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ABSTRACT Spatial Crowdsourcing (SC) is a new valuable paradigm, relies on crowd workers to perform
a set of spatial-temporal tasks at specific locations. It has garnered attention in collecting and processing
social, environmental, and other spatio-temporal data by the contribution of individuals, communities and
groups of workers in the physical world. The objective of SC is to outsource a set of spatio-temporal
tasks to a set of workers, which requires the workers to be physically traveling to the tasks’ locations
in order to perform them, i.e., taking photos or collecting real time weather information at pre-specified
location. Existing solutions require crowd workers to disclose their precise locations to untrustworthy
service providers. Location updates and tracking in spatial crowdsourcing raise several privacy concerns
in that malicious parties could snoop on crowd workers’ whereabouts. Thus, the crowd workers’ privacy
could be compromised by disclosing their locations to untrusted and possibly malicious parties. This paper
provides a novel framework called Dummies’ Centroid (DCentroid), which aims at preserving location
privacy for crowd workers in SC. The framework adapts an anonymous communication technique using
a dummy based approach to generate dummy locations, i.e. decoy locations, and send their centroid
points (pseudolocations) to service providers for processing. This paper theoretically analyzes the DCentroid
framework and guarantees the crowd workers’ privacy, while preserving the functionality of SC, such as the
success rate of task assignments, worker travel distances, and system overhead. Practical experimentation
on real-world datasets shows that the DCentroid framework protects the crowd workers’ location privacy
without affecting the various performance parameters of task assignment.

INDEX TERMS DCentroid, location privacy, pseudolocation, spatial crowdsourcing.

I. INTRODUCTION
The term crowdsourcing was first coined by Jeff Howe
in 2006 in his article titled ‘‘The Rise of Crowdsourcing’’
in [1]. Since then, it has been a widely used umbrella term
and a hot topic in the field of computer science. As stated
by Jeff Howe, crowdsourcing is simply clarified as, an open
call to an undefined large group of people to take a job that
was traditionally performed by a designated agent (usually
an employee) [2]. Typically, plenty of people can easily
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participate in crowdsourcing since it happens online such
as Amazon Mechanical Turk (AMT) [3]. Those people
can complete any desired task posted by corporations or
individuals based on their own knowledge, usually for a small
amount of money.

With the significant growth of crowdsourcing, the area
of Spatial Crowdsourcing (SC) has recently been a pop-
ular research topic. SC is a platform for performing
spatial-temporal tasks that requires crowd workers to phys-
ically travel to the locations of the tasks to perform them.
Typically, the tasks submitted by a requester to a centralized
spatial crowdsourcing server (SC-server) that act as a
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speculator between the requester and the crowd workers.
The SC-server matches and distributes the tasks to interested
crowd workers based on their locations and eligibility of the
execution. These tasks could be private transportation, traffic
information, weather condition, storm updates, or any other
tasks at a specific location during a specific period of time.

In typical spatial crowdsourcing tasks, participants con-
tribute to collect data and perform tasks that were requested
by the requesters then submit the results to the crowdsourcing
platform server. Crowd workers must present at the location
of the given tasks in order to perform them and collect the data
conventionally using their mobile devices. To this end, when
considering a scenario for which requesters are interested in
collecting pictures and videos after a natural disaster from its
location. With spatial crowdsourcing, the requesters post a
task query to a spatial crowdsourcing platform (i.e., service
provider) to obtain efficient and faster results instead of
traveling to the location. Accordingly, the service provider
appeals the mission to the nearby crowd workers in the
district area of the disaster to be accomplished. Thereafter,
the results are sent back to the requester once it is performed
by the participants. Consequently, crowdsourcing has become
a valuable tool for collecting data and propagating instant
information faster to the requesters.

With the ever-growing tasks and the anonymity of workers
in the field of spatial crowdsourcing, the security and privacy
concerns have increased, especially when the tasks contain
sensitive information such as locations. For instance, the ser-
vice providers require crowd workers’ precise locations in
order to efficaciously match them to tasks. Hence, revealing
individuals’ locations may lead to a wide spectrum of
attacks such as stalking, physical surveillance, identity theft,
and inferring sensitive information (e,g., individual’s health
status, alternative lifestyles, activities, political affiliation,
relationships and religion) [4], [5]. In addition, many of
spatial crowdsourcing servers may not be trusted and leak
their data to malicious attackers, which cause crowd workers
to not accept participating in spatial crowdsourcing tasks.
Moreover, certain attributes of spatial crowdsourcing tasks
make it more vulnerable to some types of spatial attacks [6].
Consequently, to ensure that crowd workers engage and
contribute in spatial crowdsourcing, ensuring location privacy
is substantial.

This paper identifies the location privacy of crowd workers
as a uniquely challenge in spatial crowdsourcing. The existing
SC-servers require crowd workers to disclose their precise
locations in order to efficaciously assign them the tasks
and avoid long travel distance. A knowledge of location
information of the crowd workers may be utilized to perform
several location privacy attacks, which are demonstrated
in [7], where adversaries can disclose the crowd workers’
private information. In fact, many of the SC-servers may not
be trusted and reveal crowd workers location information [8].
Hence, crowd workers hesitate to participate in spatial
crowdsourcing tasks since their location information may
disclosed by untrusted SC-servers. Consequently, location

privacy is a critical privacy issue in SC that need to
be preserved to attract crowd workers to participate in
spatial-temporal tasks.

Therefore, this paper develops a novel framework called
Dummies’ Centroid point (DCentroid), which aims at
preserving location privacy for crowd workers in SC. More
specifically, our framework generates n dummy locations
for a crowd worker and calculates the dummies’ centroid
point to be used as a (pseudolocation) for the crowd worker,
and send it to the SC-server for task assignment. The
SC-server calculates the distance from the pseudolocation to
the task location for assignment qualification. The rationale
for generating several dummy locations is to counterbalance
any possible faulty choices of such locations. The negative
effect of faulty locations would be corrected by the remaining
properly-chosen dummy locations. In this paper, we use an n
equal to 3, which may tolerate 1 erroneous dummy location.
Nevertheless, higher values of nmay be chosen for increased
tolerance and correctness.

The remainder of the paper is organized as follows.
Section II discusses various privacy concerns and location
privacy attacks in spatial crowdsourcing. The Objectives of
the new mechanism DCentroid are presented in Section III.
Then, Section IV summarizes the related works and the loca-
tion privacy protection techniques. The introduced DCentroid
framework is presented in Section V. Section VI, presents
the location privacy mechanism. The goal and performance
metrics are explained in Section VII. Next, Section VIII
demonstrates the performance evaluation and results of
DCentroid. Finally, Section X concludes this work and
outlines the potential directions that can be followed in order
to improve this work.

FIGURE 1. Task assignment flow in spatial crowdsourcing.

II. BACKGROUND
A. SPATIAL CROWDSOURCING (SC)
There are many crowdsourcing platforms that provide
services for requesters to design and post their tasks. These
tasks can be pulled by the crowd workers or pushed to
them by the service providers to be executed [9]. Figure 1
illustrates the tasks assignment flow between the requesters
and the crowd workers. The three main parties of the spatial
crowdsourcing system are:

1) REQUESTERS
The end users who post their tasks through the crowdsourcing
services to be executed by crowd workers. They also
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determine the eligible criteria to evaluate the crowd work-
ers before they accept performing the tasks. Thereafter,
the requesters access and consult the collected data to obtain
and verify the results from the service providers after being
submitted by crowd workers. Ordinarily, requesters’ interest
is to maximize the quality of task performance.

2) CROWD WORKERS
The crowd workers who accept to accomplish the tasks that
are pushed to them by the service providers or the desired
tasks they pull to perform. Then, they return the output
data back to the servers and gain their monetary incentive
if applied in such tasks. Crowd workers are commonly
interested to maximize the exert and value they obtain from
performing tasks.

3) SERVICE PROVIDERS
Centralized Spatial Crowdsourcing servers (SC-servers) who
serve as the speculators between the requesters and the
crowd workers. The SC-servers distribute the interaction
mechanism between requesters and crowd workers. There-
fore, the SC-servers manage the tasks and distribute them
to the interested crowd workers based on their locations
and eligibility to execute the tasks. Then, they receive
the results of the executed tasks from the crowd workers.
Finally, the SC-servers send the aggregation results back to
the requesters. Generally, the third-party service providers
intention is to maximize the value obtained from using the
platform and its functionality.

B. TASKS ASSIGNMENT
In spatial crowdsourcing, there are two types of task
assignments in order to match and assign crowd workers to
tasks, according to the taxonomy in [10].

1) WORKER SELECTED TASKS (WST)
This type of task assignment known as pull mode, where
the service provider publishes all spatial tasks publicly to
crowd workers to choose the task that can be accomplished
in their neighborhood without coordinating to the service
provider [10]. Figure 2 shows an example ofWST that posted

FIGURE 2. Example of distributed pull mode tasks in Field Agent
platform. Crowd workers are able to browse all requested tasks that are
distributed around their locations.

FIGURE 3. An Example of a pull mode task in Field Agent platform. All
interested crowd workers are able to see the posted task and have the
choice to accept it. Otherwise, the task appears until the time expires.

around a crowd worker in a crowdsourcing platform known
as Field Agent [11]. Figure 3 shows the description of a
particular task demand to be performed by crowdworkers and
the payment and time allowed to complete the task.

The advantage of WST mode is that crowd workers report
their locations only when they choose to perform their desired
tasks. However, the disadvantage of this mode is that some
spatial tasks may never be selected since the service provider
does not have any control over task allocation. Moreover,
since crowd workers choose their desired tasks based on their
own objectives, which may not result in an inclusive optimal
tasks assignment.

2) SERVER ASSIGNED TASKS (SAT)
This type of tasking is known as pushmode, where the service
provider assigns the tasks to the nearby crowd workers based
on their locations and the tasks’ requirements.

FIGURE 4. An example of a push mode tasking in DoorDash platform.
Based on the crowd worker’s exact location, the notification is sent to the
crowd worker to accept the requested task within a limited time frame.

Figure 4 shows an example of a SAT tasking, where the
SC-server (DoorDash) pushes the task request to a nearby
crowd worker. The crowd worker then can accept the task
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based on the stated motivation. Otherwise, the SC-server
pushes the task to the next available crowd worker.

The advantage of this mode is that the SC-server can
assign tasks to the closest crowd workers and maximize the
overall tasks assignment. However, the disadvantage of this
mode is that crowd workers are required to update their
locations to the service provider continuously for effective
tasks assignment. Figure 5 observes an example of tracking
a crowd worker’s exact location to be able to participate
in performing altruism and volunteer’s task such as in
PulsePoint’s tasks [12].

FIGURE 5. An example of a SC-server (PulsePoint) that keeps tracking of
a crowd worker’s exact location in order to be assigned tasks.

C. LOCATION PRIVACY
Location tracking in spatial crowdsourcing increases numer-
ous privacy concerns about who can snoop into crowd
workers whereabouts. The existing SC-servers require crowd
workers to disclose their precise locations in order to
efficaciously assign them the tasks and avoid long travel
distance. In fact, many of the SC-servers may not be trusted
and disclose crowd workers location information [8].

Disclosing individual’s locations may lead to critical
privacy implications such as stalking, physical surveillance,
identity theft, and inferring sensitive information (e,g., indi-
vidual’s health status, alternative lifestyles, activities, polit-
ical affiliation, relationships, and religion) [4]. Krumm [13]
shows in his experiments that it is possible to estimate home
location of a user within a range of 60meters by only utilizing
the last location information used that day. Sharing more
location causes the situation more serious and make it easier
to detect private locations. Consequently, location privacy is
a critical privacy issue in SC that needs to be preserved to
attract crowd workers to participate in spatial-temporal tasks.

III. DCentroid OBJECTIVES
DCentroid adopts an anonymous communication technique
using the dummy based technique that generates pseudoloca-
tions, which are sent to the SC-server while keeping the actual
location hidden from the SC-server. To protect the location
privacy of crowd workers using dummy based technique,
it is substantial to (i) avoid the situation that adversaries

can guess the real location from the dummies and (ii) avoid
map matching attack, where the adversaries can remove
the locations that crowd workers are not expected to be in
(i.e., lakes, mountains, and forests) in order to disclose the
real location. However, generating dummy locations that can
satisfy the above requirements is challenging in spatial crowd
sourcing, since the real location is required to assign tasks.
To overcome these challenges, this research designed and
implemented a novel scheme that generates dummy locations
while the real locations are kept hidden from the SC-server,
and guaranteed the success of tasks assignment performance
metrics. This is the first dummy generation method that dose
not sent the real locations of the crowd workers along with
the generated dummy locations to the SC-server.

IV. RELATED WORK
Numerous recent research addressed the topic of location
privacy in spatial crowdsourcing such as [14]–[16], [17],
[18]–[20]. Location Privacy-preserving in pull mode has
been studied in term of participatory sensing in [21]–[24].
A recent survey provides an overview of location privacy
attacks in the pull mode and push mode of tasking in [7].
The latest survey that focuses on this topic can be found
in [6]. Specifically, Zhang et al. [25] proposes a crowdworker
coordination framework to protect crowd workers privacy
and ensure the quality of the collected information. In their
framework, crowd workers coordinate with each other to
exchange their locations before submitting the results to the
service provider. Consequently, the actual location of each
crowdworker cannot be disclosed since all sensitive locations
could be evenly visited by any other crowd workers.

Several approaches so far have been proposed to preserve
crowd workers location privacy in SC push mode [15],
[17], [26]. To et al. [19] proposes the first framework
based on differential privacy for protecting crowd workers
location privacy in SAT mode. In the framework, crowd
workers subscribe to a Cellular Service Provider (CSP) that
has access to the workers’ locations. However, due to the
restrictions of the customer privacy protection law, the CSP
does not have the right to reveal individuals’ locations to third
parties [26]. Moreover, their framework requires an online
trusted-third-party (TTP) to assign tasks, which incurs in
unnecessary task assignment delays [20]. In addition, TTP
has to issue new statistical location data when crowd workers
update their locations, which causes high communication
overheads [27]. A novel solution based on anonymous
credentials have been proposed to preserve crowd workers
location privacy [28]. Nevertheless, the anonymous technique
does not ensure crowd workers locations privacy since it
could be inferred by analyzing the reported data and the
location’s tracing attack [18].

Pournajaf et al. [6] proposed another privacy preserving
approach that uses a cloacked locations technique. In their
approach, crowd workers can cloak their location using either
distributed or centralized mechanisms based on other crowd
workers locations. Unfortunately, the adversaries can infer
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the crowd worker’s locations if the crowd worker lactated
in a sparsely populated area [7]. Another differential k-
anonymity-based has been proposed for location privacy [29].
In their technique, they combine k-anonymity and differential
privacy-preserving to achieve the anonymity of crowd
workers. However, in k-anonymity, an adversary can guess
the location of the crowd worker with probability no higher
than 1/k [30].

V. DCentroid: LOCATION PRIVACY PROTECTION
TECHNIQUE
DCentroid is a new introduced approach that is motivated
by the dummy based technique to achieve location privacy
for crowd workers in SC [31]. The presented privacy model
takes into account the required travel distance from crowd
workers to tasks, as well as keeping the location hidden
from the SC-server. The duality of this approach makes it
more appropriate in spatial crowdsourcing than other purely
techniques. This section presents the introduced system
model and its efficient algorithm. The major notations used
throughout this section present in Table 1.

TABLE 1. Summary of notations.

A. DCentroid SYSTEM MODEL
The presented model intends to hide the real location of
a crowd worker by sending a pseudolocation, the centroid
points of the dummy locations, to the SC-server instead
of sending the real location; whereas the tasks will be
assigned successfully based on the pseudolocations. Figure 6
demonstrates the overall procedure of the introduced system
model, which operates as follows:

1) The crowd workers generate three dummy locations
(A, B, and C) around their real locations.

2) The crowd workers calculate the centroid points of
the generated three dummies and considers it as their
private pseudolocations.

3) The crowd workers send only the generated pseudolo-
cations to the SC-server.

4) The SC-server utilizes the pseudolocations to calculate
the estimated distance from the crowd workers to tasks

FIGURE 6. System model.

using the standard Euclidean distance ŵ.l i,j as below.

ŵ.l i,j= Pt (pi, tj) (1)

where Pt is the Euclidean distance between the
locations of the centroid point pi, and tj is the targeted
tasks’ locations.

5) The SC-server assigns the tasks to crowdworkers based
on the calculated estimated distance ŵ.l i,j.

In this manner, the privacy of the crowd workers’
locations are preserved since the SC-server is dealing with
pseudolocations and the real locations are kept hidden from
adversaries.

B. DUMMY GENERATION MODEL
Generating dummy locations randomly de-emphasize the
privacy requirements, where the adversary can quietly
distinguish the real locations from the dummy locations [32].
To adopt the dummy generation based in spatial crowdsourc-
ing and to satisfy the requirements of the anonymous area
of the real locations, this research introduces a novel dummy
generation algorithm, called Direct-Dummy algorithm. This
algorithm prevents the downplay by employing sixteen
direction to constrains and vary all the possible dummies to
specific direction, each time crowd workers want to update
their locations, as shown in Figure 7. To the best of our
knowledge, this is the first dummy based technique that does
not send the real locations along with the dummy locations.

C. DIRECT-DUMMY ALGORITHM
The Direct-Dummy algorithm runs locally on the crowd
workers’ devices to have access to their exact locations
without a third party involvement. Algorithm 1 illustrates
the pseudocode for generating the Direct-Dummy algorithm.
DCentroid constrains and varies the random locations pick,
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FIGURE 7. Direct-Dummy based.

the algorithm has a custom Direct-Dummy set of array that
contains multiple point (x, y) coordinates that are distributed
in the sixteen directions. The algorithm starts by initializing
all elements of its dummies to the position of (xi, yi), the exact
real location of the crowd worker. Each direction has one
to three positions, where each dummy randomly selects one
position from the set to allocate its location. The algorithm
then removes the selected point from the set to avoid duplicate
selection of the same location.

D. DIRECT-DUMMY DISTANCE
To guarantee the crowd worker’s location privacy, the dis-
tances between the real location and its dummy locations are
specified as shown in Equation 2:

dist(w.li,w.da) >
1
2
dist(w.da,w.db) 6

2
3
dist(w.db,w.dc)

(2)

where w.li is the real location of a crowd worker and w.da,
w.db, and w.dc are the generated dummy locations as shown
in Figure 8.
In addition, the minimum distance from the real location

to the dummy locations Dmindist is set to be one Direct-Dummy
Unit Size (DUS) as follows:

Dmindist = mindist (w.li,w.da−c) = DUS (3)

To achieve the travel distance metrics, the maximum
dummy location distance is defined to not exceed more than
three DUSs as follows:

Dmaxdist = maxdist (w.li,w.da−c) = 3× DUS (4)

Hence, the pseudolocation of a crowd worker must be
within the maximum distance between the real location and
generated random dummy locations, as pseudolocation <
Dmaxdist . Note that the DUS corresponds to the level of the
crowd workers’ privacy. Thus, the DUS range is set based

Algorithm 1 Direct-Dummy Algorithm for Generating
Dummy Locations
Input: Crowd worker exact real location w.li = (xi, yi)
Output: Dummy locations w.di = {w.da,w.db,w.dc}
1: All elemnts of w.di, are initialized to (xi, yi) position.
2: Direct-Dummy=

[(x + 0, y+ 1), (x + 0, y+ 2), (x + 0, y+ 3) N
(x + 1, y+ 2) NNE
(x + 1, y+ 1), (x + 2, y+ 2) NE
(x + 1, y+ 2) ENE
(x + 1, y+ 0), (x + 2, y+ 0), (x + 3, y+ 0) E
(x + 2, y− 1) ESE
(x + 0, y− 1), (x + 2, y− 2) SE
(x + 1, y− 2) SSE
(x + 0, y− 1), (x + 0, y− 2), (x + 0, y− 3) S
(x − 1, y− 2) SSW
(x − 1, y− 1), (x − 2, y− 2) SW
(x − 2, y− 1) WSW
(x − 1, y− 0), (x − 2, y− 0), (x − 3, y− 0)W
(x − 2, y+ 1) WNW
(x − 1, y+ 1), (x − 2, y+ 2) NW
(x − 1, y+ 2) NNW]

3: for each w.d in w.di do
4: r = RandomSelect from (Direct-Dummy)
5: w.d ← r
6: Direct-Dummy.remove(r)
7: end for
8: return w.da← (xa, ya), w.db← (xb, yb),
w.dc← (xc, yc)

FIGURE 8. Maximum and minimum distance between a real location and
its dummy locations.

on the desired Location Privacy radius (LPr ) area, where
LPr = (w.li, pi). Figure 9 shows the obtained crowd worker’s
LPr when the DUS = 335, which means that the maximum
possible distance of the generated dummy locations are
within radius 1.05 km to the real location of the crowdworker,
and all dummy locations are located in the maximum possible
distance region.
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FIGURE 9. An example of the obtained crowd worker’s LPr when the
DUS = 335.

VI. LOCATION PRIVACY MECHANISM
The essential purpose of this work is to protect the
crowd workers’ locations from the untrusted SC-Server and
guarantees that their locations are hidden to preserve their
privacy.

Moreover, to ensure the privacy, DCentroid’s mechanism
dose not require any third parties involvement. However,
the SC-Server may enable the communications between
crowd workers and the task requesters once the crowd work-
ers are assigned the tasks, where the crowd workers could
directly disclose their information to the task requesters. This
case is outside this work’s scope since the crowdworkers have
the right to disclose their information to the task requesters.
To protect their information after the task is assigned, existing
techniques and identity protection can be applied such as
pseudonyms and anonymous methods.

Since crowd workers have to report their locations to the
SC-servers to engage in the task’s assignment procedure,
the privacy of their location is exposed. On the other hand,
existing location privacy-preserving mechanisms are limited
to be applied in crowdsourcing during task assignment.
Therefore, guaranteeing the privacy to the crowd workers is
sufficient motivation to engage them in crowdsourcing task
assignment.

A. LOCATION PRIVACY ANALYSIS
DCentroid ensures the privacy protections for crowd workers
by preventing any possibility of guessing the exact real
locations from the adversary when having the pseudoloca-
tion’s information, and even if the construction algorithm
of the generating dummy locations is known. Assuming the
adversaries know the generation algorithm of the generated
pseudolocations of the crowd workers, the way the real
locations appear on their sides are as shown in Figure 10
within the gray area. Due to the random generation of the
pseudolocations, the adversaries received the pseudoloca-
tions of the crowd workers and their assumptions of the real
locations would be within the maximum Location Privacy

FIGURE 10. Location privacy region.

radius (LPr ) of the generation dummies. Thus, the probability
of estimating the real location is extremely low.

Therefore, the expected location privacy performance
of DCentroid can be measured in term of the Expected
Estimation Error (EE) of ‘‘rational’’ Bayesian adversary
presented in [33], called Location Privacy (LP). Table 2
summarizes the notations introduced throughout this section.

Formally, LP is computed as:

LP=
∑

w.l,ŵ.l,w.l′

ψ(w.l)f (w.l ′|w.l)h(ŵ.l|w.l ′)d((ŵ.l,w.l) (5)

Assuming that the adversary has access to the crowd
worker’s profile, and use this side knowledge to guess the real
locations, as expressed in terms of prior location information.
The adversary’s goal is to use such prior location information,
and combine it with the provided information by the privacy
mechanism to infer the real locations of the crowd workers.
Accordingly, the probability of error between the estimated
location ŵ.l and the real location w.l, if the crowd worker’s
goal is to hides the real location would be:

d(ŵ.l,w.l) =

{
0, if ŵ.l = w.l
1, otherwise

(6)

In this term, any location that is different from the real
location of the crowd worker produces in a high level of LP.
On the other hand, if the crowd worker’ location privacy is to
minimize the distance between the real location w.l and the
estimated location ŵ.l, the distortion function would be the
squared-error distortion as follow:

d(ŵ.l,w.l) = (ŵ.l − w.l)2 (7)

In particular, DCentroid can protect crowd workers from
the following location privacy attacks mentioned in [7].
• Location distribution attacks: This framework does
not rely on other crowd workers when generating the
pseudolocations. Hence, adversaries cannot infer the
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TABLE 2. Summary of notations.

real locations of the crowd workers if they are not
distributed homogeneously.

• Map matching attacks: The generated pseudolocations
of the crowd workers can be located at any location
points around their real locations. Hence, the adversary
does not have a specific region of the exact location of
a crowd worker. Therefore, eliminating the areas that
the crowd worker is unexpected to be in, does not help
the adversary to assume the exact location of the crowd
worker.

• Task tracking attacks: This attack occurs when a
crowd worker is requested to perform more than one
continuous task, and cloaked with different crowd
workers in each task while the continuous tasks are still
running. The adversary can identify the crowd worker’s
location by linking the respective tasks locations to the
respective crowd worker. However, DCentroid prevents
such an attack since crowd workers are not cloaked with
each other in such a framework.

• Location trajectory attacks: In order to prevent this
attack in DCentroid approach, crowd workers update the
SC-server with their generated pseudolocations instead
of their exact locations. For each update, crowd workers
generate the pseudolocations with varying directions.

• Maximummovement boundary attacks: The adversaries
are unable to link two consecutive pseudolocations to the
crowd workers exact locations, consecutively. Hence,
knowing only the maximum possible movement speed
of the crowd workers is not efficacious way for the
adversaries to launch such attacks.

• Location inference attacks: Sharing crowd workers’
earlier exact locations could help the adversaries to
deduce their private and sensitive locations by knowing
their paths. However, DCentroid approach prevent
crowd workers from such attacks by updating their
pseudolocations to the SC-server and varying directions
on each generations of the dummies locations. Thus,
the crowd workers’ paths are hidden from the SC-server.

B. LOCATIONS PRIVACY FOR STATIC CROWD WORKERS
Since the Spatial Crowdsourcing server (SC-server) has to
keep track of crowd workers’ locations to assign them tasks,

they have to send and update their locations continuously
to SC-server to request task assignment. Hence, with the
introduced DCentroid technique, the history of crowd work-
ers’ dummy locations and pseudolocation can be exploited
to anticipate their real locations if the crowd workers send
numerous pseudolocations related to the identical static
locations (e.g., home and work).

This is considerably a challenging problem for the static
crowd workers in the DCentroid system model. However,
to overcome this issue, crowd workers’ pseudolocations
remain the same as in the previous instance when generating
pseudolocations in regards to the same location. DCentroid
system obtains the exact dummy locations to the previous
dummies to get the exact pseudolocations when updating
the same locations to the SC-server. In this manner, crowd
workers will not send to the SC-server more than one
pseudolocations related to their static locations and their
background knowledge will be limited to the SC-server.

C. LOCATIONS PRIVACY IN SPARSE AREA
Most of the exciting location privacy techniques relay
on location-cloaking techniques, where they customize a
cloaking region for users and distinguish their identity with
each others. However, such a technique dose not protect
crowd workers’ locations privacy if they are located in a
sparsely populated area. Location distribution attacks occurs
when crowd workers are not distributed homogeneously in a
sparsely populated area [7]. Thus, DCentroid approach takes
this limitation into consideration. Applying the designed
approach in a sparsely populated area fulfills the locations
privacy for crowd workers, since the generation of their
pseudolocations do not relay on any other crowd workers’
locations or third-parties involvements.

D. LOCATION PRIVACY TRADE-OFF
The DCentroid approach is dealing with pseudolocations
of crowd workers, which may cause Travel Distance Error
(TDE). The TDE may affect both the SC-server and the
crowd workers. The effect can be an advantage for the
crowd workers and disadvantage for the SC-server, and vice
versa. Moreover, the crowd workers may be rewarded more
than they deserve if they are assigned to tasks of a lesser
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distance. Alternatively, crowd workers may be assigned to
tasks with distances more than its promised benefit. For
instance, a crowd worker is assigned to a task where the
actual distance from the real location to the task is 600meters,
and the distance from the pseudolocation is 900 meters as
shown in Figure 11. Thus, the crowd worker benefits from
the SC-server cost of 300 meters more than the actual cost.

FIGURE 11. An example of server impact due to TDE.

FIGURE 12. An example of crowd worker impact due to TDE.

On the other hand, a crowd worker may be assigned
to a task where the actual distance from the real location
to the task is 600 meters, and the distance from the
pseudolocation is 500 meters as shown in Figure 12. In this
case, the crowd worker losses a travel cost of 100 meters
from the actual cost. However, the variation of DTE does
not affect the privacy level of the crowd workers. In other
words, less TDE does not mean less privacy as shown
in Figure 13.
The second effect is from the task assignment perspective.

The crowd workers may be notified of task assignments
where the actual distance from the task location is undeter-
mined, whereas nearer crowd workers are not notified. In this
case, the tasks may not be accepted. The challenge is to

FIGURE 13. An example of a non-impacted task from TDE.

maintain the TDE as low as possible, which can be defined
as:

TDE = |(w.li, tj)− (pi, tj)| (8)

where w.li,j is the distance between the real locations of the
crowd workers and the tasks, and pi,j is the distance between
the pseudolocation of the crowd workers and the tasks.

VII. GOALS AND PERFORMANCE METRICS
Due to crowd workers having to physically visit the task
locations, travel distance is critical in SC. The SC-server
requires the crowd workers exact locations to calculate the
travel distance to the targeted task locations. Accordingly,
the goal of the DCentroid system is to substitute the exact
locations of crowd workers with alternative locations to be
used by the SC-server to calculate the estimation travel
distance to tasks while preserving crowd workers location
privacy.

To evaluate DCentroid framework and demonstrate its
effectiveness, this research focuses on the following perfor-
mance metrics adopted from a similar approach [18]:

1) ASSIGNMENT SUCCESS RATE (ASR)
Since the DCentroid system is dealing with imprecise
locations of crowd workers and sending their estimation
locations to a SC-server, the SC-server may incorrectly assign
a crowdworker to a task that is too far from the task’s location
and the crowd worker can reject it. On the other hand, a closer
crowd worker does not receive the request. The measurement
of ASR is the ratio of the accepted tasks by crowd workers
to the total number of task requests. The challenge here is
to keep ASR close to 100% by performing all or most of the
requested tasks.

2) WORKER TRAVEL DISTANCE (WTD)
Without the precise locations of crowdworkers, the SC-server
is not capable to accurately evaluate the distance from crowd
workers to tasks. Thus, crowd workers may have to travel
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longer distance to their assigned tasks. The challenge is to
minimize the WTD, even when the real locations of crowd
workers are hidden from the SC-server.

3) SYSTEM OVERHEAD
Assigning the tasks based on imprecise locations raises
task assignment complexity, which demonstrates scalability
problems. The considerable metric to measure the system
overhead is the average number of notified crowd workers
(ANW). ANW impacts the computation overhead of task
assignment, which relies on how many crowd workers need
to be notified of a task assignment request.

VIII. PERFORMANCE EVALUATION
The DCentroid scheme determines an effective location
privacy protection mechanism for the crowd workers in
SC. The optimal DCentroid is designed under the con-
straint of ensuring a task’s assignment performance metrics.
This section evaluates the relation between the introduced
location privacy approach (DCentroid), and a non-privacy
approach that has access to crowd workers real locations
(GroundTruth), to present the promised work’s optimization.
First, it presents the experimental methodology followed
by the performance evaluation in spatial tasks assignment
and then discusses the results under various experimental
datasets.

A. EXPERIMENTAL SETUP
This research performs a set of experiments on real-world
data to evaluate the introduced framework’s performance.
In fact, this evaluation adapts a similar approach to demon-
strate the effectiveness of the introduced location privacy
method under the varyingmetrics [18]. The experiments were
performed by varying the MTD with the other parameters
and run on an Intel Core i7-7700 CPU @ 3.60GHz with
32 GB RAM. The algorithms were implemented using the
open source libraries in Python.

B. REAL DATASET
A real-world dataset that was collected from a sparsely
populated area, and another dataset that was collected from
a densely populated area have been used to evaluate the
performance of DCentroid scheme. The first real-world
dataset was collected from Yelp,1 a popular location-based
social network. The dataset corresponds to a collection
of user reviews about restaurants in the greater Phoenix,
Arizona area (Ye.-PHO). It includes 70,817 users, locations
of 15,583 restaurants, and 11,434 check-ins at different
locations [34]. In this experiment, the Yelp users were
assumed to be the crowd workers with their check-ins as
their real locations, and the restaurants are considered as the
targeted tasks locations.

The second real-world dataset is based on data collected
from another popular location-based social network called

1https://www.yelp.com/dataset/challenge

Foursquare.2 The dataset contains 1,083 users, 38,333 loca-
tions, and 227,428 check-ins at various locations in NewYork
City from April 2012 to February 2013 (FO.-NYC) [35]. The
users were assumed to be the crowd workers and their last
check-ins were considered the real locations. The locations
associated with the check-in were considered as the tasks
locations.

C. DATASET SETTINGS
To simulate crowdsourcing tasks assignment in the experi-
ment, the Yelp dataset uniformly sampled 66,000 real loca-
tions for crowd workers and 15,000 restaurants to emulate
the tasks’ locations. And total numbers of 7,935 check-ins
were randomly sampled to simulate tasks and 34,925 real
locations for crowd workers from Foursquare dataset. The
experiment parameters are listed in Table 3. For each dataset
independently, the total tasks were divided into 20% tasks for
each assignment rounds, and the crowd workers’ Maximum
Travel Distance (MTD) ∈ {1, 2, 4, 6, 8, 10} in km. The
travel distance between crowd workers and tasks’ locations
is proportional to their Euclidean distances.

D. DIRECT-DUMMY UNIT SIZE SETTINGS
To determine the Direct-Dummy Unit Size (DUS), all the
crowd workers’ locations were generated by their dummy
locations to obtain the pseudolocations with four various
DUS generations. For each generation, the DUS ∈ {110,
220, 330, 440} in meters, independently. The distributions of
crowd workers’ pseudolocations in the first two generations
110 and 220, did not obtain the best locations privacy
destinations for the crowd workers, since the majority of the
generated pseudolocations were distributed near to the real
locations, as shown in Figure 14 and Figure 15, respectively.
On the other hand, the DUS (330 meters) generation
performed satisfied distribution, as shown in Figure 16, and
was nominated for the pseudolocations generation in this
experiment.

FIGURE 14. Distributions of pseudolocations when DUS = 110 meters.

E. DISTANCE ESTIMATION
As mentioned earlier, the actual locations of crowd
workers are hidden from the SC-server in this work.

2https://foursquare.com/
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TABLE 3. Experiment parameters.

FIGURE 15. Distributions of pseudolocations when DUS = 220 meters.

FIGURE 16. Distributions of pseudolocations when DUS = 330 meters.

Therefore, the SC-server is required to deal with the locations
of the crowd workers uncertainty to estimate the travel
distances. Thus, this work introduces a simple method to
assume the expected travel distances between crowdworkers’
and tasks as follows. Considering that the positions of the
three dummies are in a triangle shape (ABC) as illustrated
in Figure 7, the average of the three vertices can be utilized
to obtain pseudolocations, the centriod point of the dummy
locations, as follows:

pi =


n∑
i=1

xw.di

n
,

n∑
i=1

yw.di

n

 (9)

where x and y represent the coordinate difference between the
dummy locations w.da−c ∈ ri.

Taking into consideration the pseudolocations pi are
sufficient to estimate the distance from the crowd workers wi
to the task locations tj, which is the Euclidean distance from
the pseudolocations pi to the task location tj.

IX. EXPERIMENTAL RESULTS
A. OVERVIEW OF RESULTS
DCentroid scheme substitutes the crowd workers real loca-
tions to pseudolocations during the assignment simulation.
Hence, the most significant factor that might impact the
task assignment performance metrics is the travel distance to
the tasks, which may cause the crowd workers to reject the
tasks. Therefore, to assign tasks to the crowd workers in the
simulation, the available crowd workers are notified for task
assignment based on first come first serve, where they accept
or reject the tasks based on their Maximum Travel Distance
(MTD) to the tasks.

To evaluate the experimental results, the two simulated task
assignments (Ye.-PHO and Fo.-NYC) are compared with a
non-privacy approach that has access to the crowd workers’
exact locations (GroundTruth). All reported metrics are based
on the average of five task assignments rounds for various
parameters in each experiment of a dataset. The overall results
confirm that the DCentroid scheme does not affect all the
task assignment metrics by estimating the distance between
crowd workers and tasks, especially, when the travel distance
between the crowd workers and tasks increased. The most
important factors in SC are the ASR and the WTD, which
are not significantly affected by the introduced DCentroid
location privacy approach comparing to GroundTruth.

B. DCentroid PRIVACY TRADE-OFF
Figure 17 shows the TDE compared with the GroudTruth
approach, which obtains zero TDE . This is expected since
it has access to the real location data of crowd workers.
However, the results show that the TDE drops in DCentroid
scheme as the MTD increases between crowd workers and
tasks. Moreover, the results show that there is a slight
difference between the TDE in Ye.-PHO and Fo.-NYC. This
is because the Fo.-NYC dataset were collected from a densely
populated area, and there are more crowd workers near to
each other. Thus, the DCentroid approach performs better for
longer distance task assignments.

C. DETAILS OF RESULTS
Below are the details of each of the performance metrics
illustrated in Section VII. Each metric, compared with a
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FIGURE 17. Location privacy trade-off.

GroudTruth approach that has access to the real locations of
the crowd workers by varying theMTD of the crowd workers
in Ye.-PHO andFo.-NYC task assignments. In particular, ASR
reports the average number of assigned tasks andWTD states
the average travel distance across the assigned tasks. The
system overhead was calculated as the average number of
candidate crowd workers per task. All reported metrics are
based on the average of five task assignments rounds for
various parameters in each experiment as follows:

1) ASSIGNMENT SUCCESS RATE (ASR)
Figure 18 shows the ASR results when varying the MTD of
crowd workers, which obtains a slight difference between
DCentroid scheme and the GroudTruth, when the crowd
workers’ MTD decreased. It shows that DCentroid performs
higher ASR in Ye.-PHO and Fo.-NYC.

FIGURE 18. Average ASR over DUS = 330 meters.

This is because the crowd workers might be assigned to
tasks in which the actual distances are less than the estimated
distances, which yields a higher number of accepted tasks.
On the other hand, when increasing the MTD of the crowd
workers, the ASR is not affected by the DCentroid privacy
scheme in both cities. This is because the TDE decreased
when increasing the MTD of crowd workers. To this end,

the evaluation of the two datasets indicates that the ASR is
not impacted greatly by the introduced scheme, which is
perhaps one of the most significant factors of task assignment
in spatial crowdsourcing.

2) WORKER TRAVEL DISTANCE (WTD)
Figure 19 shows the WTD results in various MTD between
crowd workers and tasks. The GroudTruth: Ye.-PHO and
GroudTruth: Fo.-NYC achieve lower travel costs, which is
predictable as they have access to the real locations of crowd
workers. It is observed that DCentroid and GroudTruth for
both cities obtain similar travel cost when increasing the
MTD. Note that the travel cost in Fo.-NYC is decreases in the
long travel distance comparing to the travel cost in Ye.-PHO.
This is due to the significant difference in density area where
the tasks distributions do not require high travel cost in the
densely populated area Fo.-NYC.

FIGURE 19. Average WTD over DUS = 330 meters.

3) SYSTEM OVERHEAD (ANW)
Figure 20 shows the results of the system overhead when
varying the crowd workers’ MTD. It can be noticed that
the system overhead of the introduced privacy approach
is slightly higher than the GroudTruth. This is expected,
because DCentroid may notify crowd workers of tasks that
are not reachable to themwhere they reject the requests, since
the distance between crowd workers to tasks are estimated
in the privacy approach. However, this overhead occurs only
with less MTD of crowd workers to tasks, for both the
introduced privacy approach and the GroudTruth.

The reason for this is that most of the requested task
assignments are higher than crowd workers MTD, which
forces the system to notifymore crowdworkers to be assigned
the tasks. In fact, the system overhead in Fo.-NYC is less than
the system overhead in Ye.-PHO, which is expected due to the
availability of tasks assignments in a densely populated area
are more likely in a densely populated area.

D. EFFECTS OF VARYING DATASETS
Table 4 summarizes the variation of the considered per-
formance metrics when increasing MTD in Ye.-PHO.
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FIGURE 20. Average ANW over DUS = 330 meters.

TABLE 4. The average relative performance in percentage when
increasing the travel distance in Ye.-PHO.

The average of ASR increases when the MTD increase,
because the more distance crowd workers are able to travel,
the more chance far away tasks are assigned to them. The
lessMTD incurs higher system overhead since crowdworkers
are not accepting far away tasks as distinguished; Therefore,
the system overhead reduces when increasing theMTD. This
reduction is due to the average number of crowd workers who
accept tasks increases. The average WTD increases slightly,
because the average number of farther tasks is more than the
nearby tasks to crowd workers.

Table 5 shows the average summaries of varying MTD in
Fo.-NYC. The tasks in this dataset are located closer to crowd
workers. This indicates the effectiveness of the ASR constants
with higherMTD. Due to the same reason, the average system
overhead in Fo.-NYC dataset is lower than the average system
overhead in Ye.-PHO. Note that, the WTD is reducing when
the MTD increases comparing to the WTD in Ye.-PHO. This
decrease is because the average number of crowd workers
who are assigned to nearby tasks is more than those who are
assigned farther tasks.

TABLE 5. The average relative performance in percentage when
increasing the travel distance in Fo.-NYC.

E. EFFECTS OF VARYING DUS
The performance was evaluated on the Ye.-PHO and Fo.-NYC
datasets by varying the DUS. Figures 21 and Figure 22 show
the results of varying theDUS. The TDE exists only when the

FIGURE 21. Comparison of varying DUS on Ye.-PHO dataset.

FIGURE 22. Comparison of varying DUS on Fo.-NYC dataset.

crowdworkers are close to tasks when injectingmore privacy.
However, DCentroid performs better when increasing the
travel distance of the crowd workers even when injecting
more privacy.

X. CONCLUSION
Spatial crowdsourcing is growing as a modern framework
that facilitates workers to perform tasks in the physical
world. With spatial crowdsourcing, requesters submit their
spatio-temporal tasks (tasks associated with location and
time) to the spatial crowdsourcing server, to be performed
by a set of crowd workers who have to physically travel to
the tasks’ locations for execution. However, current solutions
require crowd workers to disclose their exact locations to the
spatial crowdsourcing server (untrusted entities).

This paper has reviewed potential location privacy attacks
from the adversaries perspective, and presented a counter-
measure approach to overcome the incidence of such attacks.
It designed and implemented a novel privacy-preserving
scheme for spatial crowdsourcing called (DCentroid), which
facilitates crowd workers to participate in performing spa-
tial crowdsourcing tasks without disclosing their locations
privacy to the server. It developed a dummy generation
technique that generates effective dummy locations using a
specified algorithm to constrains all the possible dummies
as a conceivable solution to hide the exact crowd workers’
locations from adversaries. The experimental results on
real-world datasets demonstrated that the introduced scheme
is effective and practical. Moreover, the results of the tasks
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assignment metrics shows that the the privacy trade-off is
rational.

The following are future directions that can be pursued to
extend and improve the DCentroid framework:
• Matching theDUS to the crowd workers’ locations, such
as minimum DUS to dense areas and longer to sparse
areas.

• Enabling the crowd workers to choose theDUS based on
their desired maximum travel distances.

• Enabling the crowd workers to choose the privacy radius
based on their locations privacy concerns.

• Including the tasks’ locations to the designed framework
to insure their location’s privacy.
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