
Received May 12, 2020, accepted May 30, 2020, date of publication June 8, 2020, date of current version June 22, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3000907

Survey on Learning-Based Formal Methods:
Taxonomy, Applications and Possible
Future Directions
FUJUN WANG 1, ZINING CAO1,2,3,4, LIXING TAN1, AND HUI ZONG1
1College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2Key Laboratory of Safety-Critical Software, Ministry of Industry and Information Technology, Nanjing 210023, China
3MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 210023, China
4Science and Technology on Electro-optic Control Laboratory, Luoyang 471023, China

Corresponding author: Fujun Wang (wangfj@nuaa.edu.cn)

This work was supported in part by the National Key Fundamental Research and Development Plans (973 Plans) under Grant
2014CB744903, in part by the Aviation Science Foundation of China under Grant 20150652008 and Grant 20185152035, in part by the
Fundamental Research Funds for the Central Universities under Grant NZ2013306, in part by the National Natural Science Foundation of
China under Grant 61303022 and Grant 61572253, and in part by Foundation under Grant 61400020404.

ABSTRACT Formal methods play an important role in testing and verifying software quality, especially
in modern society with rapid technological updates. Learning-based techniques have been extensively
applied to learn (a model or model-free) for formal verification and to learn system specifications, and
resulted in numerous contributions. Due to the fact that adequate system models are often difficult to
design manually and manual definition of specifications for such software systems gets infeasible, which
motivate new research directions in learning models and/or specifications from observed system behaviors
automatically. This paper mainly concentrates on learning-based techniques in formal methods area. An up-
to-date overview of the current state-of-the-art in learning-based formal methods is provided in the paper.
This paper is not a comprehensive survey of learning-based techniques in formal methods area, but rather as
a survey of the taxonomy, applications and possible future directions in learning-based formal methods.

INDEX TERMS Formal methods, formal specification, formal verification, learning model, learning
specification.

I. INTRODUCTION
Software reliability mainly depends on two aspects: one is
the method and process of software development, the other
is the test and verification of software products. In many
engineering practices, the design and development of soft-
ware products still lack solid scientific basis and mature
methodology. It is thus not surprising that seeking for new
techniques to ensure the quality of the software production
process is still a nontrivial task. Formal methods are new
disciplines, which attempt to accompany the development
with techniques and tools for finding and pointing out poten-
tial problems. Formal methods are a collection of notations
and techniques for describing and analyzing systems [1].
These methods are formal in the sense that they are based on
somemathematical theories, such as logic, automata, or graph
theory. They are aimed at enhancing the quality of systems.

The associate editor coordinating the review of this manuscript and

approving it for publication was Arianna Dulizia .

Formal methods include three main parts: system modeling,
formal specification, and formal verification (FV).

A. PROBLEM STATEMENT
Traditionally, models used in model-checking are manually
constructed, it is time-consuming and error-prone, especially
for systems lacking updated and detailed documentations,
such as legacy software, 3rd party components, and black-
box systems. These difficulties are generally considered as
a hindrance for adopting otherwise powerful model check-
ing [2], [3] techniques, and have led to the emergence of a
new research direction by using learning techniques in formal
methods to learn a model from system observations. Simi-
larly, in practice, often no formal specifications are available,
or become outdated as the system evolves over time, which
make it difficult to understand and analyze the behavior of
the system. To address this issue, we can also use learning
techniques to learn the specifications that the system meets
from system observations.

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 108561

https://orcid.org/0000-0001-9902-3859
https://orcid.org/0000-0002-7565-5963

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

B. MOTIVATION
Although there have been a lot of learning-based papers that
are closely related to formal methods published, one can
only find few comprehensive review papers that include both
learning models and learning formal specifications. At the
same time, there are various algorithms for learning models
and learning specifications, but no one has classified and
summarized the existing learning algorithms and analyzed
them. The motivation of this paper is to give a survey on both
learning (a model or model-free) for FV and learning formal
specifications, meanwhile present taxonomy, applications,
and future directions in learning-based formal methods.

C. RELATED WORK
Some early overview papers in this area were written by
Leucker [4], Steffen et al. [5], Howar and Steffen [6], Ben-
naceur and Meinke [7]. In [4], some algorithms for learning
automata and their recent applications to verification prob-
lems were surveyed, the author only concerned with learning
an automata model or learning the language. In [5], the
authors investigated current state of active automata learn-
ing research and applications of active automata learning in
practice, and predicted four major topics to be addressed
in the then near future: efficiency, expressivity of models,
bridging the semantic gap between formal languages and the
analyzed components, and solutions to the inherent problem
of incompleteness of active learning in black-box scenarios.
In [6], the authors reviewed the progresses that have been
made over the past five years, assessed the status of active
automata learning techniques with respect to applications in
the field of software engineering, and presented an updated
agenda for future research. In [7], an introductory survey of
machine learning (ML) applications in software engineering
was presented, and a classification in terms of the models
they produce and the learning methods they use were given.
Also, the open challenges for reaching the full potential of
ML for software engineering and how ML can benefit from
software engineering methods were discussed. Furthermore,
two latest but unpublished survey papers appeared in this
area in [8] and [9]. In [8], how ML helps FV in its clas-
sical approaches: static analysis, model-checking, theorem-
proving, and Sat solving were explored. It is an attempt to
provide a comprehensive survey of the various ways that ML
contribute to enhance FV tools’ efficiency. In [9], the authors
reviewed the learning techniques, algorithms, and tools which
form the basis of model learning, and provided the compar-
ison summaries that highlight the merits and shortcomings
of them. Also, the successful applications of model learning
techniques in multidisciplinary fields making it promising for
testing and verification of realistic systems were surveyed.
But, the issues of learning formal specifications were not
included in [8] and [9]. In particular, after these two survey
papers, some new research results in learning specifications
came out. To our knowledge, two recent closely related
works on specifications are provided in [10], [11]. In [10],
the authors summarized the state-of-the-art techniques for

TABLE 1. Comparison of related work.

qualitative and quantitative monitoring of Cyber-Physical
Systems (CPS) behaviors. However, that paper mainly con-
centrated on monitoring of CPS, few involved in learn-
ing. In [11], only a tutorial description on learning Signal
Temporal Logic (STL) requirements from data was given.
Table 1 makes a comparative study of several summary arti-
cles mentioned in this article.

D. APPROACH
The material studied in this paper was obtained mainly from
three aspects: Google scholar, dblp website (https://dblp.uni-
trier.de/) and papers that have cited [12] and [13]. We queried
Google scholar and dblp website using the following search
terms: ‘‘model learning formal methods’’, ‘‘model learning
model checking’’, ‘‘learning specification formal methods’’,
‘‘specification mining formal methods’’, ‘‘specification min-
ing formal verification’’, ‘‘specification inference formal
methods’’, ‘‘requirements mining formal methods’’, and
‘‘learning property formal methods’’. By sorting out the
literature and deleting the irrelevant literature, we got the
results that include journal papers, conference papers, aca-
demic dissertations, reports, and unpublished preprint papers.
First, we made a comparative study of the existing literature
reviews, and then classified the learning model and learn-
ing specification algorithms, respectively. Finally, these two
types of algorithms were compared and studied.

E. OUR CONTRIBUTIONS
This paper focuses on learning algorithms in formal methods
and presents an up-to-date overview of the current state of the
art in learning (a model or model-free) for FV and learning
formal specifications. Various learning algorithms were clas-
sified according to the learning style and purpose in formal
methods. This paper presents the survey mainly from three
perspectives: taxonomy of learning algorithms, applications
of learning in formal methods, and possible future research
directions. The objective of this paper is two-fold. The first is
to provide a generic literature overview of the learning algo-
rithms that have been proposed to learn formal specifications
and to learn for FV. This is the first survey of taxonomy both

108562 VOLUME 8, 2020

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

on learning formal specifications and on learning for verifi-
cation. The second is to identify possible research directions
in the area of formal methods by using ML techniques. Note
that, due to the large number of ML techniques, it is not
feasible to include all of them used in formal methods area
in this paper. This paper only concentrates on learning formal
specifications and learning for FV, and does not discuss other
techniques used in formal methods. Therefore, this paper is
not a comprehensive survey of the learning-based techniques
in formal methods area, other learning techniques in the field
of formal methods are not discussed, such as model checking
based on Gaussian process [14], but rather as a survey of
the taxonomy, applications and future directions in learning-
based formal methods.

F. ORGANIZATION OF THE PAPER
The rest of this paper is organized as follows. Section II
presents the preliminaries of some representative algorithms
that were used in learning models and specifications. Tax-
onomy of learning algorithms in learning specifications
and learning for verification are presented in section III.
Section IV provides applications based on learning. It is fol-
lowed by possible future research directions in section V.
Finally, we conclude our presentation in Section VI.

II. PRELIMINARIES
In this section, we briefly introduce some model definitions,
temporal logic, and seminal algorithms that are used in this
paper.

A. MODEL
As toomanymodels are involved in this paper, we cannot give
all the definitions. Some of the basic models, like transition
system (TS) [15], deterministic finite automaton (DFA) [16],
non-deterministic finite automaton (NFA)[16], petri net
(PN) [17], discrete-timeMarkov chain (DTMC) [18],Markov
decision process (MDP) [18] will not be introduced here due
to space limitations, we refer readers to related references for
details. Next, we will give some definitions of the model that
readers may not be familiar with them.
Definition 1: (Deterministic Timed Automaton, DTA [19]):

A DTA is a tuple < S, s0,F, 6,T ,1,X >, where

• S is a finite set of states, s0 ∈ S is the initial state, and
F ⊆ S is a set of final states.

• 6 is a finite set called the alphabet. Its elements are
symbols that trigger transitions between the states.

• T ⊆ S × 6 × S × 1 × X is a finite set of transitions.
A transition τ ∈ T is a tuple (s, a, s0, δ,R), where s,
s0 ∈ S are the source and destination states, a ∈ 6 is
the trigger symbol, δ ∈ 1 is the timing constraint, and
R ⊆ X is the set of clock resets.

• 1 ⊆ {δ = [t1, t2] : t1, t2 ∈ N } is a finite set of transition
timing constraints. Constraints δ ∈ 1 model the time
spent in a state before the transition takes place.

• X is a finite set of clocks that record the continuous time
evolution. The valuation of the clock x ∈ X is defined
by vt (x) : X → N .

The Probabilistic DTA is a One-Clock Timed Automaton
with probabilistic information. It allows only one clock,
which is reset at each transition firing. It is defined as follows:
Definition 2: (Probabilistic Deterministic Timed Automa-

ton, PDTA [20]):A PDTA is a 6-tuple< S, s0,F,P, 6,T >,
where
• S is a finite set of states, where each state s includes
a probability of leaving the automaton. If a state is
not a final state, the probability p = 0, otherwise the
probability is from the interval (0, 1].

• s0 ∈ S is the initial state.
• F ⊆ S is a set of final states/ accepting states.
• 6 is a finite set of symbols.
• T is a set of transitions. A transition is represented
with (s, a, δ, s0), where δ is the clock constraint. The
automaton changes from state si to state sj triggered by a
symbol a ∈ 6 if the current clock value satisfies δ. After
executing a transition, the clock c is set to 0, so that the
clock starts counting time from executing this transition.

• P is a set of probability matrices, pi,j(a) gives the prob-
ability of taking the transition from state si to state sj
triggered by a ∈ 6. With the probability p(i) that a string
ends at the state si, it holds that:

p(i)+
∑

∀si,sj∈S,∀a∈6

pi,j(a) = 1 (1)

As for real-world hybrid production systems, we can use
Stochastic Deterministic Hybrid Automaton to represent
it. The formal definition is as follows:

Definition 3: (Stochastic Deterministic Hybrid Automaton,
SDHA [19]):ASDHA is a tuple< S, s0, 6,T ,1,P,X ,8 >,
where
• S is a finite set of states and s0 ∈ S is the initial state.
• 6 is a finite set called the alphabet. Its elements are
symbols that trigger transitions between the states.

• T ⊆ S × 6 × S × 1 is a finite set of transitions.
A transition τ ∈ T is a tuple (s, a, s0, δ), where s, s0 ∈ S
are the source and destination states, a ∈ 6 is the trigger
symbol, and δ ∈ 1 is the timing constraint.

• 1 ⊆ {δ = [t1, t2] : t1, t2 ∈ N } is a finite set of transition
timing constraints. Constraints δ ∈ 1 model the time
spent in a state before the transition takes place.

• P is a set of probability functions with the elements
p : S × (6 ∪ {λ}) × S × 1 → Q ∩ [0, 1]. P includes
both transition probabilities and probabilities of a string
ending in a state.

• X is a finite set of clocks that record the continuous time
evolution. The valuation of the clock x ∈ X is defined
by vt (x) : X → N .

• 8 is a finite set of functions with elements θs : Rn
→

Rm
; ∀s ∈ S, n,m ∈ N . I.e. y = θs(t, u) is the func-

tion computing the value changes of the output signals

VOLUME 8, 2020 108563

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

y ∈ Y within state s based on the time t and values of
continuous input signals u.

Definition 4: (Event-Recording Automaton, ERA [21]):An
ERA over 6 is a tuple < L,L0,L f ,E > consisting of

• a finite set L of locations,
• a set L0 ⊆ L of start locations,
• a set L f of accepting locations,
• a finite set E of edges.

Each edge is a quadruple (l, l ′, a, g) with a source location
l ∈ L, a target location l ′ ∈ L, an input symbol a ∈ 6, and a
clock guard g ∈ G6 . G6 is the set of clock guards.
Definition 5: (Hybrid Petri Net, HPN [17]): An HPN is a

sex-tuple < P,T ,Pre,Post,m0, h > such that:

• P = {P1,P2, . . . ,Pn} is a finite, not empty, set of places;
• T = {T1,T2, . . . ,Tm} is a finite, not empty, set of
transitions;

• P ∩ T = ∅, i.e., the sets P and T are disjointed;
• h : P∩T → {D,C}, called ‘‘hybrid function,’’ indicates
for every node whether it is a discrete node (sets PD and
TD) or a continuous node (sets PC and TC);

• Pre: P×T → R+ orN , is the input incidence mapping;
• Post: P × T → R+ or N , is the output incidence
mapping;

• m0 : P→ R+ or N is the initial marking.

B. FORMAL SPECIFICATIONS
Even though there are various formal specifications (e.g.,
Computation Tree Logic (CTL) [18], Linear Temporal Logic
(LTL) [18], Probabilistic CTL (PCTL) [18], STL [22], [23],
etc.), we only present the one that is mostly used in this paper,
especially in learning specifications, namely STL.

STL is a temporal logic for specifying properties of dense-
time real-valued signals, which was used to reason about the
future evolution of a continuous time behavior. It has been
applied to the analysis of hybrid dynamical systems from
various application domains such as analog and mixed signal
circuits, systems biology, or CPS.

The syntax and semantics of STL we refer to [22], [23], are
given as follows:

1) THE SYNTAX OF STL IS GIVEN AS FOLLOWS

ϕ ::= πµ
∣∣¬πµ∣∣ϕ ∧ ψ |ϕ ∨ ψ |�[a,b]ψ |ϕ U[a,b]ψ

where, πµ is an atomic predicate Rn
→ Bool whose truth

value is determined by the sign of a function µ : Rn
→ R

and ψ is an STL formula.

2) THE SEMANTICS OF STL
The validity of a formula ϕ with respect to the discrete-time
signal x at time t , noted (x, t) � ϕ is defined inductively as

follows:

(x, t) � πµ iff µ(x(t)) > 0
(x, t) � ¬πµ iff ¬ ((x, t) � πµ)
(x, t) � ϕ ∧ ψ iff (x, t) � ϕ ∧ (x, t) � ψ
(x, t) � ϕ ∨ ψ iff (x, t) � ϕ ∨ (x, t) � ψ
(x, t) � �[a,b]ψ iff ∀t ′ ∈ [t + a, t + b],

(
x, t ′

)
� ψ

(x, t) � ϕU[a,b]ψ iff ∃ t ′ ∈ [t + a, t + b] s.t.
(
x, t ′

)
� ψ∧

∀t ′′ ∈
[
t, t ′

] (
x, t ′′

)
� ϕ

A signal x = x0x1x2 . . . satisfies ϕ, denoted by x � ϕ, if
(x, 0) � ϕ. Additionally, we define ♦[a,b]ϕ = TU[a,b]ϕ, so
that x � ♦[a,b]ϕ if ϕ holds at some time step between a and b

3) ROBUST SATISFACTION OF STL FORMULAS
Quantitative or robust semantics define a real-valued function
ρϕ of signal x and t such that (x, t) � ϕ ≡ ρϕ(x, t) > 0.
This is computed recursively from the above semantics in
a straightforward manner, by propagating the values of the
functions associated with each operand using min and max
operators corresponding to various STL operators. The robust
semantics is defined as follows:

ρπ
µ

(x, t) = µ(x(t)) (2)

ρ¬π
µ

(x, t) = −µ(x(t)) (3)

ρϕ∧ψ (x, t) = min(ρϕ(x, t), ρψ (x, t)) (4)

ρϕ∨ψ (x, t) = max(ρϕ(x, t), ρψ (x, t)) (5)

ρ�[a,b]ψ (x, t) = mint ′∈[t+a,t+b]ρ
ψ (x, t ′) (6)

ρϕU[a,b]ψ (x, t) = maxt ′∈[t+a,t+b](
min(ρψ (x, t ′),mint ′′∈[t,t ′]ρ

ϕ(x, t ′′)
))

(7)

C. ALGORITHMS
In what follows, we present some algorithms in learning
models (the first three algorithms) and learning specifications
(the last two algorithms). The first two are seminal andwidely
used algorithms in learning a model, the third and fourth
algorithms are the work done by our team last year. The
last algorithm is relatively novel, as it applies reinforcement
learning to synthesis an STL formula. Other algorithms listed
in Table 5 and Table 6 will not be introduced in detail here
due to space limitations, interested readers can refer to related
references.

1) L∗ LEARNING ALGORITHM
L∗ algorithm [12] is a pioneering learning algorithm pro-
posed by Angluin in 1987, which was originally used to
learn a DFA. The motivation of the algorithm is to identify
an unknown regular language set U from a set of members
and non-members of a set. The unknown regular language
set is given by a Minimally Adequate Teacher (MAT). The
learning process can be regarded as a cooperative game
between a learner and a teacher. Based on the assumption
that the teacher can answer membership queries about the set
and judge whether the language described by the candidate
DFA is equivalent to the target language through equivalence

108564 VOLUME 8, 2020

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

FIGURE 1. MAT model [9].

Algorithm 1 L∗ Learning Algorithm
Initialization: S = E = {λ}, x = True, y = False
Output: A candidate DFA M = M (S,E,T)
1: (membership query) ask for membership in each of the
letters λ and6, construct an initial observation table (S,E,T)
2: while x
3:{
4: while x
5: {(consistency check) If the table (S,E,T) is

inconsistent, then find s1, s2 in S, a in 6,and e in E ,
so that row(s1) = row(s2) and T (s1 ·a · e) 6= T (s2 ·a · e),
add a·e to E and extend T to (S ∪ S ·6) · E through
membership queries

6: (closure check) If the table (S,E,T) is not closed,
then look for s1 ∈ S, a ∈ 6 so that row(s1 · a) 6= row(s)
for all s ∈ S, add s1 ·a to S, and extend T to (S∪S ·6) ·E
through membership queries

7: If the table (S,E,T) is closed and consistent,
8: then x = y
9: end if
10: }
11: Let M = M (S,E,T) be a candidate DFA,

IfM is equivalent to the target regular language,
12: then x = y
13: else return counterexample t , add t and all its prefixes

to S and extend T to (S ∪ S ·6) · E through the
membership query

14: end if
15:}
16:return M

queries, the learner can learn the target language set through
two kinds of queries. The MAT model is shown in Fig.1.
Membership Queries: ask for a single word w ∈ 6∗, the

teacher answers the query with ‘‘yes’’ or ‘‘no’’ depends on
whether the single word is in the unknown language L or not.
Equivalence Queries: ask whether a candidate language

LH equals to L or not. In case a conjectured language LH does
not equal to L, the teacher will provide a counterexample: a
word from the symmetric difference of LH and L.

The algorithm is shown in algorithm 1.
Algorithm Description: The learner maintains an obser-

vation table (S,E,T), where S represents a nonempty

TABLE 2. Initial observation table, S = E = {λ}.

TABLE 3. Final observation table.

prefix-closed state set, E represents a nonempty suffix-closed
set and a finite function T mapping ((S ∪ S ·6) ·E) to {0,1}.
The observation table can be visualized as a two-dimensional
array with rows labeled by elements of (S∪S ·6) and columns
labeled by elements of E , with the entry for row s and column
e equal to T (s · e). For s ∈ (S ∪ S · 6), e ∈ E , if s · e ∈ U ,
then T (s · e) = 1, else T (s · e) = 0.
The final DFA is constructed according to the observation

table when the algorithm stops. Elements on the table list S on
behalf of the candidate states of the DFA, elements in E are
used to distinguish between the states of the experiments, and
elements in S ·6 are used to construct the transfer function.
Example (Taken From [12]): Suppose the unknown regular

set U is the set of all strings over {0, 1} with an even number
of 0’s and an even number of 1’s.

The initial observation table T1 is shown in Table 2. This
observation table is consistent, but not closed. After augment-
ing the observation table continuously by means of member-
ship query and equivalence query until the algorithm stops,
then the final deterministic finite automaton is constructed
according to the observation table when the algorithm stops.
The final observation table is shown in Table 3 and the final
conjecture of L∗ is shown in Table 4.

2) ALERGIA ALGORITHM
The success of the L∗ algorithm is based on the assumption
that there is a teacher who can answer membership queries

VOLUME 8, 2020 108565

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

TABLE 4. The conjecture of L∗.

FIGURE 2. Basic ideas of ALERGIA algorithm [20].

FIGURE 3. PTA for the sample S.

and equivalence queries. In real life, however, such a teacher
may not exist, which hinders the wide application of L∗

algorithm. Several research works were proposed to solve this
problem such as using neural network (NN), hidden Markov
model (HMM) and other models to identify the regular lan-
guage. Due to the shortcomings of these models such as long
computation time and large sample set, they are not widely
used. Until 1994, the emergence of ALERGIA algorithm [13]
makes a significant breakthrough in solving such problems.
The algorithm uses a state merging method to construct a
prefix tree acceptor (PTA) based on the running samples
of the system, and merges state nodes in PTA according to
predefined well-orderings until stateless nodes in PTA can be
merged. The basic idea of the algorithm is shown in Fig. 2.

The algorithm is shown in algorithm 2.
Example (Taken From [13]): Collect the set of sample S =
{110, λ, λ, λ, 0, λ, 00, 00, λλ, λ, 10110, λ, λ, 100}.

The PTA is constructed according to the sample set S,
depicted in Fig. 3. After merging, the final output is depicted
in Fig. 4.

3) PAG-GA
At present, the solutions for Probabilistic Assume-Guarantee
(PAG) problem, i.e., PAG-L∗ [24], [25] and PAG-SL∗

Algorithm 2 ALERGIA Algorithm
Input: S ample set S run by the system
Output:finite automatonmodel T that can recognize random
regular languages
1: construct PTA T according to the sample set S
2: calculate the relative frequency of output arc of each node
according to the observed samples
3:while T is not traversed
4:{
5: for node = root, root+1, . . . , leaf
6: {combine states using Hoeffding bound compatibility

standard according to the predefined well-ordering
7: if ((the relative frequency of reaching two nodes

meet the Hoeffding bound) & (for any one of the
alphabets, the input relative frequency of the two state
nodes meet the Hoeffding bound) & (the successor
nodes of the two nodes should also recursively meet
the compatibility criteria))

8: then two state nodes combined
9: end if
10: eliminate uncertainty for merged nodes
11: }
12: }
13: return T

FIGURE 4. The final output.

[26], [27], can automatically generate sound and complete
assumption, but the learning process must store the whole
computation history in order to make continuous queries. Our
team proposed a fully-automated genetic algorithm-based
PAG (PAG-GA) framework for probabilistic safe property
over MDP in [28]. By using GA, no intermediate results need
to be recorded, so it can largely reduce the space complexity
w.r.t assumption generation.

In this work, our team combined PAG reasoning frame-
work with interface alphabet refinement to construct a small
subset of the interface alphabet, then added actions to the
necessary alphabet until the required property is shown to be
hold or violated. Additionally, we employed the diagnostic
sub-model as a counterexample for guiding the training set.
Then, the assumption was generated by using GA fromMDP
interface alphabet, and model checking techniques were used
to check the assume-guarantee tuple, and existing methods
were used to construct the counterexample. In the end, the
PAG problem was solved.

As the whole algorithm pseudocodes are presented in [28],
wewill not describe it here, interested readers can refer to [28]
for detail.

108566 VOLUME 8, 2020

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

4) LRx
As the complexity of the system increases, especially safety-
critical systems, like CPS, it becomes hard to understand
and analyze the system behavior. Researchers collect system
behaviors, from which they try to analyze the properties
satisfied by the system. The shortcoming of the existing algo-
rithms is that they can only learn from positive samples of the
system. In [29], our team proposed a novel learning approach,
called LRx, which can deal with not only positive and neg-
ative examples, but also positive examples. This approach
requires two inputs: traces of the system and a Parametric
STL (PSTL) formula. The main steps of synthesizing PSTL
formula parameters can be divided into four steps. First,
classification accuracy given in Eq. (8) was used to define the
objective function. Second, the Metric Discriminant Model
given in Eq. (11) was defined and used to classify the traces.
Third, we used the likelihood function given in Eq. (12) to
replace the classification accuracy, which can use gradient-
based optimization methods. Finally, a novel algorithm was
given for specification mining. Interested readers can refer
to [29] for specific algorithms and examples.

γ =
|{yi ∈ C0 ∧ (xi, t) |H φ∗}| + |{yi ∈ C1 ∧ (xi, t) |H φ∗}|

|C0| + |C1|

(8)

where, xi is a trace, yi ∈ {0, 1} is the label, φ∗ is an STL
formula, α is an unknown parameter, and C0 (C1) is a set that
is unsatisfied (satisfied) with φ∗ in the pre-label.

The probability of (x, t) � φ∗ is

P(y=1|x) =
ef (x(t))−α

∗

1+ ef (x(t))−α∗
(9)

The probability of (x, t) 2 φ∗ is

P(y = 0|x) =
1

1+ ef (x(t))−α∗
(10)

MDM (x) =

{
C0, if P(y=0|x) ≥ P(y=1|x)
C1, if P(y=0|x) < P(y=1|x)

(11)

L(α) =
n∏
i=1

P(yi = 1|xi)yiP(yi = 0|xi)(1−yi) (12)

5) Q-LEARNING
Q-learning is a model-free reinforcement learning method,
which can be used to find the optimal policy for a finite MDP.
In [30] and [31], Austin Jones et al. used anMDP to represent
an unknown and stochastic dynamic system, in which the
transition probabilities are unknown. They solved the follow-
ing two problems: (Problem 1) maximize the probability of
satisfying φ and (Problem 2) maximize the average robust-
ness degree of satisfying φ, where φ is a given STL formula
fragment. These two problems are to find policies µ∗mp and
µ∗mr given in Eqs. (13) and (14). As problem 1 is not in the
standard form to apply Q -learning algorithm, they proposed
an approximation of the function such that STL synthesis
problem can be solved via Q -learning. For problem 2, they

proposed an alternate Q -learning formulation. called batch
Q-learning, to solve the problem. Interested readers can refer
to [30] and [31] for the algorithm pseudocodes.

µ∗mp = argmax
µ∈F (`×N ,Act)

Prs0:T [s
0:T
|H φ]

s.t. st+1 = f (st , µ(st−τ+1:t ,T − t), ωt) (13)

µ∗mr = argmax
µ∈F (`×N ,Act)

Es0:T [r(s
0:T , φ)]

s.t. st+1 = f (st , µ(st−τ+1:t ,T − t), ωt) (14)

where, st+1 = f
(
st , µ

(
st−τ+1:t ,T − t

)
, ωt

)
is an unknown

dynamic system, ωt is a random process, φ is an STL for-
mula, st−τ+1:t is the trajectory of the system, and µ is a
policy.

III. TAXONOMY OF LEARNING ALGORITHMS IN FORMAL
METHODS
In formal methods literature, the model learning problems
were studied under different names, like system identifica-
tion [32], grammatical inference [33], regular inference [34],
regular extrapolation [35], model learning [36], or active
automata learning [37], etc. We do not distinguish these
names, sometimes we use them interchangeably, and here
we just use the term model learning or learning model
instead. Similarly, the learning specification problems also
have different names under research, typically are specifica-
tion mining [38]–[43], specification inference [44], require-
ments mining [45], mining properties [46], learning logic
formulae [47], learning specifications [48], [49], learning
properties [50], [51], etc. Here we use the term learning spec-
ification (or specification learning) in analogy with learning
model (or model learning).
In this section, we investigate the taxonomy of learning

algorithms in formal methods, which is an active field of
research. On the whole, in formal methods area, there are
two main research lines of learning, i.e., learning system’s
formal specifications and learning (a model or model-free)
for verification. Although many learning-based articles have
been published that are closely related to formal methods, one
can only find few comprehensive review papers of learning
formal specifications. For completeness, this paper will give
the taxonomy of learning in formal methods, both in learning
formal specifications and learning for verification. Fig. 5
shows the considered taxonomy of learning-based formal
methods.

A. LEARNING SPECIFICATIONS
As system requirements are not always fully known in
advance and indeed cannot be completely manually speci-
fied. In order to better understand the system, it is necessary
to know the system’s specification. For this reason, learn-
ing STL requirements from observed traces is an emerging
field of research. Here we present the general taxonomy
of specification learning algorithms based on their various
characteristics.

VOLUME 8, 2020 108567

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

FIGURE 5. Taxonomy.

1) WITH A MODEL VS. MODEL FREE
a: WITHOUT a MODEL (OR MODEL-FREE)
i) GIVEN a PARAMETRIC SPECIFICATION, FIND THE RANGE
OR VALUE OF PARAMETERS
It is an active research field on temporal logic inference
that focused on the estimation of parameters associated with
a given temporal logic structure [52]-[55]. That is, given
a parametric specification, then we would like to infer the
ranges of parameters for which the property holds/does not
hold on to the given sample traces. In [52], Asarin et al. solved
the problem of finding the range of parameters that render the
formula satisfied by a given set of traces under a given PSTL
formula, which extended the work of Fages and Rizk [56] that
identified parameter ranges for numerical predicates on top of
the discrete-time temporal logic LTL [57]. Recently, our team
published an article based on logistic regression to learn a
CPS specification template [29]. Not only can we learn from
the positive examples, but also from the positive and negative
examples, which make up for the lack of existing methods
that can only learn from positive examples. Table 5 lists some
work on the estimation of parameters associated with a given
temporal logic structure.

ii) LEARNING FORMULA STRUCTURE AND ITS PARAMETERS
The structure of the formula reflects the domain knowledge
of the designer as well as the properties of interest of a
given system or given sample traces. But, if neither domain
knowledge is available nor the user is not familiar with the
system properties that are to be inferred, a step further is
to infer the formula structure in addition to its parameters
from data. In [48], [58], [59] the first algorithm was proposed
to learn both the formula structure and its parameters from

TABLE 5. Some work on parametric estimation.

data, this approach was called temporal logic inference (TLI).
Compared with the parameter estimation problem under a
given structure circumstance, structural inference problem
is generally hard and even ill posed. In [59], Kong, Jones
and Ayala reduced the difficulty of structural learning by
imposing a partial order on the set of reactive parametric STL
formulae. The defined partial order allows them to search for
a formula template in an efficient and orderly fashion, while
the robustness degree allows them to formulate the inference
problem as a well-defined optimization problem. In [60], the
authors proposed a decision tree-based approach for learning
the STL formula, while the optimality of the parameters was
evaluated by using heuristic impurity measures.

iii) SELECT MODEL + LEARN FORMULA STRUCTURE +
LEARN PARAMETERS
The previous two cases are model-free learning circum-
stances, as they do not use a given model in advance
in the learning process. Bartocci et al. [51] proposed a
novel approach to learn logical formulae characterizing the
emergent behavior of a dynamical system from system

108568 VOLUME 8, 2020

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

observations. Their approach can be divided into three
steps. First, select a model (HMM, Continuous-TimeMarkov
Chains, (Stochastic) Differential Equations or Hybrid Sys-
tems) based on Akaike Information Criterion (AIC) score.
Second, select the good candidate formula structure based
on the log odds ratio. Last, tune the parameters of formulae
so as to maximize the satisfaction probability. In [61], the
authors first inferred a generative statistical model of the
observed data, then learnt the structure of TL classifiers based
on an EvolutionaryAlgorithm, and last learnt the best formula
parameters based on Bayesian optimization.

b: LEARNING WITH a MODEL
i) COMPUTE THE VALUES OF THE PARAMETERS UNDER a
GIVEN MODEL AND FORMULA
The standard model checking paradigm of LTL, can only
give a ‘‘Yes/No’’ answer, this answer information is lim-
ited. A ‘‘model measuring’’ paradigm where one can obtain
more quantitative information was extended from the stan-
dard model checking paradigm in [62]. Given a formula
of PLTL and a system model K, they showed one can not
only determine whether there exists a valuation under which
the system K satisfies the property, but also find valuations
that satisfy various optimality criteria. Wang [63] solved the
model-checking problem for parameterized branching-time
logic. The author extended a TCTL model-checking prob-
lem to a parametric timing analysis problem with unknown
timing parameters and provided an elementary complex-
ity algorithm for the general solution condition of the
problem.

ii) INFER PROPERTY UNDER a GIVEN MODEL AND FORMULA
Model checking was proposed as a verification (or falsifica-
tion) technique [64], [65], it is valuable for better understand-
ing model’s behavior: the user hypothesizes a behavior of the
system, which is expressed as a temporal logic formula, and
attempts to use the model checker to validate the hypothesis.
If the user wants to gain more knowledge about the system,
the process will be iterated more times. To further help the
user understand system’s behaviors, infer temporal properties
will be a good choice, which was called Temporal Logic
Queries [66], [67]. In [66], a model of the system and a
temporal logic formula ϕ were given, a sub-formula in ϕ was
replaced with a special symbol ?. Then, the problem is to
determine a set of Boolean formulas such that if these for-
mulas were placed into the placeholder ?, then ϕ holds on the
model. It can help the designer achieve a better understanding
and explore the properties of a model of the system.

2) SUPERVISED LEARNING VS. UNSUPERVISED LEARNING
VS. REINFORCEMENT LEARNING
a: SUPERVISED LEARNING
In case of given system outputs labeled according to whether
a system behaves normally or not, the task is to learn a
formula that can separate the two behaviors. In [59], Kong,

Jones and Belta inferred a temporal logic formula that can
be used to distinguish between normal system behaviors and
anomalous (or undesired) behaviors via supervised learning.
In [30], an on-line supervised learning algorithm was pro-
posed, which is more appropriate for systems in which no or
very little historical data was available.

b: UNSUPERVISED LEARNING
In another case, if the system outputs are not labeled,
i.e., there is no expert-in-the-loop that determines whether
a given trace represents a normal or attacked operation.
Jones et al. [58] inferred a formula to detect out-of-the-
ordinary (anomalous) outputs via unsupervised learning.
In [68], an unsupervised anomaly detection algorithm
was developed by using the Temporal-logic learning-based
Anomaly Detection (TempAD) algorithm for detecting air-
craft anomalies in the terminal airspace operations.

c: REINFORCEMENT LEARNING
In [31], [69], the authors used a reinforcement learning strat-
egy called Q-learning [70], to provide provably convergent
algorithms to maximize the probability of satisfaction or
maximize the expected robustnesswith respect to a given STL
formula.

3) STATIC VS. DYNAMIC LEARNING
‘‘Specification mining’’ algorithms can also be categorized
as static [42], [44], [71] or dynamic [72], [73]. Static learn-
ing means to infer specifications from program code, while
dynamic learning means to extract specifications from sim-
ulation or execution traces [53]. Specifications of program
behavior play a central role in many software engineering
technologies. Much research has addressed the challenge
of learning specifications directly from code [42], so as to
solve the problem that software lacking formal specifications.
In [42], Weimer and Necula proposed a novel technique for
temporal specification mining that uses information about
program error handling. As dynamic approaches enjoy the
significant virtue that they learn from behavior that defini-
tively occurs in a run. Most such research deals with dynamic
analysis and infers specifications from the observed behavior
of runs. Based on the observation that common behavior
is often correct behavior to refine the specifications min-
ing problem into a problem of probabilistic learning from
execution traces, in [72] specifications were extracted by
learning probabilistic finite automata that represent temporal,
as well as data dependencies from traces of correct sys-
tem behavior. This is extended in [73] by prior cleansing
and clustering of traces. As dynamic approaches can only
learn from available representative runs, it has its limita-
tion, i.e., incomplete coverage still remains a fundamental
limitation.

B. LEARNING FOR VERIFICATION
FV can be very helpful in proving the correctness of systems,
such as digital circuits, communication protocols, etc. There

VOLUME 8, 2020 108569

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

are mainly two lines for verification by using learning tech-
niques, one is learning a model and then performing verifi-
cation, another is learning for verification directly without
constructing explicit models.

1) LEARNING FOR VERIFICATION BY LEARNING A MODEL
In real life, some systems like black-box or third party sys-
tems, the user can’t get access to these systems. If the user
wants to get more information about the system or want to
verify properties that the system satisfies, learning techniques
can be used to learn a model that is behavior equivalent to the
system. L∗ [12], ALERGIA [13], and their variants [74]–[80]
are the mainly used algorithms for learning a model, espe-
cially for learning an automata model. Other learning algo-
rithms, like learning PNs [81], [82] are not the focus of this
paper.

Here, we will present the general classification of automata
learning algorithms that used for learning models for verifi-
cation purpose based on their various characteristics. In [20],
Maier presented a rough classification, (i.e., the classification
between a and f), and we expanded the classification from g
to k.

a: ACTIVE LEARNING VS. PASSIVE LEARNING
Active automata learning is concerned with the problem of
inferring an automaton model for an unknown formal lan-
guage L over some alphabet6 [6].More specifically, the goal
is to infer an unknown target DFA A over a given alphabet
6. Identification from given finite data [83], identification in
the limit [84], and Probably Approximately Correct learning
(PAC-learning) [85] also belong to the type of passive learn-
ing, we will not list them alone in the classification.

Active learning is often formulated as a cooperative game
between a learner and a teacher (or an oracle, which is
capable of answering these queries appropriately and cor-
rectly according to the MAT model). The task of the learner
is to learn a model of some unknown formal language L.
The teacher can assist the learner by answering membership
queries and equivalence queries.

Passive learning is a form of supervised learning, which
uses provided sampled data (i.e., given learning examples
or logs from some data source) and outputs the exact target
automaton or its approximation. The active learning algo-
rithm can influence or choose the data it receives, while the
passive learning algorithm does not have any influence on the
way the data were sampled.

The difference between passive and active learning is illus-
trated in Fig. 6 (due to Tong [86]).

b: ONLINE LEARNING VS. OFFLINE LEARNING
The main difference between online learning and offline
learning is that online learning can request additional data
or information for learning during their runtime apart from
the given data, while offline learning can only use the given
information for learning. This classification corresponds
to the classification of learning automata identification

FIGURE 6. Difference between active and passive learning.

frameworks on passive and active learning [19]. An example
of the online learning algorithm is the famous Angluin’s
L∗ [12] algorithm, while Gold’s algorithm [83] works in an
offline manner, they both learn DFAs.

c: ONLINE ACTIVE VS. ONLINE PASSIVE VS. OFFLINE PASSIVE
The first two categories can be combined and then reclas-
sified. In the literature [20], the terms active and online are
often mixed up. The reason is that, usually, active learning
algorithms work in an online manner and vice versa. To the
best of our knowledge, there exists no offline active learning
algorithm till now.

Offline passive learning algorithms have to deal with a
given set of observations, which comes from a database. Most
offline learning algorithms use the state merging approach
to identify the structure of the automaton. Several existing
algorithms learn an automaton in an offline passive man-
ner. They all proceed through three steps, that is step (1)
data extraction, step (2) create a prefix tree, step (3) check
for compatibility and state merge, but they have different
compatibility checks for state merging and different merging
strategies. The best known offline passive learning algorithms
are ALERGIA [13], MDI [87] and RTI+ [88].
Online active learning is also often referred to as query

learning. As in this paper, the terms active and online are
often mixed up, we can view online active learning as
active learning or online learning. These two were introduced
before, we will not introduce them again. Angluin’s L∗ algo-
rithm [12] is one of the first and most famous active learning
algorithms that identify a DFA. In [89], Grinchtein, Jonsson
and Leucker introduced an online active learning algorithm
for identifying event-recording automata (ERA).

Online passive learning can be used to learn amodel when
the observations cannot be stored and the number of needed
learning samples, as well as the convergence of the learning
process, is not known beforehand. In [90], Maier introduced
OTALA learning algorithm, which is the first online passive
learning algorithm for Timed Automata using only positive
learning examples.

d: GIVEN FINITE DATA VS. GIVEN INFINITE DATA LEARNING
As we all know, the more learning samples are available,
the more accurate the learned model will be. Input data
that used for learning can consist of either a given finite
or an infinite number of learning examples. In [83], Gold

108570 VOLUME 8, 2020

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

showed that the problem of learning the simplest DFA with
k states from given finite data are NP-complete. However,
when infinite data is present, a number of learning algorithms
can converge to a target automaton, which is called learn-
ing in the limit [84]. These algorithms are ALERGIA [13]
and MDI [87] that learn stochastic DFA, and RTI+ [88]
and BUTLA [91] that learn stochastic deterministic timed
automata (SDTAs) with one clock for tracking the time
evolution.

e: INFORMANT IDENTIFICATION VS. TEXT IDENTIFICATION
Informant identification is a type of supervised learning,
where the learning examples consist of both positive
examples (i.e., examples that are generated by the tar-
get automaton) and negative examples (i.e., examples that
are not generated by the target automaton). The learned
automata should consistent with the learning examples,
namely, it needs to accept the positive examples and reject the
negative examples. Learning from informant is probably the
best-studied topic of grammatical inference, which resulted
in a number of theoretical and empirical results over years.

On the contrary, text identification allows learning from
only positive examples. It is considered to be one of the
purest and most basic problems of grammatical inference,
from which many other problems are derived [92]. As faulty
events rarely happen, or it is hard to collect sufficient amount
of negative learning examples in the industrial context, this
is the motivation for learning models from text. The afore-
mentioned algorithms, namely ALERGIA, MDI, RTI+, and
BUTLA algorithms learn from text, while RPNI (for learning
DFAs) [93] and ID_1DTA (for learning 1-DTAs) [94] algo-
rithms learn from informant.

f: WITH DO NOT-CARE STATE VS. WITHOUT DO NOT-CARE
STATE
Algorithms that use incoming and outgoing events and event
sequences for the state equivalence check usually have do
not-care states, since it may become possible to reach a state
using different paths [20]. To avoid do not-care states, the
algorithm should check the state information itself (e.g., the
signal vector in cyber-physical production systems). In [95]
and [96], algorithms used to identify finite automata without
do not-care states were proposed. Usually, automata with-
out do not-care states have more states than that with do
not-care states. Fig. 7 [20] shows an example to illustrate the
difference between automata with and without do not-care
states.

g: RESETTABLE SYSTEM LEARNING VS. NON-RESETTABLE
SYSTEM LEARNING
Resettable system learningmeans the system under learning
can be reset many times so as to produce as many output
samples as possible. The more samples used for learning, the
more accurate the result will be. But in real life, there are
cases where a black box cannot be reset, or it is uncertain that
the system can be reset to the same initial state. Besides, there

FIGURE 7. An example of automata with and without do not-care states.

are also cases that restart the system completelymight be very
costly and require a lot of time to reset the whole configura-
tion (e.g., rebooting a machine, with possibly many software
components to configure and reinitialize) [97]. Resettable
system leaning algorithms can be seen in [98]–[100].

Non-resettable system learning means to learn a black
box system without resetting it. The absence of reset was
addressed in [101], [102]. Rivest and Schapire [102] pio-
neered the inference of automata without a reset, but their
method was based on Angluin’s L∗ algorithm, which assumes
that an oracle can answer equivalence queries. In [97], the
first model inference method that does not require resetting
the system and does not require an external oracle to decide on
equivalence was introduced. Peled et al. [103] and Groceet
al. [104] highlighted the fact that MAT framework can be
utilized to infer models of hardware and software components
considering them as black boxes as the ‘‘learner’’ can reset the
‘‘teacher’’ at any point.

h: FULLY OBSERVATION OUTPUTS VS. PARTIALLY
OBSERVATION OUTPUTS
Fully observation outputs mean the outputs (e.g., traces) of
a system are fully observable. Many algorithms use these
outputs for learning a model that is bisimilar to the sys-
tem in a state-merging manner. State-merging style learn-
ing algorithms (e.g., ALERGIA, AALERGIA, IOALERGIA)
[13], [76], [77], [99], [100] are fully observations learning
algorithms, as no fragment is missing in every observation
sequence.

Partially observation outputs mean the outputs of a sys-
tem are not fully observable due to some reasons, like partial
outputs were erosion, and the observations can be viewed
as incomplete data. Such problems motivate the research on
automated model identification, and various methods have
been used to address this problem [105], [106]. In [105],
an evolutionary algorithm for tackling the identification prob-
lem of Cellular Automata in the context of partial observa-
tions problem was presented. In [107], Babaee, et al. used a
HMM to extend the partially observable paths of the system,
and then used reachability analysis to construct a lookup table

VOLUME 8, 2020 108571

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

TABLE 6. Comparison of commonly used learning algorithms.

which provides the probability that the extended path satisfies
or violates the specification from the current state.

i: LEARNING DENSE TIME VS. LEARNING DISCRETE TIME VS.
LEARNING HYBRID SYSTEM MODELS
Generally speaking, we can divide today’s technical systems
into three types. These are Discrete Event System (DES),
continuous system, and hybrid system.

Discrete event systems are those systems that show a
state-based behavior, i.e., they comprise a set of discrete
states that represent their modes of operation and a set of
events that trigger changes between those states [108]. These
systems can have only a finite number of changes in a finite
time.

Continuous systems are those systems whose belonging
variables are value-continuous over time [109]. Real-world
examples of such variables are temperature, electricity, volt-
age, etc. Changes in the continuous system are typically
smooth and can occur at any moment in time. These sys-
tems can have an infinite number of changes in a finite
time.

Systems that exhibit characteristics of both discrete
event and continuous systems are called hybrid sys-
tems [110], [111].
Different learning algorithmswere used to learn these three

types of system models. Algorithms like IOALERGIA (for
learning MDP) [76], [112], LSGDERA and LDERA (for
learning ERA) [89] were used to learn discrete event systems,
algorithm in [113] was used to learn continuous system, and
HyBUTLA (for learning 1-SDHA) [114]–[116] was used to
learn hybrid system.

j: LEARNING WITH NOISE VS. LEARNING WITHOUT NOISE
All technical data such as sensor values are subject to
noise. So the accuracy of the learned model depends on the

sample set whether it is noise-free or not. Learning with noise
means partial or all of the learning samples are influenced by
noise.

Angluin-style learning algorithms [12], [78]–[80] are
noise-free learning algorithms, as these algorithms assume
that each finite input sequence is uniquely labeled as either
accepted or rejected by the system. In [117], Sloan contrasted
the effects of four different types of noise on PAC-learning.
As filtering is a procedure for decreasing the measurement
noise (called denoising), in [19], advanced filtering and other
signal processing technologies were applied before measure-
ments are logged in a database, this process is called data
preprocessing.

k: TRUE CONCURRENCY VS. FALSE CONCURRENCY
The term ‘‘true concurrency’’ arises in the theoretical study
of concurrent and parallel computation [118]. It is in contrast
to interleaving concurrency. True concurrency is concurrency
that cannot be reduced to interleaving. False concurrency
is also known as interleaving concurrency. Concurrency is
interleaved if at each step in the computation, only one atomic
computing action (e.g. an exchange of messages between
sender and receiver) can take place. Concurrency is true if
more than one such atomic action takes place in a step.
PN and event calculus systems are true concurrency systems,
labeled transition systems are false concurrency. In [119],
a new learning algorithm that introduces the network learn-
ing method into PN update was proposed, and was used to
model the web service discovery. In [120], a method based
on random hill climbing that automatically builds PN models
of non-linear (or multi-factorial) disease-causing gene–gene
interactions was also described.

Based on the above commonly used learning algorithms,
Table 6 and Table 7 present two comparisons of these
algorithms.

108572 VOLUME 8, 2020

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

TABLE 7. Comparison of the algorithms in usefulness, limitation and applicability aspects.

2) LEARNING FOR VERIFICATION WITHOUT LEARNING A
MODEL
As some formal specifications can be verified using ML or
optimization algorithms, there is no need to learn the model
for verification. In [121], reinforcement learning algorithms
were adopted to verify MDP, without constructing explicit
models.

IV. APPLICATIONS BASED ON LEARNING
Currently, learning-based methods have been applied suc-
cessfully in formal methods area, especially in learn-
ing formal specification and in learning for FV. The
applications of model learning were presented in [9],
we will not discuss applications in this research direction.
In the following subsections, we shall briefly discuss the
applications of learning formal specifications in different
domains.

A. ANOMALY DETECTION
As the complexity of real life systems (e.g., CPS, air traf-
fic management systems) increases, this leads to systems
more vulnerable to attacks, so automated anomaly detection
methods that used to detect possible attacks are necessary.
Anomaly detection is a new reach direction that has gained
more intention in different research areas. Anomaly detec-
tion refers to the problem of finding patterns modes in data
that do not conform to expected behavior [122]. In different
application domains, these unexpected behaviors have differ-
ent names, like anomalies, outliers, surprises, peculiarities,
or exceptions. Among these, researchers often use anomalies
and outliers, even interchangeably.

One solution to handle this problem is to infer a specifi-
cation which can differentiate between expected and unex-
pected behavior through the observations of the system in
question so that trajectories that do not satisfy the inferred

VOLUME 8, 2020 108573

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

specification are classified as anomalous. A supervised learn-
ing algorithm was proposed by Kong et al. [59], which
was used to infer formulae to distinguish between expected
and unexpected behavior. In [58], a data classifier can be
inferred from unlabeled data, which is an implementation
of formal methods in anomaly detection and other tasks.
The approach is able to distinguish the normal and attacked
outputs with high discrimination rates. Furthermore, an unsu-
pervised anomaly detection algorithm was proposed in [68]
for detecting aircraft anomalies, by using TempADalgorithm.

B. CLASSIFICATION
Methods of ML that used for classification are too specific.
In other words, the classification problem is the only goal that
we need to solve, without offering other useful information to
the user. In contrast, temporal logic formulae [47] not only
have precise meaning but also allow for a rich specifica-
tion of a system behavior, which is interpretable by human
experts. Classification problems can be viewed as learning
temporal logic formulae that differentiate objects. In order to
distinguish between expected and unexpected behaviors, the
method of inferring a temporal logic formula from observa-
tions was proposed in [59]. Similarly, a method for learning
signal classifiers from data was presented in [52], by means
of incrementally learning an STL formulae. Other algorithms
were introduced to infer GTL formulas from data in [123],
which were used for classification and identification.

C. DEBUGGING OR ANOMALY ANALYSIS
Engineers try to understand the behavior of software in all
stages of the software development process. For example,
from the start to the end of the development, during the
requirement discussing, during the implementation planning,
during the verification stage, and during the debugging pro-
cess. Consider developing large, high-level software models,
detecting abnormal behavior during the developing process
have many benefits, such as reducing debugging time and
saving costs. In [124], existing specification mining tech-
niques were applied to test finite state machine in real-
world industrial settings and have helped developers in the
debugging process. In [125], a diagnosis framework was pro-
posed to automatically localize an error, where specifications
were mined from traces. Similarly, another mining approach
for detecting and diagnosing software defects was presented
in [126], with the FLTL properties mined from the negative
traces.

D. MINING REQUIREMENTS
In the literature, system requirements (a.k.a. system specifi-
cations) are mathematical expressions expressed in suitable
logic formulae, which are the design goals or properties of
the system. Unfortunately, formalized system requirements
are normally unavailable. For example, consider the case of
systems built on legacy models. Moreover, to understand the
system model for any engineers except its developers is not
an easy task. Therefore, if the system requirements can be

derived from observing the system operation results, it can
help engineers understand the system and even maintain the
system in the future. Based on this idea, a scalable technique,
which is used to mine requirements from observations of the
system behavior, was proposed in [45].

V. POSSIBLE FUTURE RESEARCH DIRECTIONS
In the previous section, we provided an overview of the
important applications of learning specification (or speci-
fication mining) presented thus far. Different from others
in [127], [128], applications in this paper are based on learn-
ing. Namely, we can use the learned model or specification
from the unknown system (like block-box) or traces of the
system running, and then go one step further to do model
checking, testing, and verification, etc.

A. LEARNING FROM COALGEBRA PERSPECTIVE
The first possible research line is to develop more effi-
cient algorithms from coalgebra point of view. Coalge-
bra [129], [130] studies ‘‘generated behavior’’ that can be
observedwhen interactingwith a system. Existingwork using
the observations to learn a model which is (approximate)
behavior equivalent to the system in question. However, little
work has been down to use the observed behavior to learn
how the system works. In [131], Jacobs and Silva revisited
Angluin’s original algorithm from a categorical perspective.
They presented the first step towards a categorical under-
standing and generalization of Angluin’s learning algorithm,
originally defined for DFA. In [132], Barlocco and Kupke
provided a fresh take on Dana Angluin’s algorithm for learn-
ing using ideas from coalgebraic modal logic, and proposed
the ‘‘Lco algorithm’’, which is a generalization of Angluin’s
original algorithm from DFAs to coalgebras. It allows the
learning of regular coalgebras for an arbitrary finitary set
functor. The connections between coalgebra and learning
are still far from being completely understood. Research in
this line is few, it has the potential to do further research,
like develop more efficient algorithms from coalgebra
perspective.

B. LEARNING HYBRID SYSTEM
The second research direction is to learn n-SDHA that clock
variables can change uniformly or differently, and also to
learn other types of HA. As the world we are living consists of
various facilities that can change continuously and discretely,
we all called this type of system as hybrid system. Hybrid
systems are almost everywhere, they occur frequently in auto-
motive industries, process control, mobile robotics, medical
devices, and mixed analog-digital chip design area. In order
to analyze hybrid systems, hybrid automata and HPN are the
twomostly usedmodels tomodel them. Butmanual modeling
of a complex real-world hybrid system is a very hard task,
it is both time consuming and error-prone. An alternative is
the automatic model identification that relies on the theory
of learning. Namely, learning the model automatically based
on the observation of the system behavior. To the best of our

108574 VOLUME 8, 2020

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

knowledge, HyBUTLA [19], [114] is the first and only hybrid
automata learning algorithm that can deal with all hybrid sys-
tem characteristics. This algorithmwas used to learn 1-SDHA
model. A further research direction is to learn n-SDHA that
clock variables can change uniformly or differently, and also
to learn other types of HA.

C. RESEARCH ON THE RELATIONSHIP BETWEEN THE
LEARNED MODEL AND THE UNKNOWN SYSTEM
The third possible work is related to the research on the
relationship between the learned model and the system under
observation. There are many behavior equivalence relations
between two systems, like simulation, strong bisimulation,
weak bisimulation, branching bisimulation, trace equiva-
lence, etc. HyBUTLA is the first hybrid automata learning
algorithm that can deal with all hybrid system characteristics,
but the relationship between the learned HA and the unknown
hybrid system has not been discussed. So, this may be a
possible research direction.

VI. CONCLUSIONS
Incorporation of ML techniques in formal methods has been
an important topic of formal methods research, because in
real-world, system models and/or formalized system spec-
ifications are normally unavailable due to various reasons.
So there exist two research lines of learning, i.e., learning sys-
tem’s formal specifications and learning for verification. This
paper provides an up-to-date overview of the current state-
of-the-art in learning-based formal methods. This paper only
concentrates on learning formal specification and learning
for FV, and does not discuss other techniques used in formal
methods. Therefore, this paper is not a comprehensive survey
of the learning-based techniques in formal methods area, but
rather as a survey of the taxonomy, applications, and possible
future directions in learning-based formal methods.

ACKNOWLEDGMENT
The authors would like to thank the anonymous referees
for their comments that helped to substantially improve the
quality of the article.

REFERENCES
[1] D. A. Peled, Software Reliability Methods. New York, NY, USA:

Springer, 2001.
[2] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Handbook of

Model Checking. Cham, Switzerland: Springer, 2018.
[3] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking. Cambridge,

MA, USA: MIT Press, 1999.
[4] M. Leucker, ‘‘Learning meets verification,’’ in Proc. FMCO, Amsterdam,

The Netherlands, 2007, pp. 127–151.
[5] B. Steffen, F. Howar, and M. Merten, ‘‘Introduction to active automata

learning from a practical perspective,’’ in Proc. SFM, Bertinoro, Italy,
2011, pp. 256–296.

[6] F. Howar and B. Steffen, ‘‘Active automata learning in practice an anno-
tated bibliography of the years 2011 to 2016,’’ in Proc. Mach. Learn. Dyn.
Softw. Anal. Potentials Limits, 2018, pp. 123–148.

[7] A. Bennaceur and K. Meinke, Machine Learning for Software Analysis:
Models,Methods, and Applications (LectureNotes in Computer Science),
vol. 11026. Wadern, Germany: Springer, 2018, pp. 3–49.

[8] M. Amrani, L. Lúcio, and A. Bibal, ‘‘ML + FV = ♥? A survey
on the application of machine learning to formal verification,’’ 2018,
arXiv:1806.03600. [Online]. Available: http://arxiv.org/abs/1806.03600

[9] S. Ali, H. Sun, and Y. Zhao, ‘‘Model learning: A survey on foundation,
tools and applications,’’ 2018, arXiv:1901.01910. [Online]. Available:
http://arxiv.org/abs/1901.01910

[10] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler, D. Nickovic,
and S. Sankaranarayanan, ‘‘Specification-based monitoring of cyber-
physical systems: A survey on theory, tools and applications,’’ in
Lectures on Runtime Verification. Cham, Switzerland: Springer, 2018,
pp. 135–175.

[11] E. Bartocci, ‘‘Monitoring, learning and control of cyber-physical systems
with STL (tutorial),’’ in Proc. RV, Limassol, Cyprus, 2018, pp. 35–42.

[12] D. Angluin, ‘‘Learning regular sets from queries and counterexamples,’’
Inf. Comput., vol. 75, no. 2, pp. 87–106, Nov. 1987.

[13] R. C. Carrasco and J. Oncina, ‘‘Learning stochastic regular grammars by
means of a state merging method,’’ in Proc. ICGI, Alicante, Spain, 1994,
pp. 139–152.

[14] L. Bortolussi, D. Milios, and G. Sanguinetti, ‘‘Smoothed model checking
for uncertain continuous-time Markov chains,’’ Inf. Comput., vol. 247,
pp. 235–253, Apr. 2016.

[15] R.M. Keller, ‘‘Formal verification of parallel programs,’’Commun. ACM,
vol. 19, no. 7, pp. 371–384, Jul. 1976.

[16] J. Hopcroft, R.Motwani, and J. Ullman, Introduction to Automata Theory,
Languages, and Computation, 2nd ed. Reading, MA, USA: Addison-
Wesley, 2001.

[17] R. David and H. Alla, ‘‘On hybrid Petri nets,’’ Discrete Event Dyn. Syst.
Theory Appl., vol. 11, nos. 1–2, pp. 9–40, 2001.

[18] C. Baier and J. P. Katoen, Principles of Model Checking. London, U.K.:
MIT Press, 2008.

[19] A. Vodenčarević, ‘‘Identifying behavior models for hybrid produc-
tion systems,’’ Ph.D. dissertation, Dept. Elect. Eng., Paderborn Univ.,
Paderborn, Germany, 2013.

[20] A. Maier, ‘‘Identification of timed behavior models for diagnosis in
production systems,’’ Ph.D. dissertation, Dept. Elect. Eng., Paderborn
Univ., Paderborn, Germany, 2015.

[21] O. Grinchtein, B. Jonsson, and P. Pettersson, ‘‘Inference of event-
recording automata using timed decision trees,’’ in Proc. CONCUR,
Bonn, Germany, 2006, pp. 435–449.

[22] V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia, ‘‘Reac-
tive synthesis from signal temporal logic specifications,’’ in Proc. HSCC,
Seattle, WA, USA, 2015, pp. 239–248.

[23] V. Raman, A. Donze, M. Maasoumy, R. M. Murray,
A. Sangiovanni-Vincentelli, and S. A. Seshia, ‘‘Model predictive
control with signal temporal logic specifications,’’ in Proc. CDC,
Los Angeles, CA, USA, Dec. 2014, pp. 81–87.

[24] L. Feng, M. Kwiatkowska, and D. Parker, ‘‘Compositional verification of
probabilistic systems using learning,’’ in Proc. QEST, Williamsburg, VA,
USA, Sep. 2010, pp. 133–142.

[25] L. Feng, ‘‘On learning assumptions for compositional verification of
probabilistic systems,’’ Ph.D. dissertation, Dept. Trinity, Univ. Oxford,
Oxford, U.K., Oct. 2013.

[26] F. He, X. Gao, M.Wang, B.-W.Wang, and L. Zhang, ‘‘Learning weighted
assumptions for compositional verification of Markov decision pro-
cesses,’’ ACM Trans. Softw. Eng. Methodol., vol. 25, no. 3, pp. 1–21,
Aug. 2016.

[27] R. Bouchekir and M. C. Boukala, ‘‘Learning-based symbolic assume-
guarantee reasoning for Markov decision process by using interval
Markov process,’’ Innov. Syst. Softw. Eng., vol. 14, no. 3, pp. 229–244,
Jun. 2018.

[28] Y. Ma, Z. Cao, and Y. Liu, ‘‘A probabilistic assume-guarantee rea-
soning framework based on genetic algorithm,’’ IEEE Access, vol. 7,
pp. 83839–83851, Jun. 2019.

[29] M. Hu and Z. Cao, ‘‘LRx: Specification mining based on logistic regres-
sion,’’ in Proc. ICMSS, Wuhan, China, Jan. 2020, pp. 68–72.

[30] A. Jones, ‘‘Formal methods paradigms for estimation and machine learn-
ing in dynamical systems,’’ Ph.D. dissertation, Dept. Eng., Boston Univ.,
Boston, MA, USA, 2015.

[31] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta, ‘‘Q-learning
for robust satisfaction of signal temporal logic specifications,’’ in Proc.
CDC, Las Vegas, NV, USA, Dec. 2016, pp. 6565–6570.

[32] S. Yoshimura, A. Matsubayashi, and M. Inoue, ‘‘System identification
method inheriting steady-state characteristics of existing model,’’ Int. J.
Control, vol. 92, no. 11, pp. 2701–2711, Apr. 2018.

VOLUME 8, 2020 108575

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

[33] H. Hungar, O. Niese, and B. Steffen, ‘‘Domain-specific optimiza-
tion in automata learning,’’ in Proc. CAV, Boulder, CO, USA, 2003,
pp. 315–327.

[34] T. Berg, O. Grinchtein, B. Jonsson,M. Leucker, H. Raffelt, and B. Steffen,
‘‘On the correspondence between conformance testing and regular infer-
ence,’’ in Proc. FASE, Edinburgh, U.K., 2005, pp. 175–189.

[35] A. Hagerer, H. Hungar, O. Niese, and B. Steffen, ‘‘Model generation
by moderated regular extrapolation,’’ in Proc. FASE, Grenoble, France,
2002, pp. 80–95.

[36] F. W. Vaandrager, ‘‘Model learning,’’ Commun. ACM, vol. 60, no. 2,
pp. 86–95, 2017.

[37] M. Isberner, ‘‘Foundations of active automata learning: An algorithmic
perspective,’’ Ph.D. dissertation, Dept. Comput. Sci., Tech. Univ. Dort-
mund, Dortmund, Germany, 2015.

[38] M. Gabel and Z. Su, ‘‘Symbolic mining of temporal specifications,’’ in
Proc. ICSE, Leipzig, Germany, 2008, pp. 51–60.

[39] S. Shoham, E. Yahav, J. Stephen Fink, and M. Pistoia, ‘‘Static specifica-
tionmining using automata-based abstractions,’’ IEEE Trans. Softw. Eng.,
vol. 34, no. 5, pp. 174–184, Sep. 2008.

[40] X. Jianyu and D. Jingguo, ‘‘Specifications mining based on adjusted
automata learning algorithm,’’ Inf. Technol. J., vol. 11, no. 10,
pp. 1391–1399, Oct. 2012.

[41] A. W. Biermann and J. A. Feldman, ‘‘On the synthesis of finite-
state machines from samples of their behavior,’’ IEEE Trans. Comput.,
vol. C-21, no. 6, pp. 592–597, Jun. 1972.

[42] W. Weimer and G. Necula, ‘‘Mining temporal specifications for error
detection,’’ in Proc. TACAS, Edinburgh, U.K., 2005, pp. 461–476.

[43] P. R. Bokil, ‘‘Generating effective test suites for reactive systems using
specification mining,’’ M.S. thesis, Dept. Bus., Bond Univ., Gold Coast,
QLD, Australia, 2014.

[44] M. K. Ramanathan, A. Grama, and S. Jagannathan, ‘‘Static specification
inference using predicate mining,’’ in Proc. PLDI, San Diego, CA, USA,
2007, pp. 123–134.

[45] X. Jin, A. Donze, J. V. Deshmukh, and S. A. Seshia, ‘‘Mining require-
ments from closed-loop control models,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, no. 11, pp. 1704–1717, Nov. 2015.

[46] B. Hoxha, A. Dokhanchi, and G. E. Fainekos, ‘‘Mining parametric tem-
poral logic properties in model-based design for cyber-physical systems,’’
Int. J. Softw. Tools Technol. Transf., vol. 20, no. 1, pp. 79–93, Feb. 2018.

[47] G. Bombara and C. Belta, ‘‘Online learning of temporal logic formulae
for signal classification,’’ in Proc. ECC, Limassol, Cyprus, Jun. 2018,
pp. 2057–2062.

[48] L. Nenzi, S. Silvetti, E. Bartocci, and L. Bortolussi, ‘‘A robust genetic
algorithm for learning temporal specifications from data,’’ in Proc. QEST,
Beijing, China, 2018, pp. 323–338.

[49] A. Mrowca, M. Nocker, S. Steinhorst, and S. Günnemann, ‘‘Learning
temporal specifications from imperfect traces using Bayesian inference,’’
in Proc. DAC, Las Vegas, NV, USA, Jun. 2019, pp. 96–101.

[50] D. Neider and I. Gavran, ‘‘Learning linear temporal properties,’’ in Proc.
FMCAD, Austin, TX, USA, Oct. 2018, pp. 1–10.

[51] E. Bartocci, L. Bortolussi, and S. Sanguinetti, ‘‘Data-driven statistical
learning of temporal logic properties,’’ in Proc. FORMATS, Florence,
Italy, 2014, pp. 23–37.

[52] E. Asarin, A. Donzé, O. Maler, and D. Nickovic, ‘‘Parametric identifica-
tion of temporal properties,’’ in Proc. RV, San Francisco, CA, USA, 2012,
pp. 147–160.

[53] S. Jha, A. Tiwari, A. S. Seshia, T. Sahai, and N. Shankar, ‘‘TeLEx: Passive
STL learning using only positive examples,’’ in Proc. RV, Seattle, WA,
USA, 2017, pp. 208–224.

[54] S. Jha, A. Tiwari, S. A. Seshia, T. Sahai, and N. Shankar, ‘‘TeLEx: Learn-
ing signal temporal logic from positive examples using tightness metric,’’
Formal Methods Syst. Des., vol. 54, no. 3, pp. 364–387, Jan. 2019.

[55] H. Yang, B. Hoxha, and G. Fainekos, ‘‘Querying parametric tempo-
ral logic properties on embedded systems,’’ in Proc. ICTSS, Aalborg,
Denmark, 2012, pp. 136–151.

[56] F. Fages and A. Rizk, ‘‘Frommodel-checking to temporal logic constraint
solving,’’ in Proc. CP, Lisbon, Portugal, 2009, pp. 319–334.

[57] A. Pnueli, ‘‘The temporal semantics of concurrent programs,’’ Theor.
Comput. Sci., vol. 13, no. 1, pp. 45–60, 1981.

[58] A. Jones, Z. Kong, and C. Belta, ‘‘Anomaly detection in cyber-physical
systems: A formal methods approach,’’ in Proc. CDC, Los Angeles, CA,
USA, Dec. 2014, pp. 848–853.

[59] Z. Kong, A. Jones, A. M. Ayala, E. A. Gol, and C. Belta, ‘‘Temporal logic
inference for classification and prediction from data,’’ in Proc. HSCC,
Berlin, Germany, 2014, pp. 273–282.

[60] G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, ‘‘A deci-
sion tree approach to data classification using signal temporal logic,’’ in
Proc. HSCC, Vienna, Austria, 2016, pp. 1–10.

[61] S. Bufo, E. Bartocci, G. Sanguinetti, M. Borelli, U. Lucangelo, and
L. Bortolussi, ‘‘Temporal logic based monitoring of assisted ventila-
tion in intensive care patients,’’ in Proc. ISoLA, Corfu, Greece, 2014,
pp. 391–403.

[62] R. Alur, K. Etessami, S. La Torre, and D. Peled, ‘‘Parametric temporal
logic for ‘model measuring,’’’ ACM Trans. Comput. Log., vol. 2, no. 3,
pp. 388–407, Jul. 2001.

[63] F. Wang, ‘‘Parametric timing analysis for real-time systems,’’ Inf. Com-
put., vol. 130, no. 2, pp. 131–150, Nov. 1996.

[64] R. Alur and D. L. Dill, ‘‘A theory of timed automata,’’ Theor. Comput.
Sci., vol. 126, no. 2, pp. 183–235, Apr. 1994.

[65] L. Huimin and Z. Wenhui, ‘‘Model checking: Theories, techniques and
applications,’’ Acta Electronica Sinica, vol. 30, no. 12A, pp. 1907–1912,
Aug. 2002.

[66] W. Chan, ‘‘Temporal-logic queries,’’ in Proc. CAV, Chicago, IL, USA,
2000, pp. 450–463.

[67] M. Chechik and A. Gurfinkel, ‘‘TLQSolver: A temporal logic query
checker,’’ in Proc. CAV, Boulder, Co, USA, 2003, pp. 210–214.

[68] R. Deshmukh and I. Hwang, ‘‘Anomaly detection using temporal logic
based learning for terminal airspace operations,’’ in Proc. AIAA SciTech
Forum, San Diego, CA, USA, Jan. 2019, pp. 1–11.

[69] A. Jones, D. Aksaray, Z. Kong, M. Schwager, and C. Belta, ‘‘Robust
satisfaction of temporal logic specifications via reinforcement learning,’’
in Proc. CDC, Osaka, Japan, 2015, pp. 1–8.

[70] J. N. Tsitsiklis, ‘‘Asynchronous stochastic approximation and
Q-learning,’’ Mach. Learn., vol. 16, no. 3, pp. 185–202, Sep. 1994.

[71] R. Alur, P. Černý, P. Madhusudan, and W. Nam, ‘‘Synthesis of interface
specifications for Java classes,’’ in Proc. POPL, Long Beach, CA, USA,
2005, pp. 98–109.

[72] G. Ammons, R. Bodík, and J. R. Larus, ‘‘Mining specifications,’’ in Proc.
POPL, Portland, OR, USA, 2002, pp. 4–16.

[73] D. Lo and S.-C. Khoo, ‘‘SMArTIC: Towards building an accurate, robust
and scalable specification miner,’’ in Proc. SIGSOFT FSE, Portland, OR,
USA, 2006, pp. 265–275.

[74] M. Isberner, F. Howar, and B. Steffen, ‘‘The TTT algorithm:
A redundancy-free approach to active automata learning,’’ in Proc. RV,
Toronto, ON, Canada, 2014, pp. 307–322.

[75] M. Shahbaz and R. Groz, ‘‘Inferring mealy machines,’’ in Proc. FM,
Eindhoven, The Netherlands, 2009, pp. 207–222.

[76] H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, K. G. Larsen, and B. and
Nielsen, ‘‘Learning Markov decision processes for model checking,’’ in
Proc. QFM, Paris, France, 2012, pp. 49–63.

[77] H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, K. G. Larsen, and B. Nielsen,
‘‘Learning probabilistic automata for model checking,’’ in Proc. QEST,
Aachen, Germany, Sep. 2011, pp. 111–120.

[78] B. Bollig, P. Habermehl, C. Kern, and M. Leucker, ‘‘Angluin-style learn-
ing of NFA,’’ in Proc. IJCAI, Pasadena, CA, USA, 2009, pp. 1004–1009.

[79] S. Chaki, E. M. Clarke, N. Sinha, and P. Thati, ‘‘Automated assume-
guarantee reasoning for simulation conformance,’’ in Proc. CAV,
Edinburgh, Scotland, 2005, pp. 534–547.

[80] Y.-F. Chen, A. Farzan, E. M. Clarke, Y.-K. Tsay, and B.-Y.Wang, ‘‘Learn-
ing minimal separating DFA’s for compositional verification,’’ in Proc.
TACAS, York, U.K., 2009, pp. 31–45.

[81] L. Feng, M. Obayashi, T. Kuremoto, and K. Kobayashi, ‘‘Construction
and application of learning Petri net,’’ in Petri Nets—Manufacturing and
Computer Science. Rijeka, Croatia: InTech, 2012, pp. 143–176.

[82] J. Esparza, M. Leucker, andM. Schlund, ‘‘Learning workflow Petri nets,’’
Fundamenta Informaticae, vol. 113, nos. 3–4, pp. 205–228, 2011.

[83] E. M. Gold, ‘‘Complexity of automaton identification from given data,’’
Inf. Control, vol. 37, no. 3, pp. 302–320, Jun. 1978.

[84] E. M. Gold, ‘‘Language identification in the limit,’’ Inf. Control, vol. 10,
no. 5, pp. 447–474, May 1967.

[85] L. G. Valiant, ‘‘A theory of the learnable,’’Commun. ACM, vol. 27, no. 11,
pp. 1134–1142, Nov. 1984.

[86] S. Tong, ‘‘Active learning: Theory and applications,’’ Ph.D. dissertation,
Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, 2001.

108576 VOLUME 8, 2020

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

[87] F. Thollard, P. Dupont, and C. de la Higuera, ‘‘Probabilistic DFA infer-
ence using Kullback-Leibler divergence and minimality,’’ in Proc. ICML,
Stanford, CA, USA, 2000, pp. 975–982.

[88] S. Verwer, ‘‘Efficient identification of timed automata: Theory and prac-
tice,’’ Ph.D. dissertation, Dept. Comput. Sci., Delft Univ. Technol., Delft,
The Netherlands, 2010.

[89] O. Grinchtein, B. Jonsson, and M. Leucker, ‘‘Learning of event-
recording automata,’’ in Proc. FORMATS/FTRTFT, Grenoble, France,
2004, pp. 379–395.

[90] A. Maier, ‘‘Online passive learning of timed automata for cyber-physical
production systems,’’ in Proc. INDIN, Porto Alegre, Brazil, 2014,
pp. 60–66.

[91] A. Maier, O. Niggemann, A. Vodencarevic, R. Just, and M. Jäger,
‘‘Anomaly detection in production plants using timed automata,’’ in Proc.
ICINCO, Noordwijkerhout, The Netherlands, Jul. 2011, pp. 363–369.

[92] C. de la Higuera,Grammatical Inference: Learning Automata and Gram-
mars. New York, NY, USA: Cambridge Univ. Press, 2010.

[93] J. Oncina and P. Garcia, ‘‘Identifying regular languages in polyno-
mial time,’’ in Advances in Structural and Syntactic Pattern Recogni-
tion (Series in Machine Perception and Artificial Intelligence), vol. 5.
Singapore: World Scientific, 1992, pp. 99–108.

[94] S. Verwer, M. de Weerdt, and C. Witteveen, ‘‘One-clock deterministic
timed automata are efficiently identifiable in the limit,’’ in Proc. LATA,
Tarragona, Spain, 2009, pp. 740–751.

[95] M. Roth, J.-J. Lesage, and L. Litz, ‘‘Black-box identification of discrete
event systems with optimal partitioning of concurrent subsystems,’’ in
Proc. ACC, Orlando, FL, USA, Jun. 2010, pp. 2601–2606.

[96] M. Roth, S. Schneider, J.-J. Lesage, and L. Litz, ‘‘Fault detection and iso-
lation in manufacturing systems with an identified discrete event model,’’
Int. J. Syst. Sci., vol. 43, no. 10, pp. 1826–1841, Oct. 2012.

[97] R. Groz, A. Simao, A. Petrenko, and C. Oriat, ‘‘Inferring finite state
machines without reset using state identification sequences,’’ in Proc.
ICTSS, Sharjah, United Arab Emirates, 2015, pp. 161–177.

[98] R. Babaee, A. Gurfinkel, and S. Fischmeister, ‘‘Predictive run-time verifi-
cation of discrete-time reachability properties in black-box systems using
trace-level abstraction and statistical learning,’’ in Proc. RV, Limassol,
Cyprus, 2018, pp. 187–204.

[99] J. Wang, J. Sun, S. Qin, and C. Jegourel, ‘‘Automatically ‘ver-
ifying’ discrete-time complex systems through learning, abstrac-
tion and refinement,’’ IEEE Trans. Softw. Eng., early access, 2018,
doi: 10.1109/TSE.2018.2886898.

[100] H. Mao, Y. Chen, M. Jaeger, T. D. Nielsen, K. G. Larsen, and B. Nielsen,
‘‘Learning deterministic probabilistic automata from a model checking
perspective,’’Mach. Learn., vol. 105, no. 2, pp. 255–299, May 2016.

[101] F. C. Hennine, ‘‘Fault detecting experiments for sequential circuits,’’ in
Proc. SWCT, Princeton, NJ, USA, Nov. 1964, pp. 95–110.

[102] R. L. Rivest and R. E. Schapire, ‘‘Inference of finite automata using hom-
ing sequences,’’ Inf. Comput., vol. 103, no. 2, pp. 299–347, Apr. 1993.

[103] D. Peled, M. Y. Vardi, and M. Yannakakis, ‘‘Black box checking,’’
J. Automata, Lang. Combinat., vol. 7, no. 2, pp. 225–246, 2002.

[104] A. Groce, D. Peled, and M. Yannakakis, ‘‘Adaptive model checking,’’
Log. J. IGPL, vol. 14, no. 5, pp. 729–744, Oct. 2006.

[105] W. Bolt, J. M. Baetens, and B. De Baets, ‘‘An evolutionary approach to
the identification of cellular automata based on partial observations,’’ in
Proc. EC, Sendai, Japan, May 2015, pp. 2966–2972.

[106] W. Bołt, B.Wolnik,M. J. Baetens, and B. DeBaets, ‘‘On the identification
of α-asynchronous cellular automata in the case of partial observations
with spatially separated gaps,’’ in Challenging Problems and Solutions in
Intelligent Systems. Cham, Switzerland: Springer, 2016, pp. 23–36.

[107] R. Babaee, A. Gurfinkel, and S. Fischmeister, ‘‘Prevent: A predictive run-
time verification framework using statistical learning,’’ in Proc. SEFM,
Toulouse, France, 2018, pp. 205–220.

[108] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Sys-
tems, 2nd ed. New York, NY, USA: Springer, 2008.

[109] K. M. Hangos and I. T. Cameron, Process Modelling andModel Analysis.
San Diego, CA, USA: Academic, 2001.

[110] M. S. Branicky, ‘‘Introduction to hybrid systems,’’ in Handbook of
Networked and Embedded Control Systems. New York, NY, USA:
Birkhäuser, 2005, pp. 91–116.

[111] J. Lygeros, ‘‘Lecture notes on hybrid systems,’’ Autom. Control Lab.,
ETH Zürich, Zürich, Switzerland, Tech. Rep. AUT06-08, Dec. 2006.

[112] Y. Chen and T. D. Nielsen, ‘‘Active learning of Markov decision pro-
cesses for system verification,’’ in Proc. ICMLA, Boca Raton, FL, USA,
Dec. 2012, pp. 289–294.

[113] K. Sen, M. Viswanathan, and G. Agha, ‘‘Learning continuous time
Markov chains from sample executions,’’ in Proc. QEST, Enschede,
The Netherlands, 2004, pp. 146–155.

[114] A. Vodencarevic, H. Kleine Buning, O. Niggemann, and A.Maier, ‘‘Iden-
tifying behavior models for process plants,’’ in Proc. ETFA, Toulouse,
France, Sep. 2011, pp. 1–8.

[115] A. Vodencarevic, ‘‘Learning behavior models of hybrid systems using
wavelets for autonomous jumps detection,’’ in Proc. INDIN, Beijing,
China, Jul. 2012, pp. 151–156.

[116] A. Vodencarevic, H. K. Buning, O. Niggemann, and A. Maier, ‘‘Using
behaviormodels for anomaly detection in hybrid systems,’’ inProc. ICAT,
Sarajevo, Bosnia Herzegovina, Oct. 2011, pp. 1–8.

[117] R. H. Sloan, ‘‘Four types of noise in data for PAC learning,’’ Inf. Process.
Lett., vol. 54, no. 3, pp. 157–162, May 1995.

[118] H. Bowman and R. Gomez, Concurrency Theory. Berlin, Germany:
Springer, 2006, pp. 1–139.

[119] L. Feng, M. Obayashi, T. Kuremoto, and K. Kobayashi, ‘‘A learning
fuzzy Petri net model,’’ IEEJ Trans. Electr. Electron. Eng., vol. 7, no. 3,
pp. 274–282, May 2012.

[120] M. Mayo, ‘‘Learning Petri net models of non-linear gene interactions,’’
Biosystems, vol. 82, no. 1, pp. 74–82, Oct. 2005.

[121] T. Brazdil, K. Chatterjee, M. Chmelík, V. Forejt, J. Křetínský,
M. Kwiatkowska, D. Parker, and M. Ujma, ‘‘Verification of Markov
decision processes using learning algorithms,’’ in Proc. ATVA, Sydney,
NSW, Australia, 2014, pp. 98–114.

[122] M. Zandrahimi, H. R. Zarandi, and M. H. Mottaghi, ‘‘Two effective
methods to detect anomalies in embedded systems,’’ Microelectron. J.,
vol. 43, no. 1, pp. 77–87, Jan. 2012.

[123] Z. Xu, A. J. Nettekoven, A. A. Julius, and U. Topcu, ‘‘Graph
temporal logic inference for classification and identification,’’ 2019,
arXiv:1903.09714. [Online]. Available: http://arxiv.org/abs/1903.09714

[124] M. Jafar Mashhadi and H. Hemmati, ‘‘An empirical study on practi-
cality of specification mining algorithms on a real-world application,’’
2019, arXiv:1903.11242. [Online]. Available: http://arxiv.org/abs/1903.
11242

[125] W. Li, A. Forin, and S. A. Seshia, ‘‘Scalable specification mining for
verification and diagnosis,’’ in Proc. DAC, Anaheim, CA, USA, 2010,
pp. 755–760.

[126] F. Wang, J.-H. Wu, C.-H. Huang, C.-C. Chang, and C.-C. Li, ‘‘Temporal
specification mining for anomaly analysis,’’ in Proc. APLAS, Melbourne,
VIC, Australia, 2013, pp. 273–289.

[127] S. P. Nanda and E. S. Grant, ‘‘A survey of formal specification application
to safety critical systems,’’ in Proc. IEEE 2nd Int. Conf. Inf. Comput.
Technol. (ICICT), Kahului, HI, USA, Mar. 2019, pp. 296–302.

[128] H. A. Gabbar,Modern Formal Methods and Applications. Dordrecht, The
Netherlands: Springer, 2006.

[129] B. Jacobs, Introduction to Coalgebra: TowardsMathematics of States and
Observation. New York, NY, USA: Cambridge Univ. Press, 2016.

[130] B. Jacobs and J. Rutten, ‘‘An introduction to (co)algebras and
(co)induction,’’ in Advanced Topics in Bisimulation and Coinduction
(Cambridge Tracts in Theoretical Computer Science), vol. 5. 2011,
pp. 38–99.

[131] B. Jacobs and A. Silva, ‘‘Automata learning: A categorical perspective,’’
in Horizons of the Mind. A Tribute to Prakash Panangaden. New York,
NY, USA: Springer, 2014, pp. 384–406.

[132] S. Barlocco and C. Kupke, ‘‘Angluin learning via logic,’’ in Proc. LFCS,
Deerfield Beach, FL, USA, 2018, pp. 72–90.

FUJUN WANG was born in Yangzhou, Jiangsu,
China, in 1987. He received the M.S. degree from
the Nanjing University of Posts and Telecommu-
nications, Nanjing, China, in 2013. He is currently
pursuing the Ph.D. degree with the College of
Computer Science and Technology, Nanjing Uni-
versity of Aeronautics and Astronautics, Nanjing.
His research interests include formal methods and
logic in computer science.

VOLUME 8, 2020 108577

http://dx.doi.org/10.1109/TSE.2018.2886898

F. Wang et al.: Survey on Learning-Based Formal Methods: Taxonomy, Applications and Possible Future Directions

ZINING CAO received the M.S. degree from
the Nanjing University of Aeronautics and Astro-
nautics, Nanjing, China, in 1998, and the Ph.D.
degree from Tsinghua University, Beijing, China,
in 2001. He is currently a Professor with the Col-
lege of Computer Science and Technology, Nan-
jing University of Aeronautics and Astronautics.
He has published more than 30 articles. His cur-
rent research interests include formal methods and
logic in computer science.

LIXING TAN received the M.S. degree from
Hangzhou Dianzi University, Hangzhou, China,
in 2011. He is currently pursuing the Ph.D. degree
with the College of Computer Science and Tech-
nology, Nanjing University of Aeronautics and
Astronautics, Nanjing, China. His research inter-
ests include artificial intelligence and logic in com-
puter science.

HUI ZONG received the M.S. degree from the
Nanjing University of Science and Technology,
in 2011. She is currently pursuing the Ph.D.
degree with the College of Computer Science
and Technology, Nanjing University of Aeronau-
tics and Astronautics, Nanjing, China. She is
currently a Senior Laboratory Engineer with the
Huaiyin Institute of Technology, China. Her cur-
rent research interests include datamining, parallel
computing, and formal methods.

108578 VOLUME 8, 2020

	INTRODUCTION
	PROBLEM STATEMENT
	MOTIVATION
	RELATED WORK
	APPROACH
	OUR CONTRIBUTIONS
	ORGANIZATION OF THE PAPER

	PRELIMINARIES
	MODEL
	FORMAL SPECIFICATIONS
	THE SYNTAX OF STL IS GIVEN AS FOLLOWS
	THE SEMANTICS OF STL
	ROBUST SATISFACTION OF STL FORMULAS

	ALGORITHMS
	L LEARNING ALGORITHM
	ALERGIA ALGORITHM
	PAG-GA
	LRx
	Q-LEARNING

	TAXONOMY OF LEARNING ALGORITHMS IN FORMAL METHODS
	LEARNING SPECIFICATIONS
	WITH A MODEL VS. MODEL FREE
	SUPERVISED LEARNING VS. UNSUPERVISED LEARNING VS. REINFORCEMENT LEARNING
	STATIC VS. DYNAMIC LEARNING

	LEARNING FOR VERIFICATION
	LEARNING FOR VERIFICATION BY LEARNING A MODEL
	LEARNING FOR VERIFICATION WITHOUT LEARNING A MODEL

	APPLICATIONS BASED ON LEARNING
	ANOMALY DETECTION
	CLASSIFICATION
	DEBUGGING OR ANOMALY ANALYSIS
	MINING REQUIREMENTS

	POSSIBLE FUTURE RESEARCH DIRECTIONS
	LEARNING FROM COALGEBRA PERSPECTIVE
	LEARNING HYBRID SYSTEM
	RESEARCH ON THE RELATIONSHIP BETWEEN THE LEARNED MODEL AND THE UNKNOWN SYSTEM

	CONCLUSIONS
	REFERENCES
	Biographies
	FUJUN WANG
	ZINING CAO
	LIXING TAN
	HUI ZONG

