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ABSTRACT Due to the characteristics of the spectrum integration, information redundancy, spectrum
mixing phenomenon and nonlinearity of the hyperspectral remote sensing images, it is a major challenging
task to classify the hyperspectral remote sensing images. Therefore, a hyperspectral remote sensing image
classification method, named QGASR-CNN is proposed in this paper. In the QGASR-CNN, a quantum
genetic-optimized sparse representation method is designed to obtain the over-complete dictionary with
sparsity, and achieve the feature sparse representation to construct the sparse feature matrix of hyperspectral
remote sensing image pixel groups. Then the convolution neural network(CNN) directly convolutes with
image pixels to build the feature mapping relation by using convolution operation. Finally, in order to testify
the effectiveness of the QGASR-CNN, the actual hyperspectral remote sensing image datasets are selected in
here. The comparison results show that the QGASR-CNN sparsely represents the features of hyperspectral
remote sensing images and improves the classification accuracy. It can effectively alleviate the problems of
the small samples and ‘salt and pepper misclassification’.

INDEX TERMS Hyperspectral remote sensing, image classification, sparse representation, convolutional
neural network, quantum genetic.

I. INTRODUCTION
A hyperspectral sensor obtains approximately continuous
spectral curve of the ground object in ultraviolet, visible,
near infrared, mid infrared, and other electromagnetic wave
bands. It combines the spectral information reflecting the
reflection characteristics of ground object with the image
information reflecting the spatial position relationship of
ground object. It is composed of dozens or even hundreds
of continuous wave band images into a three-dimensional
data cube, which has the characteristics of combination of
image and spectrum, and it has been widely used in resource
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exploration, environmental monitoring, precision agricul-
ture, disaster assessment, target recognition, and other fields
[1]–[3]. Hyperspectral remote sensing image classification
is based on the recognition information with specific mean-
ing learned from the original spectral information, and each
pixel is accurately divided into its own feature categories.
Compared with general remote sensing images, hyperspectral
remote sensing images have many characteristics, such as a
large number of bands, fine and continuous spectrum, large
data volume and information redundancy, spectral mixing
phenomenon and data nonlinearity [4]–[6]. The data and the
spatial structure is relatively complex and the dimension is
very high. Traditional image processing and classification
methods are difficult to achieve classification results. As a
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typical ultra-high dimensional data, how to mine the diagnos-
tic information of interested objects from the massive high
dimensional data has become a bottleneck in the applications
of hyperspectral remote sensing image.

In recent years, a lot of research on feature extraction and
classification of hyperspectral images have been conducted
by using sparse representation and convolution neural net-
work(CNN) theory. Each test sample to be classified is taken
as a linear combination of training samples [7]. Then the
sparse coefficient is solved, and the classification is deter-
mined by minimizing residual between the test sample and all
kinds of training samples, but only the spectral information is
used in the feature extraction, resulting in the non-smoothness
of the classification results. A joint sparse representation
model based on the maximum likelihood estimation is pro-
posed [8]. The traditional quadratic loss function is replaced
by a coding residual function used to measure the joint
approximation error class. The coding residual estimation
transforms the traditional maximum likelihood estimation
into an iterative weighted joint sparse representation. This
method can reduce the number of non-uniform neighborhood
pixels. However the robustness of outliers is poor. Besides,
the iteration is slow due to the high dimension and large
amounts of data, which reduces the efficiency. The group
sparse principal component transformation is studied [9]. The
signal is represented by the eigenvector of the covariance
matrix of the training sample. The eigenvector is regarded as
the base atom of the signal, and the atoms are orthogonal to
each other to maintain the main components of the original
spectrum. But the sparse prior is not used explicitly. Aiming
at the problem that the independence of sparse reconstruc-
tion process will result in the loss of similarity information
of coefficients between similar samples [10], a regularized
sparse representation algorithm is proposed, which com-
bines the centralized quadratic constraint as a regular term
into the objective function of sparse representation to retain
the similarity information. However, the solution of sparse
representation ignores the Euclidean distance relationship
between samples. The hyperspectral remote sensing image
is classified by using the deep CNN network model [11].
It obtains the spectral vectors of each pixel, extracts the local
spectral information on the spectral vector by using CNN
convolution layers, and takes the feature map generated by
convolution operation as the input of the full connection
layer, and finally completes the hyperspectral remote sensing
image classification. This method makes use of CNN’s local
connection, weight sharing and other characteristics, greatly
reduces the model parameters and training difficulty, further
improves the classification performance, but fails to make full
use of the rich space spectrum information of hyperspectral
remote sensing image, reducing the ability of feature learn-
ing. In reference [12], the spectral information, spatial struc-
ture information and semantic context awareness information
of each pixel are represented jointly by different regions,
and the features of multiple scales and different layers are
combined from different layers for depth feature extraction.

However, this method divides the original image into six
patches, which are global, top, bottom, left, right and center.
Each patch corresponds to a CNN structure. After the feature
extraction of the six CNN branches, the whole connection
operation is carried out. The input information of CNN is
not positively related to the classification effect. Complex
inputs enlong the training time and classification time, which
easily leads to over-fitting. After extracting spatial features
from principal components analysis (PCA) dimensionally
reduced hyperspectral image data by CNN [13], the spatial
features extracted by CNN are further processed by sparse
coding. Finally, the classification task is completed based on
the sparse coding features. But it only considers the spatial
features of hyperspectral remote sensing image, not its rich
spectral features, and the accuracy of classification needs
to be improved. A new pixel pair method is proposed to
increase the number of CNN training samples [14]. For a test
pixel, the trained CNN classifies the central pixel and each
surrounding pixel, and then determines the final label through
avoidance strategy. In this method, CNN is used to learn
the features of pixel pairs, which has better classification
performance. However, the generalization ability of CNN
model is insufficient, and the accuracy of the classification
needs to be improved because of the unclear quantification
of pixel pairs.

To sum up, at present, only sparse representation is used
to reduce dimension and extract features of hyperspectral
remote sensing images, and then traditional SVM, random
forest [15]–[17] and other classifiers are used to complete
the classification of hyperspectral images and hyperspectral
image classification by using CNN alone. Although certain
achievements have been achieved, most of them do not use
sparse prior explicitly, resulting in ‘salt pepper misclassi-
fication’. The extraction of joint features of space spec-
trum and the utilization of spatial information still need to
be diversified, and there are deficiencies in the mining of
hyperspectral data structure information. On the other hand,
the traditional dimensionality-reduction methods are used
to participate in the convolution operation of CNN models
[18]–[20].

Therefore, in view of the characteristics of hyperspectral
remote sensing image, such as the number of bands, the com-
bination of atlas, information redundancy, spectral mixing
and data nonlinearity, sparse representation with quantum
genetic algorithm and convolutional neural network are inte-
grated in order to propose a novel QGASR-CNN method,
which is used to effectively describe the features and achieve
The classification for hyperspectral remote sensing image.
The actual hyperspectral remote sensing data are used to
verify the effectiveness of the QGASR-CNN.

The presented research is organized as follows: Section 2
introduced basic methods of quantum genetic algorithm,
sparse representation and convolutional neural network.
In the Section 3, the proposed QGASR-CNN is described
and the contribution is highlighted. In the Section 4,
the experimental verification and analysis are provided.
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The Section 5 is given to conclude the QGASR-CNN and
suggest some works in the future.

II. BASIC METHODS
A. GUANTUM GENETIC ALGORITHM
Quantum genetic algorithm (QGA) is a probabilistic search
optimization method that combines quantum computing the-
ory with genetic algorithm. It has better population diver-
sity and computational parallelism, faster convergence speed,
higher search efficiency and stronger global optimization
ability [21]–[23]. The QGA introduces the concept and prin-
ciple of quantum computation into the genetic algorithm,
and adopts chromosome coding based on Q-bit. The Q-bit in
QGA is a unit vector defined in a two-dimensional complex

vector space. A Q-bit can be expressed as
[
α

β

]
, where α and

β are probability amplitudes of the corresponding states of
Q-bit. |α|2 and |β|2 represents the probability that the
quantum state is observed as ‘‘0’’ state and ‘‘1’’ state,
respectively. The normalization of states needs to meet
|α|2+|β|2 = 1. In order to find the optimal solution, we apply
the representation of the Q-bit probability amplitude to chro-
mosome coding, quantum rotation gate and other operations
to chromosome update.

B. SPARSE REPRESENTATION THEORY
As a state-of-the-art data mining technology, sparse
representation can effectively extract the hyperspectral ter-
rain information by using the high redundancy of massive
high-dimensional data and the sparsity of interested sig-
nals [24]–[26]. According to the sparse representation theory,
for a given dictionary, each signal can be expressed by the
linear combination of a few primitives in the dictionary. Given
the image data set {x1,x2, . . . ,xm}, its sparse representation
mathematical model can be described as follows.

min
D,ai

∑m

i=1
‖xi − Dai‖22 + λ

∑m

i=1
‖ai‖1 (1)

where D ∈Gd×k is the dictionary matrix, k is the sparsity,
λ is the regularization parameter, and ai ∈ Gk is the
sparse representation of the sample xi ∈ Gd . Sparse rep-
resentation learning of hyperspectral remote sensing image
uses optimization algorithm to obtain sparse representation
coefficient ai, which can well reconstruct xi when ai is as
sparse as possible.

C. CONVOLUTIONAL NEURAL NETWORK
In hyperspectral remote sensing image processing,
a convolutional neural network (CNN) makes full use of the
information of the adjacent areas in the image, greatly reduces
the scale of parameters, reduces the complexity of calculation
and improves the convergence speed of the network by sparse
expression and weight sharing. It is usually composed of
convolution layers, pooling layers, full connection layers and
an output layer [27]–[29]. Assuming that the pixel value of the
sub image of the input image at (i, j) position is pij the element
value of the convolution kernel matrix at (x, y) position is kxy,

and the convolution kernel acts on a certain position of the
image, the output is given by

Wij = f
(∑s

x=1

∑s

y=1
pi+x−1,j+y−1 · kxy + b

)
(2)

where f is the activation function and b is the offset term. The
CNN can be regarded as a kind of neural network with weight
sharing and local connection. According to the previous defi-
nition, the forward propagation formula of convolution layer
is desceibed as follow, i,e.

p(l)ij = f
(
u(l)ij
)
= f

(∑s

x=1

∑s

y=1
p(l−1)i+x−1,j+y−1

)
×k (l)xy +b

(l)

(3)

By using the same convolution kernel, i.e., weight sharing
and local connection, the CNN greatly reduces the trainable
parameters in the network, the complexity of the model, and
the risk of over fitting, so as to obtain better generalization
ability.

III. A NEW HYPERSPECTRAL REMOTE SENSING
IMAGE CLASSIFICATION
A. THE BASIC THOUGHT
Hyperspectral remote sensing images have the character-
istics of numerous bands, fine and continuous spectrum,
integrated spectrum, large data volume and redundant infor-
mation, spectral mixing phenomenon and non-linear data.
The spatial structure of images is complex and the dimen-
sion is higher. Therefore, traditional image processing and
classification methods are difficult to effectively obtain better
classification results. Sparse representation can represent the
image features with as few atoms as possible and describe the
image nature with less characteristic coefficients in a given
over-complete dictionary. Quantum genetic algorithm com-
bines quantum computing with genetic algorithm, which has
better population diversity and computing parallelism, and
takes on faster convergence speed, higher search efficiency
and stronger global optimization ability. Convolution neural
network is a kind of feed forward neural network, which
contains convolution calculation and has deep structure. It has
stronger classification ability according to the hierarchical
structure. Therefore, in order to improve the classification
accuracy and effeciency, based on the manifold structure,
polymorphism and low rank of hyperspectral remote sensing
images, the quantum genetic algorithm is used to sparsely
decompose the over-complete dictionary of hyperspectral
image according to the space-spectrum characteristics and
sparse priori of pixels. Then the feature sparse representa-
tion coefficient of the central pixel is obtained by using the
spatial continuity constraints, and the spectral information
in the image is combined. The spatial structure and sparse
coefficient are used to obtain the sparse representation vector
of each pixel in order to construct the sparse feature matrix of
hyperspectral image pixel group. Finally, the sparse feature
matrix is regarded as the inputs of convolution kernel to
establish the feature mapping relation of pixels. The novel
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FIGURE 1. The flow of the QGASR-CNN method.

QGASR-CNNmethod is proposed to effectively achieve The
classification of hyperspectral image.

B. OVERVIEW OF QGASR-CNN
The proposed QGASR-CNN method includes dictionary
construction, sparse coefficient solution and CNN classifier.
Firstly, the data is selected, and the over-complete dictionary
is constructed by learning. Then, the sparse representation
with quantum genetic algorithm is used to etract the fea-
tures and construct sparse feature matrix. Finally, the sparse
feature matrix is considered as the inputs of the CNN clas-
sifier, and the scence classification results is obtained by
Softmax function. The flow of the QGASR-CNN is shown
in Figure 1.

C. THE REALIZATION OF QGASR-CNN
1) CONSTRUCT DICTIONARY
The sparse representation of hyperspectral image is to
decompose the hyperspectral image under the over-complete
dictionary, and obtain the feature sparse representation.
It mainly includes over-complete dictionary design and
sparse decomposition algorithm. K-SVD algorithm is usually
used to design over-complete dictionary [31]. It uses the orig-
inal image to construct training samples, which can obtain
redundant dictionary to be suitable for the original signal
through self-adaptive learning. To a large extent, it guar-
antees the sparse representation effect of the over-complete
dictionary. In order to make the pixel image objects are as
close to sparse representation as possible, and fully reflect
the local structural features among the pixels, it is necessary
to completely reconstruct the original image information.
In hyperspectral image processing, any given test pixel can
be represented by a given set of labeled pixels with sparse
linearity by using l0− norm or l1− norm regularization oper-
ator. For a given test pixel x, the sparse representation aims
to obtain the weight vector α of the linear combination.
At the same time, it meets the minimum reconstruction error
‖ x − Da ‖22 and the minimum sparse constraint ‖α‖1. It can
be expressed as argmin ‖ x − Da ‖22 + λ1 ‖α‖1, where λ1 is
the regularization parameter.

2) SPARSE REPRESENTATION
The parameter selection of sparse decomposition greatly
affects the performance of sparse representation and the effect
of feature extraction. At present, the parameter of sparse
decomposition mainly depends on the experiences, which
is complex and diverse, and has a wide range of values.
Therefore, the parameter value obtained by experiences can-
not be the optimal value. Quantum intelligent optimization
algorithm combines quantum theory with intelligent comput-
ing, makes up for the shortcomings of traditional intelligent
optimization algorithm. It has the characteristics of quantum
parallel computing, accelerates the convergence speed, and
avoids premature phenomenon. Compared with the tradi-
tional optimization algorithm, quantum evolution algorithm
has good population dispersion, strong global search ability
and fast search speed. Therefore, the QGA is applied to solve
the problem of sparse representation parameter optimization.
In the QGA, the representation of Q-bit probability ampli-
tude is applied to chromosome coding, quantum revolving
gate and other operations are used to update chromosomes,
so as to find the optimal solution, optimize the parameter
values of sparse representation, improve the performance
of sparse representation and the sparse representation effect
of hyperspectral images. The parameters of the sparse rep-
resentation mainly include the number of atoms M in the
over-complete dictionary, the maximum allowable error ε,
the sparsity K, and the number of iterations n. With the
increase of the number of dictionary atoms, the adaptability
of the dictionary is stronger, but it also increases the capacity
for storing the dictionary, reduces the sparsity of pixel data,
and increases the complexity of operation. When the number
of dictionary atoms is too large, the sparse representation of
image loses meaning. Therefore, the QGA adopts the coding
method based on Q-bit. Q-bit is a unit vector to define a
two-dimensional complex vector space. A Q-bit can be

expressed as
[

α

β

]
, α and β are probability amplitudes of

corresponding states of Q-bit. |α|2 and |β|2 represent the
probability that the quantum state is ‘‘0’’ state and ‘‘1’’
state, respectively. The normalization of states must meet the
requirements |α|2 + |β|2 = 1. In this case, an m-quantum
state can be expressed as follow.qj =

[
α1

β1

∣∣∣∣∣ α2β2
∣∣∣∣∣ · · ·· · ·

∣∣∣∣∣ αmβm
]

|α|2 + |β|2 = 1, i = 1, 2 . . .m

(4)

Quantum population based on Q-bit coding can be defined
as Q(t) =

(
qt1, q

t
2 · · · q

t
m
)
, where n represents the population

size, t represents genetic algebra, and qtj represents a quantum
chromosome, which is defined as follow.

qtj =

[
αt1

β t1

∣∣∣∣∣ α
t
2

β t2

∣∣∣∣∣ · · ·. . .
∣∣∣∣∣ α

t
m

β tm

]
(5)

where m is the number of Q-bit, i.e. the length of the quantum
chromosome, which can be represented 2n states. That is to
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say, a chromosome represents the superposition of multiple
states. In addition, because the norm square of probability
amplitude tends to 0 or 1, the experience tends to a single
state, which ensures the good convergence of QGA. The basic
steps of parameter optimization for sparsity coefficients are
described as follows.
Step 1: Initialize test sample X , training dictionary

A=
[
α1 α2 · · ·αN

]
, sparsity K , initial parent chromosome

γ0 = X , initial population Q(t) =
(
at1, a

t
2 · · · a

t
m
)
, optimal

individual A0 = ∅, initial iteration value T.
Step 2: The binary solution set of Q(t) state

(
αt βt

)
is obtained by the spatial and spectral information of the
pixel. A quantum chromosome qtj is defined according to the
formula (5).
Step 3: Save the current optimal solution to measure

each chromosome gene position (Q-bit), and obtain a state
according to the formula(4).
Step 4: Calculate the fitness value for each state. There is

γk = arg max
i=1...k

∣∣( γk−1 qi
)∣∣, the fitness function is used to

evaluate the fitness value of each individual and record the
best individual γk .
Step 5: Add the best individuals of genetic evolution into

the training dictionary.

Ak = Ak−1 ∪ {γk} (6)

Step 6: The population renewal of each generation of
chromosomes is carried out by quantum revolving gate
U(0.025π ).

U (0.025π ) =
[
cos 0.025π − sin 0.025π
sin 0.025π cos 0.025π

]
(7)

γk = X − Ak (UAk )−1UX (8)

Step 7: Determine whether the end conditions are met.
If the end condition is met, execute Step 8. Otherwise, there
is k = k + 1, return to Step 4.
Step 8: Output sparse vectors.

â(x) = Ak (UAk )−1UX (9)

Because the spectral curve structure of the same pixel
is very similar, the obtained coefficients from the over-
complete dictionary are also similar. â(x) can be regarded
as a new representation of pixel x (x ∈ X). That’s to say,
the sparse representation of pixel is x in the over-complete
dictionary A.

3) A NOVEL SCENCE CLASSIFICATION METHOD
When the CNN is used to classify the scenes of hyperspectral
images, its depth is the main factor for affecting the clas-
sification accuracy. Experimental results show that when a
certain number of layers are built, the number of layers in the
CNN is further increased. The classification accuracy does
not improve, and it will take more time [32]. The CNNmodel
is shown in Figure 2, which consists of a convolution layer,
a pooling layer, a full connection layer, and a Softmax layer.

FIGURE 2. The structure CNN model.

The sparse vector of each pixel can be regarded as a
two-dimensional image with one height, so the size of the
input layer is (n1, 1) and n1 is the total number of wavebands.
The first convolution layer is obtained by filtering 20 k1 × 1
convolution check (k1 is the sparsity) for input images (n1, 1).
It contains 20×n2×1 nodes, where n2 = n1−k1+1. In order
to reduce the amount of calculation and avoid the over-fitting
issue, we pool the average value in the pool layer, which
contains 20×n3×1 nodes, where there are n and n3 = n2/k1.
The first full connection layer has n4 nodes, and the

number of training samples from the pool layer to this layer
is (20× n3 × 1) × n4. The neurons generated by the Relu
activation function are used as the input of the second full
connection layer. The second full connection layer has n5
nodes, and the number of samples is (n4 + 1) × n5 to be
trained. The neurons generated by the Relu activation func-
tion are also used as the input of the Softmax layer. In the
CNN model, if xi is the input of the i-th layer, then there is
xi+1 = fi

(
STi xi

)
, where STi is the sparse vector of the input

pixel data of the layer, and fi(·) is the Relu activation function.
The second full connection layer will generate n5 type labels,
which will be put into the Softmax function for normalization
operation, and then output all class probabilities with the
dimension of y = xL+1. The Softmax function is defined as

y =
1∑n5

k=1 exp(S
T
L,K xL)


exp(STL,1 xL)

exp(STL,2 xL)

...

exp(STL,k xL)

 (10)

IV. EXPERIMENTAL VERIFICATION AND ANALYSIS
A. EXPERIMENTAL DATA AND ENVIRONMENT
In order to verify the effectiveness of the QGASR-CNN,
hyperspectral remote sensing image datasets from Pavia
University and Indian pines were selected in here [32].
The PCA, sparse representation (SR), and the sparse rep-
resentation with QGA(QGASR) are used to extract the
dimensionality-reduction features of the hyperspectral
images. Then classification is trained by using the CNN
model. The experimental results are compared with other
algorithms in order to verify the effectiveness of the proposed
QGASR-CNN.
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TABLE 1. Basic data information of Pavia University.

TABLE 2. Statistics of 9 types of features in Pavia University.

The experiment executed on a PC, and the basic configuration
is Intel(R)Core(TM)i5-6300HQ CPU @ 2.30GHz.

Pavia University dataset is a hyperspectral remote sensing
image dataset collected from Pavia University in the north-
ern Italy by German airborne reflectance optical spec-
tral imager [32]. The spectral imager continuously imaged
115 wavebands in the wavelength range of 0.43-0.86 µm,
and the spatial resolution of the image was 1.3 m. Among
them, 12 wavebands were eliminated due to the noise. The
remaining 103 images are generally used. The size of the
image is 610× 340, including 207400 pixels in total. A large
number of background pixels are removed, and the remaining
pixels are 42776 in total. The basic information of images is
shown in Table 1, and the images are categorized into 9 types
in Table 2.

Indian pines were imaged by AVIRIS, an airborne visible
infrared imaging spectrometer, for an Indian pine tree in
Indiana, USA. The size of 145 × 145 was intercepted and
labeled as a hyperspectral image classification test dataset.
The imaging wavelength range is 0.4-2.5 µm, and the ground
objects are continuously imaged in 220 consecutive bands.
However, since the 104-108, 150-163 and 220 bands cannot
be reflected by water, we use the remaining 200 bands as
the research object. The data contains 21025 pixels in total,
a large number of background pixels are eliminated, and
10249 pixels including images are left. The basic information
of the 16 types is shown in Table 3. The images are catego-
rized into 16 types in Table 4.

B. DATA CONFIGURATION AND PARAMETER SETTING
In terms of the selection of the size of convolution
kernels, we used three-dimensional, five-dimensional, seven-
dimensional, and nine-dimensional convolution kernels to
conduct experiments on the datasets of Indian pines and Pavia

TABLE 3. Basic data information of Indian pines.

TABLE 4. Statistics of 16 types of Indian pines.

FIGURE 3. Influence of convolution check of different sizes on
classification accuracy in Pavia University dataset.

University, respectively. By comparing the overall accuracy
(OA), average accuracy(AA) and kappa coefficients(kappa),
we can evaluate the influence of the size of convolution
kernels on the classification performance of the model. The
convolution influences with different sizes on classification
accuracy are shown in Figure 3 and Figure 4.

From Figure 3 and Figure 4, it can be seen that two datasets
of 5 × 5 convolution check obtain better classification per-
formance. Therefore, the size of convolution core is set as
5 × 5 in this experiment. At the same time, we have carried
out experiments on the influence of the proportion of train-
ing samples and test samples in the Indian pines dataset on
the classification accuracy. The number of selected training
samples are 10, 50, 100, 150, and 200, respectively.

As can be seen from Figure 5, the performance of the
classification with growing training samples. As can be seen
from the back part of the line graph, the addition of datasets
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FIGURE 4. Influence of convolution check of different sizes on
classification accuracy in Indian pines dataset.

FIGURE 5. The influence of training sample number on classification
accuracy.

TABLE 5. Pavia University data configuration.

does not lead to over-fitting appearance. Therefore, 200
training samples from Pavia University and Indian pines
datasets are selected in here. The remaining samples are used
as test sets. The data configuration details of Pavia University
dataset are shown Table 5.

Due to the less number of the samples for some surface
feature types in the Indian pines dataset, we only reserve
8 types of surface feature with a large number of samples
in this experiment. Similarly, 200 samples are selected for
8 types of surface feature as the training set and the rest
samples regarded as the test set. The data configuration of
Indian pines is shown in Table 6.

C. EXPERIMENTAL RESULTS AND ANALYSIS
In order to evaluate The classification effect of the proposed
algorithm, The classification results are compared with the
PCA, SR andQGASR. In the experiment, the commonly used
classification and comparison evaluation indexes are overall

TABLE 6. Indian pines data configuration.

FIGURE 6. Classification diagram of three methods.

TABLE 7. Comparison of evaluation indexes of three algorithms.

FIGURE 7. Comparison of evaluation indexes of three methods.

accuracy and kappa coefficient. All algorithms and experi-
ments are repeated for 20 times, the maximum number of
iterations is 80. The overall accuracy and kappa coefficients
are the mean values for 20 tests.
Experiment 1: After the experiment is executed for

hyperspectral remote sensing image dataset from Pavia
University, the results comparison between the original
hyperspectral remote sensing image and the classification
results is shown in Figure 6.

The training time, testing time, total accuracy and kappa
coefficient among three methods are obtained in Table 7 and
Figure 7.

As can be seen from the Table 7 and Figure 7, the total
accuracies of the PCA-CNN, SR-CNN andQGASR-CNNare
86.4%, 88.7% and 91.6%, respectively. The total accuracy
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FIGURE 8. Classification chart of three methods of Indian pines data set.

TABLE 8. Comparison of evaluation indexes of three algorithms.

FIGURE 9. Comparison of evaluation indexes of three methods.

of the QGASR-CNN is best, which is 5.2% higher than
that of the PCA-CNN. The kappa coefficients of PCA-CNN,
SR-CNN and QGASR-CNN are 0.841, 0.863 and 0.882,
respectively. The kappa coefficient of the QGASR-CNN is
best among three methods. From the comparison results
of the evaluation indexes among three methods for the
hyperspectral remote sensing image, it can be seen that the
QGASR-CNN is superior to the PCA-CNN and SR-CNN in
classification accuracy and kappa coefficient. The proposed
QGASR-CNN improves the classification accuracy, main-
tains the smoothness of classification results, and effectively
reduces the classification error, but the operation efficiency of
the QGASR-CNN is slightly lower than those of PCA-CNN
and SR-CNN.
Experiment 2: After the experiment is executed for

hyperspectral remote sensing image dataset from Indian
pines, the results comparison between the original hyperspec-
tral remote sensing image and the classification results is
shown in Figure 8.

The operation time, total accuracy and kappa coefficient of
the three methods are shown in Table 8 and Figure 9.

As can be seen from the Table 8 and Figure 9, the total
accuracies of the PCA-CNN, SR-CNN andQGASR-CNNare
88.2%, 90.3% and 94.1%, respectively. The total accuracy
of the QGASR-CNN is best, which is 5.9% higher than
that of the PCA-CNN. The kappa coefficients of PCA-CNN,
SR-CNN and QGASR-CNN are 0.861, 0.887 and 0.921,
respectively. The kappa coefficient of the QGASR-CNN is

FIGURE 10. The loss curve for Pavia University dataset.

FIGURE 11. The loss curve for Indian pines dataset.

best among three methods. From the comparison results
of the evaluation indexes among three methods for the
hyperspectral remote sensing image, it can be seen that the
QGASR-CNN is superior to the PCA-CNN and SR-CNN
in classification accuracy and kappa coefficient. The pro-
posed QGASR-CNN improves the classification accuracy,
maintains the smoothness of classification results, and effec-
tively reduces the classification error. The operation effi-
ciency of the QGASR-CNN is close to those of PCA-CNN
and SR-CNN.

Finally, in order to test whether the QGASR-CNN has
over-fitting phenomenon, we have made a comparison
between Pavia University dataset and Indian pines dataset.
The maximum number of iterations is 120. The loss curve
curves of the two datasets are shown in Figure 10 and
Figure 11. In here, the loss indicates error value of
training set, and the val_loss indicates error value of testing
set.

As can be seen from the Figure 10 and Figure 11, that
the convergence effect of the QGASR-CNN is more better.
The error values of training set and testing set are min-
imum values, which show that the QGASR-CNN takes
on better classification ability, generalization performance,
and stability and robustness. When the QGASR-CNN runs
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at the number of iterations (80), it has achieved a good
classification accuracy. The experiment results show that
the QGASR-CNN has faster convergence speed. At the
same time, the QGASR-CNN does not exist any over-fitting
phenomenon for classifying hyperspectral remote sensing
image s from Pavia University dataset and Indian pines
dataset.

As can be seen from the Figure 10 and Figure 11, that
the convergence effect of the QGASR-CNN is more better.
The error values of training set and testing set are mini-
mum values, which show that the QGASR-CNN takes on
better classification ability, generalization performance, and
stability and robustness. When the QGASR-CNN runs at the
number of iterations (80), it has achieved a good classification
accuracy. The experiment results show that theQGASR-CNN
has faster convergence speed. At the same time, the
QGASR-CNN does not exist any over-fitting phenomenon
for classifying hyperspectral remote sensing image s from
Pavia University dataset and Indian pines dataset.

V. CONCLUSION
The traditional image processing and classification
methods are difficult to achieve better classification results
for hyperspectral remote sensing image with the same spec-
trum and different spectrum, the serious phenomenon of the
same spectrum of foreign objects, the complex distribution of
ground objects, the large difference of spatial scale, the small
number of labeled samples, the complex and diverse noise
types. A new hyperspectral remote sensing image classifi-
cation method based on sparse representation with quantum
genetic algorithm and convolutional neural network, namely
QGASR-CNN is proposed in this paper. The sparse represen-
tation used to extract the characteristics of image and repre-
sent the image as a linear combination of base atoms in the
dictionary. The quantum genetic algorithm is used to sparsely
decompose the image to generate the sparse representation
of the image. The sparse feature matrix of pixel group is
constructed, and the matrix is used as convolution kernel to
obtain the feature map relation of pixel in the CNN model,
so as to achieve better classification effect. The hyperspectral
remote sensing images from Pavia University and Indian
Pines are used to prove the effectiveness of the proposed
method. The classification accuracy can reach 94.1%. The
experiment results show that the QGASR-CNN has a certain
improvement in classification accuracy compared with the
traditional method, which effectively solves the problem of
‘‘salt and pepper misclassification’’ in hyperspectral remote
sensing image classification, and there is no any over-fitting
phenomenon.

In the future work, we will further study the relationship
between parameter selection and feature mapping in quan-
tum optimization sparse decomposition, and further improve
classification accuracy and operation efficiency.
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