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ABSTRACT Finger-vein recognition technology has attracted more and more attention because of its
high security and convenience. However, the finger-vein image capturing is affected by various factors,
which results that some vein patterns are missed in acquired image. Matching minutiae features in such
images ultimately degrades verification performance of the finger-vein recognition system. To overcome
this problem, in this paper, a novel finger-vein image restoration approach is proposed to recover the missed
patterns based on generative adversarial network (GAN), as the first attempt in this area. Firstly, we employ
the segmentation algorithm to extract finger-vein network, which is further subject to thinning operation.
Secondly, the resulting thinning image is taken as an input of a GAN model to restore the missed vein
patterns. Thirdly, the minutiae points are extracted from restoration finger-vein pattern. Finally, we propose
a matching approach for verification. Experimental results show that the proposed method can restore the
missed vein pattern and reduce the equal error rate (EER) of the finger-vein verification system.

INDEX TERMS Finger-vein recognition, vein restoration, generative adversarial network.

I. INTRODUCTION
With the rapid development and application of the Internet,
people pay more and more attention to the security protec-
tion of individual identity. How to ensure the security and
efficiency of recognition is a key problem in the information
society. Biometrics authentication technologies as a solution
have been widely investigated in past years. Currently, vari-
ous biometrics traits such as fingerprints [1], faces [2], irises
[3], and veins [4] have been applied for personal authenti-
cation and can been broadly categorized two categories [5]:
(1) extrinsic traits such as face, fingerprint, iris, and gait;
(2) intrinsic traits such as finger-vein, palm vein, and hand
vein. Extrinsic traits are vulnerable to copy and fake, which
results some concerns on privacy and security in practice.
By contrast, intrinsic traits are hidden under the skin and
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are difficult to be copy and forged, providing higher security
and better privacy. Therefore, vein recognition has received
increasing attentions.

The veins are located inside the skin. The finger-vein pat-
tern extends from finger root to fingertip, and has clear net-
work and good connectivity (as shown in Fig.1). In general,
it is difficult to observe the finger-vein pattern in visible light.
Different skin layers have different responses to infrared
light, so we can collect the vein pattern using infrared light.
Existing works [4], [6]–[8] have carried lots of experiments
and the resulting experimental results imply that infrared
illumination with wavelength of 850 nm are able to capture
finger-vein images with high contrast.

For fingerprint recognition and finger knuckle recognition
[9]–[12], the minutiae features such as bifurcation points
and ending points have been employed as discriminative
features and successfully applied for recognition because
they have the advantage of low storage cost, low matching

141080 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-4911-0393
https://orcid.org/0000-0002-3676-1958
https://orcid.org/0000-0001-9744-4035


S. Yang et al.: Finger-Vein Pattern Restoration With GAN

FIGURE 1. Vein pattern in the palm and fingers [35].

time cost and distinction. Similarly, the minutiae features of
finger-vein patterns including bifurcation points and ending
points as the common features are extracted for finger-vein
recognition [13]–[16] and showed promising performance.
In these approaches, the vein network is segmented and
stored in a binary image and then the minutiae features are
extracted from resulting binary image. Unfortunately, finger-
vein image quality is inherently affected by a number of
factors: environmental illumination [17]–[19], ambient tem-
perature [4], [19], [20], light scattering in imaging finger tis-
sues [21]–[24]. These factors are impossible to be controlled
and/or avoided in practical applications, so the vein verifi-
cation system generates some low quality images where the
separability between the vein and non-vein patterns is poor
or some vein patterns are corrupted. Therefore, the extracted
vein network are generally not connective because some vein
patterns are missed, which results incorrect minutiae features.
In general, matching such minutiae features will ultimately
degrade the performance of vein verification system. To over-
come this problem, a lot of approaches have been proposed to
restore the finger-vein pattern, showing good performance on
different databases. They can be broadly classified into two
categories such as image level and feature level [25]:

A. IMAGE LEVEL RESTORATION
Some image level restoration approaches [21] assume that
biological tissue is highly heterogeneous and behaves as a
multiple scattering medium in NIR imaging which results
the low contrast and the sparse noise in the captured image.
Therefore, many scattering removal approaches are proposed
to improve the visibility restoration of vein images. For exam-
ple, thework designs a depth-dependent point spread function
(PSF), based on which a scattering suppression method was
proposed using transcutaneous fluorescent imaging to restore
vein patterns. Similarly, some optical model [22]–[24] are
employed to remove light scattering occurrence in biological
tissue during imaging.

B. FEATURE LEVEL RESTORATION
In many finger-vein verification systems [4], [5], [13]–[16],
the vein networks are extracted and stored in binary images
as features. Then, the resulting binary images are employed

for matching. In general, the vein networks is not connec-
tive as the some vein patterns are missed during the image
processing. So, in this category, the vein patterns instead of
global images are restored for the visibility improvement of
finger-vein images. Few approaches have been proposed to
recover the vein network for verification. For example, in the
existed methods [4], [13], [18], some filtering technology
such as mathematical morphology and median filtering are
employ to restore the segmented vein network. As thesemeth-
ods restore veins based on a distance metric, fewmissed veins
are recover and some vein networks with a small corruption
may be connected with each other. However, the missing
vein patterns are not recovered in the images with a huge
corruption. To overcome this problem, a Direction-Variance-
Boundary Constraint Search (DVBCS) model is presented to
restore the missed finger-vein patterns in work [25].

These image level restoration based methods only focus
on the global images instead of only vein network, so some
finger-vein patterns are still not restored and the connec-
tivity of restoring vein network may be poor. The feature
level restoration based approaches may alleviate the prob-
lem, but they restore the vein patterns based on the hand-
crafted descriptors and suffer follows problems. (1) The
handcrafted based approaches are developed based on lim-
ited prior knowledge that might discard relevant information
about vein restoration. (2) The handcrafted based approaches
do not infer any knowledge from the different images as they
restore each image independently from the others.

Recently, deep learning approaches without using hand-
crafted features have been directly used to learn robust feature
from raw pixel images and have been applied for many
computer vision tasks [5], [26]–[29]. These works imply that
deep learning approaches circumvent the need of design-
ing hand-crafted descriptors by automatically deriving robust
feature representations for the task at hand. This is because
a byproduct of deep learning models is a learning of suitable
representations directly from raw input. Inspired by this idea,
we develop, in this paper, a novel finger-vein restoration
scheme based on generative adversarial network (GAN) to
restore finger-vein patterns. This workmakes the first attempt
to accommodate GANs on the finger-vein pattern restoration.
First, a baseline is employed to extract vein network and
stored it in a binary image. Second, a generative adversarial
network is built to restore the vein network. Third, the vein
minutiae points are extracted from the resulting images and
a matching approach of combining vein minutiae points and
vein network is proposed to achieve the authentication. The
experimental results show that the proposed approach can
restore missed vein patterns and reduce the verification error.

In previous work [37], the GAN has been proposed to
segment finger-vein network for verification. First, this work
named FV-GAN makes first attempt to accommodate GANs
on the finger-vein segmentation task. Second, FV-GAN is
proposed based on CycleGAN [40]. The proposed FV-GAN
consists of a pattern generator, an image generator and a
discriminator. Different from the original CycleGAN, its
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FIGURE 2. Proposed algorithm framework.

discriminator is designed to distinguish two generated vein
patterns: One is generated by taking real vein image as input
of the pattern generator and the other is produced by taking
fake vein images as its input again. Third, instead of the L1
loss, the focal loss is employed as the cycle consistency loss
because the vein patterns in the latent space are binarized
and the class imbalance exists in vein patterns. The proposed
work has a different motivation and improves original GAN
in significant ways. 1) Our work makes the first attempt to
accommodate GANs on the finger-vein pattern restoration
task instead of vein pattern segmentation. 2) FV-GAN is
proposed based on CycleGAN and contains two generators,
namely image generator and pattern generator and a discrim-
inator. In our GAN, we develop a new fully convolutional
network as the generator and a patch CNN as discriminator.
In addition, instead of L1 loss, the L2 loss is employed as
consistency loss to penalize distance between the ground truth
and outputs. The experimental results imply that our model
workswell on vein restoration task. 3) Unlike FV-GANwhich
divide an image into several patches and construct a patch-
based set for training, the entire finger-vein images and theirs
corresponding ground truths are directly input into our GAN
model for training. In the testing phase, the entire image is
taken as input of GAN to restore vein pattern. Therefore,
our approach takes into account localization and the use of
global context at the same time. Moreover, it can directly
recover binary vein patterns in one forward propagation
without pre-processing and post-processing, which results in
low-time cost.

II. THE PROPOSED FINGER-VEIN PATTERN
RESTORATION METHOD
Some researchers have shown that the vein minutiae patterns,
such as the endpoints and intersections, can represent the
distinctive information to achieve effect verification. Also,
using minutiae patterns for matching and verifying, the time
cost and storage cost are low compared to other patterns
such as vein network [13], [14], [16], [25]. Therefore, the
minutiae patterns have been widely investigated and success-
fully employed for finger-vein verification. However, as the
quality of finger-image is affected by many factors during the
capturing process, there are some ambiguous regions where
the separability between the vein and nonvein patterns is poor

or some corruption regions where vein patterns are missed.
After image processing, many incorrect minutiae features are
generated and matching them may degrade the verification
accuracy. To overcome this problem, first, we extract the
vein network using image segmentation approach and the
resulting vein patterns are further thinned to obtain skeleton
image. Then, a GANmodel is built ant trained. After training,
we take skeleton image as an input of generator to restore
vein patterns. Finally, the minutiae features are extracted
from restoration image for matching. The framework of the
proposed approach is shown in Fig.2.

FIGURE 3. Segmentation results: (a) original image; (b) segmentation
image (c) skeleton image.

A. IMAGE SEGMENTATION AND THINNING
To verify the proposed vein pattern restoration approach,
the vein patterns are extracted using existing segmentation
methods [30]. The segmentation result is shown in Fig.3.
Then, the vein patterns are thinned by mathematical mor-
phology operation [13] and a skeleton image is obtained,
as shown in Fig.3(c). The minutiae patterns can be extracted
from skeleton image for matching. As there are some noises
and ambiguous regions in Fig.3(a), the vein patterns are not
connective in the segmentation image and skeleton image.

B. VEIN PATTERN RESTORATION
Based on the anatomy of finger skin (as shown in Fig.1),
the vein network are clear and connective. However, as the
quality of the capturing finger-vein image is affected bymany
factors, the vein patterns are easy to be corrupted (as shown
in Fig.3(c)). In general, these corrupted images show poor
connectivity because some vein patterns are missed, which
results many incorrect minutiae patterns such as endpoint and
bifurcation point. Matching such minutiae patterns comprises
the verification performance. To overcome drawback, we pro-
pose a generative adversarial network to recover the vein
patterns for verification. Firstly, given an image, an existing
method is employed to segment the vein network and the
resulting binary images are thinned to obtain skeleton images.
Then, a generative adversarial network is built and trained
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to restore the vein patterns. Finally, the minutiae patterns are
extracted and matched for verification.

FIGURE 4. The proposed Generative Adversarial Networks (GANs)
framework for vein pattern restoration.

C. GAN FRAMEWORK STRUCTURE
We develop a generative adversarial network (GAN) to
recover the vein minutiae pattern, as shown in Fig.4. Our
Generative Adversarial Networks (GANs) consist of gener-
ator and discriminator. Taking a skeleton image as an input
of the generator, it generates probability maps with the same
size as the input. Values in the probability maps range from
0 to 1 indicating the probability of being a pixel of vein
pattern. The discriminator takes a vein image and ground
truth to determine whether the vein image is the ground truth
or output of the generator.

1) GENERATOR ARCHITECTURE
Our generator consists of two constitutional layers, a input
layer and output layer. Fig.5 shows the architecture of our
generator. The input is a corrupted finger-vein image x and
the output is the finger-vein image with recovered missing
patterns. In our experiments, both input and output layers
are a matrix with size of 73 × 240, respectively. The size of
weight kernels in each layer is experimentally determined to
9 × 9, 5 × 5, and 3 × 3, and the dimensions of the output
in the layers are respectively set to n1 = 64,n2 = 64, and
n3 = 1 as shown in Fig.5. The output in each layer is padded
such that reconstructed image and the ground truth have the
same size. The convolutional layer in generator (as shown in
Fig.5) can be denoted as follows.

Assuming x lm be them-th input map of layer l. yln is the n-th
output map of layer l and computed as

yln = Relu(
∑M l−1

m
wln,m∗x

l
m + b

l
n) (1)

where ∗ represents the convolutional operation, wln,m denotes
the weights between the m-th input and the n-th output maps,
M l−1 is the number of input maps, bln is the bias of the
n-th output map, and Relu is an activation function, named
Rectified Linear Units (y = max(x,0)).

2) DISCRIMINATOR ARCHITECTURE
The discriminator network has a typical CNN architecture
that takes the input image of size 73 × 240 and outputs
one decision: is this a real pair (ground truth) or is it a fake
pair (output of generator)? The network consists of three
convolutional layers with a kernel size of 3 × 3 and one
fully connection layer. To reduce spatial dimensionality, the
Max pooling is applied to each convolution layer. Drop out is
applied to two fully connection layers. The ReLU activation
functions is applied to all layers except the output layer which
uses the Sigmoid function for the likelihood probability score
of the image.

3) OBJECTIVE FUNCTION
Let the generator G be a mapping from a hand image x to a
vein imageG(x). Then, takingG(x) as input, the discriminator
D makes a binary decision {0,1}, where 0 or 1 represent
that G(x) is produced by the generator or is the ground truth,
respectively. Adversarial networks are trained by optimizing
the following loss function of a two-player minimax game.

Ladv=Ey∼pdata(x,y)
[
logD (y)

]
+Ex∼pdata(x)

[
log(1−D(G(x)))

]
(2)

where Ey∼pdata(y) is the expectation over the y sampled from
the joint data distribution of real pairs pdata (y) and Ex∼pdata(x)
is the expectation over the x sampled from the real vein
network distribution pdata(x).

In fact, the recovery task can also utilize ground truth
by adding loss functions that penalize distance between the
ground truth and outputs. Here, the mean squared error is
employed as loss function, which is defined by:

Lrec =
∑n

i=1
||G (x)− y||2 (3)

Summing up both the adversarial loss and the reconstruc-
tion loss, we can formulate the objective function as

Lseg = Ladv (G,D)+ λLrec (4)

To optimize our model, the gradient descent with Adam
Optimizer is employed to minimize the loss function and
then update the weight. The learning rate and the trade-off
coefficient λ in Equation (4) is 0.0002 and 300.

D. TRAINING AND TEST OF GAN
To train ourmodel, we generate a training set as follows. First,
we employ existing approach to obtain the skeleton image
and remove isolated regions that have fewer pixels than a
threshold from the skeleton image. Second, some skeleton
images with good connective vein patterns are selected as
ground truth image. Third, to generate corrupted images,
we randomly crop the ground truth images at different loca-
tions as shown in Fig.6. In this way, we generate multiple
ground truth images and corrupted images to obtain a training
set. The setup of training set is detailed in section IV.
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FIGURE 5. Architecture of generator.

FIGURE 6. Corruption image generation process: (a) ground truth;
(b) corrupted image.

In the training stage, our GAN takes a pair of corrup-
tion image and ground truth image as input. The genera-
tor is responsible of producing r image samples, which has
the same distribution as the ground truth. This is achieved
through adversarial training, where generator learns to fool
a discriminator, which attempts to distinguish the generated
samples from ground truth. For testing, given an image either
from a training or a test image, the generator outputs the
restoration image.

III. MINUTIAE EXTRACTION AND MATCHING
A. MINUTIAE EXTRACTION
In fingerprint recognition, fingerprints can be represented
by key points (ridged intersections and ridged endpoints)
in the image. These key points are called minutiae points
which are used to match the characteristics of a pair
of fingerprints to identify a person [9], [10], [38]. Sim-
ilarly, minutiae points that contain geometric information
are employed for finger-vein verification in many exist-
ing works [13]–[16]. Therefore, we extract vein minutiae
patterns by work [13] and match them for verification.
Fig.7 has shown minutiae patterns extracted from a skeleton
image.

B. MINUTIAE MATCHING
After extracting minutiae patterns, a vein image can be rep-
resented by a set of two-dimensional points. The Hausdorff
distance is a natural similarity measure of the two point sets,
so the vein image can be matched by a modified Hausdorff
distance (MH) [31]. In past years, the MHD has been usually
employed to match the vein minutia features [13]–[16] and
achieve promising results. In addition, the template matching
approach has also shown good performance in finger-vein
verification [4], [5], [17]–[20]. To further improve verifi-
cation accuracy, we combine the template matching with
minutiae matching for vein verification.

FIGURE 7. Minutiae pattern extraction: (a) skeleton image; (c) minutiae
patterns from (a),which are marked in red color.

1) MINUTIAE POINT MATCHING BASED ON Hausdorff
As a finger-vein minutiae point can be represented by a
two-dimensional point set, we match two images by com-
puting the Hausdorff similarity [32] between the two point
sets. However, the original Hausdorff distance is very sen-
sitive to the small sway of this point. Therefore, to solve
this problem, work [31] proposed a modified Hausdorff
distance for matching. Let X = {x1, x2, x3, · · · , xNx }
and Y = {y1, y2, y3, · · · , yNy} be the two minutiae sets
of the input image and the registered image, respec-
tively and a modified Hausdorff distance is defined as
follows.

HD (X ,Y ) = max(d (X ,Y ) , d (Y ,X)) (5)

d (X ,Y ) =
1
NX

∑
xi∈X

min
yj∈Y
‖xi − yi‖ (6)

2) TEMPLATE MATCHING BASED ON Hausdorff
As the finger-vein minutiae pattern are susceptible to noise,
the matching accuracy still is limited by the Hausdorff dis-
tance. So, a Hausdorff based template matching method is
proposed to improve verification performance and detailed
as follows.

Suppose that there are two sets X = {x1, x2, x3, · · · , xNx }
and Y = {y1, y2, y3, · · · , yNy} extracted from the test image
and registered image, respectively and the matching distance
between them is computed by

d
(
xi, y∗i

)
= min

yj∈Y

∥∥xi − yj∥∥ (7)

Each xi corresponds a matching point y∗i , so there are
Nx matching pairs associated with Nx distance. To enhance
matching performance, K (K ≤ N x,) matching pairs associ-
ated with the K smallest distances are stored and denoted as
X ′ = {x ′1, x ′2, x ′3, · · · , x ′K } and ′ = {y′1, y

′
2, y
′
3, · · · , y

′
K }.

A and B respectively represent vein patterns extracted from
the test image and registered image. Based on K matching
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pairs, the K sub-regions A′ and B′ from A and B are denoted
as follows.

A′ =
{
awa,hak |awa,hak ∈A, k= 1, 2, · · · ,K

}
(8)

B′ =
{
bwb,hbk |bwb,hbk ∈B, k= 1, 2, · · · ,K

}
(9)

where awa,hak and bwb,hbk is a pair of matching sub-regions
separated from A and B. wa and ha are the width and height
of sub-region awa,hak , wb and hb are the width and height
of the sub-region bwb,hbk , and wa > wb, ha > hb. Note that
the matching sub-regions awa,hak and bwb,hbk centers at kth
matching minutiae points x ′k and y′k . So, the matching scores
of A and B is obtained by.

S (A,B) = S
(
A′,B′

)
=

1
K

∑K

k=1
9k (10)

where 9k is the matching score of two corresponding sub-
regions and is defined as (11), as shown at the bottom of the
page, where p and q are the translation in the horizontal and
vertical directions, respectively, and 8 is defined as follows.

8(P1,P2) =

{
1 if |P1 − P2| = 1
0 otherwise

(12)

where P1 and P2 are the pixel values of the input image and
registered image, respectively.

3) FUSING MATCHING SCORES
To improve the matching accuracy, we combine the matching
score of minutiae point with the template matching score to
generate the final matching scoreD(X, Y ) which is computed
as follows.

D (X ,Y ) =
1
2
(HD (X ,Y )+ S (A,B)) (13)

IV. EXPERIMENTS AND ANALYSIS
To evaluate the performance of the proposed approach for
finger-vein verification, we carry out experiments on a real-
istic databases. The baseline [30] is employed to extract the
finger-vein network patterns and the resulting vein patterns
are recovered by the proposed approach. Then, the minutiae
features are extracted from the recovering image for verifica-
tion. Also, the minutiae feature restoration approaches [12],
[25] are employed to recover the vein patterns and the veri-
fication results are reported in our comparable experiments.
We train our model using anaconda and tensorflow on the
Ubuntu system of 16G memory and GeForce GTX 1080ti
GPU, and calculate the equal error rate (EER) before and after
restoring in matlab2016b.

A. DATABASE
To evaluate the proposed approach, we carried experiments
on two public finger-vein databases.

1) DATABASE A
The database MMCBNU_6000 [7] which is collected from
Chonbuk National University in Korea are employed in our
experiments. The database contains 100 students or teachers
from 20 countries including Asia, Europe, Africa and the
United States, whose ages range from 16 to 72 years old.
As the length of the thumb and the little finger is too short,
they collected the index finger, median and ring finger of each
individual’s right and left hands, and every fingers 10 times.
Therefore, the database contains 100 subjects × 6 fingers ×
10 samples = 6000 images, and each image pixel is 640 ×
480 (shown in Fig.8(a)). As the background region does not
include any discriminative information, we crop it and resize
the resulting image to 73 × 240. The preprocessing images
are shown in Fig.8(b).

FIGURE 8. Finger-vein image samples.(a) original finger-vein images
samples;(b) the preprocessing finger-vein image samples.

2) DATABASE B
USM database [8] includes 5904 images from 123 subjects,
collected at two different sessions. Each subject provided two
fingers, e.g. index and middle fingers, which results in a total
of 492 finger class. In each session, each finger provided 6
images and thus 2952 (492 × 6) images are collected. So,
there are a total of 5904 images for at two sessions. All images
are subject to preprocessing and normalized to 70× 210.

B. EXPERIMENTS SETTING
To verify the proposed approach, we divide the database into
three sub-datasets for training, validation and testing, respec-
tively. For database A, there are 100 subjects associated with
600 fingers, each of which provides 10 images. The different
fingers of the same hand are treated as different classes, based
on which we split the database into three sets: training dataset
with 2000 (200 fingers × 10 images) images, validation
dataset with 2000 (200 fingers × 10 images) images and
test dataset with 2000 (200 fingers × 10 images) images. To
simplify the description, the three datasets are presented as

9k = min
∀x∈[0,wa−wb],y∈[0,ha,hb]

∑wb−1
u=0

∑hb−1
v=0 8(awa,hak (u+ p, v+ q) , bwb,hbk (u, v))

wb × hb
(11)
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dataset A1, A2 and A3, respectively. For database B, there are
123 subjects associated with 492 fingers. Similarly, there are
1476 images (123 fingers× 12 images) in the training dataset,
1476 images (123 fingers × 12 images) in the validation
dataset, and 2952 images (246 fingers ×12 images) in the
test dataset, which is denoted as dataset B1, B2, and B3.
To effectively verify our approach, the test datasets A3 and
B3 consists of low quality images where the connectivity of
vein patterns is poor.

To generate ground truth image, the existing approaches
[30] are employed to segment the finger-vein image in train-
ing set (A1 or B1) and the resulting network patterns are
further thinned to obtain skeleton image. Then, we filter some
isolated regions that have fewer pixels than a threshold from
the skeleton image and the resulting finger-vein image is
determined as ground truth image (As shown in Fig.9(a)).
To generate corruption image, we randomly crop the ground
truth image at different locations (As shown in Fig.9(b)).
Therefore, we obtain 100000 corruption images and their cor-
responding ground truth images in this way. For each ground
truth image, there are about 50 and 70 corrupted images for
datasets A1 and B1, respectively. The GAN is trained based
on the corrupted image and its ground truth image.

FIGURE 9. Corruption image samples: (a) thinning image; (b) corruption
image.

C. PARAMETER SELECTION
After training, we input a testing image into generator and its
output is a restoration image. If such an output is fed back as
input to the generator again, there are more vein patterns to be
restored, which enable the restoring to be done in a recursive
way. The number of iteration steps is key to achieve high
verification accuracy. The small number of iteration steps
may result that some missed vein patterns are not restored.
So, there are still incorrect minutia patterns in restoration
image. By contrast, if the number of iteration steps is large,
some non-vein patterns may be wrongly generated, which
also results minutia patterns. In our experiments, we employ
approaches [30] to extract the vein network and obtain the
skeleton image. The vein patterns skeleton image are restored
at different numbers of iterative steps. We extract the minutia
features and compute the matching score by Equation (13).
Then, the images from first session are used for training and
remaining ones for testing for each finger. For verification

FIGURE 10. Genuine and imposter distributions [35].

set A2, there are 200 fingers with 2000 images. We match
images from same finger and different fingers to generate
1000 (200 × 5) genuine scores and 199000 (200 × 199 × 5)
imposter scores, based on which we compute the false
rejected error (FRR) and false accepted error (FAR). The FAR
and FRR [35] are detailed as follows. First, we denote T
as a set which is sampled from 0 to 1 at sampling interval
of 0.0001, namely T = {0, 0.0001, 0.0002, . . . , 0.9999, 1}.
So there are 10001 elements in set T , where Ti is the ith
threshold in set T. Assume that there are genuine score set
and imposter score set, which are denoted as GS and IS,
respectively. If the score is lower than the predefined decision
threshold Ti, then the claimant is accepted by the verifica-
tion system, otherwise the claimant is rejected. As shown in
Fig.10, the area under the genuine score distribution above
a chosen threshold Ti, is the false rejected score set and
represented as FR, while the area under the imposter score
distribution below the threshold Ti, is the false accepted score
set and denoted as FA. FARi and FRRi are FAR and FRR at
threshold Ti, and computed by

FRRi =
Number of matching scores in FR
Number of matchings cores in GS

(14)

FARi =
Number of matching scores in FA
Number of matching scores in IS

(15)

So, there is a pair ofFAR andFRR for each threshold. TheFAR
will increase andFRRwill reducewhen threshold Ti increases
from 0 to 1. By contrast, the decreasing thresholdwill result in
lowFAR and highFRR. The equal error rate (EER) is the error
when FAR is equal to FRR, namely EER = FRRi∗ = FARi∗.
The Genuine accept rate (GAR) is computed as

GARi = 1− FRRi (16)

Receiver operating characteristics (ROC) curves [36], [39]
are two-dimensional curves in which true positive rate is
plotted on the Y axis and false positive rate is plotted on
the X axis. An ROC graph implies relative tradeoffs between
benefits (true positives) and costs (false positives). In our
experiment, the ROC curve is obtained by plotting GARi
versus FARi at varying the threshold Ti.
The results of EER are shown in Fig.11. From Fig.11, we

can see that the lowest EER is achieve when the numbers
of the iteration step is 5. Therefore, we set the number of
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FIGURE 11. The EER at different number of iteration step.

the iteration to 5 for database A. As the thinning images
from database A and database B is very similar, the number
of iteration is also determined to 5 for database B in our
experiments.

FIGURE 12. Segmentation and thinning results: (a) original image;
(b) segmentation image; (c) thinning image.

D. VISUAL ASSESSMENT
In this section, we visually analyze the restoring vein patterns
from our approach to get more insights into the proposed
approach. We use segmentation algorithm [30] to extract
vein network patterns and the resulting image is subject to
thinning, as shown in Fig.12. Further, the thinning image
(skeleton image) is taken as an input of GAN to restore vein
pattern. The restoration image is shown in Fig.13. After one
iteration, the proposed model can restore few missing vein
patterns. More vein patterns are restored with an increasing
number of iterations. After 9 iterations, the restoration vein
patterns have very good connectivity. Also, we can see that
the missing vein patterns are naturally restored in spite of
a huge corruption in the input finger-vein image. In Fig.13,
we also show the falseminutia with high probability andmark
them in red color. The number of false minutia decreases with
the increasing iteration number. In other words, the correct
minutia features will be generated when the missed vein pat-
terns are restored, which may improve the matching accuracy
of vein verification. These experimental results imply that,
by learning the underlying structure of labeled cropped vein
patterns on a huge dataset, the GAN is able to generalize over
unknown and unlabeled missing vein pattern for restoration.

E. VERIFICATION RESULTS
In this section, we evaluate the performance of finger-vein
verification approach [10] and show how much it can be
improved by adopting our approach to restoration. Also, the
restoration approaches [12], [25] are employed to restore
vein pattern and the verification results are reported for

FIGURE 13. Restoration image: (a) original image; (b) restoration image
(iteration = 1 times); (c) restoration image (iteration = 5 times);
(d) restoration image (iteration = 9 times), where the red points presents
the false minutia features.

comparison. In our experiment, we employ [30] to extract
vein pattern and obtain the skeleton image. Then, the vein
patterns are restored by our approach and existing approach.
Finally, the minutia features are extracted and matched for
verification. The EER of the system [30] before and after
automatically restoring the vein patterns is calculated to
get insight on finger-vein verification. In addition, as two
descriptors of LBP [33] and SIFT [34] have achieved high
performance on finger-vein verification, we report their veri-
fication accuracy in comparable experiments. In the testing
set A3, there are 2000 images (200 fingers × 10 images)
from 200 fingers. Matching images from the same finger
generate genuine scores while the impostor scores are created
by matching images from different hands. As a result, there
are 9000 (45 × 200 fingers) genuine scores. Computing the
impostor matching score is time consuming because there
are 178, 200 (10 × 10 × 200 × 199 / 2) matching groups.
To reduce computation cost, we randomly split all fingers
into 10 groups and then compute impostor matching scores
for each group. For example, the 200 fingers in test set is
split into 10 groups and each group includes 200 (10 × 20)
images from 20 fingers. For each group, matching the i-th
sample from different fingers (i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
generates 1900 (20 × 19 × 5) impostor matching scores. So,
there are totally 19000 (1900× 10 groups) imposter matching
scores for 10 groups. For testing dataset B3, 2952 images
from 246 fingers are employed for verification. Similarly,
1476 (246 × 6) genuine scores and 59040 (41 × 40× 6× 6
groups) impostor matching scores are produced from dataset
B3.The verification results for database A and database B are
listed in Table 1 and corresponding ROC curve is showed in
Fig.14.
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TABLE 1. EER from various approaches.

FIGURE 14. Receiver operating characteristics from (a) database A and
database B.

We observe from Fig.14 and Table 1 that the proposed
approach using a GAN deep representation achieves the best
performance among all the approaches considered in this
work. The baseline achieves the higher EERs of 7.96% and
4.95% on the dataset A and database B, respectively. For
two handcrafted based restoration methods [12], [25], after
restoring the vein patterns of images in database A, the ERR
decreases lower than 7.5 %, and the EER is reduced to
5.66% when adopting the proposed restoration approach. For
database B, the proposed approach outperforms restoration
methods [12], [25] and achieve lowest EER of 2.37%. Com-
pared to the verification error before restoration, the perfor-
mance is significantly improved after the missing patterns are
recovered by our model. For example, the EER (Table 1) is
reduced from 7.96% to 5.66% (about 28.89% relative error
reduction) for database A. For database B, a lower EER,
namely 2.37% (about 52.12% relative error reduction) is
achieved by the proposed approach. The ROC curve shows
the similar trend that the proposed approach outperforms the
existing handcrafted approaches and significantly reduces the
verification error of the finger-vein recognition system.

From Table 1, we also observe that the baseline segmen-
tation algorithm [30] achieve higher verification accuracy
on database B compared to results on database A, but the
proposed approach still improve accuracy. In addition, the
LBP descriptor [33] and SIFT descriptor [34] do not achieve
promising verification accuracy on two public databases,
which can be explained that the finger-vein image contains
less local feature points because vein patterns are non-rigid,
round and smooth objects.

Overall, the finger-vein verification accuracy on the two
datasets is improved by restoring the missing vein patterns,
which implies the restoration vein features can contribute
more discriminative information for verification. Such a good

performance can be explained by following fact: (1) The
proposed approach learns a rich prior knowledge acquired
by training on a huge image set from different images
so that it is capable of restoring the missed vein pattern.
(2) The GAN takes as input the image to uncover hierarchical
features in such a way to minimize its decision errors on vein
patterns, so it avoids the need of first explicitly extracting
some image processing-based features that might discard
relevant information about vein restoration.

V. CONCLUSIONS
In this paper, a GAN based restoration algorithm is proposed
to recover the missed vein pattern. The proposed scheme does
not rely on hand-crafted features and directly learn robust
feature representations from the vein image. The experimen-
tal results show that the proposed algorithm is capable of
restoring the finger-vein pattern to improve the verification
accuracy of finger-vein recognition. In addition, the method
can be used for pattern restoration of other images, such as
fingerprints and palm-print images.
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