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ABSTRACT To achieve fast and accurate two-dimensional (2D) direction of arrival (DOA) estimation,
a novel deep ensemble learning method is presented in this paper. First, a convolutional neural net-
work (CNN) is employed to learn a mapping between the spatial covariance matrix of the received signals
from the antenna elements and the directions of arrival. To avoid any explicit feature extraction step, the real
and imaginary parts of the spatial covariance matrix are fed to the CNN. The output layer of the CNN uses
three neurons, two of them are the sine and cosine values of the azimuth angle that are used to uniquely
determine the azimuth angle, and the third neuron is a normalized value for representing the elevation angle.
Second, to improve the prediction performance, since that a single CNN with limited training data has
difficulties learning the highly complex and nonlinear mapping from the received signal to the angle of
arrival, an ensemble learning method is proposed. Five different CNN networks are trained independently
with different training conditions. The prediction results of each individual CNN are calculated as an
average to obtain the final estimated results of the azimuth and elevation angles. Simulation results show
that the processing time of the proposed deep ensemble learning method is dramatically reduced. In terms
of the accuracy, it outperforms the neural network-based 2D DOA estimation and achieves performance
comparable to the MUSIC algorithm.

INDEX TERMS Convolutional neural network, deep learning, ensemble learning, two-dimensional direction
of arrival estimation, uniform circle array.

I. INTRODUCTION
Direction of arrival (DOA) estimation is a hot research topic.
It plays an important role in array signal processing, and
it has been studied in many areas such as radar, wireless
communication, sonar, electronic countermeasures, etc. Two-
dimensional (2D) DOA estimation obtains the azimuth and
elevation angles of a target simultaneously and more accu-
rately describes the spatial characteristics of the incident
signal. Therefore, 2DDOAestimation is often required in real
situations. Compared with one dimensional DOA estimation,
2D DOA estimation problem is more complicated due to the
array geometry.

So far, many 2D DOA estimation algorithms have
been proposed. Conventional algorithms can be mainly
classified into two categories: subspace based algorithms
and sparsity-based algorithms. Subspace based algorithms

The associate editor coordinating the review of this manuscript and
approving it for publication was Syed Mohammad Zafaruddin.

include multiple signal classification (MUSIC) and estima-
tion of signal parameters via rotational invariance technique
(ESPRIT). These high resolution algorithms have received
consistent attention. In [1], two dimension reduction MUSIC
algorithms are presented for coherently distributed sources
consisting of circular and noncircular signals in a massive
MIMO system. In [2], a modified MUSIC algorithm is
applied for the circular and noncircular signals received by
polarization sensitive array. In [3], the authors propose a
MUSIC algorithm based on a Toeplitz matrix to estimate the
DOAs of the coherent signals. In [4], an ESPRIT algorithm
is developed to estimate the 2D DOA of mixed circular and
noncircular signals, and joint diagonalization is used to solve
the angle ambiguity problem. Due to extensive computations
caused by the eigen-decomposition of the matrix and the
spectrum peak search for all angles both in the azimuth and
elevation angles, subspace based algorithms are difficult to
implement in real-time. Sparsity-based algorithms such as
sparse representation have also been studied [5]–[7]. In [8],
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the authors use the multimodal joint sparse representation
method to estimate the DOAs of the wideband signals. This
kind of algorithm needs to discretize the range of interested
angles into grid points and assume that the position of the
incident signal falls on the predefined grid. However, in prac-
tice, no matter how dense the grid points are, the actual
DOA cannot be located on the predetermined grid points,
which leads to the off-grid problem and the deterioration of
the signal recovery performance. Sparsity-based algorithms
also have great computational burdens. In addition, other
algorithms have also been proposed. In [9], a beamspace
based method is used for the incoherently distributed sources.
In [10] and [11], the authors employ the sparse array to
obtain the estimated direction cosines to estimate the 2D
DOAs. These algorithms outperform subspace based meth-
ods in terms of computational speed, but the computational
complexity grows linearly with the dimension.

Artificial neural networks (ANNs) have been proved to
be more efficient in terms of computational speed while
maintaining a comparable resolution capability for 2D DOA
estimation. Since these methods do not require complex
mathematical operations such as matrix inversion, the impor-
tant advantage of parallel operationmakes it fast at estimating
both azimuth and elevation angles. In [12], a linear vector
quantization neural network (LVQNN) is developed for 2D
DOA estimation. To reduce the training set size, the authors
build two different datasets for the azimuth and elevation
angles, respectively. Although the method reduces the dimen-
sion from two dimensions to one dimension, the azimuth
angle is estimated based on the precisely estimated eleva-
tion angle. Thus, even at a high signal-to-noise ratio (SNR)
up to 20 dB, the estimation error is still large at approxi-
mately 2◦. Similarly, the LVQNN is also used in [13]. The
main difference between these two papers is that the latter
employs a single uniform linear array (ULA) and the spatial
covariance matrix organized as a 2M2-dimensional vector
is input to the LVQNN. In [14], two radial basis function
neural networks (RBFNNs) are trained for 2D DOA estima-
tion of two coherent sources. The model limits the azimuth
and elevation angles to a small range of about (−45◦, 45◦).
In practice, the direction of the received signal covers a wide
range, and it is also omnidirectional. In [15], the authors
provide a more accurate 2D DOA estimation method by
developing an RBFNN-based model combining real elec-
tromagnetic sources and a simulated-based neural network.
In [16], the model based on a multi-layer perceptron (MLP)
for stochastic electromagnetic (EM) sources is offered. Due
to the complexity of 2D DOA estimation, these above meth-
ods all consider a limited angle range of the direction of
the incident signal and require a high SNR to have a good
estimation performance.

Deep learning (DL) has the powerful ability to approxi-
mate a highly nonlinear function and a good error tolerance
capacity. It has been used for one dimension DOA estima-
tion [17]. In [18], a deep neural network (DNN) is trained
for multi-speaker DOA estimation. A convolutional neural

network (CNN) is a deep network architecture, and it is a
promising regression and classification technique proposed
by LeCun [19]. Two advantages, sparse connectivity and
shared weights, enable CNNs have small numbers of parame-
ters during learning. By now, it has been successfully applied
in many areas, such as image recognition [20], [21] and face
recognition [22], [23]. When generating a training dataset,
covering all possible combinations of azimuth and elevation
angles is unpractical. However, a limited amount of training
data is not sufficient for a single CNN network to completely
predict all unknown test examples.

To improve the generalization ability and overcome this
limitation, we propose the use of ensemble learning. Ensem-
ble learning is a machine learning technique that uses mul-
tiple base learners to increase the predictive accuracy, and
the method is one of the most attractive methods for clas-
sification and regression problems. Furthermore, combining
the predictions of an ensemble is often more accurate than
using an individual base learner. The CNN network is chosen
as the base learner. The input data are organized by the real
and image parts of the elements of the spatial covariance
matrix. The output layer with three neurons aims to realize
the regression task. Our main contributions are as follows:

1) A CNN is first used to estimate the 2D DOA. This
deep network architecture has a better generalization
ability to achieve the inverse nonlinear mapping from
the received signal to the angle of arrival compared
to other neural networks such as the RBFNN and
LVQNN. In addition, the CNN is able to obtain the
omnidirectional estimation of the angle of the incident
signal.

2) We design the CNN network architecture including a
preprocessing to generating the input data and a post-
processing to smooth the output values. The ensemble
learning method further improves the accuracy of 2D
DOA estimation by eliminating the random errors in
the training procedure to some extent. In terms of the
timeliness and accuracy, the proposed method has a
better performance.

The rest of the paper is organized as follows. In section
II, the data model used for narrowband far-field signals is
established. Section III addresses the proposed deep ensem-
ble learning method for efficient 2D DOA estimation, and it
describes the architecture of the CNN and the corresponding
input data, output labels and training procedure. Numerical
examples and analyses are presented in section IV. Finally,
section V summarizes our conclusion.

II. DATA MODEL
To estimate the azimuth and elevation angles simultaneously,
a planar array is required for the direction-finding (DF)
system. A uniform circle array (UCA) with omnidirectional
elements is able to provide 360◦ azimuthal coverage and a
90◦ elevation range. Hence, we use the UCA to receive the
spatial signals in this paper. It is assumed that K narrowband,
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FIGURE 1. Uniform circle array.

uncorrelated incident waves impinge onto an M omnidirec-
tional elements UCA with a radius of r . The structure of the
UCA is shown in Fig. 1 and the reference point is the origin of
the coordinate system. The source azimuth angle, θ ∈[0, 2π ],
and the elevation angle, φ ∈[0, 2/π ], in a spherical coordinate
system, are measured from the x and the z-axes, respectively.
Therefore, the received signal vector obtained at the output of
this antenna array can be defined as

x (t) = As (t)+ n (t) (1)

where x(t), s(t), and n(t) are given by

x (t) = (x1 (t) , x2 (t) , . . . , xM (t))T (2)

s (t) = (s1 (t) , s2 (t) , . . . , sK (t))T (3)

n (t) = (n1 (t) , n2 (t) , . . . , nM (t))T (4)

In the above equations, the superscript T indicates the
transpose of the matrix. Additionally, in (3), s(t) is a
K×1 vector that denotes the source signals coming from the
far-field directions with the azimuth and elevation angles
{(θ1, φ1), (θ2, φ2),. . . , (θK , φK )}. In (4), n(t) is anM×1 vector
representing the noise signals received by the M elements.
It is assumed to be complex, zero mean, Gaussian white
process, and independent of the signals. A is anM ×K array
manifold matrix whose columns are steering vectors towards
K different directions of arrival and it can be written as

A = (a (θ1, φ1) , a (θ2, φ2) , . . . , a (θK , φK ))T (5)

The steering vector of the i-th incident signal is given by

a (θi, φi) =


ej2πr cos(γ0−θi) cosφi/λ

ej2πr cos(γ1−θi) cosφi/λ
...

ej2πr cos(γM−1−θi) cosφi
/
λ

 (6)

where λ is the incident signal wavelength and γ are angular
positions of the antenna array elements which can be calcu-
lated as

γi =
2π i
M
, i = 0, 1, . . . ,M − 1 (7)

As long as the array geometry is formed, the arraymanifold
is uniquely determined, which contains enough information

FIGURE 2. The CNN architecture for 2D DOA estimation.

to estimate the angle of arrival. From (1), the spatial covari-
ance matrixR of the received noisy signals can be formulated
as

R = E
{
x (t) xH (t)

}
= ARsAH

+ σ 2I (8)

where E{} is the statistical expectation operator, the super-
script H denotes the complex conjugate transpose operation,
σ 2 represents the noise power at the array elements, I is the
identity matrix with dimensions M × M , and Rs is K × K
signal covariance matrix that is written as

RS = E
{
s (t) sH (t)

}
(9)

In practice, the spatial covariance matrix R can be only
obtained via finite samples. Thus, the maximum likelihood
estimation of the spatial covariance matrix is shown as
follows:

R̂ =
1
N

N∑
i=1

x (i)xH (i) (10)

whereN is the number of the snapshots used for the formation
of the spatial covariance matrix. The problem is to estimate
the direction of the incident signal on the basis of a set of
snapshots x(1),. . . , x(N ). In the following, it will be assumed
that the number of signals has been determined.

III. METHOD
A. CONVOLUTIONAL NEURAL NETWORK
Convolutional neural networks are a variant of deep neural
network frameworks that have one or more convolutional
layers to extract the discriminative feature from the input data.
The main motivation to construct a CNN model in this paper
is that the reception field can obtain the phase map relation-
ship from the input data to the output values. The feature
maps are required to learn from the phase correlation between
all the array elements. After all the convolutional layers,
these learned features are then aggregated to the vectors by
the fully connected layers for the regression task. The CNN
architecture for 2D DOA estimation is shown in Fig. 2. Once
the training of the CNN is accomplished, it has established an
approximation of the desired input/output mapping. Hence,
during the testing process, the CNN produces outputs of
previously unseen inputs by interpolating between the inputs
used (seen) in the training process.
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1) PREPROCESSING OF THE RECEIVED SIGNALS
To efficiently generalize the CNN, preprocessing is an intel-
ligent operation to accelerate the training time. The received
signals from the array elements are preprocessed to elim-
inate extraneous data, and to convert the available sig-
nals into something that the neural network can efficiently
use. The preprocessing requires only simple linear algebraic
evaluations (matrix-matrix andmatrix-vector multiplication).
We choose the variant of the spatial covariance matrix R as
the input of the network because it contains enough statistical
information about the direction of the incident signal, and
the cross-correlation of the signals received by different array
elements removes redundant or irrelevant information.

Since the matrix R is conjugate-symmetrical with respect
to the diagonal, the elements of its upper or lower triangular
part provide enough information for 2D DOA estimation.
Notice that R contains complex numbers and CNN networks
do not support operations with complex numbers. Therefore,
the input data are organized in a matrix in such a manner that
real and imaginary parts of the complex matrix components
are separated. We call this input representation the direction
image. If an M element UCA is employed at the receiver,
it implies that there are M × (M−1) neurons in the input
layer. The transformation from R into the direction image is
exemplified as follows.
Step 1: According to (10), we obtain the spatial covariance
matrix R from the received signal. Here, Rij is the element
in the i-th column and j-th row of R estimated during the
measurement.

R =


R11 R12 · · · R1M
R21 R22 · · · R2M
...

...
. . .

...

RM1 RM2 · · · RMM


Step 2: The real part Re(Rij) and the imaginary part Im(Rij)
of Rij(i < j) are organized into a single vector.

r =
[
Re (R12) Im (R12) · · · Re

(
R(M−1)M

)
Im
(
R(M−1)M

)]
Step 3: The vector r is normalized using Min-Max scaling,
and then the normalized vector rnorm is reconverted into the
M×(M−1) matrix, whose values are used during the training.
TheM×(M−1)matrix is regarded as the direction image. The
training is performed offline by presenting input/output pairs
{rnorm, (θ , φ)} to the network.

rnorm =
rij −min(r)

max(r)−min(r)

2) OUTPUT SMOOTHING
The CNN is established to implement the regression task.
For each input example, it predicts the azimuth and elevation
angles of the incident signal as continuous values. The num-
ber of output neurons is equal to the amount of information
to be output. In this paper, we attempt to use two different
outputs to represent the azimuth angle. One is the normalized
value of the azimuth angle as the training output, and the other

FIGURE 3. Estimation errors of the CNN with one output for the azimuth
angle: (a) estimation errors of the azimuth angle, and (b) estimation
errors of the elevation angle.

is the sine and cosine values of the azimuth angle. For the
elevation angle, a single output neuron is used.

We evaluate two different outputs for representing the
azimuth angle in the output layer of the CNN. The CNN
architecture used in this experiment has five convolutional
layers with 128 feature maps in each convolutional layer and
one fully connected layer with 512 neurons. The size of the
feature map in each convolutional layer is fixed at 2 × 2.
The simulation parameters are set in Table 2, and the sizes of
training and test datasets are 361501 and 10000, respectively.
The results are shown in Fig. 3 and Fig. 4. The maximum
absolute error of the azimuth angle is 170.1◦ in Fig. 3 while
this value is less than 4.5◦ in Fig. 4.

In Table 1, test statistics of two different outputs of the
CNN are given in terms of the mean absolute error and the
root mean square error of the azimuth angle. For these sim-
ulations, it may be observed that the CNN trained with three
output neurons has yielded more accurate source directions
since the sine and cosine values can uniquely determine the
angle over the full range. Hence, the output of the CNN that
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FIGURE 4. Estimation errors of the CNN with two outputs for the azimuth
angle: (a) estimation errors of the azimuth angle, and (b) estimation
errors of the elevation angle.

TABLE 1. The estimation results of different outputs for the azimuth
angle.

is chosen for the rest of the simulations is the one with the
sine and cosine values for the azimuth angle.

3) TRAINING SETUP
The ANN is subject to a training procedure before its use
in any environment. In this article, the CNN is trained by
using the adaptive momentum (Adam) optimizer to minimize
the mean squared error (MSE) between the network’s actual
output vector and the network’s desired output vector with
a given accuracy of 10−4. During training, in order to avoid
overfitting, a dropout operation with a rate of 0.5 is used at the
end of the convolutional layers and after each fully connected

layer. The activation functions used in the convolutional layer
and the output layer are rectified linear unit (ReLU) and sig-
moid activation function, respectively. Therefore, the output
values are confined to the interval (0, 1).

B. RANDOM ERROR ELIMINATION BASED ON ENSEMBLE
LEARNING
For 2D DOA estimation, the nonlinear mapping function
from the input data to the output values is so complex that
a single CNN network with a limited training dataset cannot
learn well resulting in high estimation errors. On the other
hand, the CNN network learns via a stochastic training algo-
rithmwhichmeans that the network is sensitive to the training
conditions, both in terms of the initial random weights and in
terms of the batch size and it may learn a slightly different
version of the mapping function each time in the training
process, which in turn produces different predictions of the
direction of the incident signal. When we prepare a trained
CNN as a final model to make predictions, the uncertainties
may degrade the performance. Based on this, we proposed a
deep ensemble learning method to ensure that the most stable
and best possible prediction is made for 2D DOA estimation.

Ensemble learning is a successful approach to reduce the
generalization error of neural network models by training
multiple models instead of an individual model and com-
bining the predictions from these models in some way. The
ensemble model not only reduces the prediction errors but
also results in predictions that are better than those of any sin-
gle network model. Ensemble learning improves the general-
ization capability and robustness. Techniques for ensemble
learning can be grouped by the element that is varied, such
as the training data, the base learner, and how predictions
are combined. The most popular ensemble techniques are
bagging [24], boosting [25] and stacking [26].

Since the number of possible training data combinations
is enormous, a certain amount of training data is generated
to train the CNNs in this paper. Several CNN networks with
different configurations (e.g. the number of convolutional
layers or the number of neurons in the fully connected layer),
different initial random weights and different conditions (e.g.
the learning rate) are trained on the same dataset. Each CNN
model is then used to make a prediction and the actual pre-
dictions for the azimuth and elevation angles are calculated as
the averages of the predictions. The proposed deep ensemble
model for 2D DOA estimation is shown in Fig. 5. First,
the signal received by the UCA is preprocessed to form
the direction image. Second, the direction image is fed to
several developed CNNs as the input data. Finally, each CNN
output is calculated as the average to obtain the estimated
azimuth and elevation angles. During the training proce-
dure, each individual CNN is trained independently using the
same training dataset. During the testing procedure, a test
example is applied to all constituent CNNs simultaneously
and a collective prediction is obtained based on the average
result. A few different CNN structures, all having 72 input
neurons and 3 output neurons, are considered and trained. The
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FIGURE 5. The block diagram of the deep ensemble model for 2D DOA
estimation.

TABLE 2. The simulation parameters used for training and testing.

postprocessing stage associates the output neurons’ com-
puted values with the desired angular parameters.

IV. SIMULATION RESULTS
A. SIMULATION CONDITIONS
1) SIMULATION PARAMETERS AND PERFORMANCES
METRICS
Numerical simulations are carried out to validate the effec-
tiveness of the proposed method. We use a nine elements
UCA to gather data for the neural network testing. The simu-
lation parameters, which are used to generate the training and
test datasets, are set as in Table 2.

To evaluate the performance of the deep ensemble model
for 2D DOA estimation, the three performances metrics of
the mean absolute error (MAE), the root mean square error
(RMSE), and the success rate are calculated. The formula for
the mean absolute error computed between the estimated and
actual 2D DOA is given by

MAE =
1
NT

NT∑
i=1

(|θest − θact | + |φest − φact |) (11)

where NT is the total number of examples in the test set, and
θest and φest are the estimated azimuth angle and the esti-
mated elevation angle, respectively. θact and φact are the actual
azimuth angle and the actual elevation angle, respectively.
The root mean square error is defined as

RMSE =

√√√√ 1
NT

NT∑
i=1

[
(θest − θact)

2
+ (φest − φact)

2] (12)

The success rate represents the degree of closeness of the
measurements of a quantity to that quantity’s true value. The
expression is formulated as follows:

succese rate =
num

(
|θest−θact | ≤ 1

◦

∩ |φest − φact | ≤ 1
◦)

NT
(13)

In our evaluation, the estimation of the direction of the arrival
is considered accurate if the error between the actual and
estimated 2D DOA is less than or equal to 1◦.

2) TRAINING AND TEST DATASETS
The first step is to form appropriate datasets that are used for
training and testing the CNN architectures. To provide the
early description, a single training dataset is used for training
several CNNs. According to the geometry-based analytical
expression of the steering matrix A of the array, the training
and test datasets are generated using (1) and (10).

A large training dataset is necessary to cover different
combinations of the multiple signal directions for 2D DOA
estimation. In the training dataset, the spacing of the training
samples for all azimuth angles and elevation angles is 0.3◦,
and as a result, a training set with 361501 samples is obtained.
Test dataset is formed in a similar manner. Both the azimuth
and elevation angles are selected at random to ensure that the
training and test dataset do not overlap. Thus, our test dataset
consists ofNtest = 10000 samples. Additionally, we use noisy
training samples, which mean that in all cases the network
should be able to learn the noise’s influence on the signal.

B. RESULTS
In this section, simulations are presented to illustrate the per-
formance of the proposed fast 2D DOA estimation method.

1) PERFORMANCE OF THE PROPOSED METHOD
The established CNN network approximately achieves the
inverse mapping from the spatial covariance matrix to the
direction of the incident signal and the performance is shown
in Fig. 4 and Table 1. As we can see, the RMSE of the azimuth
angle is up to 0.69◦. To obtain perfect performance, we utilize
ensemble learning to eliminate random errors. Five CNNs
are trained with different numbers of feature maps, different
numbers of convolutional layers, different learning rates and
different batch sizes. The details of the five CNNs are given
in Table 3.

Table 4 shows the results of the five CNNs and the pro-
posed ensemble model. From these results, we can see that
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TABLE 3. The parameters of five CNN networks.

TABLE 4. The statistic results for different models.

TABLE 5. The NMSEs of the azimuth and elevation angles for different
models.

the proposed ensemble model achieves an RMSE less than
0.6◦ and a success rate of more than 94%. It proves that
the generalization capability of the ensemble model is better
than that of any single CNN. The ensemble model that is the
average of multiple well-performing CNN models achieves
state-of-the-art results.

The normalized mean square errors (NMSEs) of the
azimuth and elevation angles for different models are given
in Table 5. If the NMSE is equal to 1, then the estimated
value is no better than a straight line at matching the actual

FIGURE 6. Scatter graphs of the estimation results for
CNN128-128-128-128-128(2-2-2-2-2): (a) the estimated azimuth angles vs
the actual azimuth angles, and (b) the estimated elevation angles vs the
actual elevation angles.

value. From Table 5, it can be seen that the NMSE of the
azimuth angle is almost equal to 1 and the NMSE of the
elevation angle is approximately to 1. The results show that
the proposed deep ensemble learning method has an excellent
predictive ability.

To understand the simulation results more intuitively,
we plot the responses of CNN-1 in the form of scatter
graphs in Fig. 6. The estimation results for the azimuth and
elevation angles of the proposed ensemble model are illus-
trated in Fig. 7. Comparing of these graphs with those from
Fig. 6, we see that the thinner curves mean that the estimated
angles are close to the actual angles, and the ensemble model
improves the randomness and nondeterminacy of the single
CNN network to a certain extent. Importantly, it can be con-
cluded that the good generalized ensemble model performs
well in response to input matrices that have not been involved
in the training process. In Fig. 8, we depict the responses
of the ensemble model for 100 test samples. As it can be
noticed, angular positions of the incident signals estimated
by the ensemble model are in good agreement with the actual
ones, which proves the performance of the proposed method.
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FIGURE 7. Scatter graphs of the estimation results for the ensemble
model: (a) the estimated azimuth angles vs the actual azimuth angles,
and (b) the estimated elevation angles vs the actual elevation angles.

2) COMPARISON EXPERIMENT
As an illustration of the proposed ensemble model’s effi-
ciency for 2D DOA estimation, a comparison of the simu-
lation run times required to calculate the angular positions
of the incident signals defined by the test dataset of it,
MUSIC [27], l1-SVD [5], LVQNN [12] and RBFNN [15] is
shown in Table 6. With an Intel(R) Core(TM) i7-4790 CPU
computer running at 3.6 GHz, the neural networks are imple-
mented in Python using the TensorFlow framework, and the
conventional 2D DOA estimation algorithms are realized in
the MATLAB simulation environment.

The MUSIC and l1-SVD algorithms require 53.6 s and
36.2 s to estimate 100 test signals, respectively. Meanwhile,
the proposed method only needs 3.29 s for 10000 test sig-
nals. It can be observed that the ANN methods respond very
fast and have higher speeds than the MUSIC and l1-SVD
algorithms. This ability qualifies them as very suitable to be
applied to determine the direction of the incident signal for
real-time applications. Regarding the RMSE, the ANNmeth-
ods have slightly worse agreement in comparison to the con-
ventional methods; however, the accuracy is still very good.

FIGURE 8. Results of the ensemble model for 100 test points (o - the
ensemble model response, •-the actual direction of the incident signal).

TABLE 6. Comparison of different 2D DOA estimation methods.

Although the conventional 2DDOA estimation methods have
smaller RMSEs, they require much longer run times. When
we have a high performance requirement for both accuracy
and timeliness, the proposed deep ensemble learning method
is the best at achieving fast and accurate 2D DOA estimation.

V. CONCLUSION
In this paper, we advance an efficient 2D DOA estimation
method based on deep ensemble learning. The real and imagi-
nary parts of the spatial covariancematrix are converted into a
direction image to be input into the CNN. A key advantage of
the proposed method over conventional 2D DOA estimation
algorithms is its ability to obtain the direction of the inci-
dent signal instantaneously, making it suitable for real-time
processing. Validations and experimental results also demon-
strate that the ensemble model improves the generalization
ability and achieves promising results.
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