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ABSTRACT Coprime arrays can highly increase degree-of-freedom (DOF) by exploiting the equivalent
virtual signal. However, since the corresponding virtual array constructed by the coprime array is always
a non-uniform linear array (non-ULA), most existing direction-of-arrival (DOA) estimation algorithms fail
to utilize all received information and result in performance degradation. To address this issue, we propose
a novel interpolation approach for coprime arrays to convert the virtual array into a ULA with which all
received information can be efficiently utilized. In this paper, we consider a weighted covariance matrix
fitting criterion to formulate a semi-definite programming (SDP) problem with respect to the interpolated
virtual signal. After that, we can reconstruct a Hermitian Toeplitz covariance matrix corresponding to the
interpolated ULA in a gridless manner, and the number of detectable targets is ulteriorly increased with the
reconstructed covariance matrix. The proposed approach is hyperparameter-free so that the tedious process
of selecting regularization parameters is avoided. Numerical experiments validate the superiority of the
proposed interpolation-based DOA estimation algorithm in terms of DOF characteristic, resolution ability
and estimation accuracy compared with several existing techniques.

INDEX TERMS Coprime arrays, DOA estimation, virtual array interpolation, covariance matrix fitting,
hyperparameter-free.

I. INTRODUCTION
Direction-of-arrival estimation, as an important research
branch of array signal processing, has been widely applied
in sonar [1], radar [2] and wireless communication [3]. If the
common array geometry like ULA or UCA is under consid-
eration, the number of identifiable sources is impossible to
exceed the array scale according to the Nyquist sampling the-
orem, i.e., an array consisting ofM physical sensors can only
detect up toM−1 targets with the subspace-based algorithms
[4], [5]. To break through such a limitation, a systematical
sparse array called the coprime array [6], [7] was proposed
recently and has attracted noticeable attention due to its
superior performance. Comprising two sparse ULAs which
are deployed in accordance with coprimality, the coprime
array forms a larger aperture compared with the common
array configurations which consist of the same number of
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sensors. Thus the resolution ability of the coprime array is
relatively improved. Besides, compared with other sparse
array configurations like minimum redundancy array (MRA)
[8] and minimum hole array (MHA) [9], the sensor positions
of the coprime array can be certainly determined as long as
the coprime integer pair is given. Furthermore, by exploiting
the second-order information of the received signal to con-
struct an augmented virtual array, the DOF of the coprime
array can reach up to O(MN ) with only O(M + N ) physical
sensors.

To make full use of the DOF offered by the coprime
array, almost all existing DOA estimation approaches are
performed on the derived virtual signal. However, since the
coprime array is partially augmented, holes are generated in
the difference co-array, i.e., the corresponding virtual array
is discontinuous. Some DOA estimation algorithms, such
as spatial smoothing MUSIC [10], co-array ESPRIT [11],
and covariance matrix sparse reconstruction [12], are only
performed on the maximum continuous segment within the
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virtual array, and hence the utilization of DOF is greatly
reduced. Capable of using the total discontinuous elements,
sparse signal reconstruction (SSR) algorithm [13] can auto-
matically find the DOAs via solving an optimization problem
but suffers from basis mismatch that targets do not fall on the
pre-defined spatial grid exactly. To address such a problem,
the idea of joint-sparsity is used in [14] to correct the off-
grid DOAs with deviation variables. Besides, Tan et al. [15]
design a sparsity recovery problem from the perspective of
super-resolution, and all possible sources are covered within
a continuous range. The methods proposed in [14] and [15]
can also operate the derived signal corresponding to the non-
uniform virtual array. Actually, the holes in the non-uniform
virtual array can be regarded as potential sensors, and all
information received by the coprime array can be successfully
utilized once the holes are filled up. Consequently, numerous
array interpolation approaches are proposed to convert the
discontinuous virtual array into a ULA. Based on the prin-
ciple of matrix completion, the virtual array is interpolated
through nuclear norm minimization in [16]. The OptSpace
[17], a kind of matrix completion algorithm, is also utilized
in the virtual array domain to enhance DOF. Whereas the
matrix completion-based approaches will generate a perfor-
mance loss because the partial correlation observation corre-
sponding to the non-uniform segment is retained. To address
such a problem, the idea of gridless Toeplitz matrix recon-
struction [18], [19] is utilized to exploit the potential
DOF more recently and it is demonstrated that the recon-
structed covariance matrix coincides with the interpolated
ULA better.

The performance degradation caused by the non-uniform
array configuration is nonnegligible, especially in complex
electromagnetic and multi-target scenarios. From the per-
spective of Toeplitz matrix reconstruction in this paper as
well, we propose a novel virtual array interpolation-based
DOA estimation algorithm for the coprime array. We con-
sider a weighted covariance matrix fitting criterion to for-
mulate an SDP optimization problem with respect to the
interpolated virtual signal, and then a Hermitian Toeplitz
covariance matrix corresponding to the interpolated ULA is
reconstructed in a gridless manner. After that, the available
DOF exceeds the one of the original virtual array, and numer-
ous ULA-based DOA estimation algorithms can be readily
applied. Unlike the approaches in [16]–[19], the proposed
approach dispenses with the tedious process of selecting
regularization parameters and it is proved to be equivalent to
promoting low-rankness of the covariance matrix via atomic
normminimization implicitly. The contributions of this paper
are summarized as follows:
• We derive the atomic norm of the multiple virtual mea-

surements in both continuous and discontinuous cases,
and build up the relationship between them.

• We utilize a covariance matrix fitting criterion to
reconstruct a Hermitian Toeplitz matrix correspond-
ing to the interpolated virtual array in a gridless
manner.

• We explore the implication of the proposed method
to promote low-rankness and analyze its feasibility of
virtual array interpolation.

The rest of this paper is organized as follows. In section II,
the signal model of the coprime array is presented. We then
detail the proposed virtual array interpolation-based DOA
estimation algorithm in section III. The effectiveness of the
proposed algorithm is demonstrated via simulation results in
section IV and the conclusions are finally drawn in section V.
Notations: Throughout this paper, we use lower-case and

upper-case boldface characters to represent vectors andmatri-
ces respectively. The superscripts (·)T , (·)∗ and (·)H denote
the transpose, complex conjugation and conjugate transpose,
respectively. The notation vec(·) represents the vectorization
operator that sequentially stacks each column of a matrix.
We use ⊗ to stands for the Kronecker product and | · |
represents the cardinality of a set.

II. COPRIME ARRAY SIGNAL MODEL
As Fig. 1 shows, the coprime array consists of two sparse
ULAs which are located at {0,Md, 2Md, · · · (N−1)Md} and
{0,Nd, 2Nd, · · · , (M − 1)Nd} respectively. Herein, M and
N are a pair of coprime integers, and the unit inter-element
spacing d is chosen to be a half-wavelength λ/2. Owing to
the coprimality, only the first sensors of these two layers are
co-located, and thus the coprime array comprisesM +N − 1
sensors in total.

FIGURE 1. Geometry of the coprime array.

With the assumption that L far-field uncorrelated narrow-
band signals from θ = [θ1, θ2, · · · , θL]T impinge on the
coprime array, the received signal at the t-th moment can be
modeled as

x(t) =
L∑
l=1

a(θl)sl(t)+ n(t) = A(θ )s(t)+ n(t), (1)

where A(θ ) = [a(θ1), a(θ2), · · · , a(θL)] ∈ C(M+N−1)×L

represents the manifold matrix of the coprime array, s(t) =
[s1(t), s2(t), · · · , sL(t)]T ∈ CL×1 denotes the signal wave-
form vector, and n(t) ∼ CN (0, σ 2

n I) denotes the additive
complex-valued zero-mean Gaussian white noise. Suppose
that the location of the i-th sensor is ui, and a(θ ) is the steering
vector with the i-th element taken as e−j(2π/λ)uisinθ .

To explore the second-order information of the received
signal, we express the covariance matrix among L
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sources as

Rx = E[x(t)xH (t)] =
L∑
l=1

pla(θl)aH (θl)+ σ 2
n I, (2)

where pl denotes the power of the l-th source. Limited by the
number of snapshots, the expectation operator is unavailable
in practice, and it is usually replaced by the statistical average
derived from K available snapshots. After that, the equivalent
virtual signal can be formulated by vectorizing the covariance
matrix as

y = vec(Rx) = Âp+ σ 2
n i, (3)

where i = vec(I), p = [p1, p2, · · · , pL]T and Â = [a∗(θ1)⊗
a(θ1), a∗(θ2)⊗ a(θ2), · · · , a∗(θL)⊗ a(θL)]. Â is the manifold
matrix of the virtual array with sensor locations determined
by the following difference co-array

S = {um − un | m, n = 0, 1, 2, · · · ,M + N − 1}. (4)

After removing the identical elements within S, an equivalent
virtual array is constructed as the subset of S

SV ( {±(Mn− Nm)d | m = 0, 1, · · · ,M − 1,

n = 0, 1, · · · ,N − 1}. (5)

Such an augmented virtual array is shown in Fig. 2(b) where
M = 3 and N = 5 are set for illustration. By selecting the
corresponding elements from y, the equivalent virtual signal
of SV is expressed as

yv = Âvp+ σ 2
n î, (6)

where Âv ∈ C|SV |×L represents the manifold matrix of the
derived virtual array and î denotes the subset formed by the
corresponding elements of i. Note that SV is discontinuous
since the coprime array is partially augmented, i.e., there
exist holes within SV . To make the utmost of all information
received by the coprime array, we intend to convert SV into
a continuous virtual ULA and denote it as SI . The purpose
of virtual array interpolation is to recover the unknown signal
datas yielded by the potential sensors which are illustrated as
the hollow circles in Fig. 2(c).

FIGURE 2. Illustration of corresponding array configurations. (a) Physical
coprime array. (b) Discontinuous virtual array. (c) Interpolated virtual
array.

FIGURE 3. Illustration of virtual signal of each subarray.

III. THE PROPOSED VIRTUAL ARRAY INTERPOLATION
APPROACH FOR DOA ESTIMATION
In this section, a virtual array interpolation approach for
the coprime array is proposed to further increase DOF.
Herein, we first derive the atomic norm of the multiple
virtual measurements in both continuous and discontinuous
cases. We then consider a weighted covariance matrix fit-
ting criterion to reconstruct a Hermitian Toeplitz covariance
matrix corresponding to the interpolated ULA SI . More-
over, we explore the implication of the proposed approach
to promote low-rankness and analyze its feasibility of virtual
array interpolation. Finally, a ULA-based DOA estimation
algorithm is applied to identifying much more sources with
the reconstructed covariance matrix.

A. ATOMIC NORM EXPLOITATION
To avoid the basis mismatch problem, we introduce a math-
ematical tool known as the atomic norm to characterize the
sparsity of the virtual statistics. To elaborate the property of
the atomic norm, we first consider a noise-free and snapshot-
infinite scenario where the potential sensors are accurately
interpolated as well. Besides, we define J = (| SV |
+1)/2 and I = (| SI | +1)/2. Note that the virtual
signal behaves in a single-snapshot manner. Based on the
idea of spatial smoothing, the ideal interpolated virtual signal
denoted as yI can be divided into I segments shown as Fig. 3.
After stacking the virtual signal of each subarray as Y =[
y1I , y

2
I , · · · , y

I
I

]
, it is equivalent to obtaining the multiple

measurements yielded by the reference subarray located from
0 to (I − 1)d . Owing to the conjugate symmetry of yI ,
the multiple measurements can be also formulated as T

(
y1I
)

where T (·) represents the operator to form a Hermitian
Toeplitz matrix with the inner vector as its first column. Such
a Toeplitz-structure matrix can be directly regarded as the
covariance matrix corresponding to the reference subarray
[20] for the reason that the virtual signal contains signal
power information instead of waveform information. Further-
more, it is evident that the available DOF is up to I − 1.
Under the ideal assumption and DOF constraint, it is readily
derived that rank

(
T
(
y1I
))
= L < I . According to the

Vandermonde decomposition theorem [21], T
(
y1I
)
can be

uniquely decomposed as

Y = T
(
y1I
)
= AIPAHI =

L∑
l=1

plaI (θl)aHI (θl), (7)
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where aI (θ ) denotes the steering vector of the inter-
polated reference array with the i-th element taken as
e−j(i−1)πsinθ and P = diag(p). We formally define a atom
set as

A =
{
B(θ )|B(θ ) = aI (θ )aHI (θ ), θ ∈

[
−90◦, 90◦

]}
. (8)

Obviously from (7), Y is a linear combination of L
atoms in the atomic set A. To promote sparsity, we con-
sider the atomic `0 norm as the sparse metric, and it is
defined as the minimum number of atoms in A that can
synthesize Y

‖Y‖A,0 = inf
L

{
Y =

L∑
l=1

plB(θ ), pl ≥ 0

}
, (9)

where inf denotes the infimum. Similar to the `0 norm,
the minimization of atomic `0 norm is also an NP-hard prob-
lem. Hence, we present the following atomic norm convex
relaxation [22] defined as the gauge function of the convex
hull of A (denoted as conv(A))

‖Y‖A = inf {t > 0 : Y ∈ tconv(A)}

= inf

{∑
l=1

pl |Y =
∑
l=1

plB(θ ), pl ≥ 0

}
. (10)

Still considering the noise-free and snapshot-infinite sce-
nario, we find that the signal yv yielded by the discontinuous
virtual array SV is the observed samples of yI on an index
subset �, i.e., 〈yI 〉� = yv where 〈·〉i denotes the i-th element
of the inner vector. We define a selection matrix 0� ∈ RJ×I

which is constructed by removing the i-th row (i /∈ �) of an
I × I unity matrix. Then the multiple measurements of SV
can be expressed as

Y� = 0�Y0H� = A�PAH�

=


〈
yv
〉
J

〈
yv
〉
J−1 · · ·

〈
yv
〉
1〈

yv
〉
J+1

〈
yv
〉
J · · ·

〈
yv
〉
2

...
...

. . .
...〈

yv
〉
2J−1

〈
yv
〉
2J−2 · · ·

〈
yv
〉
J

 , (11)

where A� = 0�AI . Similarly we define a atom set of the
discontinuous multiple measurements as

A� =

{
B�(θ )|B�(θ ) = 0�B(θ )0H�, θ ∈

[
−90◦, 90◦

]}
.

(12)

So that the atomic norm of Y� can be readily derived as

‖Y�‖A�
= inf

{∑
l=1

pl |Y� =
∑
l=1

plB�(θ ), pl ≥ 0

}
. (13)

Lemma 1:

‖Y�‖A�
= min

Y�
‖Y‖A. (14)

proof: Through the definition given in (10) and (13),
the following equalities evidently hold

min
Y�
‖Y‖A

= min
Y�

inf

{∑
l=1

pl |Y =
∑
l=1

plB(θ ), pl ≥ 0,B(θ ) ∈ A
}

= inf

{∑
l=1

pl |Y� =
∑
l=1

pl0�B(θ )0H� , pl ≥ 0,B(θ ) ∈ A
}

= inf

{∑
l=1

pl |Y� =
∑
l=1

plB�(θ ), pl ≥ 0,B� ∈ A�

}
= ‖Y�‖A�

. (15)

According to Lemma 1, it is reasonable to recover the
unknown statistics of potential sensors even though only
partial information is observed, i.e., the discontinuous virtual
array SV can be theoretically interpolated into a ULA SI .

B. VIRTUAL ARRAY INTERPOLATION VIA COVARIANCE
MATRIX FITTING
In practice, we can only obtain the derived virtual sig-
nal formulated as (6) and the multiple virtual mea-
surements expressed as (11). Through spatial smoothing,
the covariance matrix of reference discontinuous array can be
calculated as

Rv = Y�YH�, (16)

where the coefficient 1/J is omitted because it makes no dif-
ference after normalization. Due to the impact of noise, finite
snapshots and discontinuity of yv, the deviation is accumu-
lated in Rv when performing (16). According to the property
of the array signal, the covariance matrix corresponding to
SV should hold the structure as

R� = A�PA� + σ 2
n I = 0�T

(
y1I
)
0H� + σ

2
n I. (17)

The noise term σ 2
n I will not change the special structure ofR�

so that we can also reparameterize R� as 0�T (z)0H� . After
that, T (y1I ) can be reasonably modeled as T (z)−λmin(T (z))I
where λmin(·) denotes the minimum eigenvalue of the inner
matrix.

To reduce the deviation caused by Rv, we consider the
following covariance matrix fitting criterion [23]–[25] for the
purpose of covariance matrix reconstruction

f (R�) =
∥∥∥R−1/2� (Rv − R�)R−1/2v

∥∥∥2
F
, (18)

where ‖·‖F denotes the Frobenius norm. Unlike [24] and
[25] where singular matrix should be considered to make the
criterion universal, the reference covariance matrix is non-
singular and positive semi-definite (PSD) when it turns to the
virtual array domain, i.e., R−1/2v definitely exists even though
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only one snapshot is captured. After a simple calculation,
the covariance matrix fitting criterion (18) is reformulated as

f (R�) = tr
[
R−1� (Rv − R�)R−1v (Rv − R�)

]
= tr

[(
R−1� Rv − I

) (
I − R−1v R�

)]
= tr

(
R−1� Rv

)
+ tr

(
R−1v R�

)
− 2J , (19)

where tr(·) denotes the trace operator. Therefore, under the
constrains T

(
y1I
)
≥ 0 and σ 2

n ≥ 0, the covariance matrix
fitting problem can be formulated as the following convex
optimization problem to minimize (18)

min
y1I ,σ

2
n≥0

tr(R−1� Rv)+ tr(R−1v R�) s.t. T (y1I ) ≥ 0. (20)

The covariance matrix fitting problem (20) is an SDP that
can be efficiently solved by the CVX software [26]. After
solving (20), we can obtain the interpolated virtual signal y1I
as well as the power of the additive noise.

C. PERFORMANCE ANALYSIS AND DOA ESTIMATION
The noise-free covariance matrix theoretically behaves in a
low-rank manner because the incident sources should be less
than the sensors within SI . Different from the approaches
proposed in [16]–[19] which promote low-rankness via
nuclear norm or trace norm minimization explicitly, the pro-
posed method enforces low-rankness via atomic norm mini-
mization in an implicit way. By substituting (16) to the first
term of (20), (20) is equivalent to

min
y1I ,σ

2
n≥0

tr
(
R−1� Y�YH�

)
+tr

(
R−1v R�

)
s.t. T (y1I )≥0. (21)

After a simple transformation, (21) can be reformulated as

min
z
tr
(
YH�T (z�)−1Y�

)
+ tr (T (z�))

+ tr
((
R−1v − I

)
T (z�)

)
s.t. T (z) ≥ 0, (22)

where z� = 0�z and T (z�) = 0�T (z)0�. (22) can be
further transformed as

min
z,X

tr (X)+ tr (T (z�))+ tr
((
R−1v − I

)
T (z�)

)
s.t.

[
X YH�
Y� T (z�)

]
≥ 0, T (z) ≥ 0. (23)

According to the theorem 2 mentioned in [18], (23) is equiv-
alent to the following atomic norm minimization problem

min
z

2J‖Y�‖A�
+ tr

((
R−1v − I

)
T (z�)

)
s.t. T (z) ≥ 0.

(24)

By Lemma 1, (24) can be ulteriorly expressed as

min
z,Y�

2J‖Y‖A+tr
((
R−1v −I

)
T (z�)

)
s.t. T (z)≥0. (25)

Therefore, the proposed covariance matrix fitting problem
formulated in (20) is capable of recovering the unknown sig-
nal of the potential virtual sensors, i.e., SV can be effectively

interpolated as SI by (20). Moreover, the proposed method
can promote the low-rankness of the covariance matrix via
atomic norm minimization in an implicit manner.

The solution to (20) can be utilized to construct a noise-free
PSD Hermitian Toeplitz matrix T

(
y1I
)
which corresponds

to the interpolated virtual ULA. Hence, numerous proven
ULA-based DOA estimation algorithms, including MUSIC-
based [10], [20], ESPRIT-based [11], [27] and sparsity-based
[13]–[15] approaches can be efficiently applied to the virtual
array domain for unambiguous DOA estimation. For exam-
ple, herein we formulate the MUSIC spatial spectrum as

fMUSIC (θ) =
1

aHI (θ)�n�
H
n aI (θ)

, (26)

where �n denotes the noise subspace of T
(
y1I
)
. Actually

T
(
y1I
)
is approximating to a rank-full matrix in the noisy

finite-snapshot cases, and thus the noise subspace �n is gen-
erally acquired by selecting the eigenvectors corresponding
to the I − L smallest eigenvalues of T

(
y1I
)
. The number of

targets L is regarded as a priori under the virtual domain DOF
constraint L < I or can be effectively estimated via AIC, BIC
[28] and SORTE [29]. The final DOA estimation result can
be empirically obtained by collecting L dominant peaks of
fMUSIC (θ).

We summarize the proposed virtual array interpolation-
based DOA estimation approach in Algorithm 1. It is worth
mentioning that the proposed covariance matrix fitting prob-
lem described in (20) is hyperparameter-free, i.e., the regu-
larization parameter specified by users via cross-validation
is unnecessary. Moreover, by modifying the location-indexed
subset �, the proposed interpolation approach can be readily
extended to other partially augmentable array configurations
[30] including MRA, MHA and the modified nested array
(MNA) [31], [32].

IV. SIMULATION RESULTS
In this section, we present several numerical experiments to
demonstrate the advantages of the proposed interpolation-
based DOA estimation algorithm for coprime arrays.
We choose a pair of coprime integers M = 3 and N = 5
respectively to deploy the coprime array which consists of
M + N − 1 = 7 physical sensors in total, and the sensors
are located at {0, 3d, 5d, 6d, 9d, 10d, 12d}. By performing
the operation (6), a discontinuous virtual array ranging from
−12d to 12d with holes located at {−11d,−8d, 8d, 11d}
is constructed. The proposed algorithm is compared with
the sparse signal reconstruction (SSR) algorithm [13] with
step size 0.1◦, the nuclear norm minimization (NNM) algo-
rithm [16] and the atomic norm minimization (ANM)
algorithm [18]. The regularization parameters for the SSR
algorithm and the ANM algorithm are both set to be
0.25 empirically.

A. DOF CHARACTERISTIC
In the first numerical experiment, we test the DOF char-
acteristic. The signal-to-noise ratio (SNR) and the number
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FIGURE 4. Spatial spectrum performance comparison for 9 sources. (a) SSR algorithm. (b) NNM algorithm. (c) ANM algorithm. (d) Proposed
algorithm.

FIGURE 5. Spatial spectrum performance comparison for 12 sources. (a) SSR algorithm. (b) NNM algorithm. (c) ANM algorithm. (d) Proposed
algorithm.

FIGURE 6. Spatial spectrum performance comparison of 2 closer sources. (a) SSR algorithm. (b) NNM algorithm. (c) ANM algorithm. (d) Proposed
algorithm.

Algorithm 1 The Proposed Interpolation-Based DOA
Estimation

Input: The signal received by the coprime array x(t).
Output: The DOA estimation result θ̂ =

[θ̂1, θ̂2, · · · , θ̂L]T .
1: Derive the equivalent virtual signal via (6).
2: Construct the initialized covariance matrix by (16).
3: Determine the index subset �.
4: Solve (20) to obtain the interpolated virtual signal.
5: Calculate (26) for DOA estimation.

of snapshots K are set to be 0dB and 500 respectively.
Herein we first consider 9 narrowband uncorrelated sources
uniformly distributed in the range of [−50◦, 50◦], and the
simulation result is illustrated in Fig. 4 where the true DOAs
are illustrated as the vertical red dashed lines. It is discovered
from Fig. 4 that all 9 sources can be evidently identified by
the four tested algorithms with only 7 physical sensors, and
thus the effectiveness of coprime arrays to increase DOF is
validated. Note that the available DOF of the discontinuous
virtual array SV is up to 10, but the one of the interpolated
ULA SI reaches up to 12. When the incident sources are
increased to 12, the SSR algorithm misses several targets

as illustrated in Fig. 5(a) because it is performed on SV .
However, obviously all 12 sources can be correctly identified
by the NNM algorithm, the ANM algorithm and the proposed
algorithm as shown in Fig. 4(b), (c) and (d) respectively. It is
demonstrated that the interpolation-based DOA estimation
algorithms can effectively exploit the potential virtual sensors
to further increase DOF.

B. RESOLUTION ABILITY
In the second experiment, we test the resolution ability by dis-
tinguishing two closer targets which are located at −1θ and
1θ respectively.Wefirst present a representative spatial spec-
trum comparison in Fig. 6 where SNR = 0dB, K = 500, and
1θ = 1◦. It can be obviously seen from the spectrum of SSR
illustrated in Fig. 7(a) that a pseudo peak shows up at around
2.2◦ and the two dominant peaks deviate from the true DOAs.
The NNM algorithm distinguishes the two targets with a bad
grace shown as two obtuse peaks in Fig. 6(b). In contrast,
two much sharper and more correctly identified peaks are
yielded by the ANM algorithm and the proposed algorithm.
We further define that the two targets are correctly resolved
as long as there are two peaks showing up in the spatial
spectrum and the estimation error is smaller than1θ . Herein
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FIGURE 7. Resolution probability comparison versus 1θ . (a) SNR = 0dB. (b) SNR = 30dB.

FIGURE 8. RMSE performance comparison. (a) RMSE versus SNR with K = 500. (b) RMSE versus the number of snapshots with SNR = 0dB.

1θ varies from 0.2◦ to 2◦ with a step size of 0.2◦, and we
consider two scenarios where SNR are 0dB and 30dB respec-
tively. 500 Monte-Carlo trials are run for each testing point
to calculate the resolution probability. Comparing Fig. 7(a)
and (b), we discover that the resolution ability is improved
as the SNR increases no matter which algorithm is utilized.
The resolution probability yielded by the SSR algorithm is the
worst and hardly reaches 1 as1θ increases. It is attributed to
the pseudo peaks and basismismatch commonly generated by
the SSR algorithm [13]. Compared with the ANM algorithm
and the proposed algorithm, the NNM algorithm requires a
relatively larger angular interval to achieve the same proba-
bility. It is because the idea of matrix completion is utilized in
NNM where the partial information of discontinuous virtual
array Sv is retained in the interpolated covariance matrix [16].
In contrast, the ANM algorithm and the proposed algorithm
recover a covariance matrix corresponding to the virtual ULA
SI from the perspective of matrix reconstruction where the
effect of partial correlation observations is alleviated. From
Fig. 7, we find ANM and the proposed algorithm achieve the
best resolution probability and their performances are almost
identical.

C. ESTIMATION ACCURACY
In the last experiment, root mean square error (RMSE) is
considered to evaluate the estimation accuracy of the four

tested algorithms, and the RMSE criterion is defined as

RMSE =

√√√√√ 1
QL

Q∑
q=1

L∑
l=1

(θ̂l,q − θl)
2
, (27)

where θ̂l,q denotes the estimated DOA of the l-th source in
the q-th Monte Carlo trial. Although 7 physical sensors are
deployed, we consider 9 equal-power uncorrelated sources
uniformly distributed in the range of [−50◦,−50◦], and for
every testing point, we runQ = 500 iterations ofMonte Carlo
simulations. The average CPU time for running SSR, NNM,
ANM and the proposed algorithm on Intel i7-10510U laptop
are 1.26s, 1.05s, 0.86s and 1.68s respectively. According
to the derivation in [18], the Cramér-Rao bound (CRB) is
also plotted for reference. From the RMSE performance
versus SNR illustrated in Fig. 8(a), we can discover that
the RMSE of the four tested algorithms all decrease as the
SNR increases. Limited by the pre-defined spatial grids, SSR
yields a relatively worse performance. Moreover, the ANM
algorithm and the proposed algorithm behave in similar
estimation accuracy, and they outperform theNNMalgorithm
in any SNR cases. The performance trend of the proposed
algorithm is always consistent with the CRB prediction.
Meanwhile, the RMSE comparison versus the number of
snapshots as shown in Fig. 8(b) also validates the superiority
of the proposed algorithm over the other three algorithms. It is
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demonstrated that the covariance fitting criterion considered
in this paper gives a better performance in the context of
virtual array interpolation.

V. CONCLUSION
In order to take full advantage of all information received by
the coprime array, we propose a novel interpolation-based
DOA estimation algorithm from the perspective of Toeplitz
matrix reconstruction in this paper. The holes within the
discontinuous virtual array are treated as potential sensors,
and then we consider a weighted covariance matrix fitting
criterion to reconstruct an augmented covariance matrix cor-
responding to the interpolated ULA. Additionally, we inves-
tigate the atomic norm of multiple virtual measurements in
both continuous and discontinuous cases, based on which
the feasibility of the proposed algorithm to promote low-
rankness and recover the unknown signal of the potential
sensors is demonstrated. After virtual array interpolation,
the available DOF is further increased and numerous ULA-
based DOA estimation approaches can be readily applied.
Different frommost existing methods, the proposed approach
is hyperparameter-free so that it dispenses with the tedious
process of selecting regularization parameters. The superior-
ity of the proposed algorithm is validated through simulation
results compared with several existing techniques.
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