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ABSTRACT Sleepiness detection system that evaluates driver’s sleepiness level has always been the
primary interest of researchers. There are a number of systems like electroencephalography-based sleepiness
detection system (ESDS), vehicle based sleepiness estimator system, image acquisition technology and
bio-mathematical models to detect drowsiness of drivers. However there has been less research on hybrid
of these systems that detect sleepiness of drivers. In order to overcome the above limitation we propose
a neural network based hybrid multimodal system that detects driver fatigue using electroencephalog-
raphy(EEG) data, gyroscope data and image processing data. It was found that the proposed hybrid
system performed well with a detection accuracy of 93.91% in identifying the drowsiness state of the
driver.

INDEX TERMS Deep neural networks, driver fatigue detection, electroencephalographymodule, gyroscope
module, multimodal system, tensorflow, vision module.

I. INTRODUCTION
Sleepiness or drowsiness of the driver while driving has been
the major factor for many accidents according to surveys.
The US Foundation for Traffic Safety conducted in 2010 had
analysed police reports estimated that 16.5% of fatal crashes
involved a drowsy driver. A nationally representative tele-
phone survey showed that 41.0% of drivers admit to have
‘‘fallen asleep or nodded off’’ while driving at some point
in their lives [1], [2]. Mental fatigue is also one of the major
causes of serious accidents, especially in transportation and
aviation area which is believed to account for 20% - 30% of
all traffic accidents [3]–[5]. This often occurs to drivers who
do not get enough sleep, under medication, shift workers,
people with sleep disorders and commercial drivers where
lot of concentration is required for longer working hours.
In the time of emergency the response of the driver is highly
important while driving however drowsiness of the driver
reduces the reaction time drastically thereby increasing the
danger level [6], [7]. It also makes driver’s pay less attention
to the road and affects the driver’s ability to make good
decisions.
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Sleep can be categorised in three main stages according
to the American Academy of Sleep Medicine as wakeful-
ness, non-rapid eye movement(NREM) and rapid eye move-
ment (REM) [8]. The NREM can further be classified into
three stages as N1- transition from awake to sleep(drowsy),
N2-light sleep and N3 deep sleep [9]. This study on driver
drowsiness is mainly concentrated on the N1 stage of NREM.
The term driver fatigue has been defined as a state of
reduced mental alertness, which impairs performance of a
range of cognitive and psychomotor tasks, including driv-
ing [10], [11]. The terms ‘‘drowsy’’ and ‘‘sleepy’’ are syn-
onymous with each other and the term ‘‘fatigue’’ has been
used by researchers in the previous studies instead of ‘‘sleepi-
ness’’ [9], [12]. There are manymethods proposed to evaluate
driver’s sleepiness level but these methods could be cate-
gorised into five main categories.

The first category for driver sleepiness detection is
based on ‘‘subjective measures’’. The Karolinska sleepiness
scale (KSS) is frequently used for evaluating subjective
sleepiness levels where the participating driver has to rate his
own sleepiness level during the experiment [13]. Although
most of the experiments showed that this method performed
well when comparing with the performance of other methods
like EEG, a lot of care was taken by the person conducting
the experiment [14], [15]. It was also found that the subjects
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participating in the experiment often misjudged their own
sleepiness level and they were distracted by the attention
towards providing feedback to the experimenter.

The second category for driver-drowsiness detection is
based on ‘‘Vehicle based systems’’. The common warning
signs shown by the driver while driving under the influence of
drowsiness are drifting from current lane and hitting a rumble
strip on the side of the road. In the vehicle based systems the
vehicle parameters like deviation from lane, steering wheel
movement, force applied on the brake, usage of accelera-
tor and driving behaviour pattern are monitored [16], [17].
Although these vehicle data provide a detailed view of the
driver’s status, it is greatly influenced by the current driving
conditions like weather, traffic, vehicle’s performance and
driver’s emotional status. Hence any change in the monitored
metrics may not be due to drivers drowsiness.

The third category for driver sleepiness detection is based
on ‘‘driver behavioural basedmeasures’’. Several behavioural
signs like yawning, facial touching, blinking frequently, eye
closure, head posture and a combination of these signs are
exhibited by the driver while he is experiencing drowsiness.
These symptoms exhibited by the driver are detected using
a camera which uses image acquisition and processing tech-
nology [18]–[21]. There has been a lot of improvements in
the image acquisition and processing technology, however
the illumination of the subject, surrounding area, glare from
glasses and reflection frommirrors affect the accuracy of pre-
diction. It is also impossible to detect changes if the subject’s
face goes out of the field of view of the camera.

The fourth category for detection of driver’s sleepiness
is based on ‘‘human physiological signal based systems’’.
The physiological features of body are always correlated to
the driver’s driving behaviour. Several physiological signals
like the electrocardiogram (ECG), electrooculogram (EOG),
electromyogram(EMG) and EEG were used to study the
drowsiness state of the driver [22]–[24]. These signals change
according to the alertness state of the driver. Among the
above physiological signals EEG was the most commonly
studied and used for fatigue. The robustness of the EEG sig-
nals depends on the quality of the EEG electrodes, electrode
localization, features and classifiers that are used and aremost
discriminative in classifying the different levels of sleep [12].

The fifth category for detection driver sleepiness is based
on ‘‘human physiological signal based systems’’. The above
methods for detecting drowsiness has its own advantages and
limitations. However a combination of one or more of the
above methods could complement the limitations in each of
its approaches. There are only a few researches conducted
to detect driver drowsiness by hybrid techniques [9], [12].
Researches are also moving towards a new generation of
driver monitoring systems within the context of Internet of
Vehicles System where smart cars collect information from
the driver, the road, the car, and the surrounding cars to
process the information for integrated safety [25], [26].

Hence in this paper we propose a hybrid multimodal
system to detect driver fatigue using EEG for human

physiological signal based system, gyroscope data of head
motion and image process for behavioural based measures
while the entire system was programmed using Google’s
TensorFlow. TensorFlow is an open source software library
for machine learning and deep learning which used flexible
numerical computation core and can be used across various
platforms like desktop, mobile and edge devices. The exper-
imental results showed that our proposed system performed
better in detecting driver fatigue thus proving that the hybrid
systems perform better than the individual systems.

II. RELATED WORKS
Driver fatigue, sleepiness, distraction and inattentiveness are
some of the studies that were extensively carried out by
researchers in this field as cited in these literature reviews [9],
[12], [27]. The usage of wearables has also increased drasti-
cally in recent years and a significant amount of research has
been carried out with the use of these sensors for monitoring
human activity as found in [28]. A number of driver’s alert
systems are currently in use like the ‘‘Driver Alert System’’
in Volvo and Ford cars, ‘‘Driver FatigueDetection System’’ in
Volkswagen and Skoda cars, where the driver is alerted when
driver fatigue is detected based on the changes in driving pat-
tern [29]. However the system is not redundant as numerous
factors cause the system to fail like the driving through rutted
road surfaces and dust on cameras. Numerous sensors and
methodswere used by researchers to detect drowsiness, hence
in this section we are only discussing multimodal or fusion of
different sensors to predict driver fatigue.

Multimodal fatigue measures like surface electromyogra-
phy(sEMG), EEG, seat interface pressure, blood pressure,
heart rate and oxygen saturation level were used to eval-
uate driver fatigue using different statistical analysis like
normality test, Friedman test, linear regression analysis and
Wilcoxon-signed rant test [30]. During the study it was
found that early onset of fatigue was detected by multimodal
measures with the significant change in pressure distribution
on thigh and buttocks regions. The drivers behaviours asso-
ciated with visual and cognitive distractions both separately
and jointly were studied with the perceptual scores. They
indeed were used to define regression models with elastic
net regularization and binary classifiers [31]. Dangerous
driving intensity (DDI) framework was introduced wherein
fuzzy sets were optimized using particle swarm optimization
for modelling driver, vehicle and lane attributes [32]. The
results obtained from the DDI analysis are in favourable
agreement with those obtained from the perception
study.

As EEG was one of the widely researched topics in
detecting driver drowsiness. There were a few studies con-
ducted by combining EEG with other sensors. EOG, ECG
and EEG signal readings were measured simultaneously
during simulated driving task, where the subject’s status was
classified as awake and drowsy state using Fisher’s linear
discriminant analysis [33]. In another method forehead EOG
was used to extract various information on eye movement
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TABLE 1. Important research papers that use multimodal signals in their study for objective other than fatigue detection.

TABLE 2. Important research papers that use multimodal signals in their study for fatigue detection.

features and combined with EEG as EOG contains
complementary characteristics for vigilance estimation [34].
EEG and respiration signals of the driver in time and fre-
quency domain were recorded in real time with a Bluetooth
based mobile technology and analysed using support vector
machine(SVM) [3]. Real-time drowsiness detection is hard
as high number of data is received from various sensors
and the method used to predict real time drowsiness is not
light enough or it requires high computing power. Hence in
this method various optimized indicators based on driver’s
physical and driving performance measures are obtained
from Advanced Driver Assistance Systems (ADAS) in simu-
lated driving conditions and a new method of ground-truth
generation based on a supervised Karolinska Sleepiness
Scale(KSS) was used [35]. In order to combine various
sensors researchers extracted audio, color video, depth map,
heart rate, steering wheel and pedal position information
which were then processed according to three modules of
vision, audio and other signals. The output from these mod-
ules were then combined with contextual information and
a dedicated Bayesian network was designed to predict both
fatigue and distraction [36].

Table.1 provides information on the multimodal data
acquisition and processing techniques used for achiving
objectives other than driver fatigue detection. In Table.2 the

multimodal techniques used for driver fatigue detection are
explained along with the results.

From the literatures we can see that multimodal driver
fatigue performs better and are reliable than individual sig-
nal based prediction [43]. However due to high number of
data received from different sensors and the complexity of
the algorithms developed, required large computing power
and sophisticated signal transmission techniques. Hence we
propose a multimodal system that predicts driver fatigue from
EEG, gyroscope and image processing data using Neural
networks.

III. MULTIMODAL SYSTEM ARCHITECTURE
In order to build a more robust and reliable driver fatigue
detection system multimodal system to detect driver fatigue
using Deep Neural Networks (DNN) was proposed. The sys-
tem consists of multimodal time series data that is acquired
from EEG, gyroscope and image processing systems from
the driving simulator platform. This data is then processed
individually in three seperate modules where the EEG mod-
ule predicts driver drowsiness, gyroscope module predicts
driver head activity and vision module predicts driver facial
behavioural signs. The predictions from these modules are
then given as input to the multimodal driver fatigue detec-
tion DNN which processes the data and then predicts the
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FIGURE 1. Methodology of the proposed multimodal system to detect
driver fatigue.

driver fatigue status. The methodology of this proposed mul-
timodal system to predict driver fatigue is as shown in Fig.1.
Each module comprises of a seperate NN which is designed
according to the data type that is acquired from each sensor
and predicts a value according to its drowsiness detection
system which is explained in the following sections. The
main advantage of the proposed multimodal driver fatigue
detection system is that it not only predicts if the driver
is experiencing fatigue state but also the physiological and
behavioural characters exhibited by the driver under fatigue.
It also helps in adding additional modules based on the type
of sensor data being introduced. The advantage in the use of
individual modules like EEG module(EM) enables an accu-
rate detection of drowsiness and awake state experienced by
drivers with the use of DNN which is developed according to
the specific datatype. Similarly the head motion of the driver
could be found using Gyroscope module(GM) DNN and face
behavioural signs could be found with the help of vision
module(VM) NN. Fatigue in drivers is mainly caused due
to prolonged driving over monotonous and repetitive envi-
ronments, while sleepiness or drowsiness occurs in profes-
sional drivers during end hours of all night driving shift [11].
In the proposed method, fatigue is detected with the help of
behavioural signs exhibited by the driver like rapid blinking,
nodding of head, yawningwhile eyes closed, frequently being

distracted by adjusting driver console, eyes getting closed and
yawning by using gyroscope sensor and image processing.
EEG signals are used to detect the transition between awake
and sleep or the drowsy stage. Behavioural signs like yawn-
ing, yawning while eyes closed and rapid blinking are mostly
triggered involuntary actions due to fatigue or sleepiness. The
drawback of one system is complemented by the advantage
of other system. The data acquisition technique are explained
in the following sections.

In order to effectively detect driver fatigue it is essential
to detect driver drowsiness effectively. The sleep wake cycle
is one of the major factors of driver fatigue along with other
factors like health, physical injuries, regular food intake that
contribute to physical fatigue of a driver. Some of the factors
that contribute to the mental fatigue are monotonous driving,
boredom, and so on. Hence for this research two states of the
driver are considered, which are i) normal driving state, where
the driver has had proper prior sleep and is not physically
ill in any way. The other state where the driver is under ii)
fatigue driving state, where he has not had a minimum of 8
hours of sleep during the normal sleep cycle within 24 hours,
is physically ill or is experiencing any one of the factors
contributing to fatigue. Therefore the two main categories
considered are normal driving state and fatigue driving state
of the driver.

There are many researches conducted to measure the
variables like performance, perceptual, electrophysiological,
physiological and biochemical measures which are associ-
ated with fatigue but drowsiness is considered as the main
indicator of fatigue present in a driver and in previous studies
mentioned by the researchers in [11]. As for the case of the
multimodal research the EEG, gyroscope and image process-
ing data is considered. In the case of EEG the physiological
data from the driver is categorised into awake and drowsy
state of the driver. In the case of gyroscope the behavioural
signs of drowsiness exhibited by the driver are categorised
into nodding state where rapid head movement is exhibited
by the driver along with frequent changes made to the driver
console like adjusting the volume of music, changing the
climate controls of the car, and so on. This behaviour is
interpreted by the gyroscope present in the driver headset
for tracking the head pose of the driver by means of section
numbers where the field of vision of the driver is divided
into different sections as shown in Fig.2. Section 5 is the
region located where the angle of rotation of the head is
about 20 degree to either side along the x axis and y axis
from the mean position. The other sections are consecutively
divided as shown in Fig.2. Hence, the head pose of the driver
is categorised according to section numbers from 1 to 9 and 0
for regions outside this zone or for signal loss.

In the case of image processing behavioural signs of
drowsiness like yawning, eyes closed and yawningwhile eyes
closed are detected.While all of the above signs of drowsiness
from EEG, gyroscope and image processing may happen
even in normal driving state but the likelyhood and frequency
with which it happens increases with the level of fatigue
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FIGURE 2. Multimodal System to detect driver fatigue.

FIGURE 3. Multimodal based indicator of driver fatigue.

experienced by the driver [42]. Therefore for multimodal
driver fatigue detection system a deep neural network that
uses the prediction from EEG module, gyroscope module
and vision module as inputs is proposed as shown in Fig.3.
These individual modules contain neural networks that are
specifically designed to the data type being recorded from the
sensors.

The raw data for the multimodal fatigue detection is col-
lectedwith the help of five different test subjects who are aged
between 21 and 30. All the test subjects are license holders
and regular drivers who normally commute by car. The data
was recorded at two different times in a driving simulator
platform, the first is when the test subject is in a normal
driving state and the second is when the test subject is in a
fatigue state where the reading is recorded between 3 pm and
5 pm when the driver is more prone to drowsiness. In order
to record the fatigue state the test subjects had less than

TABLE 3. Predictions from EEG, gyroscope and vision module.

6 hours of sleep the previous night in the 24 hours cycle and
were deprived of their sleep. The raw data from the different
sensors attached to the driver headset were collected with the
help of LabVIEW software and processed using the EEG,
gyroscope and vision modules. The module’s name along
with the description of prediction and the value of prediction
is as shown in Table.3.

The raw data was recorded under five different scenarios.
In the case of first scenario the raw data from the test subject
is recorded under normal driving condition while perform-
ing the act of checking the time while driving. In the case
of second scenario the raw data is recorded while the test
subject is in fatigue state and is requested to perform the act of
yawning and eyes closed while yawning. In the case of third
scenario the raw data is recorded while the test subject is in
fatigue state and is requested to perform the act of nodding by
moving the head up, down left and right. During this scenario
they were also asked to change the temperature of the car in
the console. The above actions of yawning and nodding only
happen in drivers when they are experiencing extreme fatigue.
It may not occur to some drivers as it is highly dependant on
individual’s behaviour. Hence these actions were simulated
by the test subjects while the scenarios were recorded [36].
The fourth scenario was recorded while the test subject is
in fatigue state and is extremely drowsy. The drowsy and
fatigue state of the driver were also verified with the help
of videos recorded from the session. In the fifth scenario the
data was recorded while the driver is experiencing extreme
fatigue and falls asleep while driving in the simulator. The
scenario description and the status of the driver are given
in Table.4.

The multimodal data that is recorded from the scenarios
are analysed with the help of the three individual modules
and their predictions are found out individually. In the case
of results from the vision module, the predicted values are
stored according to the corresponding time and if there is an
absence of data then it is tagged as ‘‘4’’ for vision module.
All the data from the first scenario are tagged 0 except for
the data that has detected drowsiness from the EEG module
which is tagged as ‘‘1’’. Hence by tagging the first scenario
as ‘‘0’’ we have recorded all the characteristics from EEG,
gyroscope and vision module for safe driving in normal
state of the driver. So by tagging the data as ‘‘1’’ that has
shown drowsiness from the EEG sensor, we are recording the
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TABLE 4. Status of driver along with the description of scenario.

characteristics of drowsiness even in normal state of the
driver, as drowsiness can happen at any point of time.

In the case of the second scenario the predicted data that
was recorded during the fatigue state and performing the
act of yawning of the driver is tagged as ‘‘2’’ when the
driver is detected as experiencing drowsiness with the pre-
dictions of EEG module and all the other data are tagged
as ‘‘0’’.

As for the case of third scenario predicted data was
recorded when the driver is under fatigue stage and perform-
ing the act of nodding. Hence, based on the predictions from
the EEGmodule if the driver is experiencing drowsiness then
all the data are tagged as ‘‘3’’ and the other data are tagged as
‘‘0’’.

Similarly for the fourth scenario the data is recorded while
under fatigue state and the driver is found to be extremely
drowsy. Hence based on the EEG predictions if the driver is
found to be drowsy then the data is tagged as ‘‘4’’ while the
other datas are tagged as ‘‘0’’.

Finally as for the fifth scenario the datas are recorded when
the driver is in fatigue state and is sleeping while performing
the act of driving. In this case based on the predictions of
EEG module, if the driver is found to be drowsy then the
data is tagged as ‘‘5’’ while all the other data are tagged
as ‘‘0’’.

The multimodal tagging information with respect to sce-
nario in which the data is recorded is given in Table.5. The
combinations of these information in tagging gives a detailed
information on the fatigue characteristics with respect to the
behavioural signs or physiological signs expressed by the
driver. It also gives information on the drowsiness experi-
enced by the driver even in the case of normal state of the
driver. Prolonged continuous driving even in normal state
may lead to fatigue condition. Hence by tagging datas based
on these properties the characteristics of datas from each
of the sensors are found out and also the predictions gives
us an inside view of the behaviour expressed by the driver
while experiencing drowsiness. Scenarios 4 and 5 also give an
insight on the behavioural characteristics of the driver when

TABLE 5. Multimodal tagging information with respect to scenario.

he is experiencing drowsiness in normal state and fatigue state
while performing the act of driving.

A. FATIGUE DETECTION BASED ON THE PROPOSED
MULTIMODAL DNN
The structure of the proposed DNN is as shown in Fig.4.
The initial raw data from the multimodal data acquisition
using driver monitoring platform as explained in the follow-
ing sections of this chapter is processed individually in their
respective EEG module (EM), gyroscope module (GM) and
vision modules (VM) for prediction. The predicted results
are also time series based and given as input to the proposed
DNN.

The input consists of three neurons and the number of
previous time instances is chosen as three because the safe
reaction time required for the driver to react in case of emer-
gency is three seconds [44]. This history of the previous
time instances transfers the information of the previous time
predictions. If the number of previous time instances are
increased then the sensitivity of prediction is decreased and
if the number of previous time instances are decreased then
the sensitivity of prediction is increased [42]. This data is
given as input to the recurrent neural network(RNN) which
consists of 400 long short-term memory cells(LSTM) with
one dimension. The output from the RNN are then given
as input to the NN. The NN also consists of 400 neurons.
The NN consists of three hidden layers and all the hidden
layers utilise the rectifier linear unit (ReLU) along with
dropout function. The output layer of the NN utilises sig-
moid function(SF) to classify the six different physiological
and behavioural signs of fatigue and normal state of the
driver. All layers of the DNN except the RNN utilises the
Xavier initilization (XI) with dropout function and adam
optimization (AO) for fast optimization in all the layers of the
DNN.

The cost and accuracy of prediction for the proposed DNN
were calculated. The cost of the prediction is calculated by
finding themean of the sigmoid cross entropywith logits. The
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FIGURE 4. Structure of the proposed deep neural network for multimodal
classification. The dashed arrow indicate connections where dropout is
applied and the solid lines indicate connections where dropout is not
applied.

sigmoid cross entropy with logits measures the probability
error in discrete classification tasks or multilabel classifica-
tion in which each class is independent and not mutually
exclusive. Accuracy of prediction is calculated by finding
the mean between the predicted value of the proposed multi-
modal DNN and the actual value of prediction. The tagging
information or the actual value of prediction at that instance
is taken as the mode of the tagged data of all the previous
time instances that are considered and is converted to one
hot method of tagging to equalise the tagged values so that
it does not affect the results by misrepresenting to the DNN
that greater the value of tagging then greater is the impor-
tance of the tag. Thus with the cost and accuracy functions
the performance of the proposed multimodal DNN could
be verified. In order to verify the performance of proposed
DNN the input from one of the modules was left for testing.
A combination of EM along with GM and EM along with

VM were considered for analysing the performance of the
proposed DNN where only the number of input nodes is
changed from three to two. As EEM is considered as the
most important dataset for predicting fatigue it is considered
in both the combination of modules [11]. The tensorboard
generated by the proposed multimodal DNN is as shown
in Fig.5

B. EEG MODULE
1) EEG HEADSET
EEG is one of the most widely accepted and used meth-
ods for measuring human physiological signal based sys-
tems as it is a good indicator of the transition between
wakefulness and sleep [27]. It can also detect the transition
between different stages of sleep. The inhibitory and exci-
tatory postsynaptic potentials generated by communication
between cortical nerve cells are summated in the cortex
and extended to the scalp surface which are recorded by
the EEG electrodes. There are two types of recording the
EEG signals. The monopolar method records the voltage
difference between an active electrode placed on the scalp
with the reference electrode placed on the ear lobe. The
bipolar electrode records the voltage difference between two
active scalp electrodes. An amplitude of 10 µ V to 100 µ V
along with frequency ranging from 1 Hz to 100 Hz is usu-
ally measured with EEG signals. Electrode placements are
devised based on the relationship between the location of
an electrode and the underlying areas of the cerebral cortex.
According to the constitution of the international federation
of societies for electroencephalography and clinical neuro-
physiology, the standard and widely used 10-20 electrode
placement system was developed. However in recent times
the development of multi-channel EEG hardware systems has
lead to the development of higher density electrode settings
such as 10-10 and 10-5 systems. For our study we have used
the 8 channel 10-20 electrode placement system as shown
in Fig.6.

The electrodes used for signal acquisition are dry spikey
and non spikey electrodes. The spikey electrodes are placed
in the regions where there is lot of hair like the C3, C4, P7,
P8, O1 and O2 while the non-spikey electrodes are placed
in the region of forehead like the FP1 and FP2 as shown
in Fig.6. The ground electrode is placed on the right earlobe
while different characters refer to each lobe region which
is described as follows: frontal lobe(F), temporal lobe(T),
central lobe(C), parietal lobe(P) and Occipital lobe(O). These
electrodes where then fixed to the Open BCI Mark IV
headset. The OpenBCI Mark IV headset was 3D printed in
house using a Finebot FB-Z420 3D printer and assembled.
We used an OpenBCI Cyton board which is a 32 Bit 8 channel
device that is capable of measuring and recording electrical
activity produced by the EEG, EMG and EKG. This board
uses ADS1299 ADC biopotential measurement integrated
chip developed by Texas Instruments. The wires from these
electrodes where connected to the OpenBCI Cyton Board
to measure and record the EEG signals. The final image
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FIGURE 5. Tensorboard graph of the proposed multimodal DNN.

of the assembled headset is as shown in Fig.7. The signal
from the Cyton board is then transferred to the computer via
OpenBCI Dongle which is capable of communication with
RFD22301 radio module.

2) EEG BASED INDICATOR OF FATIGUE
The measured EEG signal can be divided into alpha, beta,
delta and theta sub-bands based on their frequency and ampli-
tude. Alpha waves (8-13 Hz) are predominately found in
adults who are awake but relaxed with their eyes closed. It is
normally associated to N1 stage of sleep where it is the tran-
sition from awake to sleep(drowsy). When the subjects open
their eyes or if they are disturbed through external factors the
amplitude of alpha waves get diminished. Hence alpha waves
are the most associated ones to detect drowsiness or fatigue.
Beta waves (13-30 Hz) are associated with individuals who
are alert, aroused and excited. Delta waves (1-5 Hz) and Theta
waves (4-8 Hz) are normally associated with adults who are
in deep sleep. The occurrence of these low frequency signals

increase and alpha waves diminish as the subjects move from
light sleep or drowsy state to deep sleep.

The main aim of this EEG module is to detect the occur-
rence of alpha waves effectively and efficiently predict the
onset of sleep by analysing the signals using continuous
wavelet transform (CWT) and to verify the system using
fast Fourier transform(FFT). When the driver falls into
micro-sleep or drowsiness the amplitude of alpha waves
increases and this phenomenon is well observed in the occip-
ital region or occipital lobe where the O1 and O2 electrodes
are present. This phenomenon may occur while the eyes are
briefly closed or when the rate of blinking is also higher
which can be observed by the fluctuation of signals from the
FP1 and FP2 electrodes.

3) EEG DATA COLLECTION, ANALYSIS AND TAGGING USING
CWT AND FFT
The 8 channel EEG data required for analysis were collected
from three test subjects. The signals were recorded during late
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FIGURE 6. 8 channel 10-20 EEG electrode placement system.

FIGURE 7. EEG Headset used for measuring EEG signals.

night from 11 pm to 2 am in a simulated environment when
the drivers are most prone to sleep. The test subjects have
prior driving experience and are regular drivers who normally
commute by car. The consumption of alcohol was prohibited
from 24 hours prior to conducting the test so as to minimise
external factors from influencing the test results.

The signals from the occipital regions of O1 and O2 were
analysed using CWT. Recently wavelet transformation is a
popular method for analysing signals that often exhibit abrupt
changes like the real world signals. FFT does not represent
abrupt changes efficiently because it represents the data as
a sum of sign waves and they are not localised in time and
space. Hence unlike FFT which can only perform frequency
analysis, CWT enables simultaneous analysis of time and
frequency. Wavelet coefficients are obtained by correlating
the signal with a wave of finite duration and energy or a
wavelet. The mother wavelet is a reference wavelet, whose
coefficients are evaluated for the entire range of dilation and

TABLE 6. Tagging information for EEG Module.

translation factors while shifting continuously along the time
scale for evaluating the set of coefficients at all instances of
time [45]. Morlet function was chosen as the mother wavelet
for our application as there was high similarity with EEG
signals.

The wavelet coefficients in the 10 to 13 Hz interval, which
is the high frequency band of alpha waves are extracted.
We selected 5 µ V range which is the mean value for detect-
ing the microsleep region and if the average value of the
previously calculated amplitudes is greater than 5 µ V, the
corresponding section is tagged as ‘1’ for sleep and vice
versa as ‘0’ for awake as shown in Table. 6. Similarly the
EEG raw data is analysed using FFT where the mean value
of alpha wave was analysed for every interval of 1 second
and similar parameters for tagging were followed as for that
of CWT. Thus the tagged data from CWT along with the
8 Channel EEG will be given as inputs for the deep neu-
ral network (DNN) programmed in Tensorflow for detect-
ing drowsy or awake condition while the tagged data from
FFT will be used to verify the performance the proposed
DNN.

4) FATIGUE DETECTION BASED ON PROPOSED EEG
MODULE DNN
The structure of the proposed DNN is as shown in Fig. 8.
The proposed DNN was developed in TensorFlow as it pro-
cesses the data’s as Tensors and retains the initial information
throughout the processing.

As the data type from EEG is a time series data recurrent
neural network (RNN) was initially used and the output was
given as input to the next layer of neural network (NN). The
raw data from the EEG is given as input to the RNN which
consists of 200 long short-term memory cells(LSTM) with
one dimension. The LSTM also utilises a dropout function
as it greatly reduces overfitting in LSTM’s. The LSTM are
well suited for time series based data classification, pro-
cessing and prediction. The output from the RNN are gath-
ered and are given as input to the NN. The NN consists
of 100 nodes or neurons and the dimension is reduced from
200 to 100 when it is connected from RNN to NN. The NN
consists of three hidden layers and all the hidden layers use
rectifier linear unit (ReLU) along with the dropout function.
The trends or features pattern from the data are captured with
the help of activation function like ReLU which is a deciding
parameter.

The use of ReLU enables quick training compared to other
activation functions and is not subjected to the problem of
vanishing gradient. The only problem is that the mean output
is not zero and it introduces a bias for the next layer of the
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FIGURE 8. Structure of Proposed Deep Neural Network. The dashed
arrow indicate connections where dropout is applied and the solid lines
indicate connections where dropout is not applied.

neural network where it can slow down the learning process.
Thus after three hidden layers the neurons are connected to
the output layer where one node is present. The output layer
of the NN uses sigmoid function (SF) to classify the fatigue
state of the driver. The SF consists of a ‘‘S’’ shaped curve or a
sigmoid curve. The SF has similarities with the step function
or threshold when the value is a large positive number the
output of SF is near to 1.

All layers of the deep neural network except the RNN
uses Xavier initialization(XI) with dropout function. The XI
automatically determines the scale of weight initialization
based on the number of input and output neurons. The XI
helps the data’s to reach deep into the network. The XI also
makes sure that the weights are distributed efficiently for
faster learning and it works with almost all types of neu-
rons. Adam optimizer(AO) also known as adaptive moment

estimation was used for fast optimization in all the layers of
the DNN. The learning rates are calculated and the momen-
tum changes are also stored in the AO. The first moment
mean and the second moment the un-centered varience of the
gradients respectively are calculated and those values are used
to update the parameters in theAOwhich usually outperforms
the other optimization techniques.

The cost and accuracy of prediction for the DNN were
calculated. The cost function is defined as given in the below
equation:

H (x) =
1

eWx+b
(1)

c(H (x), y) =

{
−log(H (x)) if y = 1,
−log(1− H (x)) if y = 0.

(2)

Cost(W ) =
1
m

∑
c

(H (x), y) (3)

where H(x) is sigmoid function, W is weight, x is input, b is
bias, y is our prediction, and m is total input number. Thus
Cost(W) gives the cost for predicting driver fatigue based on
each epoch. Accuracy of prediction is calculated by finding
the mean between the predicted value of the DNN and the
actual value of prediction. Thus with the cost and accuracy
functions the performance of the proposed DNN could be
verified.

C. GYROSCOPE MODULE
1) GYROSCOPE SYSTEM
The gyroscope sensor was used for head pose estimation
as it provides robust data unlike image processing based
head pose estimation. Usually head orientation in image pro-
cessing is measured with the help of facial features hence
when the facial features are not visible to the camera then
the system does not work. The variation in lighting also
effects the head pose estimation. Hence in order to avoid
such problems we have used gyroscope sensor for head
pose estimation. The gyroscope sensor used for our pro-
posed system is theArduino basedMPU-6050Accelerometer
plus Gyroscope sensor. The sensor contains hardware for
16-bits analog to digital conversion therefore it can record
the x, y and z axis channels at the same time. It can mea-
sure the three axis accelerometer, gyroscope, roll, pitch and
yaw data. The gyroscope sensor is then connected to the
Arduino Uno board which used to stream real time data to the
computer.

2) GYROSCOPE MODULE BASED INDICATOR OF FATIGUE
The gyroscope module is used to detect driver fatigue based
on the behavioural signs. A driver under fatigue normally
exhibits behavioural signs like nodding the head frequently,
distraction by operating different consoles in the car and
swaying of the head [46]. Hence for our study we have
considered the above factors where the motion of the head
is tracked using the gyroscope sensor.
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TABLE 7. Tagging information for gyroscope module.

3) GYROSCOPE DATA COLLECTION, PREPROCESSING AND
TAGGING
The gyroscope sensor connected to the Arduino Uno board
is used to stream real time data to the computer. Matlab is
then used to record the real time data and a visualization
model was developed to verify the orientation of the head and
the observed raw data. The volunteer driver’s head motion
was then recorded according to the scenario explained as
follows. The field of vision of the volunteer driver is divided
into different sections as shown in Fig.2. The sections are
divided according to the angle of rotation of the head from
the mean x and y axis. The intersection of the mean x and y
axis are fixed at the normal orientation of the head or when
the volunteer driver is looking straight at the road. The mean
x axis is the line drawn along the horizontal rotation of the
head and the mean y axis is the line drawn along the normal
rotation of the head along the vertical axis. The sections are
divided at an angle of 20 degrees rotation along the mean
x and y axis on either side. The consecutive sections are
divided with reference to the central section or section 5. The
method of data collection was chosen as the angle of rotation
of the head is the same for all the volunteer drivers, only
the field of vision of the drivers change according to their
body physique. The test subject is then made to look at the
sections while the raw data was recorded separately for each
sections and are tagged according to the section number as
described in Table.7. The raw data recorded consists of roll,
pitch, yaw, accelerometer and gyroscope data for three axis.
Around 5000 instances each containing 9 data types for each
section was recorded. The mean, standard deviation (SD)
and principal component analysis(PCA) were then calculated
seperately for accelerometer data’s, gyroscope data’s, for roll,
pitch and yaw data’s along with the combination of all the
above data’s separately each of these instances. Therefore
the head activity data set along with tagging information of
the sectionwas createdwith 22 different data types. Hence the
raw data that consisting of 9 data types were then converted
to 21 different data types along with tagging information.
In order to verify the head activity data the collected data was
verified using fineGaussian support vector machine(SVM) in
classification learner toolbox provided in MATLAB. All the
data’s of head activity dataset are used as predictors except the
section information which was used as response. The result
from fine Gaussian SVM was used to verify the redundancy
of the data collected.

4) FATIGUE DETECTION BASED ON THE PROPOSED
GYROSCOPE MODULE NN
The head activity data is given as input to the proposed NN.
The structure of the proposed vision module neural network

FIGURE 9. Structure of the proposed gyroscope module DNN. The dashed
arrow indicates droupout function.

system is shown in Fig.9. The input layer of DNN consists
of 21 input nodes each representing the values of mean,
SD and PCA calculated for each raw data type. The output
layer consists of 9 output nodes where each node represents
each section of the drivers visible region. There are two
hidden layer with 220 neurons between the input and output
layers of the DNN. All the layers of the proposed DNN
utilize leaky ReLU as activation function except the output
layer which uses sigmoid function. All the layers of the DNN
utilizes the XI and dropout function. AO was used for all
layers of the DNN as it enables fast optimization.

The cost and accuracy of prediction for the proposed
NN were calculated. The cost of prediction was calculated

VOLUME 8, 2020 129655



N. Senniappan Karuppusamy, B.-Y. Kang: Multimodal System to Detect Driver Fatigue

by finding the mean of sigmoid cross entropy with log-
its and accuracy of prediction is calculated by finding the
reduced mean between the predicted section number of the
proposed gyroscope module NN and the actual value of
section number. Thus with the cost and accurasy functions
the performance of the proposed vision module NN could be
verified.

D. VISION MODULE
1) CAMERA SYSTEM
The use of image processing has been in practice since
the inception of research into driver fatigue analysis. For
our research we used the Basler Ace (acA640-120gc) cam-
era fixed with a compact fixed focal length 8.5 mm lens
(781414-01 lens). We used the Pylon viewer software
provided by the Basler to acquire the images. The Basler Ace
camera is equipped with a charged-coupled device (CCD)
based Sony ICX618 sensor capable of capturing pictures
with a 658 x 492 pixel in size and of portable net-
work graphics (PNG) format. The camera was connected
to the computer with a Gigabit Ethernet (GigE) cable
and then the pylon viewer software was configured to
capture images at the rate of 5 frames per second for
60 seconds. The camera was mounted on the driving
simulator platform as shown in Fig.10. The images col-
lected were used to detect the driver’s behavioural based
measures.

2) VISION MODULE BASED INDICATOR OF FATIGUE
There are a number of behavioural signs that a driver exhibits
when he is drowsy under a fatigue condition. A driver
who is drowsy displays characteristic facial movements like
rapid blinking, swinging their head in random directions,
yawning frequently and a combination of one or all of the
above signs. The main aim of this vision module is to
detect these behavioural signs with the help of vision based
approach. For our study we concentrated on the behavioural
signs of eyes closed, yawning and eyes closed while
yawning.

3) IMAGE DATA COLLECTION, PREPROCESSING AND
TAGGING
The images were collected at the rate of 5 frames per second
for 60 seconds under each scenario and they were cate-
gorised according to the scenarios of normal, yawning, eyes
closed and eyes closed while yawning. These scenarios were
recorded from three test subjects and the scenarios were
also recorded with the test subjects wearing glasses. In order
to establish a base line, normal driving of the test subjects
with and without glasses were also recorded. Hence a total
of eight scenarios with approximately 300 images for each
scenario and hence for three subjects a total of 6000 images
were collected. The face of the test subjects are detected
using the Dlib facial landmark detector. Dlib is a C++
open-source cross platform software library and also supports

FIGURE 10. Driving simulator platform along with the volunteer subject.

python API. The face is detected with the help of Dlib’s
frontal face detector(DFFC). The DFFC was made using
histogram of oriented gradients feature combined with the
concept of linear classifier, and image pyramid and sliding
window detection scheme. The DFFC gives an output of
bounding box around the detected face and this output image
was then used to detect the facial landmarks on the detected
face using the Dlib’s shape predictor(DSP) along with the
‘‘shapepredictor-68-face-landmark.dat’’. The DSP used the
bounding box to align itself to predict the facial features in
the image. The Dlibs shapepredictor-68-face-landmark.dat is
the pre-trained Dlib model for face landmark detection which
was trained on the i.bug 300-W face landmark dataset [47].
The output from the DSP gives the information of the
facial landmark features. This information is then used to
crop and resize the image evenly around the detected facial
features.

The resized image grouped into two groups of 128 x
128 pixel size and 256 x 256 pixel size, which are categorised
into four main categories of normal, yawning, eyes closed
and yawning while eyes closed. Two groups of images were
selected to compare and validate the results. These cate-
gorised images are again processed using DFFC and DSP
using the shapepredictor-68-face-landmark.dat which detects
the facial landmarks. These facial landmarks are then used to
detect the distance between the nodes of left eye, right eye
and mouth. The information from each image are then tagged
into 15 columns where the first column detects the status of
the driver as 0 for awake, 1 for yawning, 2 for eyes closed,
3 for eyes closed while yawning and 4 for absence of data
as in Table.8. Columns two to five indicate the distance of
left eye nodes, columns six to nine indicate the distance of
right eye nodes and columns 10 to 15 indicate the distance
of mouth nodes. The node information for facial feature
landmark is shown in Fig.11. and the information on tagging
distance between nodes is given in Table.9. The structure of
the proposed vision module neural network system is shown
in Fig.12.
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TABLE 8. Vision module driver status tagging information.

FIGURE 11. The 68 point markup used for tagging facial feature
information.

TABLE 9. Tagged data information.

4) FATIGUE DETECTION BASED ON THE PROPOSED VISION
MODULE NN
The tagged data is then given as input to the NN. The input
layer of the NN consists of 14 input nodes for each of the
tagged distance between the nodes information. The output
layer of the NN consists of 4 output nodes each once repre-
senting the status of the driver. There are 100 hidden neurons
between the input and output layers of the NN. The activation
function used in the input layer of NN is the leaky ReLU. The
reason for using leaky ReLU instead of ReLU function is that
there is a possibility for the weights to be updated in such a
way that the neuron never gets activated when a large gradient
is passing through ReLU. Hence there is a problem of ReLU
units dying during training process which also called as dying
ReLU problem. Thus leaky ReLU overcomes such problem

FIGURE 12. Structure of proposed Vision module neural network.

by having a small negative slope of 0.01 or so instead of the
function being zero.

All layers of the NN use batch normalization(BN) which
accelerates deep network training by reducing the internal
covariant shift. In BN the normalization is done for each
training mini-batch thus making the process of normalization
a part of the model architecture [48]. It enables the use of
higher learning rates and also acts as a regularizer. The output
layer of the NN uses SF to classify the facial drowsiness state
of the driver. AO was also used for fast optimization.

The cost and accuracy of prediction for the proposed NN
was calculated. The cost of the prediction is calculated by
finding the mean of sigmoid cross entropy with logits. The
sigmoid cross entropy with logits measures the probability
error in discrete classification tasks or multilabel classifica-
tion in which each class is independent and not mutually
exclusive. For clarity the function for calculation logistic loss
is given as follows.

Logistic loss = x − x ∗ z+ log(1+ exp(−x)) (4)
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TABLE 10. 8 Channel EEG data represented in microvolts of x103 along
with Tagging value.

TABLE 11. EEG module driver status tagging information.

where x = logits and z = labels. Logits is basically the raw
output of the final neuron layer of the NN which returns the
raw values of prediction. This raw values of prediction is
then used to calculate the mean value of cross entropy with
sigmoid functionwhich gives the cost of prediction. Accuracy
of prediction is calculated by finding the mean between the
predicted value of the proposed vision module NN and the
actual value of prediction. Thus with the cost and accuracy
functions the performance of the proposed vision module NN
could be verified.

IV. RESULTS AND DISCUSSION
The results of each of the modules are first discussed individ-
ually and then the combined multimodal approach to detect
driver fatigue with EEG, gyroscope and image processing
data will be discussed.

A. EEG MODULE
An EEG signal of around 5 min was recorded for each test
subject with a sample rate of 250 Hz. MATLAB was used for
programming the CWT, FFT and tagging was performed on
the raw dataset. The graph of the CWT for the EEG tagged
data for one of the test subjects is as shown in Fig.13. The
CWT graph shows the time frequency analysis of the EEG
signals for the O1 and O2 electrode along with the magni-
tude information. Fig.13 shows that there exists a frequency
fluctuation in the 10 to 13 Hz interval which can be seen in
the graph. A sample of the 8 Channel EEG data along with
tagging information is shown in Table.10. The same data was
tagged using FFT for comparing the results with the CWT
analysis. The FFT graph for the same test subject is shown
in Fig.14(a) and the corresponding tagging information is
shown in Fig.14(b).

FIGURE 13. EEG signal CWT analysis with Morse wavelet.

FIGURE 14. Information from FFT data.

The 8 channel EEG data is then given as input the DNN.
We used Window 10 OS, Python 3.6.4, and Tensorflow
1.8.0 in an Intel Core i5-6400 CPU processor with NVIDIA
GeForce GT 730 graphical processing unit. The training
data is the variation of EEG data with 539 datasets of 8 x
255 size along with information of tagging that was col-
lected from the three test subjects as shown in Table.11.
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FIGURE 15. Results of the proposed DNN for FFT data.

In the learning process 10-fold cross validation was used
for each and every epoch and a total of 50 generations
were studied to find out the cost and accuracy of prediction
of the proposed DNN. A dropout value of 1 was used to
train and test the dataset for every 10 generations. It was
found that the proposed DNN’s final learning cost func-
tion value was about 0.06 and the accuracy of detection for
the whole tagged FFT data was about 98.11% as shown
in Fig.15. A final learning cost function value of 0.01 and
an accuracy of detection for the whole tagged CWT data
was found to be 99.62% for the proposed DNN as shown
in Fig.16.

There are two lines in the graph as shown in Fig.15 and
Fig.16. The thicker orange line is the smoothed values, and
the lighter orange line is the actual values which were logged.
This smoothing can be useful for displaying the overall trend
when the summary logging frequency is higher i.e. after
every training step rather than after every epoch as in this
example. The actual value being displayed in the graph do
not change even if smoothing value is changed as the logit
values from the last layer of the neural network are used to
display the behaviour of the neural network. From Fig.15 and
Fig.16 we can see that the slope of cost decreases and the

FIGURE 16. Results of the proposed DNN for CWT data.

slope of accuracy increases as the learning progresses. This
shows that the proposed DNN performs well in predicting
the drowsiness state of the driver. The results also showed
that the proposed DNN with CWT tagged data performed
better than the FFT tagged data. This shows that our new
proposed method of detecting drowsiness using DNN and
CWT tagged data can be used for detecting drowsiness from
EEG data.

B. GYROSCOPE MODULE
The gyroscope data for each section is recorded using the
test subjects with a baud rate of 115200. The rate at which
the information is transferred in a communication channel
is called the baud rate. The recorded raw gyroscope data
consists of three axis accelerometer, gyroscope, roll, pitch
and yaw data. Hence a total of 5000 instances, each con-
taining 9 data types for each section was recorded using
MATLAB.

The raw data consisting of 45000 x 9 instances is then
converted into the head activity data by calculating the
mean, SD and PCA for each of the instance along with
section information therefore the head activity data thus
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FIGURE 17. Results of the proposed gyroscope module DNN for tagged
head activity dataset.

FIGURE 18. Screen shot of the raw image dataset of test subject collected
for different scenarios.

obtained consists of 45000 x 21 data types. In order to verify
the head activity data classification learner toolbox from
MATLAB was used and the fine Gaussian SVM was trained

TABLE 12. Vision module driver status tagging information.

TABLE 13. Cropped image dataset information.

with 10-fold cross validation. The results of the fine Gaussian
SVM showed 98.9% accuracy in classifying the sections.

The head activity data is then given as input to the gyro-
scope module DNN. Windows 10 OS, Python 3.6.4, and
Tensorflow 1.8.0 in an Intel Core i5-6400 CPU processor
was used again with NVIDIA GeForce GT 730 graphical
processing unit. The training dataset is a variation of gyro-
scope head activity dataset of 45000 x 21 size along with
tagging information of nine sections. In the learning process
10-fold cross validation was used for every epoch and a total
of 150 generations were studied to find out the cost and accu-
racy of prediction of the proposed gyroscope module DNN.
A dropout value of 0.9 was used to train and test the dataset
for every 10 generations. It was found that the proposed
gyroscope module DNN’s final learning cost function value
was 0.1347 and the accuracy of detection for thewhole tagged
human activity dataset was found to be 99.97% as shown
in Fig.17.

From Fig.17(a) one can see that the slope of cost decreases
and from Fig.17(b) it can be observed that the slope of
accuracy increases as the learning progresses. This shows
that the proposed gyroscope module DNN performs well in
predicting the head motion of the driver.
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FIGURE 19. Screen shot of the cropped image dataset of test subject
collected for different scenarios.

TABLE 14. Sample of tagged value for image database.

C. VISION MODULE
The image datasets consisting of four scenario of normal,
yawning, eyes closed and eyes closed while yawning were
recorded from three test subjects who were with and without
reading glasses for recoding the dataset as shown in Table.12.
Hence a total of 5696 images were collected for the 4 different
datasets. A screen shot of a test subject with raw image
dataset of 658 x 492 pixel size collected for normal, yawn-
ing, eyes closed and eyes closed while yawning is shown
in Fig.18.

The collected dataset are then processed and categorised
according to the four scenarios using the DFFC and DSP
along with ‘‘shapepredictor-68-face-landmark.dat’’. The pro-
cessed images consists of face of the test subject cropped and

FIGURE 20. Results of the proposed vision module NN for tagged datase
of 256 x 256 pixel image’s.

categorised into two datasets consisting of 4000 images of
different image sizes which are used for comparing and veri-
fying the results. The cropped images are of 128 x 128 pixel
and 256 x 256 pixel sizes and each category of the dataset
consists of four scenarios as given in Table.8. A screen shot of
the same test subject as shown in Fig.18 with cropped image
of the detected face with image dataset of 256 x 256 pixel
size collected for eyes closed while yawning is shown
in Fig.19.

The collected image dataset is again processed using
the DFFC and DSP using the shapepredictor-68-face-
landmark.dat which detects the facial landmarks. The
distance between the facial landmarks is calculated and the
information is tagged for each image along with the driver
status information. A total of 4000 images from each image
size dataset were tagged and the details of driver status tag-
ging is given in Table.12, while a sample of the tagged data
is shown in Table.14. The number of tagged data for each
scenario is as shown in Table.13.

The 15 column image tagged data is then given as
input to the vision module NN, where the first column
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FIGURE 21. Results of the proposed vision module NN for tagged datase
of 128 x 128 pixel image’s.

represents the status of the driver. We again used the same
Window 10 OS, Python 3.6.4, and Tensorflow 1.8.0 in an
Intel Core i5-6400 CPU processor with NVIDIAGeForce GT
730 graphical processing unit. The training data is the vari-
ation of 14 columns of corresponding node distance tagged
information of around 8000 images from the two different
cropped image size datasets.

In the learning process 10-fold cross validation was again
used for each and every epoch and a total of 500 generations
were studied to find out the cost and accuracy of prediction
of the proposed vision module NN. It was found that the
proposed vision module NN with with tagged data from
256 x 256 pixel image dataset showed an average learning
cost of 0.347 and the accuracy of prediction was found to
be 98.34% as shown in Fig.20. While the tagged data from
128 x 128 pixel image dataset showed an average learning
cost of 0.3497 and an accuracy of prediction was found to
be 98.41% as shown in Fig.21. From Fig.20 and Fig.21 we
can see that the slope of cost of prediction decreases as the
number of epochs increases and the accuracy of prediction
increases as the learning progresses. This shows that the

TABLE 15. Size of of the dataset for each test subject after prediction by
the individual neural network modules according to each scenario.

proposed vision based NN performs well in predicting the
drowsiness state of the driver. The results also showed that
the tagging data from 128 x 128 pixel image dataset showed
better performance than the tagging data from 256 x 256 pixel
image dataset.

D. MULTIMODAL SYSTEM
The multimodal dataset consists of datas recorded from five
test subjects under five scenarios as described in Table.4.
The raw datas of EEG, gyroscope and image from the
five scenarios are processed individually in their respective
EEG module(EM), gyroscope module(GM) and vision mod-
ule(VM) neural networks. The predictions from these indi-
vidual modules contain the values as described in Table.5.
These predictions are also time series based and contain the
status and behavioural information of the driver. The size
of the dataset for each test subject after prediction by the
individual neural network modules according to the scenario
are given in Table.15. The predictions from EEG module,
gyroscope module and vision module of Subject 1 for differ-
ent scenarios is plotted as graph and the relationship between
each of them can be seen in Fig.22. The characteristics and
relationship between the predictions can also be observed
in Fig.22.

The data is tagged for predicting six classes as given
in Table.5 using one hot method of tagging as it avoids
misinterpreting the information to the DNN that if greater
the tagging number then greater is its importance. Windows
10 OS, Python 3.6.4 and Tensorflow 1.8.0 in an Intel Core
i5-6400 CPU processor with NVIDIA GeForce GT
730 graphical processing unit is used for training and testing
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FIGURE 22. Predictions from EEG module, gyroscope module and vision modue of subject 1 for different scenarios with red representing EEG data
prediction, yellow representing gyroscope data prediction and blue representing image data prediction.

the proposed multimodal DNN. From Table.15 one can
observe that a total of 4363 instances that contain prediction
from EM, GM and VM are given as input to the proposed

multimodal DNN along with tagging information. In the
learning process 10-fold cross validation was used for each
and every epoch and a total of 150 generations were studied
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FIGURE 23. Results of the proposed multimodal DNN for EM, GM and
VM data for 3 seconds history of time instances.

TABLE 16. Performance of the proposed multi-modal DNN for
combination of different datasets.

to find out the cost and accuracy of prediction of the proposed
multimodal DNN. It was found that the proposed multimodal
DNN, with tagged data showed an average learning cost
of 0.05781 and the accuracy of prediction was found to be
93.91% [49] as shown in Fig.23.

From Fig.23 one can see that the slope of cost of prediction
decreases as the number of epochs increases and the accuracy
of prediction increases as the learning progresses. This shows
that the proposed multimodal DNN performs well in predict-
ing the fatigue state of the driver.

In order to compare the performance and the behaviour
of the proposed multimodal DNN the same dataset contain-
ing only the EM and VM, along with EM and GM were

FIGURE 24. Results of the proposed multimodal DNN considering only
EM and VM data for 3 seconds history of time instances.

given as input along with the same tagging information.
The below Fig.24 shows the performance of the proposed
multimodal DNN with the EM and VM. The performance of
the proposed multimodal DNN with EM and GM is shown
in Fig.25

From Fig.24, the average learning cost and accuracy of
prediction for the proposed multimodal DNN with EM and
VM tagged data was found to be 0.07260 and 92.58%. While
the average learning cost and accuracy of prediction for the
proposed multimodal DNN with EM and GM tagged data
was found to be 0.10740 and 86.74% as shown in Fig.25.
Fig.24 and Fig.25 also show that slope of cost of prediction
decreases as the number of epochs increases and the accu-
racy of prediction increases as the learning progresses. This
shows the proposed multimodal DNN with reduced sensor
information can also be used for predicting the fatigue status
of the driver. Thus from Table.16 the proposed multimodal
DNN with EEG module (EM), gyroscope module (GM) and
vision module (VM) showed a high accuracy of 93.91% and
is considered for the detection of driver fatigue.
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FIGURE 25. Results of the proposed multimodal DNN considering only
EM and GM data for 3 seconds history of time instances.

V. CONCLUSION
In this paper we have presented a framework where the driver
fatigue is predicted based on the normal and fatigue scenarios
while driving.

The EEG data collected is influenced by the degree of
stress felt and the influence of surrounding environments
like noise, temperature and other distractions. Even if the
experiment is repeated with the same test subject, the value
of EEG data will be different. Therefore it is necessary to
collect more real world EEG data affected by real world
environments. In this paper a new DNN model is proposed
and used which can predict the drowsiness state of the
driver using CWT tagged data. The results of the CWT
tagged data showed better performance than the conventional
FFT tagged data set. From the accuracy of prediction, it is
observed that the proposedmodel can be utilised for detecting
the N1 stage where the transition happens from awake to
drowsy.

The image data collected is largely influenced by lighting
and the presence of facial features in the frame. Allthough
the system is robust in detecting the status of the driver when

the facial features are present within the frame of the system.
If the facial features are not present then the system is unable
to detect the status of the driver. Hence this disadvantage is
overcome with the use of other modules in detecting drowsi-
ness. The proposed vision module NN performed well in
detecting the status of the driver and the results from the 128 x
128 pixel tagged data exhibits better performance than the
256 x 256 pixel tagged data. Therefore from the accuracy
of prediction it is confirmed that the trained vision module
NN can be utilised for detecting drowsiness based on driver
behavioural measures.

The gyroscope data collected helps in dividing the field of
vision of the driver into various sections. This method helps
in determining the head motion of the driver as the reason
for head movement involves lot of real world factors. The
drivers head pose helps in determining the drowsiness based
on driver behavioural measures and the data streamed from
the gyroscope is more robust compared to the image data.
The decision from the gyroscope module NN complements
the vision module NN. The proposed gyroscope module NN
performed well in detecting the head pose or the head activ-
ity of the driver. Therefore from the accuracy of prediction
one can see that the trained gyroscope module NN can be
utilised for detecting drowsiness based on driver behavioural
measures.

The trained neural networks from individual modules show
high accuracy and low cost of prediction, their utilization
for the multimodal fatigue detection can be realised. The
multimodal prediction dataset consists of information of
drowsiness in normal and fatigue state based on physiological
and behavioural measures from the three different sensors.
Table. 16 shows that as the number of sensors considered
for prediction increases the accuracy of prediction increases.
Therefore from the accuracy of predictions it is observed that
the trained multimodal DNN with EEG module, gyroscope
module and vision module is used for detection of driver
fatigue.

New modules can be added to the system as the number
of sensors are increased and the use of custom built NN for
each of the modules ensures high accuracy for each type of
dataset. The same system can be applied to other environ-
ments like manufacturing industry where the safety of the
machine tool operator can be improved by changing only
the learning parameters of vision and defining the safe sec-
tions from a gyroscope parameter while operating machine
tool. Thus the proposed multimodal system detects driver
fatigue using EEG, gyroscope and image processing using
TensorFlow.
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