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ABSTRACT There is a wide range of visual and spatial complexity measurement methods that aim
to quantify perceived image complexity. While image-based calculation methods (edge detection, image
compression, contrast) characterize a digital image, visual perception studies focus on fundamental visual
mechanisms, such as contrast sensitivity and visual task performance. Despite the evidence from several
vision studies, spatial frequency information has not been widely utilized to assess image complexity. Pre-
vious studies suggest that image-based performance metrics are limited in explaining perceived complexity
due to confounding factors, such as context, memory, familiarity, and expectation. Here, a visual experiment
is conducted to assess the performance of image-based metrics and spatial frequency information using
16 abstract and natural images. A new image complexity metric (Rspt), based on detectability suprathreshold,
was proposed to benchmark the performance of existing measures. Forty-four naïve participants used a
5-point Likert-type scale to judge the visual complexity of the images displayed on a tablet. Results indicate
that root-mean-square error (RMSE) and Rspt correlate statistically significantly with subjective evaluations.
Biological sex did not affect perceived spatial complexity. While RMSE and Rspt can potentially be used
to estimate the spatial complexity of display images, the performance of spatial frequency information and
image assessment measures in immersive viewing conditions require further research.

INDEX TERMS Digital images, image analysis, natural image statistics, spatial complexity, spatial
frequency information.

I. INTRODUCTION
Visual (or spatial) complexity is a widely discussed but not
precisely defined term. In its simplest form, visual complexity
refers to the level of detail within an image. Visual images,
such as computer displays or photographs, are widely used
to study visual mechanisms since three-dimensional environ-
mental stimuli are reduced to two-dimensional retinal images.
The complexity of images can be analyzed through the char-
acterization of the stimuli and its impact on higher-level
visual processes. Theories explaining visual complexity, such
as fractal [1], fuzzy [2], and information theory [3], are typ-
ically based on the physical stimuli itself and computational
in nature. For example, Kolmogorov complexity theory [4]
measures the computational resources needed to specify an
object (the length of the shortest binary computer program
that describes it) [5], and it has been applied to image com-
plexity [6], aesthetics [7] and image similarity [8]. In addition

The associate editor coordinating the review of this manuscript and

approving it for publication was Inês Domingues .

to complexity, algorithmic information theory considers the
randomness and probability of an algorithm to reproduce a
string (sequence of characters) [9]. The computational proba-
bility aims to explain the likelihood of a sensory input leading
to the perception of the object.

The effect of visual complexity on cognitive and emo-
tional responses can also be examined without a compu-
tational approach. For example, people and other animals
find visually complex images intrinsically more attractive
than simple images [10]. The complexity of the stimuli also
impacts the speed and accuracy of visual search [11], scene
preference [12], human cognition, and emotion [13], [14].
In addition, abstract images have been previously used to
estimate the perceived complexity of architectural spaces [15]
and renderings [16], building facades [17], and artwork [18].
In imaging research, the complexity of an image is
typically called spatial complexity due to the indirect obser-
vation of stimuli (observers perceive stimulus that is digi-
tally processed through another channel, such as a display).
Spatial complexity measurement methods have also been
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used for satellite image mapping [19], remote sensing for
wildlife conservation [20], and quality assessment of imaging
systems [21]. However, the use of image-based metrics to
quantify the perceived complexity of scenes under projection
systems [22] highlighted the need to investigate the accuracy
of spatial complexitymetrics. Here, the perceived visual com-
plexity of images is investigated through spatial frequency
information and spatial complexity metrics.

II. BACKGROUND
Visual complexity has been a topic of interest for psycholo-
gists since the late 19th century. Several theories and models
have been proposed based on a single visual form, visual
arrays, information pickup, visual displays, perceptual learn-
ing, and neural circuit theory to explain perceived visual
complexity [23]. Both empiricists’ and nativists’ theories
investigated the roots of the perceived quality of images
to build a theoretical framework. Empiricist approaches
focusing on the discrimination of primitive (basic) attributes
of shapes [24], [25] failed to develop a universal met-
ric [26], [27]. On the other side, from a nativity perspective,
two main factors influencing the visual complexity of an
image have been proposed; familiarity/novelty and spatial
frequency information [27].

A. FAMILARITY, NOVELTY, AND INTEREST
Familiarity is an instinctive parameter that affects cognitive
functions. Both familiar and familiar objects have been used
in visual experiments. The analysis of a series of black
and white drawings of real-life objects resulted in three
levels of complexity: low complexity for kitchen utensils,
fruits, human body parts, clothing, furniture; medium com-
plexity for vegetables; and high complexity for vehicles,
birds, animals, insects and musical instruments [28]. Another
study showed that participants require more time to encode,
mentally rotate, and compare unfamiliar stimuli [29]. Sim-
ilarly, familiarity and learning (introduced through training)
impacted the perceived complexity of unfamiliar shapes [30].
This study also highlighted the shortcomings of image-based
complexity metrics.

On the other hand, visual complexity is also associated
with visual search tasks, which, in return, is affected by
novelty. For example, the search time and accuracy of simple
forms depend on the number, spacing, color, shape, and size
of the forms constructing an image [31], [32]. While color
discrimination showed no effect, spatial frequency discrimi-
nation had an intermediate effect on task performance [32].

Complexity is also considered a major determinant of
visual interest and pleasure. For example, Berlyne’s inverted
U-shape curve for pleasure, interest, and complexity [33]
predicts higher arousal for medium complexity images, and
lower arousal for low and high complexity images, as shown
in Fig. 1. This curve acts similar to the spatial frequency
slopes (α) found in the spatial frequency patterns, in that
divergence from the medium complexity decreases prefer-
ence ratings. Berlyne’s proposed model has been supported

FIGURE 1. A modified version of Berlyne’s inverted U-shape curve [33]
shows the change in preference and arousal with increased complexity.
The inverted U-shape suggests that the medium complexity images are
optimal, and further increase in complexity does not equate to pleasure.

by studies investigating abstract patterns [34], paintings [35],
and natural images [36], but the model failed to explain
preference in the visual complexity of websites [37].

B. SPATIAL FREQUENCY INFORMATION
The physical characteristics of an image can be described
using basic attributes, such as contrast, orientation, spatial
phase, and spatial frequency. Spatial frequency (f ) is a mea-
sure of periodic grating across a position within a given
distance on the retina [38]. Although the SI unit of spatial
frequency is cycles per meter (c/m), it is commonly reported
in cycles per degrees (cpd) of visual angle. In vision research,
sinusoidal patterns with varying frequencies, amplitudes, and
angles, are commonly used to test the visual system’s capa-
bilities, especially contrast sensitivity [39], [40] and visual
performance [41]. Studies show that spatial contrast sensitiv-
ity in adults peaks between 3 cpd and 8 cpd [39], [40], [42].

The experimental observations show that the visual cortex
strongly responds to sine-wave gratings, and a multichannel
human vision model can explain how neurons of different
receptive field sizes create a neural representation of different
grating scales [42]. Psychophysical and electrophysiological
evidence supporting this hypothesis underlines that the visual
cortex has multi-dimensional spatial filters with narrow (non-
zero) bandwidths [43]. It is suggested that spatial frequencies
of a complex grating are detected independently [44], and
adaptation to spatial frequency can enhance contrast sensi-
tivity in the short and long term [45], [46].

Different spatial frequencies can also cause visual dis-
comfort depending on the discomfort groups (sensitivity to
physical stimulus). In a study, low and moderate visual dis-
comfort groups found 8 cpd and 12 cpd stimuli unpleas-
ant, whereas high visual comfort group’s discomfort peaked
around 4 cpd [47]. Another study found increased discom-
fort with increasing spatial frequency up to 16 cpd for both
moderate-high and low visual discomfort groups [48].

The spatial frequency analysis that is based on gratings
faced criticism due to its dependence on simpler forms
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FIGURE 2. images that consist of paintings, environmental scenes, abstract and real objects were used in the
experiment. The images are rescaled (normalized to equal height, except move it small and pebbles small,
which are half the height of the other images) for display purposes.

that are not common in the real world. Although the com-
plex real-world images can be considered a superposition
of a large number of fundamental patterns, it is unlikely
that models based on simple-stimulus experiments are suf-
ficient to predict the visual quality of complex real-world
images [21]. These limitations urged researchers to create
datasets that include images of both basic and complex pat-
terns [49] and propose methods to assess the spatial quality
of complex images, such as blind/referenceless image spatial
quality evaluator (BRISQUE), JPEG, and JPEG2000 [50].
However, image quality metrics do not explicitly asses the
perceived spatial complexity of an image. In addition, natu-
ral image complexity and the decorrelation problem (strong
dependency between intra- and inter-channels in natural
images) [21] may impact the accuracy of image quality
metrics.

The growing evidence of the human visual system
functioning as a frequency analyzer led to the analysis
of natural image statistics using spatial frequency infor-
mation. The regularity (common patterns) in the natural
images have been demonstrated to exist in spatial [51] and
wavelet domains [52]. The natural statistics underlie the
non-randomness in images and enable predicting the visual
quality of natural images. For example, the power spectrum
of natural images reportedly follows a frequency function of

A(f ) = f −α (1)

where the amplitude (A) is averaged across all the orienta-
tions, f is spatial frequency, and α is the negative slope on log-
log coordinates [53]. The slope α varies from image to image,
and it typically ranges between −0.7 and −1.5 in achro-
matic images [53]–[55], 0 and −2 in chromatic images [56].

The studies suggested that slope in natural images peak
between−1.1 and−1.3 [53], [55], and deviation from natural
scene statistics may cause discomfort [56]. The discomfort
caused by non-natural image statistics hints to an evolution-
ary adaptation mechanism. It should be noted that the natural
statistics of images are limited with datasets analyzed in
these studies. Therefore, slopes may considerably vary across
images.

While spatial frequency theory aims to ground the visual
perception of images to a fundamental cognitive framework,
the effect of physical stimulus characterization on perceived
complexity is still unclear. While the natural statistics and
image-based spatial complexity exist in different domains of
research, the performance of f statistics has not been pre-
viously tested for visual complexity. Here, the performance
of spatial frequency information, spatial complexity metrics,
and an arbitrary complexity metric have been analyzed.

III. METHODS
A. STIMULI AND COMPLEXITY MEASURES
The performance of nine visual complexity measures have
been compared using 16 images selected from open-source
repositories. The image dataset included natural images,
such as humans, landscapes, paintings, human-made objects,
as well as abstract images, such as diagonal achromatic lines,
as shown in Fig. 2. All the images were colored, except for
two images (child and lines). The smaller version of two of
the images (pebbles and move it) were added to the set to test
the effect of size on perceived and calculated spatial image
complexity. Three images consisted of repeating patterns
(pebbles, pebbles small, pepper).
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TABLE 1. Spatial complexity properties of the images used in the experiment.

TABLE 2. Spearman’s correlation coefficient (and p-values) for the visual complexity measures are shown in the correlation matrix.

Although there are several spatial information and
compression-based image quality measures, the analysis was
limited to visual complexity metrics and spatial frequency
information. The spatial characteristics of images and the
calculated metrics are given in Table 1.

Inspired by the definition of the Kolmogorov com-
plexity, the size of various compressed image formats
has been previously used to estimate the complexity of
images [18], [30], [57], [58]. Here, only two of the most
popular lossy image compression methods (GIF and JPEG)
have been used. GIF compression was performed with a
local selective palette of 256 colors and at normal row order.
Although a large image size is associated with image com-
plexity (simple images contain more redundant information
that can be compressed; therefore they have smaller file sizes
than complex images), it should be noted that compressed file
size is also affected by other factors, such as luminance and
chrominance information [30].

Additional visual complexity metrics, such as root-mean-
square error (RMSE) [6], [16], [57], [58], fractal dimen-
sion (D) [18], [59], and entropy (E) of the image intensity
histogram of a grayscale image [57], were also investigated.

The RMSE (the difference between the original image and
the lossy compressed image), spatial frequency slope α,
and entropy E were calculated via MATLAB R© Image Pro-
cessing ToolboxTM. Fractal dimension D was calculated
by a box-counting method via ImageJ, a public-domain
image-processing software. Edge detection algorithms com-
monly used in spatial complexity and quality assessment,
such as Canny and Sobel methods [30], [57], [60], were also
analyzed. In addition to the existing measures of complex-
ity, a new arbitrary metric (Rspt), based on suprathreshold
detectability, was introduced to benchmark existing spatial
complexity assessment measures. The calculation of the
Rspt is explained in the following section.

The correlation coefficients between all the complexity
measures are given in Table 2. The highest correlation was
between spatial frequency slope and RMSE (0.71). JPEG
correlated highly with GIF and Rspt (0.60 and 0.66, respec-
tively). While there was a high correlation between GIF and
Canny-GIF (0.67), GIF negatively correlated with Sobel-GIF
(−0.51). The correlation between GIF and spatial frequency
slope was also negative (−0.62). The p-values of the multiple
correlations were tested using the Benjamini and Hochberg
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method [61], which is a powerful correction method for false
discovery rate. In the level of p < 0.01, the statistically
significant correlations were found for only two pairs: JPEG -
Rspt and GIF - Canny-GIF.

B. A NEW VISUAL COMPLEXITY MEASURE
Goodhart’s law implies that ‘‘when a measure becomes a
target, it ceases to be a good measure’’ [62]. To address
the potential misuse of image-quality assessment methods,
an arbitrary visual complexity metric (Rspt) was introduced
as a pseudo-random benchmark.

The first step of the calculation of Rspt is converting an
image into grayscale and then binarizing it through Matlab R©

Image Region Analyzer application, which uses an adap-
tive thresholding method [63]. A series of low to high
complexity images were visually judged by the author to
identify the smallest detectable region. A detection thresh-
old of 1 in 25000 pixels was found reasonably accurate
for a variety of images. The number of suprathreshold
regions (Rspt), approximating the perceptual complexity of
images, is calculated

Rspt =
∑
i

[PRi > PRtotal/25000] (2)

where PR is the size of a region, i is the region index,
and PRtotal is the total number of pixels in the image. Rspt
quantifies the number of detectable regions in an image and
considers an image with a high number of regions to be more
complex. The arbitrary suprathreshold metric Rspt was tested
against a set of images previously used in visual clarity and
blur perception research [64], as shown in Table 3. An empty
white or black image (Rspt = 0) and Jackson Pollock’s move
it (Rspt = 466) are the known boundaries of the Rspt scale.
All of the tested images (i.e., natural scenes and paintings)
lie within these boundaries, and approximately Rspt < 100
denotes visual simplicity and Rspt > 300 denotes high
complexity.

TABLE 3. Rspt complexity metric values for sample images.

C. PARTICIPANTS AND PROCEDURES
Forty-four naïve participants (23 female, 17 male, four undis-
closed/other) with normal color vision as tested by the
Ishihara pseudoisochromatic plates took part in the exper-
iment. Participants viewed 16 images on a tablet (Apple
iPad R© 2) with a peak brightness of around 410 cd/m2. They
hold the tablet around half an arm’s length (approximately
50 cm), which equates to approximately 27◦ visual angle.

Participants were instructed to judge the visual complexity
of the images using a 5-point Likert-type scale with a neu-
tral midpoint. The scales were ‘‘very complex,’’ ‘‘complex,’’
‘‘medium,’’ ‘‘simple,’’ and ‘‘very simple.’’ The order of the
images was randomized for every participant. Participants
were allowed to move back and forth between images and
change their judgments (anchoring was allowed). Although
there was no minimum or maximum time limit to make judg-
ments, participants did not spend more than three minutes per
image.

IV. RESULTS AND DISCUSSION
A. QUANTITATIVE IMAGE COMPLEXITY ASSESSMENT
Participants’ subjective evaluations were tested for normality
with the Shapiro–Wilk test at p = 0.01. The test showed that
participants’ subjective visual complexity evaluations were
not normally distributed. Based on the non-normal distribu-
tion, interobserver differences were tested with the Kruskal-
Wallis test. The null hypothesis was rejected (χ2

= 267.77,
p < 0.001, df = 703), which hints a statistically sig-
nificant variation in the interobserver judgments, as shown
in Fig. 3. However, performing multi-sample comparisons in
the Kruskal-Wallis test can inflate Type I errors (rejection of
a true null hypothesis). Therefore, the rejection of the null
hypothesis should be taken with a grain of salt.

FIGURE 3. Interobserver differences were tested with the Kruskal-Wallis
test, and the null hypothesis was rejected (χ2 = 267.77, p < 0.001, df =

703).

Spearman’s rank correlations between subjective judg-
ments and computation measures for all images are given
in Table 4. There were only two cases of statistically signif-
icant relationship between subjective assessments and met-
rics; RMSE (ρ = 0.92, p < 0.001) and Rspt (ρ = 0.62,
p = 0.01).
The influence of biological sexwas investigated by looking

into female (n = 23) and male responses (n = 17). Spear-
man’s rank correlation for image complexity metrics was not
different for biological sex. The only small difference was the
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TABLE 4. Spearman’s rank correlation coefficient was used to test the
image complexity metrics and subjective assessments of all participants.

increased statistical significance for Rspt for males compared
to females, as shown in Table 5.

TABLE 5. Spearman’s rank correlation coefficient was used to test the
image complexity metrics and subjective assessments of male and female
participants.

The effect of size on the perception of spatial complex-
ity was also analyzed with the Wilcoxon-Mann-Whitney
two-sample rank-sum test. The large and small variations
of two images (move it and pebbles) were tested separately.
The difference between move it and move it small was not
statistically significant (U = 957.5, n1 = n2 = 44,
z = 0.10, p = 0.46). Similarly, the difference between
pebbles and pebbles small was not statistically significant
(U = 790, n1 = n2 = 44, z = 1.56, p = 0.12).
However, the effect sizes for both of the results were small
(r = 0.01 and r = 0.23, respectively). The image size did
not have a significant effect on female or male participants’
subjective evaluations.

The correlation between image complexity metrics and
subjective evaluations of paintings (Mondrian, Dutch,
Gothic, move it, move it small) and natural images (archi-
tecture, balloons, child, coast, park, pebbles, pebbles small,
pepper, water, woman-car) are given in Table 6. Although
there was a high correlation between subjective ratings and
several metrics, the correlations were not statistically signif-
icant (D ρ = 0.79 p = 0.20, α ρ = 0.79 p = 0.20,
Rspt ρ = 0.79 p = 0.20, RMSE ρ = 0.95 p = 0.07,
Sobel-GIF ρ = −0.79 p = 0.20). The only statistically
significantly correlation with subjective evaluations was with
RMSE (ρ = 0.87 p = 0.001) for natural images.

In previous studies, medium correlation with JPEG and
mixed results for GIF correlation were recorded [18], [57].

TABLE 6. Spearman’s rank correlation coefficient was used to test the
image complexity metrics and subjective assessments of paintings and
natural images.

Compression file-formats correlated significantly with sub-
jective complexity judgments of representational paint-
ings [57], whereas edge detection methods correlated
moderately with subjective measures for both environmental
scenes and paintings [30]. The results found in this study
do not strongly support these findings. Instead, results sup-
port evidence from another study where RMS measures
outperformed JPEG compression [58]. The discrepancy in
these results can be attributed to differences in experimen-
tal procedures. Training and elaborate explanations of the
sought terms allow participants to be more consistent in their
responses [65]. Precautionary methods (e.g., training) may
provide different results compared to studies where data are
collected using a less restrictive method. The wording of the
research questions or statements can also cause bias [66].
In this study, the question was limited to ‘‘visual complexity,’’
but there was no training provided prior to the experiment.

B. QUALITATIVE IMAGE COMPLEXITY ASSESSMENT
In a preliminary study, a small group of participants were pre-
sented the same stimuli (16 images) to examine the perception
and definition of visual complexity. When the complexity
was defined as ‘‘ease of remembering details,’’ participants
reported that they would provide different responses than
when there was no definition (e.g., Mondrian might be easy
to look at, but hard to remember, therefore complex). Partici-
pants seem to have a non-universal and intrinsic definition of
complexity.

In the actual experiment, participants were asked to
judge only ‘‘visual’’ aspects of the presented images rather
than encoding the semantic complexity. Some participants
reported that certain features of an image were whole objects
(i.e., the face of a human) and they did not consider the whole
objects to be complex. Some participants thought that abstract
paintings (e.g., move it) have no identifiable objects in them,
and they considered the abstract structure to be a background;
therefore, they did not find it complex.

Some images (e.g., lines, architecture) caused nausea and
dizziness, and they were considered complex due to the
reaction they caused, not due to their structural formation.
This finding supports the notion that while the human visual
system is attuned to horizontal and vertical gratings [67],
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they may cause somatic and perceptual side-effects [68].
On the other side, one of the participants reported that the
park was ‘‘predictable,’’ therefore participants considered it
to be relaxing and not complex.

Images with repetitive objects (e.g., pebbles, lines) caused
the highest disagreement among participants. Pebbles small
was considered complex for some participants, but not for
others. Although most participants did not report considering
color as an influencing factor, a high level of variation in
woman-car image hints the role of color contrast in visual
cognition. This is likely due to the influence of color contrast
on visual performance [69].

Three paintings (Mondrian, Dutch, Gothic) used in a
previous experiment [64] showed high correlations to their
intended use. Participants typically judged Dutch image to
be the most complex in the survey (even more complex than
move it). This is possibly due to participants’ consideration of
the number of interesting objects (i.e., relatable objects such
as people), rather than abstract shapes (grating). Gothic was
considered medially complex, and Mondrian was generally
judged to be visually simple, with some noted exceptions.

C. IMPLICATIONS FOR IMMERSIVE
VIEWING CONDITIONS
Subjective evaluations of 16 display images supported
the notion that image-based complexity metrics are lim-
ited in quantifying perceived complexity with a caveat.
While RMSE performed well in predicting the perceived
visual complexity, it may not be possible to use the root-
mean-square analysis in realistic (immersive) environments
due to its dependence on a reference condition (undistorted
image). In immersive viewing conditions, the reference point
of a subjective evaluation is typically stored in participants’
short or long-term memory. The spatial memory reference is
often distorted in time, even within a very short period [70].
The lack of a meaningful reference in realistic, immersive
environments limits the use of reference-based image assess-
ment measures.

Another important difference between displayed images
and immersive environments is the visual angle. The images
displayed in these experiments forces participants to make
judgments based on narrow to medium field of view. There-
fore, the effects of background and surrounding field may
not be taken into account in the image assessment metrics.
Visual acuity peaks in the fovea, but the optical quality of the
retinal image reduces slowly with peripheral angle and spatial
frequency sensitivity changes with visual eccentricity [71].
The changes in the visual system with the visual angle hints
the importance of experimental conditions in image quality
assessment.

The discrepancies between the metrics and subjective
assessments can also be linked to other endogenous and
exogenous elements. Image-based metrics do not consider
internal factors, such as context, memory, familiarity, and
expectation [30]. There are several external factors, such as
illumination levels [72], spectral power distribution of a light

source [73], and adaptation [74] that may impact subjective
and objective judgments of visual perception for both dis-
play images and real scenes [75]. The limitations are highly
relevant for integrative lighting systems that are based on
the modeling of the spatial and spectral sensitivity of the
visual system. For example, it is possible to conceptualize
a real-time integrative system that detects the physical char-
acteristics of the built environment using sensors (CCD or
CMOS for spectral, spatial, and luminance imaging of the
built environment [76], [77]) to optimize the light output for
energy efficiency, visual comfort, and visual performance.
Such a system can estimate the perceived spatial quality
and complexity of the built environment and enable making
predictions through computational models based on machine
learning and optimization algorithms. However, the perfor-
mance of such an integrative system depends on the accuracy
and precision of the mathematical models and parameters.

V. CONCLUSIONS
Image quality assessment measures have been widely used
to assess the quality of display images. The performance of
these measures varies depending on the dataset and exper-
imental methods. A visual experiment with 16 images that
consist of paintings, natural scenes, and abstract structures
was conducted to assess the performance of spatial fre-
quency information and spatial complexity measures. Images
used in this experiment contained unusually repetitive struc-
tures, varying sizes, and chromatic characteristics (i.e., not
all the images were natural). The wide variety of char-
acteristics in the physical stimuli enabled a rich explo-
ration, where root-mean-square error (RMSE) and newly
proposed Rspt correlated significantly with subjective assess-
ments. However, visual complexity judgments are likely
influenced by higher-level processes, such as grouping,
object identification, and emotional responses.

It should be noted that reported findings are limited to
visual complexity. Although image complexity and image
quality are interrelated, they are not interchangeable con-
cepts. Future research should investigate the use of image-
based quality assessment measures and spatial frequency
information for other dimensions of visual perception, such
as overall image quality and visual clarity.

In this experiment, spatial frequency slope did not achieve
a statistically significant correlation with subjective evalua-
tions of visual complexity. There may be two main reasons
for the lack of correlation: high variation in the image dataset
and experimental conditions. Spatial frequency information
is widely used to estimate contrast sensitivity and visual per-
formance for natural and simple images. However, the dataset
used here was not limited to natural images.

RMSE and Rspt performed well in this study, and it is likely
that other studies will find statistically significant results
for other complexity measures. The image complexity met-
rics are typically used to quantify the perceived complexity
of images displayed on a screen. However, visual tasks in
the real-world can be harder to complete and model [78].
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Moreover, immersive environments illuminated by an inte-
grative lighting system based on light projection [79], [80]
requires further investigation. Future research aims to address
the effects of exogenous elements, such as the spectrum and
intensity of the illumination and spatial frequency informa-
tion, on visual perception.
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