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ABSTRACT Home energy management systems (HEMSs) help manage electricity demand to opti-
mize energy consumption and distributed renewable energy generation without compromising consumers’
comfort. HEMSs operate according to multiple criteria, including energy cost, weather conditions, load
profiles, and consumer comfort. They play an increasingly ubiquitous role in energy efficiency through the
reduction of electricity consumption within residential and commercial smart grids. This paper presents
a comprehensive review of the HEMS literature with reference to main concepts, configurations, and
enabling technologies. In doing so, it also provides a summary of HEMS computing trends and popular
communication technologies for demand response applications. The ensuing survey offers the reader with
an overall overview of current and future trends in HEMS solutions and technologies.

INDEX TERMS Home energy management system, demand response, smart technologies, integrated
wireless technology, intelligent scheduling controller.

I. INTRODUCTION
Smart homes have become essential components of the
smart grid in many countries due to their considerable
environmental and socioeconomic benefits. By enabling the
scheduling of home appliances according to demand response
programs enacted by energy providers, smart homes help
users optimize energy consumption to reduce costs and
enhance the reliability and effectiveness of the power grid.
Smart homes also play an essential role in reducing the
generation, transmission and distribution investments needed
to meet future electricity demands by promoting distributed
energy generation [1].

Smart homes have emerged as the convergence of cutting-
edge information and communication technologies, such as
smart sensors, advanced metering infrastructures, intelligent
home appliances, and the Internet-of-Things (IoT) devices.
This growing trend has enabled the deployment of Home
Energy Management Systems (HEMSs) to pave the way
towards the smart grids of the future.

Over the past few years, HEMSs have gained global accep-
tance and become essential in managing electricity demand
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effectively within the smart grid. A growing body of HEMS
research worldwide aims at improving energy efficiency and
security and reducing electricity cost in residential and com-
mercial power systems. These studies indicate that HEMSs
still face many challenges relative to control and communica-
tion technologies, which are crucial components of HEMSs.
Some of the more persisting issues concern the integration
of power electronic converters, renewable energy, and energy
storage into HEMSs. Current HEMS research focuses more
on theoretical design and less on implementation and opera-
tional issues. This is an imbalance that needs to be addressed
as the real-world application of HEMSs is critical in validat-
ing HEMS design and addressing deployment issues.

The successful deployment of HEMSs relies on the conver-
gence of sensing, communication, and control technologies,
which enable access to energy demand data and dispatch of
control strategies through the network in a timely fashion.
Communication networks in smart grid applications can be
classified according to scale of coverage: Home Area Net-
works (HANs), Neighborhood Area Networks (NANs), and
Wide Area Networks (WANs) [2]. A typical HAN includes
a smart electricity meter that interconnects several home
devices, sensors, displays, gas and water meters, renewable
energy sources, and electric vehicles. All these components

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 119271

https://orcid.org/0000-0003-2027-532X
https://orcid.org/0000-0002-7281-5458


U. Zafar et al.: HEMS Concepts, Configurations, and Technologies for the Smart Grid

are managed by a HEMS that monitors and controls the
consumption, storage, and generation of power [3], [4]. The
HAN’s central controller is connected to the utility grid
through the its smart meter. Information frommultiple HANs
is aggregated and stored in a database, which in turn forms
the NAN or WAN depending of coverage scope. The aggre-
gated data from multiple NANs/WANs are delivered to the
utility administrator to help him/her decide on several system
parameters, including price, expected load, etc.

The communication technologies suitable for HANs are
divided into two categories according to the medium of com-
munication [5]. Wired media such as Ethernet and Power
Line Communication (PLC) constitute the first category of
technologies, and the second includes wireless media such
as Wi-Fi, wireless cellular networks, and low-rate wire-
less personal area networks operated according to IEEE
802.15.4 standard. PLC has generated added interest because
of its lower costs and easier deployment. For example,
the Home Plug Alliance has been supporting and extending
the use of PLC through the provision of standards to make
PLC viable for smart grid applications. The use of PLC has
also been proposed for indoor power networks [6], and as
the communication backbone in energy management sys-
tems [7], [8].

All HAN communication technologies have relative
advantages and disadvantages. For example, PLC provides a
level of security that is as high as that delivered by the Ether-
net [2] in connecting users with utility companies, at costs that
are as low as those of wireless solutions. However, it offers
lower transmission rates when compared to other solutions
due to the use of AC electric power lines to relay information
between the HAN’s devices and energy management con-
troller. The best PLC data transmission rate is between 4 and
10 Mbps, while at comparable deployment costs, wireless
solutions offer higher connectivity. Another drawback of PLC
is data transmission quality due to noise issues. Ethernet
provides the best solution in terms of security, robustness,
and connectivity. However, it has significantly higher costs
and it presents logistic challenges when new cables need to
be installed.

In addition to communication technologies, the integration
of energy storage systems (ESSs), hybrid renewables, and
power electronic devices into smart homes is crucial for the
operational deployment of HEMSs. ESSs play a significant
role in managing renewable energy sources. In combina-
tion with power electronics, ESSs ensure the stabilization
of intermittent power generation to offer improved power
quality and efficient energy use through demand response.
ESS technologies currently in use include flow and lead-
acid batteries, chemical energy storages, and ultra-capacitors
[9], [10]. Since renewable energy sources (RESs) such as
wind and solar energy are subject to variability due to weather
conditions, it is necessary to find ways to reconcile energy
supply and demand whenever imbalances arise. RES volatil-
ity can be balanced through smart battery charging and dis-
charging schemes that ensure power stability and reliability.

At peak-load times, RESs would be in full swing to
power smart homes, while ESSs can be engaged at any
time to redress demand-supply imbalances and enhance the
resilience of the power grid [11], [12].

Since the variability of different RESs often derives from
complementary weather conditions, a stable and reliable
power supply cannot be provided by a single RES [13]. One
solution is to use hybrid RES systems that help deliver con-
tinuous power supply and mitigate the undesirable effects of
RES variability through the integration of diverse RESs [11].
Hybrid RES systems for smart homes can be developed
through the integration of various RESs, such as photovoltaic
(PV), wind, biomass, hydropower, etc. [14].

The generation of electrical power from RES is carried out
through energy conversion systems that use power electronic
devices to enable the conversion process, and help establish
the optimal dispatch of the energy produced (e.g., immediate
use or storage) [15]. In residential energy generation systems,
electronic power converters have been widely adopted to
manage rooftop solar and small wind power systems, which
can be combined to maximize power extraction under all
conditions (i.e., maximum power point tracking) [16]. These
power converters need to be calibrated with reference to
their intended use context (e.g., building type, RES, and ESS
integration) to achieve an optimal configuration [17], [18].

The development of hybrid RES systems and their integra-
tion with ESSs requires the reconciliation of different power
supply systems and voltage levels. For example, the output
of PV systems is in DC voltage and is usually converted
into single- or three-phase AC voltage, whereas the output
of wind turbines is in AC voltage with variable magnitude
and frequency. A typical battery ESS goes through an initial
DC/DC conversion step to deliver a given voltage level from
several cells in series to the DC-link from where the final
AC output voltage is generated through a DC/AC conversion
step [19].

The energy-mix used to produce electricity can differ
greatly and involve diverse sources in varying quantities
from country to country. For example, Germany generates
approximately 30% of its energy from renewables. In the U.S,
according to the EIA [20], about 60% of the electricity is
produced using fossil fuels. While efforts are being made to
increase the share of green technologies in power generation,
it is understood that fossil fuels will still play a significant
role in the short to medium term. In order to minimize the
use of fossil fuel for energy generation, it is therefore essential
to manage the existing energy resources efficiently to reduce
energy demand. The increasing use of electric vehicles and
demand-side management solutions in the areas of demand
response and HEMSs all contribute to more efficient use of
energy.

In the last few years, traditional power grids have pro-
gressively moved towards a more intelligent and reliable
mode of operation. The new ‘‘smart’’ grid paradigm enables
a two-way communication between utilities and consumers
through advanced metering infrastructures in neighborhood

119272 VOLUME 8, 2020



U. Zafar et al.: HEMS Concepts, Configurations, and Technologies for the Smart Grid

and wide area networks. This new mode of operation sup-
ports the monitoring and control of distributed generation and
energy storage systems across the power grid ecosystem.

The smart grid capitalizes on powermonitoring and control
technologies such as HEMSs to improve its productivity in
quality and capacity. In enabling the automated optimization
of home appliance use, HEMSs offer significant energy sav-
ingswithout compromising end-user comfort. HEMs perform
this enablement through communication protocols that oper-
ate across devices and between the home and the grid. These
communication protocols facilitate the information exchange
of energy needs and availability to help HEMSs schedule
appliances intelligently, using optimization techniques that
balance user comfort level against expected energy supply
and demand.

This paper provides a survey of the technologies that
enable the deployment of HEMSs in the smart grid. After an
overview of HEMSs and their role in the smart grid, an anal-
ysis is presented of how different computing paradigms
have influenced the development of HEMSs. Then, HEM
components are examined with reference to their intercon-
nection within the smart home, and the communication
technologies and key protocols that allow them to operate
are reviewed. Finally, a description of demand response pro-
grams is given, and the optimization techniques that HEMs
use for scheduling devices in order to achieve energy effi-
ciency are discussed.

II. HEMS OVERVIEW AND ITS ROLE IN SMART GRID
Figure 1 shows the overall structure of a HEMS. The core
component of the HEMS is the smart controller. It pro-
vides system management functionalities that include log-
ging, monitoring and control. The smart controller collects
real-time electricity consumption data from schedulable and
non-schedulable appliances to implement optimal demand
management strategies. The communication infrastructure
that enables the flow of demand-side data, whether wired
or wireless, is therefore, a critical component of the HEMS,

FIGURE 1. Overall architecture of a HEMS.

as is the interconnection with the smart meter that records the
energy consumption and production of specific users. Smart
meters also enable smart billing solutions based on alterna-
tive electricity pricing schemes such as Time-of-Use, (peak)
Demand, Real-Time pricing, Seasonal, or Weekend/Holiday
rates.

Distributed renewable generation is another critical HEM
component. In the last decades, wind and PV power gen-
eration systems have become the most popular renewable
energy sources. Sunlight and/or wind are abundant world-
wide and relatively cost-effective to harness using PV and
wind turbine technologies. However, the intermittent nature
of wind and sunlight due to weather variation can negatively
affect power stability, reliability, and quality. Home Energy
Storage Systems (HESSs) offer an effective solution to the
intermittent nature of solar and wind energy by providing
immediate energy dispatch or storage when needed to ensure
continuous and stable power supply.

With the increasing electrification of transportation, elec-
tric vehicles (EVs) are becoming an essential source of
schedulable loads in residential areas. The main feature that
distinguishes the EVs from other loads is that they can also
be used as an energy storage device. More specifically, EVs
can provide emergency power dispatch at peak consumption
times, and storage on demand to absorb excess energy gener-
ation at low consumption times.

Over the past two decades, global electricity con-
sumption has grown at a yearly average rate of 3.1%
(https://yearbook.enerdata.net/), escalating the level of stress
on electrical power systems. The ongoing electrification of
transportation is likely to intensify this growth rate with
added strain on power grids. Traditional grids cannot meet
the onerous demands of this trend, which is exacerbated by
the integration of large amounts of variable RESs. The typi-
cal response by decision-makers to the continued growth in
electricity demand is to develop new power plants and extend
the grid infrastructure. Such a solution is not sustainable
in view of economic, safety, and environmental concerns.
Utility grids need to undergo a radical transformation aimed
at maximizing energy efficiency to prevent power plants and
grid infrastructure development from spawning a situational
crisis [21].

According to the U.S. Energy Information Administration,
the expected gap between current supply (about 4 billion
gigawatt-hours) and the increasing demand will reach 6 bil-
lion gigawatt-hours by 2030, with homes expected to con-
sume approximately 30% of total electricity production [21].
To ensure continuity of the electrical service and mini-
mize the imbalance between energy supply and demand, the
smart grid paradigm must prevail to extend the reach of
energy management solutions that include demand response,
energy efficiency and distributed renewable energy integra-
tion, as shown in Figure 2 [21]. In facilitating the combined
enactment of these three solutions, HEMSs play an important
role in the modern smart grid, with ensuing benefits for cus-
tomers and energy providers alike. HEMSs allow customers
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TABLE 1. Previous notable literature related to the home energy management system.

FIGURE 2. The growing gap between electricity demand and current and
planned electricity generation capacity [21].

to control their energy consumption in order to save energy
and reduce costs while maintaining their comfort level at opti-
mal levels. At the same time, HEMSs allow utility companies
to analyze future energy demand in order to optimize the
utilization of the electrical system and increase its reliability.

III. COMPUTING TRENDS IN HEMS
Early HEMSs were based on analog systems and had lim-
ited application [22]. In the 1970s, HEMSs were digitalized,

running on high-speed general-purpose computers like the
Xerox Sigma. With the introduction of personal computers
in the 1980s, the HEMS underwent another evolution. Most
vendors released energy management systems built on pro-
prietary operating systems. Platforms based on the Linux
and Windows operating systems became more popular at the
turn of the 21st century, with central computing support for
coordination and visualization purposes. In modern HEMSs,
components use microcontrollers and work together by using
a distributed communication protocol with or without a cen-
tral server [24]. This modular architecture allows the HEMS
to function even when one of its components breaks down.
References [22] and [23] present a comprehensive overview
of computing trends in HEMSs. Some of the seminal litera-
ture on HEMS computing trends is listed in Table 1.

The requirements for a smart HEMS have become more
demanding with the advent of advanced metering infrastruc-
ture [25] and increased consumer use. As mentioned in [26],
the smart HEMS should include the following elements:

• Sensors with microcontrollers for the monitoring of
home conditions.

• Different databases to cater for low-latency ingestion of
sensor data.

• Actuators with microcontrollers that take actions upon
receiving commands.

• A server for data ingestion and visualization, which can
also act as a gateway for connecting to other networks
and protocols, and

• Web applications for remote control of data and
devices.
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[26] presents a simple architecture that uses cloud comput-
ing for issuing control commands, running queries, executing
algorithms, and storing data. Each actuator or sensor is
capable of communicating with the cloud via gateways.
The authors in [27] propose a novel scalable architecture
with a uniform interface model that eases the effort of
adding/removing devices to/from a smart home network.
The architecture is structured into five layers: (1) a resource
layer, which consists of sensors and actuators; (2) an inter-
face layer, which serves as an abstraction; (3) an agent
layer, where agents manage individual devices using RFID
tags; (4) a kernel layer, which is responsible for manag-
ing agents, and (5) the user application layer. The authors
in [28] put forward a cloud-based architecture (CloudThings)
that offers infrastructure-as-a-service (IAAS), software-as-a-
service (SAAS), and platform-as-a-service (PAAS) services
for rapid application development, deployment, and oper-
ation of IoT devices. End-devices like sensors and actua-
tors use the Constrained Application Protocol CoAP [29]
for machine-to-machine communication. CoAP also easily
interfaces with HTTP, thus enabling integration with the web.

FIGURE 3. Generic, cloud computing enabled smart home architecture.

Figure 3 shows a general cloud-based architecture for
smart HEMSs. The gateway component represents a proces-
sor that interpret the underlying protocol for device com-
munication and connects to the cloud to execute workloads
that require high processing power. The internal network
of the HEMS consists of actuators, sensors, and appliances
connected through a communication bus. A set of industrial
open standards ([24], [30], [31]) forming a protocol stack
enables communication within the network. Since Internet of
Things (IoT) devices in smart homes can generate a lot of
data, some amount of processing may have to be carried out
at the gateway level to reduce operational costs by averting

the transmission of large data volumes to the cloud. The
gateway can process a sizeable amount of data and can also
retain sensitive data that should not be transmitted over the
internet [23].

Smart HEMSs can use public cloud platforms, such as
AWS, Azure, and GCP ([32]–[34]), or private ones, such as
OpenStack and VMware ([35], [36]) for computing purposes.
Cloud computing provides a reliable technology for big data
storage and scalable infrastructure for data processing that
has low latency. To solve privacy issues relative to the use
of cloud computing [37] with big data transmission, Fog and
Edge computing have recently been gaining momentum [38].

The primary objectives of Fog computing are to [39]:
• Reduce the amount of data sent to the cloud for
processing;

• Improve response time and decrease latency, and
• Protect privacy.

Cisco was the first one to coin the term ‘‘Fog Computing’’
[40]. In Fog computing, data processing occurs between the
source and the cloud. Gateways (see Figure 3) help achieve
this task. Fog computing also results in faster response times
by reducing network latency. The gateway may still forward
data to the cloud when more intensive processing and stor-
age tasks require it. Fog computing can suffer from spe-
cific latency and privacy issues, especially in applications
where end-devices use compute-intensive Artificial Intelli-
gence (AI) methods for real-time data analytics.

Edge computing [41] refers to machine processing that
happens on the device/sensor. In combinationwith techniques
such as federated learning [42], Edge computing enables
the decentralized training of machine-learning models on
devices/sensors that hold data samples without recourse to
the cloud for storage and processing. Edge computing helps
to solve critical issues in data privacy, security, and access
rights and reduces or eliminates cloud-computing costs.

IV. COMPONENTS OF HEMS
As discussed in [50], the HEMSs provides five primary ser-
vices: management, control, logging, monitoring, and fault
detection. To enact these services, the HEMS needs to inte-
grate sensors, measuring devices, smart controllers/actuators,
a communication infrastructure, and a user interface system.
Sensors can monitor occupancy, smoke, light, and tempera-
ture. Their purpose is to send feedback to the HEMS to make
the required changes to the actuators for optimal comfort and
energy efficiency. The various sensors used in HEMS are
listed in Table 2. Measuring devices quantify the usage of
resources such as gas, electricity, or water [23]. They also
signal the current state of the system to the HEMS. Smart
controllers are devices that can sense voltage and current
and make direct local decisions without the need for global
supervision.

Communication infrastructure includes networking media
and the communication protocols used by HEMS devices.
Different protocols have different requirements for physical
media, transmission rates, and physical security.
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TABLE 2. Various sensors used in HEMS.

The HEM’s management controller is an embedded com-
puter or workstation with energy management software that
can visualize the current state of the building/homemonitored
by the HEMS. It can also provide control functionalities and
integrate various protocols [51].

Smart meters form an essential measuring component of
HEMSs as they provide feedback to the utility and enable
two-way communication between users and the utility. They
also enable consumers to manage their energy use, tak-
ing into account other factors such as distributed energy
resources [52]. Smart meters represent the latest trend in
combining measurement techniques with modern computing
technologies to promote intelligent energy systems. They
gather data from all utility services, including electricity, gas,
and water. The primary functions of the smart meter include
the following [53]:

• Measuring the multi-period and multi-mode power rates
of active and reactive energy usage.

• Supporting two-way communication between users and
the utility by sending consumption data and accept-
ing pricing signals from the utility and responding to
queries.

• Enabling response by looking at user preferences to
influence smart-load shedding, and

• Interacting with DER and other power infrastructures,
along with HEMSs, to provide electricity when the pri-
mary power grid fails.

A HEMS that integrates a smart meter can display all
relevant energy usage information to the end-user and
provide automated demand-response taking into account
user-preferences for comfort [54]. In such a setting, a smart
HEMS management controller acts as the central integration
point for distributed energy resources, energy storage devices,
and electricity regulation for electric vehicles. The consump-
tion patterns of individual appliances can also be observed by
using sensors that measure reactive power and active power or
by using non-intrusive load monitoring (NILM) [55]. NILM
identifies individual appliance consumption by recognizing
‘‘signatures’’ of appliances in the total consumption data
without the need for invasive interventions to home cir-
cuitry and devices. A review of NILM techniques is provided
in [56].

A. HOME APPLIANCES
Demand-response programs allow end users to sched-
ule appliances in their homes to achieve energy effi-
ciency without compromising comfort. Home appliances
can be divided into non-schedulable and schedulable loads.
Non-schedulable loads are those that cannot be shifted in
response to utility signals. These may be set by users and typ-
ically include refrigerators, printers, TVs, microwaves, com-
puters, etc. Schedulable loads are those that can be switched
on/off at any time. These include lights, air-conditioners,
heaters, iron, EV chargers, etc. [57]. Schedulable loads can be
further divided into interruptible or non-interruptible loads.
Non-interruptible loads are constrained by a ‘hold-time’, i.e.
a fixed period of operation before they can be turned off [58].

B. ELECTRIC VEHICLES
Electric vehicles (EV) will also play an essential role in
future demand-response applications as EV adoption and the
push for energy-efficiency grow. EVs act as a load and can
also be used to transmit power to the grid. We can classify
EV charging as unidirectional or bidirectional, as discussed
in [59].

1) UNIDIRECTIONAL CHARGING
In unidirectional charging, the electricity flows from the grid
to the electric vehicle, which acts like another load for the
power system. This mode of operation is also known as grid-
to-vehicle (G2V) in literature.

Unidirectional charging can be classified into uncontrolled
and controlled charging. In uncontrolled charging, the grid
does not have a comprehensive view of the EV charging
cycles. Thus, multiple simultaneous EV charging cycles can
cause unrestrained demand peaks. Large-scale simultaneous
charging can overload the infrastructure and cause voltage
deviations and deterioration of power quality [60]–[62]. In
controlled charging, EV charging is safely balanced with
other loads, thusminimizing the occurrence of demand peaks.
As discussed in [59] and [63], controlled EV charging can be
either manual, where the EV owner can choose an off-peak
time for charging to be a ‘‘smart’’ energy user, or automatic,
to the central controller that integrated in the HEMS decides
the best time for vehicle charging.

2) BIDIRECTIONAL CHARGING
In bidirectional charging, EV can run in G2V, vehicle-to-
grid (V2G), vehicle-to-home (V2H), and vehicle-to-building
(V2B)modes [64]. In V2G, V2H andV2B, the EV can supply
the grid with power. V2G, V2H, V2B can all be used for
peak-shaving and the reduction of electricity bills [65]. The
general structure of the V2G, V2H, and V2V concepts is
illustrated in Figure 4. In cases where there is a demand spike,
EV bidirectional charging can supply temporary power to
reduce uncertainty in power supply and avoid power short-
ages. The deployment of EV bidirectional charging requires
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FIGURE 4. The general structure of V2G, V2H, and V2V concepts in power
system.

a significant upgrade of current communication and distribu-
tion systems [60].

C. INTEGRATING RENEWABLE ENERGY WITH HEMS
As residential adoption of renewable energy systems
grows, the demands on power electronics become more
complex [66]. With reference to power electronic convert-
ers, specific requirements include: 1) stable and reliable
power supply; 2) high-performance operation; 3) low cost;
4) effective protection; 5) regulation of active and reac-
tive power; 6) fault ride-through capabilities and, 7) secure
communication.

An overview of HEMS usage for renewable energy
resources is provided in [67]. As shown in Figure 5, 38.6%
of renewable energy worldwide is used in utility-scale power
plants, and 41.7% in residential, commercial, and public
applications. Due to improvements in communication and
control technologies, the energy mix in smart-homes has
advanced to include various sources of renewable energy
resources, including solar PV, wind power, biomass, and
geothermal energy [68].

FIGURE 5. Usage of renewable energy per sector [67].

Residential renewable applications often integrate an
energy storage system to improve their dispatchability. Lead-
acid, flow, lithium-ion, ultracapacitors, and chemical energy
storage technologies have been widely used in Home Energy
Storage Systems (HESSs) [69]. HESSs stabilize the supply
electricity generated by variable RES such as wind and solar.

In the event of a grid outage, renewable energy generation in
combination with HESSs can provide an independent source
of electricity supply for critical loads [12].

D. MANUFACTURERS CREATING SMART HEMS
Several companies develop HEMS products, as shown
in Table 3. One of the energy meter manufactured by Schnei-
der Electric [70] uses the Modbus protocol [71] for commu-
nication. Schneider also makes energy meters that make use
of the KNX communication protocol [72]. Meters based on
open protocols, can be used with HEMS products by differ-
ent vendors, such as GE and Siemens. Siemens’s ‘‘Synco’’
platform [73] is a home and small building automation prod-
uct line that uses standard industrial communication proto-
cols. It also connects to the cloud to provides real-time data
using visualizations.

TABLE 3. List of manufacturers along with their energy measurement and
control devices.

Large software companies such as Google, Apple, and
Cisco now distribute HEMS products. This trend empha-
sizes the increasing role of software engineering for IoT
devices. Google’s Home, Apple’s Siri, and Cisco’s energy
management service [74]–[76] are examples of home energy
management services. Cisco’s energy management service
can integrate products and services that control HEMSs.

The GE digital power meter [77] is yet another device
that is easily integrated with a Building Management System
(BMS) using the Modbus protocol, and incorporates straight-
forwardly with the electrical distribution system. Traditional
audiovisual vendors such as Control4 [78], AMX [79], and
Crestron [80], [81] also manufacture products for home
energy management and control. Crestron and Control4 run
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products on proprietary protocols. However, they provide
interfaces to some of themost popular open protocols. Table 3
provides more information on the products available in the
home energy management market.

V. COMMUNICATION TECHNOLOGIES IN HEMS
Smart homes consist of connected devices that communicate
with each other to exchange data and implement actions.
To make the right decision, it is important for the HEMS
to have a complete view of the system. HEMSs, therefore,
need multiple sensors to collect various types of information
from home devices. These sensors need to communicate
with appliance actuators to perform required actions when
specific criteria are met. Communication protocols determine
how actuators and sensors communicate and connect with
each other. Smart homes use wireless sensor networks and
machine-to-machine protocols. These communication proto-
cols can be wired, wireless, or hybrid. For wired networks,
a tree or star bus topology is preferred since it provides higher
flexibility in-home wiring. For wireless networks, the mesh
topology is preferable as it can bypass obstacles inside a
home. The following criteria help determine the choice of
communication protocol [23]:

• Range of Coverage:Length of physicalmedia (for wired
network), or distance between receiver and transmitter
(for wireless networks) that allows devices to communi-
cate properly.

• Level of security: Should communication between
devices be encrypted? Is access control required to
send/receive messages on the communication bus?

• Network size: Number of devices that can be attached
to the network without compromising the quality of
communication. This varies from protocol to protocol
and can range from a few devices to 1000’s of devices.

• Latency: Some protocols allow for faster communica-
tion, while others rely on slower communication.

• Availability of functionality: Different protocols and
standards tend to specialize in specific features, and so
it is essential to know which protocol and device would
serve the purpose of the installation.

Control and automation protocols generally cover dif-
ferent functionalities including management, control and
field functionalities. Management functionalities revolve
around reporting, high-level control, and facility visualiza-
tion. Control functionalities include programmable logic,
internet/protocol gateways, and specialized control tasks.
Field functionalities usually comprise the simple operation of
sensors and actuators. A detailed explanation of control and
automation concepts is presented in [82].

Price is another factor in the selection of a protocol. Open
protocols allow multiple vendors to compete for a product
and consequently tend to offer lower rates. Proprietary pro-
tocols suffer from vendor lock-in and can result in premium
prices. In [82], a price comparison is given for smart home
automation systems built on various protocols including open

protocols (e.g., KNX) and proprietary protocols (e.g., Cre-
stron). Similarly, for wireless networks, the cost of devices
based on the open ZigBee protocol is lower than that of
devices based on the proprietary Z-Wave protocol [83]. Zig-
Bee tends to be used more for research purposes due to its
lower barrier to entry, while Z-Wave is preferred for com-
mercial applications because it has a longer range and fewer
congestion issues.

The standard practice in protocol design has been to lever-
age distributed protocols to enable HEMS resilience. This
means that each device can respond to events on its own
without the need for a single computing processor, as had
been the case in a centralized setting. The use of distributed
protocols prevents a single point of failure and makes HEMS
more resilient. The three most prominent open protocols for
wired networks are BACnet, KNX, and LonWorks. Each
allows different manufacturers to create different products
that are compatible with one another. In addition to these
open protocols, there are a number of proprietary proto-
cols. Table 4 provides an overview of wired and wireless
protocols for smart home technologies. Figure 6 shows the
available functionalities in different protocols [83].

FIGURE 6. Overview of functionality available in different protocols [83].

VI. RESIDENTIAL DEMAND RESPONSE PROGRAMS
An overview of Demand Response (DR) programs is pro-
vided in [22], [84], [85]. Traditionally, electric utilities have
focused on making power generation, transmission, and dis-
tribution more efficient. With advancements in HEMSs, util-
ities have directed new efforts to demand-side management.
HEMSs have also become attractive for end-users since they
promote reductions in electricity usage that result in lower
electricity bills. The United States Department of Energy [86]
characterizes DR programs as either price-based or incentive-
based, as shown in Figure 7. End users can follow three strate-
gies in response to price- or incentives-based DR programs.
One strategy consists of reducing consumption during peak
hours. This strategy can decrease customer comfort levels.
Another strategy is to shift loads from peak to off-peak hours.
An example of this strategy is to operate the washingmachine
and dishwasher loads during off-peak hours, rather than dur-
ing peak hours. Customers can also use on-site generation
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TABLE 4. Wired and wireless protocols description.

through renewable sources to decrease reliance on the con-
ventional power grid during peak consumption periods. This
third strategy results in a decrease of the average load on
distribution and transmission grids.

In a price-based DR scheme, customers are offered varying
electricity tariff rates at different times. Typically, these tar-
iff rates are priced to encourage customers to reduce loads
at peak times. Pricing can be dynamic or predefined [87].
Critical peak, real-time, and time-of-use (TOU) pricing are
some examples of price-based DR schemes [88], [89]. One
adversity that customers might face with price-based DR
schemes is to keep abreast of tariff changes. This adver-
sity can be resolved through scheduling algorithms that

automatically manage loads as per predefined or dynamic
tariff changes [90].

With TOU pricing, the cost of electricity is set for off-peak
and peak times. Time of usage is divided into off-peak (less
costly) and peak (more expensive) intervals [102]. In dynamic
pricing, the cost of electricity is established in ‘‘real-time’’ at
regular intervals, e.g., every hour [103]. Critical peak pricing
involves identifying peak times throughout the year, and then
notifying consumers of increased prices when peak demand
is likely to occur [104].

Demand response systems have evolved to make use of
distributed energy generation and energy storage. Although
home energy management is overall an excellent initiative,
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FIGURE 7. Types of demand response programs.

local energy use decisions can have an adverse effect on the
main grid. For example, phenomena such as ‘‘rebound peak’’
where too many appliances are shifted to times with low
prices can cause new and unexpected demand peaks [105].
Thus, from the utility’s perspective, it is preferable to manage
DR at the neighborhood level. This gives rise to the need for
HEMS coordination across households. The entities involved
in smart HEMS coordination include:

• The utility operator, who is responsible for the reliable
transmission of electricity to the end-customer. Utilities
benefit from DR by managing demand and promoting
energy efficiency.

• The aggregator, who can provide DR services to the
utility, and ancillary services to end-users on behalf of
the utility, and can become the focal point for energy
trading [106].

• End users, who can take the role of energy ‘‘pro-
sumer’’ by operating distributed energy and energy stor-
age devices.

Energy-management coordination across households can
be centralized or decentralized. In a centralized setting, one
entity is responsible for managing energy demand in a group
of households. The managing body (e.g., the utility) has
access to the required information using Advanced Meter-
ing Infrastructure [25]. In decentralized coordination, the
end-users exert more control overload scheduling choices.
To manage such degree of distributed control, households
must communicate with each other so that the neighborhood
aggregator can have a comprehensive view of the status
quo to relay safe DR measures to end-users and/or utilities.
Energy-management coordination approaches can be classi-
fied into three categories:

• Entirely dependent structure: Smart homes receive
information about the neighborhood energy-demand
profile through a central entity such as an aggregator or
the utility. No peer-to-peer communication occurs.

• Fully independent: Smart homes communicate with
each other to achieve awareness about the neighborhood
energy-demand profile.

• Partially independent: Smart homes can communicate
with each other and interact with a central entity to
receive neighborhood load profile information.

An overview of neighborhood coordinated and uncoordinated
demand response is provided in [107].

VII. LOAD SCHEDULING TECHNIQUES
The implementation of energy efficiency and demand
response measures requires that consumer loads be either
reduced or shifted. Load shifting involves scheduling to find
the optimal operational timings at which to operate consumer
appliances, considering both peak demand times and user
preferences. The load scheduling optimization techniques
discussed in the literature are summarized in Table 5. A dis-
cussion of these techniques follows below.

TABLE 5. Common scheduling optimization techniques.

For load shifting, several choices need to be taken into
account to find an optimal schedule. This schedule will
always be an approximation as future electricity demand
and generation cannot be predicted with absolute certainty.
In the literature, different mathematical optimization tech-
niques are used to find an optimal load shifting schedule.
Constrained-based mathematical optimization techniques
have been used extensively for device scheduling. Lin-
ear, nonlinear, and convex programming are examples of
constrained-based optimization techniques. Linear and non-
linear programming models compute the relationships across
variables as a linear and nonlinear function, respectively,
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according to the distribution of the reference data. Nonlin-
ear programming is computationally more expensive. Con-
vex programming is a superset of linear programming and
involves relations and objective functions that are convex in
nature.

Reference [108] uses binary programming to optimize con-
straints that include consumer preferences. Reference [109]
presents a mixed integer programming approach that opti-
mizes device scheduling, taking into account renewable
energy and energy storage resources. Reference [110] inves-
tigates the optimization of multiple objectives simultane-
ously by using the mixed-integer linear programming (MILP)
approach. Reference [111] uses mixed integer nonlinear
programming to model constraints via nonlinear functions.
Reference [112] uses convex programming to optimize
scheduling while taking into account real-time pricing.
Reference [113] models uncertainties in forecasting along
with deterministic optimization for scheduling.

Mathematical optimization problems are computationally
expensive when they are a large number of constraints and
variables involved. Often it is desirable to find an accept-
able solution rather than a deeply optimized one. Heuristic
approaches enable the reduction of computational complex-
ity by using high-level criteria to select a subset of the
search space that is likely to contain a satisfactory optimiza-
tion solution. Reference [114] uses genetic programming
to find a schedule for demand-response based control of
inverter air-conditioners. Reference [115] presents a dif-
ferential evolution algorithm for demand-response based
scheduling. Particle swarm optimization (PSO) is yet another
heuristic-based optimization technique that has been used
in the literature. For example, [116] and [117] use particle
swarm optimization for demand response.

Model Predictive Control (MPC) has also been used for
optimizing scheduling, factoring in prediction uncertainty
and dynamic modeling [118]–[123]. MPC requires a detailed
plant model, constant monitoring, and continuous data acqui-
sition - all processes that demand significant resources. Ref-
erence [120] highlights the limitations of the MPC approach.

Game theory is yet another approach that has been used
in the literature for scheduling HEMS devices, in the form
of cooperative and non-cooperative games. In cooperative
games, agents communicate to reach a common goal. Refer-
ence [124] uses a cooperative game strategy for coordinating
households to optimize demand. In non-cooperative games,
agents focus on achieving local optimizing objectives without
communicating with one another. References [125]–[128]
highlight studies that use game theory to minimize overall
consumption in a single household.

Various studies have used machine learning to optimize
scheduling. Reference [129] presents an approach that uses
a Neural Network model to determine appliance scheduling.
Reference [130] describes a global neural network controller,
which takes into account all inputs to switch off the required
device. In [131], ANN is used with a genetic algorithm for
weekly appliance scheduling. Reference [132] uses a neural

network based on particle swarm optimization for improv-
ing appliance scheduling operations through hyperparameter
optimization. Reference [133] proposes a lightning search
ANN algorithm to predict when to turn on/off a device.
Reference [134] uses a distributed algorithm for training a
neural network.

Fuzzy logic controllers (FLC) have also been used in lit-
erature for scheduling HEMSs. A fuzzy control system is
developed in four steps: 1) map discrete values into fuzzy
one; 2) add amembership function for each variable; 3) define
rules for the system, and 4) map fuzzy values back to discrete
values. Reference [135] uses FLC for the day-ahead schedul-
ing of the air-conditioning unit. In [136], the authors use
FLC techniques to maximize comfort and minimize energy
consumption. In [137], a solar plant is integrated with the
DR system, and energy cost is reduced using fuzzy systems.
Reference [138] present a real-time controller based on FLC,
using various home appliances with PV and energy storage.

Neural-Fuzzy methods have also been used in literature.
In a neural-fuzzy system, the output of neural networks is
fed to a fuzzy system, which can then use rules derived from
domain knowledge to produce the required output. The neural
network adjusts weights by calculating the error from fuzzy
outputs. Reference [139] presents a controller based on an
adaptive network-based fuzzy inference system (ANFIS) that
schedules and controls house loads to reduce power consump-
tion. Reference [140] implements an ANFIS controller for
smart homes. The controller schedules devices without min-
imizing energy consumption in response to dynamic pricing.

Reference [142] provides an overview of reinforcement
learning-based algorithms for demand response. Reinforce-
ment learning (RL) is an agent-based AI algorithm that has
the capacity to learn scheduling parameters and preferences
through trial and error interactions that are guided by a reward
function. A reinforcement learning system involves an envi-
ronment, control actions, transition probabilities, a reward
function, a policy, and a performance metric. Further details
about RL can be found in [141]. The first usage of rein-
forcement learning for home energymanagement is described
in [143], where a neural network is used to control heat-
ing, ventilation, air conditioning (HVAC), and lighting to
minimize user discomfort and reduce energy costs. Refer-
ences [144] and [57] use reinforcement learning to schedule
devices in response to pricing signals. In [145], different
functions measure user dissatisfaction when appliances fail
to perform the required task in the required time. Refer-
ence [146] uses an RL algorithm in a demand response
setting and compares it with a decentralized heuristic-based
approach. Reference [147] uses RL to minimize cost by not
exceeding a certain power threshold and without causing
dissatisfaction by delaying the operation of devices. Refer-
ence [148] focused on shifting the cost of certain flexible
loads. Reference [149] uses Q-learning to shave peak demand
of appliances and electric vehicles with distributed generation
by breaking down the main problem into sub-tasks that are
then solved independently using RL.
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VIII. CONCLUSIONS
The increasing ubiquity of distributed renewable energy
generation has promoted the development of microgrids as
local power structures that integrate HEMSs. At the level
of the individual household, HEMSs enable consumers to
make energy-efficient choices without compromising com-
fort, through optimal management of appliance usage and
EV charging in Home Area Networks. At the level of the
electricity grid as a whole, utilities can monitor federated
HEMSs through Wide Area Networks and acquire situation
awareness about the dynamics of consumption to set dynamic
parameters for the management of the power grid such as
electricity prices, and enact protective measures when imbal-
ances in supply and demandmay lead to system vulnerability.
Somewhere in between, the federated monitoring of HEMs
in Neighborhood Area Networks enables local operators to
manage microgrids for optimal power flow and transient sta-
bility to avoid overloading and voltage or frequency instabil-
ities and optimize microgrid operations in changing weather
scenarios.

HEMSs have come a long way since they first appeared
in the 1970s, moving from a centralized solution running
on proprietary operating systems to distributed architecture
running on standard operating systems. Modern HEMSs are
more resilient because their components run on microcon-
trollers and work together through distributed protocols so
that the HEMS still works even when one of the parts fails.
Distributed protocols allow each device to respond to events
on its own without having to interact with a centralized
workstation so that the HEMS does not have a single point
of failure. The use of cloud computing provides a stable
platform for data storage and processing. The integration
of IoT devices ensures maximum access to the information
relative to each HEMS component. The inclusion of Edge
and Fog computing techniques allows data to be stored and
processed locally to avoid excessive data transmission to the
cloud, improve response time and decrease latency, and offer
greater privacy.

The components of a HEMS include sensors, measuring
devices, smart controllers/actuators, infrastructure for com-
munication, and a management controller for supervision
and control of data. These components address five primary
functions: management, control, logging, andmonitoring and
fault detection for energy systems. The target application
is to enable end-users to control and schedule appliances,
including EV chargers, to consume more efficiently, follow-
ing utility-sponsored demand-response programs based on
incentives or price schemes (e.g., ToU).

A host of increasing studies shows that optimization meth-
ods, including game theory, machine learning, and other AI
techniques, can help find the best demand-response configu-
ration by determining the best time to shift or reduce loads
taking into account user preferences. As HEMSs enter the
mainstream home technology market, these techniques are
likely to be integrated into commercial HEMSs to help the
user manage home appliances and devices in a seamless way.

Looking forward, HEMSs can have a pivotal role in facili-
tating the growth of federated microgrids as the power system
solution of the future. In enabling energy efficiency, HEMSs
promote cost reduction, making microgrids more econom-
ically viable. At the same time, HEMSs provide detailed
information about home energy use across Neighborhood and
Wide Area Networks that operators can use to increase grid
safety, resiliency, and effectiveness.

REFERENCES
[1] A. Elrayyah and S. Bayhan, ‘‘Multi-channel-based microgrid for reli-

able operation and load sharing,’’ Energies, vol. 12, no. 11, p. 2070,
May 2019.

[2] I. Serban, S. Cespedes, C. Marinescu, C. A. Azurdia-Meza, J. S. Gomez,
and D. S. Hueichapan, ‘‘Communication requirements in microgrids:
A practical survey,’’ IEEE Access, vol. 8, pp. 47694–47712, 2020.

[3] P. Kumar, Y. Lin, G. Bai, A. Paverd, J. S. Dong, and A. Martin, ‘‘Smart
grid metering networks: A survey on security, privacy and open research
issues,’’ IEEE Commun. Surveys Tuts., vol. 21, no. 3, pp. 2886–2927,
3rd Quart., 2019.

[4] E. Hossain, Z. Han, and H. Poor, Smart Grid Communications and
Networking. Cambridge, U.K.: Cambridge Univ. Press, 2012.

[5] Y. Saleem, N. Crespi, M. H. Rehmani, and R. Copeland, ‘‘Inter-
net of Things-aided smart grid: Technologies, architectures, applica-
tions, prototypes, and future research directions,’’ IEEE Access, vol. 7,
pp. 62962–63003, 2019.

[6] L. Zhang, E. C. Kerrigan, and B. C. Pal, ‘‘Optimal communication
scheduling in the smart grid,’’ IEEE Trans. Ind. Informat., vol. 15, no. 9,
pp. 5257–5265, Sep. 2019.

[7] J. Han, C.-S. Choi, W.-K. Park, I. Lee, and S.-H. Kim, ‘‘Smart home
energy management system including renewable energy based on ZigBee
and PLC,’’ IEEE Trans. Consum. Electron., vol. 60, no. 2, pp. 198–202,
May 2014.

[8] J. Han, C.-S. Choi, W.-K. Park, I. Lee, and S.-H. Kim, ‘‘PLC-based
photovoltaic system management for smart home energy management
system,’’ IEEE Trans. Consum. Electron., vol. 60, no. 2, pp. 184–189,
May 2014.

[9] D. Neves, C. A. Silva, and S. Connors, ‘‘Design and implementation
of hybrid renewable energy systems on micro-communities: A review
on case studies,’’ Renew. Sustain. Energy Rev., vol. 31, pp. 935–946,
Mar. 2014.

[10] Q. Li, Y. Zhang, T. Ji, X. Lin, and Z. Cai, ‘‘Volt/Var control for power grids
with connections of large-scale wind farms: A review,’’ IEEE Access,
vol. 6, pp. 26675–26692, 2018.

[11] S. Aslam, N. Javaid, F. Khan, A. Alamri, A. Almogren, and W. Abdul,
‘‘Towards efficient energy management and power trading in a residential
area via integrating a grid-connected microgrid,’’ Sustainability, vol. 10,
no. 4, p. 1245, Apr. 2018.

[12] A. Ahmad, A. Khan, N. Javaid, H. M. Hussain, W. Abdul, A. Almogren,
A. Alamri, and I. Azim Niaz, ‘‘An optimized home energy management
system with integrated renewable energy and storage resources,’’ Ener-
gies, vol. 10, no. 4, p. 549, Apr. 2017.

[13] D. Petreus, R. Etz, T. Patarau, and M. Cirstea, ‘‘An islanded microgrid
energy management controller validated by using hardware-in-the-loop
emulators,’’ Int. J. Electr. Power Energy Syst., vol. 106, pp. 346–357,
Mar. 2019.

[14] T. Ma, H. Yang, and L. Lu, ‘‘A feasibility study of a stand-alone hybrid
solar–wind–battery system for a remote island,’’ Appl. Energy, vol. 121,
pp. 149–158, May 2014.

[15] S. Bayhan, H. Abu-Rub, J. I. Leon, S. Vazquez, and L. G. Franquelo,
‘‘Power electronic converters and control techniques in AC microgrids,’’
in Proc. IECON-43rd Annu. Conf. IEEE Ind. Electron. Soc., Beijing,
China, Nov. 2017, pp. 6179–6186.

[16] M. Malinowski, J. I. Leon, and H. Abu-Rub, ‘‘Solar photovoltaic and
thermal energy systems: Current technology and future trends,’’ Proc.
IEEE, vol. 105, no. 11, pp. 2132–2146, Nov. 2017.

[17] M. Castilla, L. G. de Vicuña, and J. Miret, ‘‘Control of power con-
verters in AC microgrids,’’ in Microgrids Design and Implementation,
A. C. Z. de Souza and M. Castilla, Eds. Cham, Switzerland: Springer,
2019.

119282 VOLUME 8, 2020



U. Zafar et al.: HEMS Concepts, Configurations, and Technologies for the Smart Grid

[18] Y. Shan, J. Hu, Z. Li, and J. M. Guerrero, ‘‘A model predictive control
for renewable energy based AC microgrids without any PID regula-
tors,’’ IEEE Trans. Power Electron., vol. 33, no. 11, pp. 9122–9126,
Nov. 2018.

[19] M. D. A. Al-Falahi, S. D. G. Jayasinghe, and H. Enshaei, ‘‘A review
on recent size optimization methodologies for standalone solar and wind
hybrid renewable energy system,’’ Energy Convers. Manage., vol. 143,
pp. 252–274, Jul. 2017.

[20] U.S. Energy Information Administration (EIA). What is U.S. Electricity
Generation by Energy source?—FAQ. Accessed: Mar. 31, 2020. [Online].
Available: https://www.eia.gov/tools/faqs/faq.php?id=427&t=3

[21] U. S. Energy Information Administration. (Jan. 5, 2017). Annual
Energy Outlook 2017 With Projections to 2050. [Online]. Available:
http://www.eia.gov/outlooks/aeo/pdf/

[22] H. Shareef, M. S. Ahmed, A. Mohamed, and E. Al Hassan, ‘‘Review
on home energy management system considering demand responses,
smart technologies, and intelligent controllers,’’ IEEE Access, vol. 6,
pp. 24498–24509, 2018.

[23] B. Lashkari, Y. Chen, and P. Musilek, ‘‘Energy management for
smart homes—State of the art,’’ Appl. Sci., vol. 9, no. 17, p. 3459,
Aug. 2019.

[24] KNX Association. (2007). [Online]. Available: http://www.knx.Org/it
[25] R. R. Mohassel, A. S. Fung, F. Mohammadi, and K. Raahemifar,

‘‘A survey on advanced metering infrastructure and its application in
smart grids,’’ in Proc. IEEE 27th Can. Conf. Electr. Comput. Eng.
(CCECE), Toronto, ON, Canada, May 2014, pp. 1–8.

[26] M. Soliman, T. Abiodun, T. Hamouda, J. Zhou, and C.-H. Lung, ‘‘Smart
home: Integrating Internet of Things with Web services and cloud com-
puting,’’ in Proc. IEEE 5th Int. Conf. Cloud Comput. Technol. Sci.,
Bristol, U.K., Dec. 2013, pp. 317–320.

[27] S. K. Vishwakarma, P. Upadhyaya, B. Kumari, and A. K. Mishra, ‘‘Smart
energy efficient home automation system using IoT,’’ in Proc. 4th Int.
Conf. Internet Things, Smart Innov. Usages (IoT-SIU), Ghaziabad, India,
Apr. 2019, pp. 1–4.

[28] J. Zhou, T. Leppanen, E. Harjula, M. Ylianttila, T. Ojala, C. Yu, and
H. Jin, ‘‘CloudThings: A common architecture for integrating the Internet
of Things with cloud computing,’’ in Proc. IEEE 17th Int. Conf. Comput.
Supported Cooperat. Work Design (CSCWD), Whistler, BC, Canada,
Jun. 2013, pp. 651–657.

[29] Z. Shelby, K. Hartke, and C. Bormann, Constrained Application
Protocol (CoAP), document RFC 7252, 2014. [Online]. Available:
https://iottestware.readthedocs.io/en/master/coap_rfc.html

[30] B.-H. Kim, K.-H. Cho, and K.-S. Park, ‘‘Towards LonWorks technology
and its applications to automation,’’ in Proc. KORUS. 4th Korea-Russia
Int. Symp. Sci. Technol., Ulsan, South Korea, vol. 2, Jun./Jul. 2000,
pp. 197–202.

[31] S. T. Bushby andH.M. Newman.BACnet Today Significant NewFeatures
and Future Enhancements. Accessed: Mar. 10, 2020. [Online]. Available:
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=860883

[32] Amazon Web Services. Accessed: Mar. 10, 2020. [Online]. Available:
https://www.aws.com

[33] Microsoft Azure. Accessed: Mar. 10, 2020. [Online]. Available:
https://azure.microsoft.com

[34] Google Cloud Platform. Accessed: Mar. 10, 2020. [Online]. Available:
https://cloud.google.com

[35] OpenStack. Accessed: Mar. 10, 2020. [Online]. Available:
https://www.openstack.org

[36] Vmware. Accessed: Mar. 10, 2020. [Online]. Available:
https://www.vmware.com

[37] Z. Shouran, A. Ashari, and T. Kuntoro, ‘‘Internet of Things (IoT) of smart
home: Privacy and security,’’ Int. J. Comput. Appl., vol. 182, no. 39,
pp. 3–8, Feb. 2019.

[38] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ‘‘A sur-
vey on Internet of Things: Architecture, enabling technologies, security
and privacy, and applications,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1125–1142, Oct. 2017.

[39] D. Linthicum. Edge Computing vs. Fog Computing: Definitions and
Enterprise Uses—Cisco. Accessed: Mar. 29, 2020. [Online]. Avail-
able: https://www.cisco.com/c/en/us/solutions/enterprise-networks/edge-
computing.html

[40] White Paper.Fog Computing and the Internet of Things: Extend the Cloud
to Where the Things Are. Accessed: Mar. 10, 2020. [Online]. Available:
https://www.cisco.com/c/dam/en_us/solutions/trends/iot/docs/computing-
overview.pdf

[41] P. G. Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, ‘‘Edge-centric
computing: Vision and challenges,’’ Comput. Commun. Rev., vol. 45,
no. 5, pp. 37–42, 2015.

[42] J. Konecný, H. B. McMahan, F. X. Yu, A. T. Suresh, D. B. Google, and
P. Richtárik, ‘‘Federated learning: Strategies for improving communica-
tion efficiency,’’ in Proc. 29th Conf. Neural Inf. Process. Syst. (NIPS),
Barcelona, Spain, 2016, pp. 1–10.

[43] L. G. Matteson and K. R. Anderson, ‘‘Energy management and control
system for Iowa-Illinois gas and electric company,’’ IEEE Trans. Power
App. Syst., vol. 95, no. 3, pp. 903–908, May 1976.

[44] C. L. Nge, I. U. Ranaweera, O.-M. Midtgård, and L. Norum, ‘‘A real-
time energy management system for smart grid integrated photovoltaic
generation with battery storage,’’ Renew. Energy, vol. 130, pp. 774–785,
Jan. 2019.

[45] S. Das, S. Ganguly, S. Ghosh, R. Sarker, and D. Sengupta, ‘‘A Blue-
tooth based sophisticated home automation system using smartphone,’’ in
Proc. Int. Conf. Intell. Control Power Instrum. (ICICPI), Kolkata, India,
Oct. 2016, pp. 236–240.

[46] J. Byun, I. Hong, and S. Park, ‘‘Intelligent cloud home energy manage-
ment system using household appliance priority based scheduling based
on prediction of renewable energy capability,’’ IEEE Trans. Consum.
Electron., vol. 58, no. 4, pp. 1194–1201, Nov. 2012.

[47] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, ‘‘CASAS:
A smart home in a box,’’ Computer, vol. 46, no. 7, pp. 62–69, Jul. 2013.

[48] C. Xia, W. Li, X. Chang, F. C. Delicato, T. Yang, and A. Y. Zomaya,
‘‘Edge-based energy management for smart homes,’’ in Proc. IEEE 16th
Int. Conf. Dependable, Autonomic Secure Comput., 16th Int. Conf Per-
vasive Intell. Comput., 4th Int. Conf. Big Data Intell. Comput. Cyber
Sci. Technol. Congress(DASC/PiCom/DataCom/CyberSciTech), Athens,
Greece, Aug. 2018, pp. 849–856.

[49] M. A. A. Faruque and K. Vatanparvar, ‘‘Energy management-as-a-service
over fog computing platform,’’ IEEE Internet Things J., vol. 3, no. 2,
pp. 161–169, Apr. 2016.

[50] Y. W. Law, T. Alpcan, V. C. S. Lee, A. Lo, S. Marusic, and
M. Palaniswami, ‘‘Demand response architectures and load management
algorithms for energy-efficient power grids: A survey,’’ in Proc. 7th Int.
Conf. Knowl., Inf. Creativity Support Syst., Melbourne, VIC, Australia,
Nov. 2012, pp. 134–141.

[51] NetxAutomation. Accessed: Mar. 10, 2020. [Online]. Available:
https://www.netxautomation.com/netx/en/support/documentations

[52] J. Lloret, J. Tomas, A. Canovas, and L. Parra, ‘‘An integrated IoT architec-
ture for smart metering,’’ IEEECommun.Mag., vol. 54, no. 12, pp. 50–57,
Dec. 2016.

[53] A. Arif, M. Al-Hussain, N. Al-Mutairi, E. Al-Ammar, Y. Khan, and
N. Malik, ‘‘Experimental study and design of smart energy meter for
the smart grid,’’ in Proc. Int. Renew. Sustain. Energy Conf. (IRSEC),
Ouarzazate, Morocco, Mar. 2013, pp. 515–520.

[54] Z. Zhao, W. C. Lee, Y. Shin, and K.-B. Song, ‘‘An optimal power
scheduling method for demand response in home energy manage-
ment system,’’ IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1391–1400,
Sep. 2013.

[55] M. Figueiredo, B. Ribeiro, and A. de Almeida, ‘‘Electrical signal source
separation via nonnegative tensor factorization using on site measure-
ments in a smart home,’’ IEEE Trans. Instrum. Meas., vol. 63, no. 2,
pp. 364–373, Feb. 2014.

[56] S. S. Hosseini, K. Agbossou, S. Kelouwani, and A. Cardenas, ‘‘Non-
intrusive load monitoring through home energy management systems:
A comprehensive review,’’ Renew. Sustain. Energy Rev., vol. 79,
pp. 1266–1274, Nov. 2017.

[57] B. Zhou, W. Li, K. W. Chan, Y. Cao, Y. Kuang, X. Liu, and X. Wang,
‘‘Smart home energy management systems: Concept, configurations, and
scheduling strategies,’’ Renew. Sustain. Energy Rev., vol. 61, pp. 30–40,
Aug. 2016.

[58] B. Asare-Bediako, W. L. Kling, and P. F. Ribeiro, ‘‘Home energy man-
agement systems: Evolution, trends and frameworks,’’ in Proc. 47th
Int. Universities Power Eng. Conf. (UPEC), London, U.K., Sep. 2012,
pp. 1–5.

[59] J. Leitao, P. Gil, B. Ribeiro, and A. Cardoso, ‘‘A survey on home energy
management,’’ IEEE Access, vol. 8, pp. 5699–5722, 2020.

[60] L. P. Fernández, T. G. S. Roman, R. Cossent, C. M. Domingo, and
P. Frías, ‘‘Assessment of the impact of plug-in electric vehicles on distri-
bution networks,’’ IEEE Trans. Power Syst., vol. 26, no. 1, pp. 206–213,
Feb. 2011.

VOLUME 8, 2020 119283



U. Zafar et al.: HEMS Concepts, Configurations, and Technologies for the Smart Grid

[61] J. Yang, L. He, and S. Fu, ‘‘An improved PSO-based charging strategy of
electric vehicles in electrical distribution grid,’’ Appl. Energy, vol. 128,
pp. 82–92, Sep. 2014.

[62] H. Kikusato, K. Mori, S. Yoshizawa, Y. Fujimoto, H. Asano, Y. Hayashi,
A. Kawashima, S. Inagaki, and T. Suzuki, ‘‘Electric vehicle charge–
discharge management for utilization of photovoltaic by coordination
between home and grid energymanagement systems,’’ IEEE Trans. Smart
Grid, vol. 10, no. 3, pp. 3186–3197, May 2019.

[63] H. Kamankesh, V. G. Agelidis, and A. Kavousi-Fard, ‘‘Optimal schedul-
ing of renewable micro-grids considering plug-in hybrid electric vehicle
charging demand,’’ Energy, vol. 100, pp. 285–297, Apr. 2016.

[64] G. Saldaña, J. I. San Martin, I. Zamora, F. J. Asensio, and O. Oñederra,
‘‘Electric vehicle into the grid: Charging methodologies aimed at provid-
ing ancillary services considering battery degradation,’’ Energies, vol. 12,
no. 12, p. 2443, Jun. 2019.

[65] X. Chen, K.-C. Leung, A. Y. S. Lam, and D. J. Hill, ‘‘Online schedul-
ing for hierarchical vehicle-to-grid system: Design, formulation, and
algorithm,’’ IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1302–1317,
Feb. 2019.

[66] D. Mocrii, Y. Chen, and P. Musilek, ‘‘IoT-based smart homes: A review
of system architecture, software, communications, privacy and security,’’
Internet Things, vols. 1–2, pp. 81–98, Sep. 2018.

[67] A. Fallis, ‘‘Renewables Information 2019 Overview,’’ Clim. Chang.-
Phys. Sci. Basis, vol. 53, no. 9, pp. 1–30, 2013.

[68] T. Vijayapriya and D. P. Kothari, ‘‘Smart grid: An overview,’’ Smart Grid
Renew. Energy, vol. 2, no. 4, pp. 305–311, 2011, doi: 10.4236/sgre.2011.
24035.

[69] K. Alanne and S. Cao, ‘‘An overview of the concept and technology of
ubiquitous energy,’’ Appl. Energy, vol. 238, pp. 284–302, Mar. 2019.

[70] Schneider Electric-Modbus Energy Meter. Accessed: Mar. 10, 2020.
[Online]. Available: https://www.se.com/ww/en/product/A9MEM3250/
iem3250-energy-meter—ct—modbus/

[71] A. Swales and S. Electric. Open Modbus/TCP Speci-
fication. Accessed: Mar. 10, 2020. [Online]. Available:
https://wingpath.co.uk/docs/modbus_tcp_specification.pdf

[72] SE Energy Meter. Accessed: Mar. 10, 2020. [Online]. Available:
https://www.se.com/ww/en/product/MTN6600-0603/merten-knx—
energy-meter—3-x-230-v—16-a/

[73] Siemens Synco. Accessed: Mar. 10, 2020. [Online]. Available:
https://new.siemens.com/global/en/products/buildings/automation/synco.
html

[74] Google Home. Accessed: Mar. 10, 2020. [Online]. Available:
https://play.google.com/store/apps/details?id=com.google.android.apps.
chromecast.app

[75] Apple Siri. Accessed: Mar. 10, 2020. [Online]. Available:
https://www.apple.com/siri/

[76] Cisco Energy Service. Accessed: Mar. 10, 2020. [Online]. Available:
https://www.cisco.com/c/en_ca/products/switches/index.html

[77] GE Power Meter. Accessed: Mar. 10, 2020. [Online]. Available:
https://www.gegridsolutions.com/multilin/catalog/meters.htm

[78] Control 4. Accessed: Mar. 10, 2020. [Online]. Available:
https://www.contro4.com

[79] AMX. Accessed: Mar. 10, 2020. [Online]. Available:
https://www.amx.com

[80] Crestron. Accessed: Mar. 10, 2020. [Online]. Available:
https://www.crestron.com

[81] Crestron Energy Meter. Accessed: Mar. 10, 2020. [Online]. Avail-
able: https://www.crestron.com/en-US/Products/Lighting-Environment/
Integrated-Lighting-Systems/Power-Metering/GLS-EM-MCU

[82] L. Barney Capehart and C. Lynne Capehart,WebBased Enterprise Energy
and Building Automation Systems. Lilburn, GA, USA: Fairmont Press,
2007.

[83] Bacnet Over KNX. Accessed: Mar. 10, 2020. [Online]. Available:
https://www2.knx.org/media/docs/Partners/scientific/events/Session2.pdf

[84] L. Arias, E. Rivas, F. Santamaria, and V. Hernandez, ‘‘A review and
analysis of trends related to demand response,’’ Energies, vol. 11, no. 7,
p. 1617, Jun. 2018.

[85] H. T. Haider, O. H. See, and W. Elmenreich, ‘‘A review of residential
demand response of smart grid,’’ Renew. Sustain. Energy Rev., vol. 59,
pp. 166–178, Jun. 2016.

[86] Benefits of Demand Response in Electricity Markets and Recommenda-
tions for Achieving Them. Accessed: Mar. 10, 2020. [Online]. Available:
https://eetd.lbl.gov/sites/all/files/publications/report-lbnl-1252d.pdf

[87] P. Palensky and D. Dietrich, ‘‘Demand side management: Demand
response, intelligent energy systems, and smart loads,’’ IEEE Trans. Ind.
Informat., vol. 7, no. 3, pp. 381–388, Aug. 2011.

[88] C. W. Gellings and M. Samotyj, ‘‘Smart grid as advanced technol-
ogy enabler of demand response,’’ Energy Efficiency, vol. 6, no. 4,
pp. 685–694, Nov. 2013.

[89] N. O’Connell, P. Pinson, H. Madsen, and M. O’Malley, ‘‘Benefits and
challenges of electrical demand response: A critical review,’’ Renew.
Sustain. Energy Rev., vol. 39, pp. 686–699, Nov. 2014.

[90] X. H. Li and S. H. Hong, ‘‘User-expected price-based demand response
algorithm for a home-to-grid system,’’ Energy, vol. 64, pp. 437–449,
Jan. 2014.

[91] OPC. Accessed: Mar. 10, 2020. [Online]. Available:
https://www.opcfoundation.org

[92] G. Alonso, F. Casati, H. Kuno, and V.Machiraju,Web Services: Concepts,
Architectures and Applications. Berlin, Germany: Springer-Verlag, 2004.

[93] Home—M-Bus. Accesed: Mar. 29, 2020. [Online]. Available: https://m-
bus.com/

[94] Standards—Digital Illumination Interface Alliance. Accessed:
Mar. 29, 2020. [Online]. Available: https://www.digitalilluminationinter
face.org/dali/

[95] Home. Accessed: Mar. 29, 2020. [Online]. Available: https://www.
openadr.org/

[96] OSGP. Accessed: Mar. 29, 2020. [Online]. Available: https://osgp.org/en
[97] The Self-Powered Wireless Standard for Smart Buildings—Enocean

Alliance. Accessed: Mar. 29, 2020. [Online]. Available: https://www.
enocean-alliance.org/

[98] Home—Zigbee Alliance. Accessed: Mar. 29, 2020. [Online]. Available:
https://zigbeealliance.org/

[99] The Internet of Things is Powered by Z-Wave. Accessed: Mar. 29, 2020.
[Online]. Available: https://z-wavealliance.org/

[100] IPv6 Over Low Power WPAN (6LoWPAN). Accessed: Mar. 29, 2020.
[Online]. Available: https://datatracker.ietf.org/wg/6lowpan/charter/

[101] KNX RF KNX Association. Accessed: Mar. 29, 2020. [Online]. Avail-
able: https://www.knx.org/knx-en/for-manufacturers/development/radio-
frequency/index.php

[102] R. de Sa Ferreira, L. A. Barroso, P. Rochinha Lino, M. M. Carvalho,
and P. Valenzuela, ‘‘Time-of-use tariff design under uncertainty in price-
elasticities of electricity demand: A stochastic optimization approach,’’
IEEE Trans. Smart Grid, vol. 4, no. 4, pp. 2285–2295, Dec. 2013.

[103] O. Erdinc, N. G. Paterakis, T. D. P. Mendes, A. G. Bakirtzis, and
J. P. S. Catalao, ‘‘Smart household operation considering bi-directional
EV and ESS utilization by real-time pricing-based DR,’’ IEEE Trans.
Smart Grid, vol. 6, no. 3, pp. 1281–1291, May 2015.

[104] K. Herter, ‘‘Residential implementation of critical-peak pricing of elec-
tricity,’’ Energy Policy, vol. 35, no. 4, pp. 2121–2130, Apr. 2007.

[105] T.-H. Chang,M.Alizadeh, andA. Scaglione, ‘‘Real-time power balancing
via decentralized coordinated home energy scheduling,’’ IEEE Trans.
Smart Grid, vol. 4, no. 3, pp. 1490–1504, Sep. 2013.

[106] T. M. Hansen, R. Roche, A. A. Maciejewski, and H. J. Siegel, ‘‘Heuristic
optimization for an aggregator-based resource allocation in the smart
grid,’’ IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1785–1794, Jul. 2016.

[107] B. Celik, R. Roche, S. Suryanarayanan, D. Bouquain, and A. Miraoui,
‘‘Electric energy management in residential areas through coordina-
tion of multiple smart homes,’’ Renew. Sustain. Energy Rev., vol. 80,
pp. 260–275, Dec. 2017.

[108] Z. Yahia and A. Pradhan, ‘‘Optimal load scheduling of household appli-
ances considering consumer preferences: An experimental analysis,’’
Energy, vol. 163, pp. 15–26, Nov. 2018.

[109] T. Yu, D. S. Kim, and S.-Y. Son, ‘‘Optimization of scheduling for home
appliances in conjunction with renewable and energy storage resources,’’
Int. J. Smart Home, vol. 7, no. 4, pp. 261–272, Jul. 2013.

[110] B. Lokeshgupta and S. Sivasubramani, ‘‘Multi-objective home energy
management with battery energy storage systems,’’ Sustain. Cities Soc.,
vol. 47, May 2019, Art. no. 101458.

[111] S. Althaher, P. Mancarella, and J. Mutale, ‘‘Automated demand response
from home energy management system under dynamic pricing and
power and comfort constraints,’’ IEEE Trans. Smart Grid, vol. 6, no. 4,
pp. 1874–1883, Jul. 2015.

[112] K. M. Tsui and S. C. Chan, ‘‘Demand response optimization for smart
home scheduling under real-time pricing,’’ IEEE Trans. Smart Grid,
vol. 3, no. 4, pp. 1812–1821, Dec. 2012.

119284 VOLUME 8, 2020

http://dx.doi.org/10.4236/sgre.2011.24035
http://dx.doi.org/10.4236/sgre.2011.24035


U. Zafar et al.: HEMS Concepts, Configurations, and Technologies for the Smart Grid

[113] X. Chen, T. Wei, and S. Hu, ‘‘Uncertainty-aware household appliance
scheduling considering dynamic electricity pricing in smart home,’’ IEEE
Trans. Smart Grid, vol. 4, no. 2, pp. 932–941, Jun. 2013.

[114] M. Hu and F. Xiao, ‘‘Price-responsive model-based optimal demand
response control of inverter air conditioners using genetic algorithm,’’
Appl. Energy, vol. 219, pp. 151–164, Jun. 2018.

[115] I. O. Essiet, Y. Sun, and Z.Wang, ‘‘Optimized energy consumption model
for smart home using improved differential evolution algorithm,’’ Energy,
vol. 172, pp. 354–365, Apr. 2019.

[116] H. M. Lugo-Cordero, A. Fuentes-Rivera, E. I. Ortiz-Rivera, and
R. K. Guha, ‘‘Particle swarm optimization for load balancing in green
smart homes,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), New Orleans,
LA, USA, Jun. 2011, pp. 715–720.

[117] H. Molavi and M. M. Ardehali, ‘‘Utility demand response opera-
tion considering day-of-use tariff and optimal operation of thermal
energy storage system for an industrial building based on particle
swarm optimization algorithm,’’Energy Buildings, vol. 127, pp. 920–929,
Sep. 2016.

[118] C. Chen, J. Wang, Y. Heo, and S. Kishore, ‘‘MPC-based appliance
scheduling for residential building energy management controller,’’ IEEE
Trans. Smart Grid, vol. 4, no. 3, pp. 1401–1410, Sep. 2013.

[119] Z. Yu, L. Jia, M. C. Murphy-Hoye, A. Pratt, and L. Tong, ‘‘Modeling
and stochastic control for home energy management,’’ IEEE Trans. Smart
Grid, vol. 4, no. 4, pp. 2244–2255, Dec. 2013.

[120] P. H. Shaikh, N. B. M. Nor, P. Nallagownden, I. Elamvazuthi, and
T. Ibrahim, ‘‘A review on optimized control systems for building energy
and comfort management of smart sustainable buildings,’’ Renew. Sus-
tain. Energy Rev., vol. 34, pp. 409–429, Jun. 2014.

[121] V. Siddharth, P. V. Ramakrishna, T. Geetha, and A. Sivasubrama-
niam, ‘‘Automatic generation of energy conservation measures in build-
ings using genetic algorithms,’’ Energy Buildings, vol. 43, no. 10,
pp. 2718–2726, Oct. 2011.

[122] H. Karlsson and C.-E. Hagentoft, ‘‘Application of model based predictive
control for water-based floor heating in low energy residential buildings,’’
Building Environ., vol. 46, no. 3, pp. 556–569, Mar. 2011.

[123] C. Ghiaus and I. Hazyuk, ‘‘Calculation of optimal thermal load of
intermittently heated buildings,’’ Energy Buildings, vol. 42, no. 8,
pp. 1248–1258, Aug. 2010.

[124] A.-H. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober,
and A. Leon-Garcia, ‘‘Autonomous demand-side management based on
game-theoretic energy consumption scheduling for the future smart grid,’’
IEEE Trans. Smart Grid, vol. 1, no. 3, pp. 320–331, Dec. 2010.

[125] A. Yassine, ‘‘Analysis of a cooperative and coalition formation game
model among energy consumers in the smart grid,’’ in Proc. 3rd Int.
Conf. Commun. Inf. Technol. (ICCIT), Beirut, Lebanon, Jun. 2013,
pp. 152–156.

[126] X. Luan, J. Wu, S. Ren, and H. Xiang, ‘‘Cooperative power consumption
in the smart grid based on coalition formation game,’’ in Proc. 16th Int.
Conf. Adv. Commun. Technol., Pyeongchang, South Korea, Feb. 2014,
pp. 640–644.

[127] I. Atzeni, L. G. Ordonez, G. Scutari, D. P. Palomar, and J. R. Fonollosa,
‘‘Noncooperative day-ahead bidding strategies for demand-side expected
cost minimization with real-time adjustments: A GNEP approach,’’ IEEE
Trans. Signal Process., vol. 62, no. 9, pp. 2397–2412, May 2014.

[128] R. Deng, Z. Yang, J. Chen, N. R. Asr, and M.-Y. Chow, ‘‘Residential
energy consumption scheduling: A coupled-constraint game approach,’’
IEEE Trans. Smart Grid, vol. 5, no. 3, pp. 1340–1350, May 2014.

[129] E. Matallanas, M. Castillo-Cagigal, A. Gutiérrez, F. Monasterio-Huelin,
E. Caamaño-Martín, D. Masa, and J. Jiménez-Leube, ‘‘Neural network
controller for active demand-side management with PV energy in the
residential sector,’’ Appl. Energy, vol. 91, no. 1, pp. 90–97, Mar. 2012.

[130] C. A. Hernandez, R. Romero, and D. Giral, ‘‘Optimization of the use
of residential lighting with neural network,’’ in Proc. Int. Conf. Comput.
Intell. Softw. Eng., Wuhan, China, Dec. 2010, pp. 1–5.

[131] B. Yuce, Y. Rezgui, and M. Mourshed, ‘‘ANN–GA smart appliance
scheduling for optimised energy management in the domestic sector,’’
Energy Buildings, vol. 111, pp. 311–325, Jan. 2016.

[132] S. K. Gharghan, R. Nordin, M. Ismail, and J. A. Ali, ‘‘Accurate wireless
sensor localization technique based on hybrid PSO-ANN algorithm for
indoor and outdoor track cycling,’’ IEEE Sensors J., vol. 16, no. 2,
pp. 529–541, Jan. 2016.

[133] M. S. Ahmed, A. Mohamed, R. Z. Homod, and H. Shareef, ‘‘Hybrid
LSA-ANN based home energy management scheduling controller for
residential demand response strategy,’’ Energies, vol. 9, no, 9, p. 716,
2016.

[134] Y. Liu, C. Yuen, R. Yu, Y. Zhang, and S. Xie, ‘‘Queuing-based energy con-
sumption management for heterogeneous residential demands in smart
grid,’’ IEEE Trans. Smart Grid, vol. 7, no. 3, pp. 1650–1659, May 2016.

[135] Y.-Y. Hong, J.-K. Lin, C.-P. Wu, and C.-C. Chuang, ‘‘Multi-objective
air-conditioning control considering fuzzy parameters using immune
clonal selection programming,’’ IEEE Trans. Smart Grid, vol. 3, no. 4,
pp. 1603–1610, Dec. 2012.

[136] A. Mohsenzadeh, M. H. Shariatkhah, M. H. Shariatkhah, and
M.-R. Haghifam, ‘‘Applying fuzzy techniques to model customer
comfort in a smart home control system,’’ in Proc. 22nd Int. Conf. Electr.
Distrib. Applying Fuzzy Techn. Model Customer Comfort Smart Home
Control Syst., 2013, p. 1164.

[137] L. Ciabattoni, M. Grisostomi, G. Ippoliti, and S. Longhi, ‘‘Home energy
management benefits evaluation through fuzzy logic consumptions sim-
ulator,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Beijing, China,
Jul. 2014, pp. 1447–1452.

[138] Z.Wu, S. Zhou, J. Li, and X.-P. Zhang, ‘‘Real-time scheduling of residen-
tial appliances via conditional risk-at-value,’’ IEEE Trans. Smart Grid,
vol. 5, no. 3, pp. 1282–1291, May 2014.

[139] K. Premkumar and B. V. Manikandan, ‘‘Fuzzy PID supervised online
ANFIS based speed controller for brushlessDCmotor,’’Neurocomputing,
vol. 157, pp. 76–90, Jun. 2015.

[140] D. Shahgoshtasbi and M. M. Jamshidi, ‘‘A new intelligent neuro–fuzzy
paradigm for energy-efficient homes,’’ IEEE Syst. J., vol. 8, no. 2,
pp. 664–673, Jun. 2014.

[141] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2014.

[142] J. R. Vázquez-Canteli and Z. Nagy, ‘‘Reinforcement learning for demand
response: A review of algorithms and modeling techniques,’’ Appl.
Energy, vol. 235, pp. 1072–1089, Feb. 2019.

[143] M. C. Mozer, ‘‘The neural network house: An environment that
adapts to its inhabitants,’’ Assoc. Advancement Artif. Intell., Menlo
Park, CA, USA, Tech. Rep. SS-98-02, 1998. [Online]. Available:
https://www.aaai.org/Papers/Symposia/Spring/1998/SS-98-02/SS98-02-
017.pdf

[144] D. O’Neill, M. Levorato, A. Goldsmith, and U. Mitra, ‘‘Residential
demand response using reinforcement learning,’’ in Proc. 1st IEEE
Int. Conf. Smart Grid Commun., Gaithersburg, MD, USA, Oct. 2010,
pp. 409–414.

[145] Z. Wen, D. O’Neill, and H. Maei, ‘‘Optimal demand response using
device-based reinforcement learning,’’ IEEE Trans. Smart Grid, vol. 6,
no. 5, pp. 2312–2324, Sep. 2015.

[146] Y. Liang, L. He, X. Cao, and Z.-J. Shen, ‘‘Stochastic control for smart
grid users with flexible demand,’’ IEEE Trans. Smart Grid, vol. 4, no. 4,
pp. 2296–2308, Dec. 2013.

[147] A. T. Kaliappan, S. Sathiakumar, and N. Parameswaran, ‘‘Flexible
power consumption management using Q learning techniques in a smart
home,’’ in Proc. IEEE Conf. Clean Energy Technol. (CEAT), Lankgkawi,
Malaysia, Nov. 2013, pp. 342–347.

[148] Y. Liu, C. Yuen, N. Ul Hassan, S. Huang, R. Yu, and S. Xie, ‘‘Electricity
cost minimization for a microgrid with distributed energy resource under
different information availability,’’ IEEE Trans. Ind. Electron., vol. 62,
no. 4, pp. 2571–2583, Apr. 2015.

[149] A. Sheikhi, M. Rayati, and A. M. Ranjbar, ‘‘Dynamic load management
for a residential customer; reinforcement learning approach,’’ Sustain.
Cities Soc., vol. 24, pp. 42–51, Jul. 2016.

USMAN ZAFAR received the bachelor’s degree
in electronics engineering from NUST, Islamabad,
in 2010, and the master’s degree in computer
science from LUMS, Pakistan, in 2016. He cur-
rently works as a Research Associate at the Qatar
Environment and Energy Research Institute. His
research experience has revolved around apply-
ing deep learning algorithms to various domains.
More recently, his work concentrates on applying
AI algorithms to advanced metering infrastructure

networks and home energy management systems.

VOLUME 8, 2020 119285



U. Zafar et al.: HEMS Concepts, Configurations, and Technologies for the Smart Grid

SERTAC BAYHAN (Senior Member, IEEE) grad-
uated from Gazi University, as a Valedictorian.
He received the M.Sc. and Ph.D. degrees in elec-
trical engineering from Gazi University, Ankara,
Turkey, in 2008 and 2012, respectively.

In 2008, he joined the Electronics and Automa-
tion Department, Gazi University, as a Lecturer,
where he was promoted to Associate Professor,
in 2017. From 2014 to 2018, he also worked as
an Associate Research Scientist at Texas A&M

University at Qatar. He is currently a Senior Scientist at the Qatar Envi-
ronment and Energy Research Institute (QEERI), where he leads several
national and international projects. His research interests include the areas
of advanced control of PV systems, microgrids, EV integration, and smart
grid applications. He has authored more than 150 high-impact journal and
conference papers. He is the coauthor of two books and four book chapters.
He was awarded Research Fellow Excellence Award from Texas A&M
University at Qatar, in 2018. He was a recipient of the Best Presentation
Recognitions at the 41st and 42nd Annual Conferences of the IEEE Industrial
Electronics Society, in 2015 and 2016, respectively. Because of the visibility
of his research, he has been elected as the Chair of IES Power Electronics
Technical Committee. He currently serves as an Associate Editor of the IEEE
TRANSACTIONS ON INDUSTRIAL ELECTRONICS, the IEEE JOURNAL OF EMERGING

AND SELECTED TOPICS IN INDUSTRIAL ELECTRONICS, and the IEEE IES Industrial
Electronics Technology News, and a Guest Editor of the IEEE TRANSACTIONS

ON INDUSTRIAL INFORMATICS.

ANTONIO SANFILIPPO received the master’s
degree from Columbia University, USA, and the
Ph.D. degree from the School of Informatics,
The University of Edinburgh, U.K. He is cur-
rently a Chief Scientist at the Qatar Environment
and Energy Research Institute (QEERI), where he
leads the Energy Management Program. Prior to
joining QEERI, he was a Chief Scientist at the
Pacific Northwest National Laboratory (PNNL),
U.S. Department of Energy (DOE), where he

was awarded the Laboratory Director’s Award for Exceptional Scientific
Achievement, in 2008. While at PNNL, he led research projects for the
Department of Homeland Security (DHS), the National Institutes of Health,
DOE, and the National Science Foundation. From 2007 to 2011, he directed
an advanced research program at PNNL, on predictive analytics focused
on security, energy, and environment applications. From 2004 to 2005,
he headed a consortium of five U.S. national laboratories that established
the Motivation and Intent thrust program at DHS and led the PNNL team
through his effort, in 2009. He has also held positions as the Research
Director in the private sector, from 2000 to 2003, a Senior Consultant at
the European Commission from 1998 to 2000, a Research Supervisor and
Group Manager at SHARP Laboratories of Europe from 1992 to 1998, and
a Research Associate at the Center for Cognitive Science, University of
Edinburgh, and the Computer Laboratory, University of Cambridge, U.K.,
from 1989 to 1992.

119286 VOLUME 8, 2020


