions in the domain
of transportation. Citilog provides services like automatic
incident detection, traffic data collection (vehicle counting,
classification, average speed, occupancy and levels of ser-
vice), interaction control, video management, and license
plate recognition. The Citilog is an open platform, providing
APIs, widgets for quick development of services. According
to the Citilog, they process approximately 32000 hours of
video data and detects about five incidents per minute from
900 sites worldwide.
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TABLE 10. Industrial CVAS.

5) CHECK-VIDEO CVAS
Check-Video [325], founded in 1998, is one of the initiators in
the domain of IVA. The company offers cameras, recorders,
and a cloud video management solution for security deal-
ers, integrators, and end-users. Initially, they used to pro-
vide OVAS, but with the advancement of cloud technology,
CheckVideo launched CVAS. They provide domain-specific
intelligent video analytics RIVA solution. The main features
Check-Video are RIVA, a video search engine, cloud video
storage, and an alert system. The provided services can be
categorized as basic analytics, object classification, and busi-
ness analytics (see table 10). According to the company’s,
they have successfully analyzed 108,458,000 hours of video
and detected 61,233,000 events per month.

6) INTELLI-VISION CVAS
Intelli-Vision [326], founded in 2002, is a leading and notable
company in the field of Artificial Intelligence (AI) and deep
learning-based video analytics and video cloud platform.
They are exploiting state-of-the-art technology in the area
of AI for security and monitoring purposes while targeting
multiple business domains, including home, retail, trans-
portation, and advanced driver assistance systems for cars.
Intelli-Vision’s analytics adds the ‘‘Brains Behind the Eyes’’
for cameras by analyzing the video content, extracting meta-
data, sending out real-time alerts, and providing intelligence
on the video. Currently, they are providing a wide range of
video analytics services in the domains mentioned above,
ranging from object left to night vision and enhancements
(see table 10). In Feb 2018, in a press release, the Intelli-
Vision stated that they have successfully deployed four mil-
lion cameras worldwide, which have been subscribed to
various IVA services.

VII. IVA APPLICATIONS
IVA at scale drives many application domains ranging from
security and surveillance to self-driving and healthcare.Many
application areas of video big data analytics are shown, which
project the significant role of big data and cloud computing
in IVA.

A. TRAFFIC AND TRANSPORTATION
IVA has been extensively used in traffic control and trans-
portation, e.g., lane traffic counts, incident detection, ille-
gal u-turn, and many more. One of the main reason for
deaths and injuries are traffic-related misfortunes [334].
Proactive analytics is required to predict abnormal events
so that to minimize or avoid such accidents. In this direc-
tion, VisonZero [335] has been developed and deployed suc-
cessfully. In transportation, another application is vehicle
tracking where chasing of a license plate, overspeeding, and
collision cause analysis can be obtained by analyzing video
data. Kestrel [336] is a vehicle tracking system and uses
information from various non-overlapping cameras to detect
vehicle path. Gao et al. [337] used an automatic particle
filtering algorithm to track the vehicle and monitor its illegal
lane changes. Chen et al. citechen2009machine used hidden
Markov models to determine the traffic density state proba-
bilistically. Incident detection framework based on generative
adversarial networks were proposed in [338].

B. INTELLIGENT VEHICLE AND SELF-DRIVING CARS
Currently, the term self-driving cars mean that the vehicle
exploits computer vision for safe and intelligent driving while
assisting the driver. In an intelligent vehicle, different sensors
and high definition cameras (cameras for vehicle cabin, for-
ward roadway, and the instrument cluster) are integrated with
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the vehicle, which generates multi-model data, and the same
is sent to the cloud for real-time analytics [339], [340]. In this
context, video analytics is vital with optimum algorithm
accuracy. Researchers have developed several algorithms,
including pedestrian detection, traffic light detection, and
other driver assistance system. For example,Wang et al. [341]
proposed a method for pedestrian detection in urban traffic
conditions using a multilayer laser sensor mounted onboard
a vehicle. An algorithm was proposed by Tsai et al. [342] to
detect three condition changes: missing, tilted, and blocked
signs, using GPS data, and video log images. An innovative
CNN-based visual processing model is proposed in [343] to
automatically detect traffic signs and dramatically reduces
the sign inventory workload. Driver decision making was
improved in taking the right turn in left-hand traffic at a sig-
nalized intersection utilizing simulation [344]. They used an
in-car video assistant system to present the driver’s occluded
view when the driver’s view is occluded by truck. An effort
for driver body tracking and activity analysis, posture recog-
nition, and action predication, have been studied in [345],
[346] respectively.

C. HealthCare
Recently, video big data analytics is reshaping the health-
care industry and yet another vital application area that
demands special focus while deploying video analytics.
Surveillance video streams can help understand the tracked
person’s behavior, such as monitoring elderly citizens or
blind people against fall detection or detecting any possible
threat. Fleck and Strasser reported a prototype 24/7 system
installed in a home for assisted living for several months
and shows quite promising performance [347]. Zhou et al.
studied how video analytics can be used in eldercare to
assist the independent living of elders and improve the effi-
ciency of eldercare practice [348]. Some more studies were
done [349]–[352] to analyze activities, recognize posture, and
to detect falls or other substantial events. A smart gym can
exploit the video cam stream to determine frequently used
equipment, the duration of exercise, and time spent on a
piece of particular equipment, which is useful for real-time
assessment.

D. SMART CITY SECURITY (IoT) AND SURVEILLANCE
In many organizations ranging from large enterprises to
schools, home and law enforcement agencies where security
is becoming an essential concern and is turning the security
centers to video analytics to keep their premises safe. Law
enforcement agents can use a body-worn camera to identify
criminals in real-time while transmitting the video stream to
the video analytic cloud. IVAaaS can provide customized ser-
vices that can adjust quickly to changing needs and demands.
People detection, and tracking [353], motion detection, intru-
sion detection [354], line crossing [355], object lift, loitering
[356], and license plate recognition [357] are the example of
video analytics services for security. For security in subway
stations, Krausz [358] developed as a surveillance system

to detect dangerous events. Shih et al. [359] tried to extract
the color features of an employee’s uniform to recognize the
entry legality in a restricted area. In the context of security,
abandoned object detection is indispensable and can lead to a
terrorist attack. In the future, video analytics applications are
developing fast, and they are changing the way the security
industry works.

E. AUGMENTED REALITY AND PERSONAL DIGITAL
ASSISTANCE
Among the many, one aspect of the augmented reality is
visual, where devices like special glasses, helmets, or goggles
are utilized for the projection of additional information or
interactive experience of the surrounding real-world environ-
ment. The visual aspect of augmented reality may encom-
pass complex IVA and demand powerful hardware. Likewise,
vision-based digital assistants is a rising technology (e.g.,
personal robot Jibo) that could deeply alter our regular activ-
ities while offering personalized and interactive experiences.
Such devices could be offloaded to the CVAS for low latency
complex IVA uninterruptedly.

F. RETAIL, MANAGEMENT, AND BUSINESS INTELLIGENCE
ANALYSIS
Large-scale
products, services, and staff management while adjusting to
consumer demands can be challenging without timely and
up-to-date information. Smart Retail solution takes advan-
tage of smart cameras combined with IVA to gather data
on store operations and customer trends. Dwell analysis,
face recognition, queue management, customer count, cus-
tomer matrics, consumer traffic map, are some of the exam-
ple services in this context [360]. Gaze analysis provides a
means to learn customers’ interest in merchandise by follow-
ing their attention [361], [362] on a store display. Actions
like reaching or grabbing products were analyzed by [363],
[364] to understand customers’ interest. Emotion analysis
can identify customers’ views regarding product and inter-
action with the company’s representative [334]. IVA can
also be used for business intelligence analysis to answer
queries like ‘‘number of people visited per unite time?’’
or ‘‘customer interest in items?’’ while utilizing the same
security infrastructure. Such information is beneficial for
retailers in improving customer experience and marketing
strategies.

VIII. RESEARCH ISSUES, OPPORTUNITIES, AND FUTURE
DIRECTIONS
Intelligent video big data analytics in the cloud opens new
research avenues, challenges, and opportunities. This section
provides in-depth detail about such research challenges,
which has been summarized in Table 11).

A. IVA ON VIDEO BIG DATA
Big data analytics engines are the general-purpose engine
and are not mainly designed for big video analytics. Con-
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TABLE 11. Open research issues in video big data analytics in the cloud.

sequently, video big data analytics is challenging over such
engines and demand optimization. Almost all the engines
are inherently lacking the support of elementary video data
structures and processing operations. Further, such engines
are also not optimized, especially for iterative IVA and depen-
dency among processes.

Optimizing cluster resource allocations among multiple
workloads of iterative algorithms often involves an approx-
imation of their runtime, i.e., predicting the number of
iterations and the processing time of each iteration [365].
By default, Hadoop lacks iterative job support but can be han-
dled through speculative execution. However, Spark supports
not only MapReduce and fault tolerance but also cache data
in memory between iterations. IVA on video big data creates
an immense space for the research community to further
crack in this direction. The research community is already
trying to develop basic video processing and IVA support
over big data, but it is still the beginning. How to optimize
such engines for iterative IVA? It also allows us to research
whether the exiting distributed computing engines fulfill the
demands of the IVA on video big data or need a specialized
one.

Furthermore, the focus of the existing research on IVA
are velocity, volume, velocity, but the veracity and value
have been overlooked. One promising direction in addressing
video big data veracity is to research methods and techniques
capable of accessing the credibility of video data sources so
that untrustworthy video data can be filtered. Another way
is to come up with novel ML models that can make infer-
ences with defective video data. Likewise, users’ assistance
is required to comprehend IVA results and the reason behind
the decision to realize the value of video big data in decision
support. Thus, understandable IVA can be a significant future
research area.

B. IVA AND HUMAN-MACHINE COORDINATION
IVA on video big data grants a remarkable opportunity for
learning with human-machine coordination for numerous
reasons:
• IVA on video big data in cloud demands researchers
and practitioners mastering both IVA and distributed
computing technologies. Bridging both the worlds for
most analysts is challenging. Especially in an educa-
tional environment, where the researcher focuses more
on the understanding, configuration, and tons of param-
eters rather than innovation and research contribution.
Thus there is a growing need to design such CVAS that
provide high-level abstractions to hide the underlying
complexity.

• IVS service to become commercially worthwhile and to
achieve pervasive recognition, consumer lacking tech-
nical IVA knowledge. The consumers should be able
to configure, subscribe, and maintain IVA services with
comfort.

• In traditional IVA, consumers are usually passive. Fur-
ther, research is required to build more interactive IVA
services that assist consumers in gaining insight into
video big data. An efficient interactive IVA service
depends on the design of innovative interfacing prac-
tices based on an understanding of consumer abilities,
behaviors, and requirements [366]. The interactive IVA
services will learn from the consumer and decrease the
need for administration by a specialist. It will also enable
consumers to design custom IVA services to meet the
domain-specific requirement.

C. ORCHESTRATION AND OPTIMIZATION OF IVA PIPELINE
L-CVAS is a service-oriented architecture, i.e., (R/B)IVAaaS.
The real-time and batch workflow are deeply dependent on
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the messaging middleware (Table 2) and distributed process-
ing engines (Table 7). In L-CVAS, the dynamic (R/B)IVA
service creation and multi-subscription environment demand
the optimization and orchestration of the IVA service pipeline
while guarantees opportunities for further research.

In literature, two types of scheduling techniques have
been presented for real-time scheduling, i.e., static and
dynamic [367], [368]. Static approaches are advantageous if
the number of services and subscription sources is known
priorly, but this is not the case with L-CVAS. The suitabil-
ity of dynamic methods is reasonable but is expensive in
terms of resource utilization. Likewise, the main issue in the
BIVA service workflow on video big data is the data parti-
tioning, scheduling, executing, and then integrate numerous
predictions. The BIVA service workflow can be affected by
the data flow feature of the underlying big data engine (as
shown in Table 7). As Hadoop map-reduce lacking the loops
or chain of stages, and Spark support DAG style of chain-
ing, whereas Flink supports a Controlled Cyclic Dependency
Graph (CCDG).

In the map-reduce infrastructure, a slowdown predictor can
be utilized to improve the agility and timeliness of scheduling
decisions [369]. Spark and Flink can accumulate a sequence
of algorithms into a single pipeline but need research to exam-
ine its behavior in dynamic service creation and subscrip-
tion environment. Further, concepts from the field of query
and queuing optimization can be utilized while considering
messaging middleware and distributed processing engines to
orchestrate and optimization of IVA service Pipeline.

D. IVA AND BIG DIMENSIONALITY
The VSDS multi-modality can produce diverse types
of data streams. Similarly, the IVA algorithm, devel-
oper, and IR has a triangular relationship. An array
of algorithms can be deployed, generating varied sorts
of multi-dimensional features from the acquired data
streams. The high-dimensionality factor poses many intrin-
sic challenges for data stream acquisition, transmission,
learner, pattern recognition problems, indexing, and retrieval.
In literature, it has been referred to as a ‘‘BigDimensionality’’
challenge [370].

VSDS variety leads to key challenges in acquiring and
effectively processing the heterogeneous data. Most existing
IVA approaches can consider a specific input, but in many
cases, for a single IVA goal, different kinds, and formats can
be considered.

With growing features dimensionality, current algorithms
quickly become computationally inflexible and, therefore,
inapplicable in many real-time applications [371]. Dimension
reduction approaches are still going to be a hot research topic
because of data diversity, increasing volume, and complexity.
Effect-learning algorithms for first-order optimization, online
learning, and paralleling computing will be more preferred.

Similarly, designing a generic, efficient, and scalable
multi-level distributed data model for indexing and retrieving
multi-dimensional features is becoming tougher than ever

because of the exponential growth and speed of video data.
Considering varied situations, requirements, and parame-
ters such as complex data type indexing (such as objects,
which contains multiple types of data), multi-dimensional
features (require different feature matching scheme for each
type), cross scheme matching (e.g., spatiotemporal, spatial-
object, object-temporal, etc.), giant search space, incremental
updates, on the fly indexing, and concurrent query processing
demands further investigation. It gives the research commu-
nity the opportunities to optimize existing hashing schemes
and indexing structures such as R-trees [372], M-tree [373],
X-tree [374], locality-sensitive hashing [375] etc. on the top
of big data engines. Log-structured merge-tree [376] based
distributed data stores (see Table 4) can be leveraged to
improve multi-dimensional query performances. Addition-
ally, ML classification models can be used to capture the
semantics by inspecting the association between features and
the context among them to better index multi-dimensional
data. Such methods make them more precise and effective
than the non-ML methods [377]. Thus, ML classification
models (including neural networks) can be used to capture the
semantics by inspecting the association between features and
the context among them to better index multi-dimensional
data, that make them more precise and effective than the
traditional indexing approaches [377].

E. ONLINE LEARNING ON VIDEO BIG DATA
The value of RIVA is dependent on the velocity of the video
streams, i.e., newness and relatedness to ongoing happenings.
Though existing big data de-facto standards are lacking to
deal with the changing streams [378]. The RIVA services
must address continuous and changing video streams. In this
context, online learning can be utilized, representing a group
of learning algorithms for constructing a predictive model
incrementally from a sequence of data, e.g., Fourier Online
Gradient Descent and Nystrom Online Gradient Descent
algorithms [379]. In this context, Nallaperuma et al. [380]
proposed ITS platform utilizing unsupervised online learn-
ing and deep learning approaches. It gives further research
opportunities by involving data fusion from heterogeneous
data sources [380].

F. MODEL MANAGEMENT
L-CVAS architecture is designed to deploy an array of
IVA algorithms, i.e., both by administrator and devel-
opers. An algorithm might hold a list of parame-
ters. The model selection process encompasses feature
engineering (feature selection IV-B1), IVA algorithm
selection, and hyperparameter tuning. Feature engineering is
a laborious activity and is influenced by many key factors,
e.g., domain-specific regulations, time, accuracy, video data,
and IVA properties, which resultantly slow and hinder explo-
ration. IVA algorithm selection is the process of choosing a
model that fixes the hypothesis space of prediction function
explored for a given application [381]. This process of IVA
algorithm selection is reliant on technical and non-technical

152410 VOLUME 8, 2020



A. Alam et al.: Video Big Data Analytics in the Cloud: A Reference Architecture, Survey, Opportunities, and Open Research Issues

aspects, which enforce the IVA developer to try manifold
techniques at the cost of time and cloud resources. Hyper-
parameter is vital as they govern the trade-offs between
accuracy and performance. IVA analysts usually do ad-hoc
manual tuning by iteratively choosing a set of values or using
heuristics such as grid search [381]. From IVA analysts’
perspective, model selection is an expensive job in terms of
time and resources that bringing down the video analytics
lifecycle [382]. Model selection is an iterative and investiga-
tive process that generally creates an endless space, and it is
challenging for IVA analysts to know a priori which com-
bination will produce acceptable accuracy/insights. In this
direction, theoretical design trade-offs are presented by
Arun et al. [383], but further research is required that how
to shape a unified framework that acts as a foundation for a
novel class of IVA analytics while building the procedure of
model selection easier and quicker.

G. PARAMETER SERVERS AND DISTRIBUTED LEARNING
Developing a model (such as Stochastic Gradient Descent)
for video big data analytics in a distributed environment car-
ries an intrinsic issue of sharing and updating high-dimension
parameters that can easily run into orders billions to trillions.
The Parameter Server notion has been introduced to address
this issue, aiming to store the parameters of an ML model
such as the weights of a neural network and serve them
to clients. Parameter Server proposes a new framework for
building distributed ML algorithms, and encompass diverse
design goals, e.g., efficient communication, flexible consis-
tency, elasticity when adding resources, resource utilization,
and ease of use. In literature, recently, various studies tried
to optimize Parameter Server. PS2 [384] builds the param-
eter server on top of Spark. SketchML [385] compresses
the gradient values by a sketch-based method. FlexPS [386]
introduces a multi-stage abstraction to support flexible par-
allel control. The Parameter Server can be optimized further
against the stated design goals and need further investigation.

H. EVALUATION ISSUES AND OPPORTUNITIES
Haralick [387] initiated the discussion of IVA performance
evaluation followed by dedicated workshops [388], and jour-
nals [389], [390]. As a result, performance evaluation tools
(ViPER5), and datasets (ETISEO [391], TrecVID [392], i-
LIDS [393]) were introduces. It is a fact that traditional IVA
has an established set of prediction accuracy based metrics
for performance evaluation that is ranging from accuracy,
error rate, and precision to optimization and estimation error.
Some more evaluation parameters are adopted from big data
analytics when IVA is tried on distributed computing, e.g.,
scalability, fault tolerance, memory usage, throughput, etc.
[394] (as shown in Table 9. The amalgamation of two types
of matrices might not be enough.

IVA services provided by a system like L-CVAS has to
accomplish predictably through an intractable number of
scenarios and environmental circumstances, meeting require-
ments that vary according to the situation, domain, and user.

For L-CVAS’s consumer, the IVA services work as a black
box where the significant metrics relate to overall system
performance, such as false alarms, accuracy, and detection
rate. However, from the developer and researcher perspective,
L-CVAS consists of numerous computer vision algorithms,
with complex interfaces among them. A proper performance
evaluation matrix is required for IVA service developers to
comprehend these relations and to revolutionize and address
novel IVA services. Another critical issue is how to guaran-
tee accurate and predictable IVA service performance when
porting technology between distributed algorithm develop-
ment environments and deployment code environments with
hardware-specific optimizations. These shortcomings result
in algorithmic alterations that can influence the performance
of IVA services.
IVA performance evaluation is goal-oriented, and the fac-

tors should be determined carefully. Many key factors that
influence the performance of video big data analytics uti-
lizing distributed computing engines in the cloud are listed
below (not limited to).

• VSDS: holds diverse types of parameters, i.e., video type
(color, grey-scale, infrared, omnidirectional, depth map,
etc.), property (frame-rate, field-depth), and quality (res-
olution, pixel depth) of the generated video as generated
by the camera.

• VSDSand messaging middleware parameters: encom-
pass VSDS connection, frames reducing and transfor-
mation, messaging queue (broker server), compression
artifacts, mini-batch size, and possibly the involvement
of internal and external network.

• VSDSenvironmental parameters: some features of the
configuration remain constant in a given use case, but
differ between configuration, possibly influencing per-
formance. These parameters comprise camera location
(mounting height, angle, indoor or outdoor), mounting
type (still or in motion), camera view (roads, water,
foliage), and weather (sun, cloud, rain, snow, fog, wind).

• Distributed processing environment: the video process-
ing hardware (FPGA, CPU, GPU, etc.), and network
communication channels potentially impose additional
limitations in terms of locality, speed, and memory.

• Big data analytics engines: The nature and characteris-
tics of big data engines affect the performance of the
IVA, such as data flow, windowing, computation model,
etc. Further, big video analytics in the cloud demand
complex trade-offs between different evaluation criteria.
In order to comprehend, assume the intricate trade-offs
between accuracy and response time. Iterative tasks have
an inverse relation with fault tolerance concerning scala-
bility (e.g., MapReduce is high fault-tolerant but lacking
iteration). Similarly, non-iterative IVA algorithms scale
better than iterative at the cost of performance degrada-
tion.

• IVA service parameters: Application parameters are
domain-specific parameters, e.g., vehicles, carts,
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humans, etc., tolerable miss detection and false alarm
rates and their desired trade-off, IVA type, and max
acceptable latency.

• Computation and communication trade-off: IVA Algo-
rithms and services in the distributed environment
should be developed and designed wisely intending to
minimize computation time, which is associated with
data locality and loading.

Diverse types of factors affect video big data analytics
performance in the cloud, constructing a comprehensive eval-
uation of all use cases are almost near impossible. It fur-
ther provides opportunities for the researchers to design a
framework that provides a unified and generic framework
that can be adapted by any CVAS. Investigating these issues
would significantly contribute to the academic and industrial
communities interested in building IVA algorithms, services,
and CVAS.

I. IVA ALGORITHM, MODEL, AND SERVICES STATISTICS
MAINTENANCE, RANKING, AND RECOMMENDATION
L-CVAS architecture is designed under the Customer-to-
Customer (C2C) business model. In L-CVAS, a user can
develop and deploy an IVA algorithm, model, or service
(here collectively we call it IVA service) that can be either
extended, utilized, or subscribed by other users. The commu-
nity members run such architecture, and rapidly, the number
of IVA services can be reached to tons of domain-dependent
or independent IVA services. This scenario develops a com-
plex situation for the users, i.e., which IVA service (when
sharing the parallel functionalities) in a specific situation,
especially during service discover. Against each IVA service,
there is a list of Quality of Service (QoS) parameters. Some
of these QoS parameters (not limited to) are user trust, sat-
isfaction, domain relevance, security, usability, availability,
reliability, documentation, latency, response time, resource
utilization, accuracy, and precision.

Such types of IVA services against the QoS parame-
ters lead to the 0-1 knapsack issue. In this direction, one
possible solution is utilizing multi-criteria decision-making
approaches. It gives further opportunities to the research
community to investigate how to rank and recommend IVA
algorithms, models, and services. Similarly, it can lead to
a high-dimensional sparse matric [395]. In this direction,
research is required on how to utilize such parameters for IVA
services recommendation.

J. IVAaaS AND COST MODEL
Recently, cloud-based analytics platforms are the key means
for enterprises to provide services on the pay-as-you-go cost
model. Existing cost metrics usually are determined to utilize
hardware usage comprising processing (CPU, GPU), disk
space, and memory usage. These prices are often static or
dynamic [396]. The example of the former one is Amazon’s
EC2, which offers tiered levels of service. In later cases,
the cost model is used to determine the price of the service

using analytics. This takes into account factors such as peak
hours and opponent cost model etc. The hardware cost is
usually minimal compared to the cost of software such as
L-CVAS where the cost of IVA analytics valued more.

L-CVAS is supposed to provide IVA-Algorithm-as-a-
Service (IVAAaaS) and IVAaaS in the cloud while adopting
the C2C business model. Unfortunately, current SaaS cost
models might not be applicable because of the involvement
of diverse types of parameters that drastically affect the cost
model. Such parameters are, business model (Business-to-
Business (B2B), Business-to-Customer (B2C), and C2C),
unite of video, user type (developer, researcher, and con-
sumers), services (IVAAaaS and IVAaaS), service subscrip-
tion (algorithm, IVA service, single, multiple, dependent or
independent), cloud resource utilization, user satisfaction,
QoS, location, service subscription duration, and cost model
fairness. The addition of further parameters is subject to dis-
cussion, but the listed are the basic that govern L-CVAS cost
matrix. Additionally, the costmodel demands further research
and investigations to develop an effective price scheme for
IVA services while considering the stated parameters.

K. VIDEO BIG DATA MANAGEMENT
Despite video big data pose high value, but its management,
indexing, retrieval, and mining are challenging because of
its volume, velocity, and unstructuredness. IVA has been
investigated over the years (section V) but still evolving and
need to address diverse types of issues such as:

• In the context of video big data management, the main
issue is the extraction of semantic concepts from primi-
tive features. A general domain-independent framework
is required that can extract semantic features, analyze
and model the multiple semantics from the videos by
using the primitive features. Further, semantic event
detection is still an open research issue because of the
semantic gap and the difficulty of modeling temporal
and multi-modality features of video streams. The tem-
poral information is significant in the video big data
mining mainly, in pattern recognition.

• Motion analysis is vital, and further research is required
for moving objects analysis, i.e., object tracking, han-
dling occlusion, and moving objects with statics cam-
eras [213], moving cameras [215], and multiple camera
fusion.

• Limited research is available on CBVR (see
section V-A) while exploiting distributed computing.
Further study is required to consider different features
ranging from local to global spatiotemporal features
utilizing and optimizing deep learning and distributed
computing engines.

• For video retrieval, semantic-based approaches have
been utilized because of the semantic gap between the
low-level features and high-level human-understandable
concepts. Ontology adds extra concepts that can improve
the retrieval results [182] but can also lead to unexpected
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deterioration of search results. In this context, a hybrid
approach can be fruitful and need to design different
query planes that can fulfill diverse queries in complex
situations.

• Insufficient research is available on graph-based video
big data retrieval and analysis, opening doors for further
investigation. The researchers can conduct studies to
answer questions like: the formation of the video graph,
tuning the similar value and its effect on the graph
formation, studying properties, and meta-analytic of the
formed video graph.

• How the reinforcement learning and real-time feedback
query expansion technique [397] can be exploited to
improve the retrieval results?

• Recently, video query engines have been introduced to
retrieve and analyze video at scale [398]–[400]. A spe-
cial focus of the database community is required to
design, implement, optimize, and operationalize such
video query engines.

L. PRIVACY, SECURITY AND TRUST
Video big data, acquisition, storage, and subscriptions to
shared IVA in the cloud become mandatory, which leads to
privacy concerns. For the success of such platforms, privacy,
security, and trust are always central. In literature, the word
‘trust’ is commonly used as a general term for ‘security’ and
‘privacy’ [401]. Trust is a social phenomenon where the user
has expectations from the IVA service provider and willing
to take action (subscription) on the belief based on evidence
that the expected behavior occurs [402], [403]. In the cloud
environment, security and privacy are playing an active role
in the trust-building. To ensure security, the CVAS should
offer different levels of privacy control. The phenomena of
privacy and security are valid across VSDS, storage secu-
rity, multi-level access controls, and privacy-aware IVA and
analysis. We list some research directions that can provide
opportunities for cloud security specialists.

• The video big data volume, variety, and velocity boost
security threats. Recently, disputes and news were cir-
culating regarding the misuse of user-generated content
and hacking the cameras in an unauthorizedmanner. The
CVAS vendor, in collaboration with or under the law
enforcement agencies, must come up with new rules,
laws, and agreements, which can differ from country
to country. Utilizing such policies, the CVAS vendor
should ensure that all the IVA service, subscription, and
storage level agreements are adequately followed. The
policies can be researched whether it offers adequate
protection for individuals’ data while performing video
big data analytics and public monitoring.

• Unlike other data, videos are more valuable for the
owner and can be a direct threat, e.g., live broadcast,
blackmailing, etc. Likewise, the focus of traditional
privacy approaches is data management that becomes
absolute when it comes to data security. Novel algo-

rithms are required to secure user’s data both for shared
IVA, storage to make the video stream acquisition more
secure.

• In the context of security, the blockchain (popularized
by Bitcoin) [404] has been studied and operationalized
across academia and industry evenly. A blockchain is
a modification resilient cryptography technique known
as a distributed ledger, where records are linked and
managed by a decentralized peer-to-peer network [404].
The blockchains techniques are still in early-stage and
can be researched further to form a novel automated
security system for CVAS.

• ML techniques have been matured over the years and
have been successfully utilized for security, i.e., model-
ing attack patterns with their distinctive features. How-
ever, change in features in case of sophisticated attacks
may lead to security failure. ML could enhance the per-
formance of security solutions to alleviate the dangers of
the existing cyberattacks. The research community can
further investigate how ML techniques, especially deep
learning, can be deployed to analyze logs produced by
network traffic, IVA processes, and users to recognize
doubtful activities.

IX. CONCLUSION
In the recent past, the number of public surveillance cameras
has increased significantly, and an enormous amount of visual
data is produced at an alarming rate. Such large-scale video
data pose the characteristics of big data. Video big data offer
opportunities to the video surveillance industry and permits
them to gain insights in almost real-time. The deployment
of big data technologies such as Hadoop, Spark, etc., in the
cloud under aaS paradigm to acquire, persist, process and
analyze a large amount of data has been in service from last
few years. This approach has changed the context of infor-
mation technology and has turned the on-demand service
model’s assurances into reality.

This paper provides an extensive study on intelligent video
big data in the cloud. First, we define basic terminologies
and establish the relation between video big data analytics
and cloud computing. A comprehensive layered architecture
has been proposed for intelligent video big data analytics in
the cloud under the aaS model called L-CVAS. VBDCL is
the base layer that allows the other layers to develop IVA
algorithms and services. This layer is based on the concept of
IR orchestration and takes care of data curations throughout
the life cycle of an IVA service. The VBDPL is in-charge of
pre-processing and extracting the significant features from
the raw videos. The VBDML is accountable for producing
the high-level semantic result from the features generated
by the VBDML. The KCL deploys video ontology and cre-
ates knowledge based on the extracted higher-level features
obtained from VBDML. When all these layers are pipelined
in a specific context, it becomes an IVA service to which the
users can subscribe to video data sources under the IVAAaaS
paradigm.
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Furthermore, to show the significance and recent research
trends of IVA in the cloud, a broad literature review has been
conducted. The research issues, opportunity, and challenges
being raised by the uniqueness of the proposed L-CVAS,
and the triangular relation among video big data analyt-
ics, distributed computing technologies, and cloud has been
reported.
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