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ABSTRACT Social networks are extensively exploited by third-party consumers such as researchers and
advertisers to understand user characteristics and behaviors. In general, before network data is published,
sensitive relationships should be anonymized to prevent the compromise of individual privacy. To quantify
the guarantee level of privacy-preserving mechanisms and mitigate users’ privacy concerns, numerous
studies concerning network data de-anonymization have been carried out. However, most existing studies
focus on single-view data, and privacy protection for multi-view data that is ubiquitous in the era of big
data has not been yet extensively explored. In this study, we are interested in answering the following
question: Are the traditional privacy protection methods still valid for the anonymization of multi-view data?
In this study, we propose a Multi-View Low-Rank Coding (MVLRC) based network data de-anonymization
framework to assess the vulnerability of privacy protection techniques by accurately reconstructing a
large portion of the original data. Specifically, the framework assumes that in principle, the target and
auxiliary networks have common structural patterns, and they can be modeled together to infer the hidden
structure of the target network. The essential components of our work include the following: (1) a robust
network representation model for structural pattern learning; (2) the network representation based multi-
view modeling of target network and auxiliary network; (3) the inference of the anonymized links via
target network reconstruction. Experimental results on synthetic networks and three real-world networks
demonstrate that auxiliary networks can be utilized by malicious adversaries for privacy inference attacks.
Thus, the privacy protection of multi-view network data needs more sophisticated anonymization techniques.

INDEX TERMS Privacy preserving, de-anonymization, network data, multi-view learning, low-rank coding.

I. INTRODUCTION
The development of social networks, including online social
networks, mobile social networks, vehicular social networks,
etc., has led to a tremendous explosion of network data [1].
The unprecedented increase of network data provides a won-
derful opportunity for both academia and industry to conduct
appealing network theories and applications. For example,
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researchers design structure mining and information cascade
models with the assistance of the data extracted from social
network sites [2]–[4]; platforms deliver traffic updates or trip
recommendation to users based on location-based services
(LBS) [5]; employers find targets of recruitment advertis-
ing and position candidates from the professional expe-
riences in LinkedIn [6]. Recently, privacy-preserving has
gained popularity in many areas [7]–[10]. In practice, and
more specifically in social networks, many kinds of individ-
ual information such as sexual contacts, purchase records,
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financial relationships, etc., are often considered to be privacy
data. Accordingly, releasing the data collected from social
networks would directly compromise users’ privacy. There-
fore, privacy preserving has become an indispensable task for
network data publication [11].

A. LINK PRIVACY-PRESERVING
Because privacy data coexists with public data in social net-
works, there are three important privacy risks with social
network data being published: content disclosure risk, iden-
tity disclosure risk, and link disclosure risk [12]–[14]. Link
disclosure is the focus of our study, which refers to infer-
ence about the existence of a sensitive link or relationships
between two individuals. For example, in financial transac-
tion networks, email networks, and professional social net-
works, the existence of money transactions, private emails,
and friendship between two individuals that are considered
as sensitive links may be inferred based on the published
data [15].

Recently, many anonymization methods have been pro-
posed to limit link disclosure. The first group of methods
achieve link anonymization by transforming networks to
have some subgraph similarity, such as the k-isomorphism
based method [16] and equivalence class partition based
method [17]. The second group of methods partition the
network into clusters, and each cluster is collapsed into one
super-node thereby, hiding sensitive links [18], [19]. The third
group of methods are based on random link perturbation,
including adding non-existing links, deleting existing links,
and switching links [14], [15], [20], [21].

B. LINK PRIVACY ATTACK
As an addition to data anonymization research, de-
anonymization techniques have been proposed in the liter-
ature [22]–[24], which can be used to assess the privacy
risk of anonymization techniques and probe their potential
drawbacks. To infer sensitive links from the anonymized
networks, subgraph attack methods [25] and semantics based
methods [26] have been proposed. Moreover, in the link
prediction problem [27], the existence of missing links can
be estimated based on the intrinsic topological features of
observed networks. Accordingly, various methods proposed
for link prediction could be exploited by adversaries for
network de-anonymization. For example, similarity based
methods were used by attackers to infer the sensitive relation-
ships of users, and reconstruction based de-anonymization
methods have been proposed to recover the original net-
works according to the structural patterns of anonymized
data [28]–[31].

TABLE 1. Different cases for multi-view data anonymization.

C. MOTIVATION
Typically, in the era of big data, there are rich diversities,
and the same object can be observed from different view-
points or captured by distinct apparatus. Different views that
are complementary to each other form the basis of multi-
view learning. Specifically, each view of the data contains
some specific information that others do not have. Thus,
multiple view models can be applied to represent the data
comprehensively [32]. For example, for authors in the sci-
entific community, their relationships can be characterized
based on co-authorship or citations. Another example is the
real social network of individuals, where various social media
applications (e.g, Sina Weibo, Wechat) capture the interac-
tions between users from different viewpoints.

In this study, we explore the problem of network data de-
anonymization from the perspective of multi-view learning
and determine the possibility of anonymized links infer-
ence. In multi-view networks, existing anonymization tech-
niques assume that it is enough to anonymize each of their
views independently. Let us consider the simplest case in
which published data includes only two views. We will then
have options to anonymize the data as shown in Table 1:
no anonymization for either view, anonymization for one
view, and anonymization for both. With two views as shown
in Table 1, case 4 is the backbone of the anonymization
techniques for data publishing, which is clearly the strongest
protection of privacy. Here, we are interested in answering the
following research question: Is case 4, the strongest among
four cases, sufficient for anonymizing multi-view network?

D. CONTRIBUTIONS
In this study, we seek to answer the question by tak-
ing an adversary approach to assay the privacy level of
anonymized multi-view networks. The idea behind this is that
the anonymized links of existing methods are generated with-
out considering the structural patterns of the target network,
and the resulting local subgraphs have inconsistent structural
patterns compared with the normal ones [33]. In addition,
we assume that the auxiliary networks have consistent struc-
tural information with the target network, and they can be
utilized for structural patterns learning. Thus, we propose
a novel network data de-anonymization framework, called
Multi-view Low-rank Coding (MVLRC), to model the tar-
get network and auxiliary network together. Based on low-
rank theory [34], we define a low-rank constrained network
representation model and uncover the anonymized links by
exploring the representation relationship among elemental
subgraphs. The key contributions of this study include:

• We answer the problem of whether the traditional
privacy protection methods are still valid for the
anonymization of multi-view data and formulate the
privacy-preserving oriented multi-view network de-
anonymization framework. To the best of our knowl-
edge, it is the first time that the privacy protection of
multi-view network data has received attention.
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• We develop the multi-view low-rank coding method
MVLRC for network de-anonymization, in which the
auxiliary network can be incorporated naturally with the
target network for anonymized links inference.

• The promising accuracy of MVLRC demonstrates that
the representative network anonymization approaches
cannot be directly applied on multi-view network data.
This observation will help researchers in designing
multi-view network data anonymizationmethods by tak-
ing network structural patterns into consideration.

E. ORGANIZATION
The remainder of this paper is organized as follows: In
Section 2, we introduce the related work. Section 3 presents
the preliminaries and problem formulation, followed by the
proposed MVLRC algorithm and the derivation of the opti-
mal solutions. Experiments are reported in Section 5. The last
Section concludes the study.

II. RELATED WORK
A. NETWORK PRIVACY PRESERVATION
When releasing data for analysis, privacy preserving of indi-
viduals has recently raised great concern in the data mining
field. The main concern is that sensitive information should
not be disclosed. There are different types of privacy models
proposed for preserving data privacy such as K-anonymity, L-
diversity, T-closeness, and differential privacy. The methods
should limit the disclosure risks while maintaining the utility
of the data. More details about existing research outputs
and achievements of the privacy field can be found in [35].
However, most existing studies on preserving privacy in data
publishing have focused on tabular data. Owing to the depen-
dency and complexity of network data, privacy preserving
about social network data is much more challenging than
the anonymization of the conventional tabular data, and the
anonymization techniques for tabular data cannot adapt to
network data [12].

Generally, for network data publication, there are three
important privacy risks: content disclosure risk, identity dis-
closure risk, and link disclosure risk [13], [14]. A large por-
tion of studies on social network privacy has concentrated
on identity disclosure, which reveals users’ identifiable per-
sonal information (such as names and social security number)
based on the structure features or descriptive attributes [22],
[36]–[38]. Although a privacy-protection mechanism for
social network data publishing should consider content, iden-
tity, and link disclosure threats, link disclosure often leads to
both content and identity disclosures. Therefore, limiting link
disclosure is more fundamental than the others.

Many anonymization methods have currently been pro-
posed and can be categorized into two groups, i.e., general-
ization based approaches and perturbation based approaches.
Specifically, the basic idea of generalization based methods
is to replace the sensitive information with a less specific,
but semantically consistent value [39]. Perturbation based

methods include link modification strategy and randomiza-
tion strategy, in which the former proposes link addition and
deletion mechanism to meet the desired constrains, such as k-
degree anonymity [40], and k-automorphism anonymity [41];
the latter attempts to change network structure by randomly
adding and removing links. In addition, differential pri-
vacy methods [42], [43] are also proposed for network data
anonymization.

Compared with the large number of generalization
based approaches [19], [44] and k-anonymity based meth-
ods [16], [41], [45] proposed for user identity anonymiza-
tion, the research on link privacy protection is insufficient.
Initially, Zheleva and Getoor [18] focused on the problem
of preserving the privacy of sensitive relationships in net-
work data and defined the sensitive relationships inference
problem based on anonymized network. Thereafter, the most
conservative approach for link privacy protection was pro-
posed to remove the sensitive relationships altogether, thus
preserving any privacy that these relationships may compro-
mise [18]. Moreover, the works [20], [46] presented random
perturbation and random switching strategies for link pri-
vacy protection. Along this line, considering the structural
proximity of nodes, some structure-aware randomization per-
turbation methods have been proposed, including the local
perturbation based methods [14], [15] and the random walk
based method [47]. Furthermore, the Gaussian noise based
method [48] and differential privacy methods [49]–[51] were
developed for link privacy protection.

B. NETWORK DATA DE-ANONYMIZATION
Network de-anonymization techniques are actively stud-
ied to explore the vulnerabilities of current network
data privacy protection mechanisms. Most of the exist-
ing de-anonymization attacks focus on user identity de-
anonymization. Typically, these approaches can be clas-
sified into two categories, attributes based identity de-
anonymization as well as structure based identity de-
anonymization. Recently, there has been a surge of interest
in the topic of identity de-anonymization by involving the
attributes information of users. Most of the methods extract
features from public profile fields, such as user ID, location,
etc., and content information, e.g., timestamps, geo-tags, etc.
Thereafter, these methods adopt classifiers to infer whether
the node pairs correspond to a similar identity [52]. Important
studies on this topic are reviewed by Shu et al. [53].

The structure based identity de-anonymization, also called
vertex re-identification, assumes that the accounts belonging
to the same user across social networks have similar local
structures. Thus, the subgraphs associated with target nodes
can be used as background knowledge for user identification.
Specifically, Nilizadeh et al. [37] matched the anonymized
network with auxiliary network and identified user identity
by considering the community structure. Lee et al. [54] incor-
porated multi-hop neighbors’ information in network struc-
tures as novel features and optimized the matching for users
between the anonymized network and the auxiliary network
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by leveraging a machine learning technique. Narayanan and
Shmatikov [55] proposed a network topology based de-
anonymization method that first identifies some seed nodes
and then propagates themapping to new nodes based on struc-
ture similarity. To match the nodes accurately, Ji et al. [56]
defined a unified similarity measurement and proposed a de-
anonymization framework based on it. Ji et al. [57] imple-
mented comprehensive quantification of de-anonymizability
of networks with seed information and provided theoreti-
cal foundation for structure-based de-anonymization attacks.
Zhou et al. [58] proposed a cross-platform unsupervised user
identification algorithm based on friend relationships. The
above works demonstrate that privacy-preserving on network
structure is necessary for the anonymization of user identity.

Besides identity de-anonymization, the link de-
anonymization, i.e., link disclosure or link re-identification,
which aims to identify sensitive relationships among users
from anonymized networks, is also an important issue in the
field of network privacy protection. Specifically, Ying and
Wu [59] investigated the sensitive relationships protection
problem and verified the value of similarity measures for link
privacy breaching. To mitigate the vulnerability of network
anonymization mechanisms, Zhang et al. [28] developed an
enhanced network anonymization method by generating fake
edges as plausible as possible. Fire et al. [29] presented a
classifier based link reconstruction attack method to identify
sensitive relationships. Wu et al. [30] defined a low-rank
approximation based de-anonymization algorithm to recon-
struct a network from link randomized observation. Vuokko
and Terzi [31] proposed a maximum-likelihood-estimation-
based method to reconstruct the original networks. These
methods are mostly based only on the structural features of
the anonymized network. In our work, we investigate how
to utilize multi-view features from the target network and
auxiliary network for network link de-anonymization.

C. MULTI-VIEW LEARNING AND PUBLISHING
Owing to the diverse domains and various feature extractors,
multiple groups of features are currently available for specific
learning problems, and each of them can be regarded as a
particular view. Accordingly, multi-view learning paradigm
is developed to exploit the useful information from different
views. The existing multi-view learning algorithms can be
classified into three groups [60]: 1) co-training, 2) multi-
ple kernel learning, and 3) subspace learning. Importantly,
co-training algorithms enhance the learning performance in
different views by using the information from one another;
multiple kernel learning algorithms define a kernel function
for each view and thereafter combine the kernels together
to improve learning performance; subspace learning algo-
rithms aim to find a meaningful low dimensional embed-
ding or latent subspace shared by all feature sets. Generally,
existing multi-view learning methods mainly aim to max-
imize the agreement on multiple distinct views or exploit
their complementary information and ensure their success.
Recently, many multi-view algorithms have been proposed

by taking into consideration the complementary information
from different views, such as clustering [61] and subspace
learning [62].

For privacy-preserving data publishing, Dou and Coulon-
dre [63] presented a formal analysis of privacy violation
in the context of multi-view tabular data. Yao et al. [64]
defined k-anonymity based on relational view and concen-
trated on how to detect whether or not a given set of releasing
views violates k-anonymity. In our study, we also analyze
the privacy risk of multi-view data. However, our work aims
to explore the network structure de-anonymization problem,
which is different from the existing ones that mainly focus on
tabular data.

III. PRELIMINARIES AND PROBLEM
Typically, to anonymize networks for publication, the sensi-
tive relationships contained in original graphs are removed
firstly, and then the anonymization strategies, such as sparsi-
fication, perturbation and switching methods, are applied to
add or remove network links. To quantify the guarantee level
and assess the privacy risk of state-of-the-art anonymization
strategies for multi-view networks, the core task of this study
reduces to recover the original social graph and identify
anonymized links as accurate as possible based on target
graph. Based on the recovered graph, the sensitive rela-
tionships can be accurately inferred with subgraph attacks,
similarity measures, etc. For simplicity, this paper assumes
that only one auxiliary graph is available for structure de-
anonymization.

A. DEFINITIONS
Definition 1 (Original Graph): A social network can be

modeled as a graph SG = {U ,R}, in which U denotes the
set of users and R ⊆ U ×U indicates the set of relationships
between the users. If the associated parties prefer to keep link
Ri,j in graph SG hidden, then this link Ri,j is the sensitive
relationship, and the graph SG can be regard as the original
graph that needs privacy-protection.
Definition 2 (Target Graph): For a social graph SG =

(U ,R) containing sensitive relationships, its structure is
always modified based on a certain anonymization strategy
I (·) to preserve privacy before publishing. We refer to the
published social graph as the target graph SGT = {UT ,RT },
whereUT is the user set,UT

= U , and RT is the relationship
set, RT 6= R.
Definition 3 (Anonymized Link Set): For a social graph

SG, the difference between the link sets of SG and its target
graph SGT is defined as anonymized link set <, < = R\RT .
Definition 4 (Auxiliary Graph): For a target graph SGT =
{UT ,RT }, if there is a published social graph SGH =

{UH ,RH } that describes a set of relationships on the same
set of individuals with SGT from a different viewpoint,
i.e., UH

= UT , and RH = {RHi,j|i ∈ UH , j ∈ UH
} where

RH 6= RT , the graph SGH is defined as the auxiliary graph of
SGT .
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TABLE 2. Notations and meanings.

Problem Statement: For an original graph SG, given the
target graph SGT and its related auxiliary graph SGH , the goal
of the network structure de-anonymization is to develop an
algorithm 0(·) to generate a de-anonymized graph SGD =
0(SGT , SGH ), thereby approximating the original graph SG
as much as possible.

The description of the notations used in this study is pre-
sented in Table 2.

B. NETWORK ANONYMIZATION MODEL
To evaluate the performance of the de-anonymization
attack, we consider popular anonymization techniques that
have been most widely used in structure anonymization
works [12], [36] [20] [54] [65] . Specifically, the selected
anonymization strategies are introduced as follows:

(1) Densification. This method ensures the anonymity of
graph SG = {U ,R} by only adding k|R| links randomly
where k is the anonymization coefficient.

(2) Sparsification. This method obtains the anonymization
of social graph SG = {U ,R} by randomly eliminating k|R|
links.

(3) Perturbation. This method first removes k|R| links from
a social graph SG = {U ,R} in the same way as the sparsifica-
tion method does. Thereafter, it adds random false links until
the number of links in the anonymized graph is the same as
the original one.

(4) Switching. This method selects two random edges
(i1, j1) and (i2, j2) from social graph SG = {U ,R} such that
{(i1, j2) /∈ R ∧ (i2, j1) /∈ R}. Thereafter, it switches pairs of
links, i.e. removes links (i1, j1) and (i2, j2) and adds new links
(i1, j2) and (i2, j1) instead. This step is repeated k|R|

2 times,
which results in k|R| link removals/additions.
In this study, the original graph with sensitive links can be

anonymized by the various anonymization strategies and gen-
erate different anonymized graphs on a same node set. Among
the resulted networks, except the target graph, all the others
can be selected as auxiliary graph. Thus, for original social
graph de-anonymization, the target graph and the auxiliary

FIGURE 1. Illustration of social network anonymization. In the original
social graph, the sensitive link is indicated by the blue dotted line. In the
target and auxiliary social graph, the red dotted lines represent the
removed links, and the red solid lines mean the newly added links.

graph can be assumed to be the views corresponding to a same
group of users [66].
Example 1: Given an original social graph with sensitive

links, data publishers always remove the sensitive links firstly
and then apply anonymization strategies for privacy preser-
vation. Data publishers independently perform privacy pro-
tection operations, resulting in multiple views. Specifically,
as shown in themiddle of Fig. 1, two publishers anonymize the
original social graph SG with perturbation strategy, in which
two links indicated by the red dotted line are deleted and the
two links indicated by the red solid line are added. Similarly,
with the switching anonymization strategy, the publishers
anonymize SG by switching two links selected randomly,
thereby generating graphs shown in the right of Fig. 1. Thus,
for original social graph de-anonymization, the above graphs
generated by the publishers can be viewed as target social
graph SGT and auxiliary social graph SGH .

IV. NETWORK STRUCTURE DE-ANONYMIZATION
In this section, we will introduce a principal and explainable
network representation model. In order to utilize the com-
plementary information from auxiliary network for network
structure de-anonymization, the proposed model is extended
to a multi-view scenario.

A. NETWORK REPRESENTATION MODELING
Based on empirical analysis, real-world networks have been
proven to have some common topological characteristics,
such as small-world, scale-free, and core-periphery fea-
tures [67]. Hence, networks are always assumed to have
specific structural patterns for structure modeling [68]. More-
over, Koutra et al. [69] found that network structures can
be summarized and compressed by using an enriched set of
representative subgraphs as building blocks, such as cliques,
stars, chains, and bipartite cores. Inspired by these works,
in this study, networks are viewed as the linear summation of a
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set of elemental subgraphs with a specific interaction pattern
i.e., networks can be represented by using the elemental sub-
graphs as structural bases. Specifically, let A ∈ Rn×m denote
the adjacency matrix of an anonymized graph that consists of
m neighborhood structures, i.e., [A:,1,A:,2, . . . ,A:,m]. Given
a complete basis matrix D = [D:,1,D:,2, . . . ,D:,m] ∈ Rn×m,
each neighborhood structure A:,i can be represented as a
linear combination of the bases, which is defined as follows:

A:,i = [D1,:X:,i,D2,:X:,i, . . . ,Dn,:X:,i]T =
m∑
k=1

D:,kXk,i, (1)

where Xk,i denotes the weight corresponding to the structural
basis D:,k . Consequently, the adjacency matrix A can be
represented by A = DX , in which the representation matrix
X ∈ Rm×n captures the structural patterns of networks, and
the matrix D indicates the set of representative subgraphs.
To recognize the structural patterns of the network, the best
candidate for the basismatrixD is the adjacencymatrixA, and
the network can be represented by the following equation:

A = AX (2)

Since social networks often contain frequent subgraphs,
the columns of the representation matrix X corresponding to
the subgraphs should be correlated. Thus, X is expected to
be low-rank. Moreover, individuals may have different inter-
action patterns in reality. Thus, the modeling of real-world
networks should be node-oriented. Because each column of
the adjacency matrix A represents the interactions between
a node and the rest of the nodes, to characterize the node-
specific corruptions in networks and learn the representation
matrix, `2,1 norm, i.e., || · ||2,1, is adopted in our model to
capture the difference between the adjacencymatrixA and the
graph representation AZ in terms of the graph node. Based on
the above observations, social networks can be modeled via
the following structured low-rank representation:

min
X ,E

rank(X )+ λ||E||2,1 s.t.A = AX + E . (3)

where E is the noise term, λ ≥ 0 is a trade-off parameter used
to balance the low-rank and noise terms.

In this study, we assume that the anonymization pro-
cess does not alter the network structure significantly. Thus,
the original network SG can be inferred based on the learned
structural patterns from anonymized network. Fig. 2 provides
an intuitive illustration of our low-rank representation-based
network structure de-anonymization method. To a specified
network, by solving the structured low-rank representation
model, three structural bases a1, a2, and a3 are identified,
and the network can be represented based on them, as shown
in the left of Fig. 2 (a). Thus, to an anonymized social
graph where some neighborhood structures are perturbed for
privacy-preserving, such as a′4 and a′5, the original network
structure a∗4 and a∗5 can be recovered based on the identified
structural bases and the learned representation relationships.
To the networks with the same dimension, we argue that
the lesser the number of its structural bases, the higher the

FIGURE 2. The profound meaning of structured low-rank representation
based network structure de-anonymization. In (a), the anonymized
information can be recovered based on the principle that redundant
structures can be represented by structural bases. In (b), the proportion
of redundant structures in networks means the upper limit of the
possibility of being de-anonymized.

proportion of the redundant structure in the networks and
the more possible it is for the anonymized structure to be
recovered, as shown in Fig. 2 (b).

B. REGULARIZED MULTI-VIEW LOW RANK
REPRESENTATION
Most of the existing network structure anonymization strate-
gies for privacy-preserving do not take into account the under-
lying structural characteristics of networks. Consequently,
the difference between the original network SG and the target
network SGT , i.e., the anonymized link set, follows differ-
ent structural patterns with the original network SG. Thus,
we argue that the anonymized link set can be identified via the
structural patterns centered network representation model.

In the previous section, the network representation model
is proposed based on the assumption that only the single
view data is available, i.e., the target network, for structural
patterns learning. Nevertheless, in reality, multiple related
social networks from different viewpoints on the same set
of users contain valuable information and can be adopted
as auxiliary networks for structural patterns characterization,
i.e., optimizing the accuracy of the identified structural bases
and the learned representation relationships, thereby improv-
ing the performance of network structure de-anonymization.

Let A(i), i = 1, 2 indicate the relationship set of target
network SGT and auxiliary network SGH respectively, and
they can be represented as follows:

A(1) = A(1)X (1)
+ E (1) (4)

A(2) = A(2)X (2)
+ E (2) (5)

where X (1) and X (2) are representation matrices and E (1) and
E (2) are noise terms. Because the target network SGT and the
auxiliary network SGH capture the interactions between the
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FIGURE 3. Architecture of the proposed multi-view learning model for network structure de-anonymization.

same group of users from different viewpoints, we expect the
multiple view-specific networks to embody consistent struc-
tural patterns and be complementary to each other, which can
be used for the de-anonymization of any one of them. Conse-
quently, we define a regularizer by pushing the representation
matrices closer to ensure the consistence, i.e., minimizing the
following problem:

�(X ) =‖X (1)
−X (2)

‖2,1 (6)

Based on the regularizer term �(X ), the view divergence
between the published anonymized networks could be well
mitigated. Therefore, based on structured low-rank represen-
tation in Equation (3), the regularized multi-view low-rank
representation problem can be formulated as follows:

min
X (i),E (i)

2∑
i=1

(rank(X )+ λ‖E (i)
‖2,1)+ α�(X )

s.t. A(i) = A(i)X (i)
+ E (i), i = 1, 2 (7)

where ‖E (i)
‖2,1 represents the `2,1 of ith view, λ and α repre-

sent trade-off parameters. Because the rank(·) minimization
problem in objective function (7) is difficult to solve, nuclear
norm ||X ||∗, i.e., the sum of its singular values, was proposed
as a good surrogate for the rank minimization problem [70],
and we subsequently come up with the following problem
formulation:

min
X (i),E (i)

2∑
i=1

(‖X (i)
‖∗ + λ‖E

(i)
‖2,1)+ α�(X )

s.t. A(i) = A(i)X (i)
+ E (i), i = 1, 2 (8)

To solve the optimization problem as shown in the objec-
tive function (8), we adopt the recently proposed inexact aug-
mented Lagrangemultiplier (inexact ALM) algorithm in [71].
To facilitate the optimization, the auxiliary variablesQ and V
are introduced to make the objective function separable:

L(X (i),Q(i),E (i),V )

=

2∑
i=1

(‖Q(i)
‖∗ + λ‖E

(i)
‖2,1)

+α‖V‖2,1 +
2∑
i=1

(〈Y (i),A(i) − A(i)X (i)
− E (i)

〉

+
µ

2
‖A(i) − A(i)X (i)

− E (i)
‖
2
F + 〈K

(i),X (i)
− Q(i)

〉

+
µ

2
‖X (i)

− Q(i)
‖
2
F )+ 〈W ,V − (X (1)

− X (2))〉

+
µ

2
‖V − (X (1)

− X (2))‖2F

s.t. A(i) = A(i)X (i)
+ E (i),

X (i)
= Q(i), i = 1, 2,

V = X (1)
− X (2) (9)

where Y (i), K (i) and W are the Lagrange multipliers, and
µ > 0 is a penalty parameter. The initializations for each
variable and the complete optimization algorithm for solving
the problem (9) are shown in Algorithm 1. Consequently,
the optimal value of X (1) can be combined with the target
graph SGT for network structure de-anonymization.

C. MULTI-VIEW LOW-RANK CODING METHOD
The proposed regularizer in Equation (6) models the correla-
tion between the representationmatricesX (1) andX (2) via `2,1
norm to utilize the complementary information. However,
the values of X (1) and X (2) learned from Algorithm 1 are
the approximate representations of the structural patterns of
the anonymized social networks and are not accurate enough.
To model the shared structural patterns of multi-view net-
works directly, we define a common representation matrix X̂
and propose a novel method calledMVLRC. The architecture
of the proposed multi-view learning model for network struc-
ture de-anonymization is given in Fig. 3. Here, we present the
details of MVLRC.

1) ALGORITHM EXPLANATION
The optimal value of X (1) in Algorithm 1, i.e., the estimation
of the structural patterns of the target network, plays an essen-
tial role in network structure de-anonymization. To charac-
terize the structural patterns effectively, the regularization
term ‖X (1)

−X (2)
‖2,1 is introduced to encourage the con-

sistent structural information and restrain the discrepancy
between the anonymized and the auxiliary networks. Conse-
quently, the optimal values of X (1) and X (2) are robust to the
corruptions coming from anonymization manipulations and
prone to the common knowledge of the multi-view networks.
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Algorithm 1 Solving Problem (9) by Inexact ALM

Input: The adjacency matrices A(1),A(2) of the target and
auxiliary networks, trade-off parameter λ and α.

Output: The representation matrix X (i), error matrix E (i), i
= 1,2.

1: Initial X (i)
= Q(i)

= Y (i)
= E (i)

= K (i)
= 0, W = 0,

µ = 10−6, ρ = 1.1, ε = 10−8, maxµ = 1010;
2: while not converged do
3: Fix the other variables and updateQ(i) by

Q(i)
= argmin

Q(i)

2∑
i=1

( 1
µ
‖Q(i)
‖∗+

1
2‖Q

(i)
− (X (i)

+
K (i)

µ
)‖2F )

;

4: Fix the other variables and update X (1)

by

X (1)
= (2I + A(1)

T
A(1))

−1
(A(1)

T
(A(1) − E (1))

+Q(1)
+ V + X (2)

+
A(1)

T
Y (1)
−K (1)

+W
µ

)
;

5: Fix the other variables and update X (2)

by

X (2)
= (2I + A(2)

T
A(2))

−1
(A(2)

T
(A(2) − E (2))

+Q(2)
− V + X (1)

+
A(2)

T
Y (2)
−K (2)

−W
µ

)
;

6: Fix the other variables and update V by
V = argmin

V
α
µ
‖V‖2,1 + 1

2‖V − (X (1)
− X (2)

+

W
µ
)‖2F ;

7: Fix the other variables and update E (i)

by

E (i)
= argmin

E (i)

2∑
i=1

( λ
µ
‖E (i)
‖2,1 +

1
2‖E

(i)
− (A(i)

−A(i)X (i)
+

Y (i)

µ
)‖2F )

8: Update the multipliers
Y (i)
= Y (i)

+ µ(A(i) − A(i)X (i)
− E (i));

K (i)
= K (i)

+ µ(X (i)
− Q(i));

W = W + µ(V − (X (1)
− X (2)));

9: Update the parameter µ by µ = min(ρµ,maxµ);
10: Check the convergence conditions

‖A(i) − A(i)X (i)
− E (i)

‖∞ < ε and
‖X (i)

− Q(i)
‖∞ < ε and

‖V − (X (1)
− X (2))‖∞ < ε

11: end while
12: output X (i), E (i), i = 1, 2.

However, they are still not an accurate reflection of the net-
works’ structural patterns. To solve the problem, we define
the representationmatrix X̂ to characterize the common struc-
tural patterns andmodify the regularizedmulti-view low-rank
representation as follows.

min
X̂ ,E (i)

2∑
i=1

(‖X̂‖∗ + λ‖E
(i)
‖2,1)

s.t. A(i) = A(i)X̂ + E (i), i = 1, 2 (10)

Lemma 1: Solving the network representation model
defined in the objective function (10) can accurately char-

FIGURE 4. Example of the multi-view low-rank coding model.

acterize the common structural patterns of multi-view social
networks with the matrix X̂ .

Proof: For the network representation model
A(1) = A(1)X̂+E (1) and A(2) = A(2)X̂ + E (2), the low-rank
pursuit of ‖X̂‖∗ and noise minimization ‖E (i)

‖2,1, i = 1, 2,
collectively require the models to reconstruct the networks
with neighborhood structures i.e., structural bases, and noises
that are as few as possible. Because of the consistency
between A(1) and A(2), the networks have similar structural
patterns. Consequently, the structural bases and their contri-
bution to network reconstruction are basically the same. Thus,
the networks A(1) and A(2) could be inferred approximately
based on a common representation matrix X̂ , i.e., A(1)X̂ and
A(2)X̂ , with the sparse differences being modeled by E (i), i =
1, 2. Finally, the common structural patterns of multi-view
networks can be captured by the optimal value of the matrix
X̂ accurately.
Example 2: Here, we consider the multi-view networks

contained in correlated subgraphs, as shown in Fig. 4 (a) and
Fig. 4 (b). To the nonzero regions of their adjacency matri-
ces, we present three different network representations with
various constraints. Specifically, the first line in Fig. 4 (a)
and Fig. 4 (b) is the network representation in which the
representationmatrices are full rank and the errormatrices are
empty. The second line is the network representation in which
the rank of representation matrices are reduced to 2, and the
error matrices still remain empty. According to the third line,
the network representations of the two subgraphs have the
same representation matrix with the lowest rank value, i.e., 1,
and sparse error matrices. By comparing the three cases,
we can conclude that the low-rank and sparse constrains
collectively propel the network representationmodel to repre-
sent the multi-view networks with a common representation
matrix.

To solve the MVLRC model, we first introduce the auxil-
iary variable Q̂ to make the objective function (10) separable.
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The problem can subsequently be transformed as follows:

min
X̂ ,Q̂,E (i)

2∑
i=1

(‖Q̂‖∗ + λ‖E
(i)
‖2,1)

s.t. A(i) = A(i)X̂ + E (i), i = 1, 2

X̂ = Q̂ (11)

Thus, the augmented Lagrangian function of the objective
function (11) is defined below.

L(X̂ , Q̂,E (i))

=

2∑
i=1

(‖Q̂‖∗ + λ‖E
(i)
‖2,1)+ 〈K , X̂ − Q̂〉

+
µ

2
‖X̂ − Q̂‖2F +

2∑
i=1

(〈Y (i),A(i) − A(i)X̂ − E (i)
〉

+
µ

2
‖A(i) − A(i)X̂ − E (i)

‖
2
F ) (12)

where Y (i) and K are Lagrangian multipliers and µ > 0 is a
penalty parameter.

2) OPTIMIZATION
Here, we adopt the inexact ALM algorithm to solve the
optimization problem in (12). We alternatively update the
variables X̂ ,Q̂ and E (i) while fixing the other variables.
Update Q̂: By ignoring the irrelevant variables w.r.t. Q̂ in

(12), the subproblem is given as follows:

Q̂ = argmin
Q̂
‖Q̂‖∗ + 〈K , X̂ − Q̂〉 +

µ

2
‖X̂ − Q̂‖2F

= argmin
Q̂

1
µ
‖Q̂‖∗ +

1
2
‖Q̂− (X̂ +

K
µ
)‖2F (13)

This problem can be effectively solved by using the singu-
lar value thresholding (SVT) operator [34]. Let1Q = X̂+ K

µ
,

the optimal solution of (13) is Q̂ = UQ̂�1/µ(
∑

Q̂ )VQ̂, where
�δ(H ) = max(H − δ, 0) + min(W + δ, 0) is the soft-
thresholding operator [71].
Update E (i): Here we show how to update E (i) (i = 1,2)

with fixed Q̂ and X̂ variables. After dropping the irrelevant
termsw.r.t.E (i) (i= 1,2), the function (12) can be transformed
as follows:

E (i)
= argmin

E (i)
λ‖E (i)

‖2,1 + 〈Y (i),A(i) − A(i)X̂ − E (i)
〉

+
µ

2
‖A(i) − A(i)X̂ − E (i)

‖
2
F

= argmin
E (i)

λ

µ
‖E (i)
‖2,1 +

1
2
‖E (i)
−(A(i)−A(i)X̂+

Y (i)

µ
)‖2F

(14)

The solution to the problem is presented in [34]. Specifi-
cally, let 9 = A(i) − A(i)X̂ + Y (i)

µ
, the k-th column of E (i) is

given as follows:

E (i)(:, k) =


‖9k‖ −

λ
µ

‖9k‖
9k , if

λ

µ
< ‖9k‖ ,

0, otherwise.
(15)

Update X̂ : After dropping the terms independent of X̂ ,
Equation 12 can be transformed as follows:

X̂ = argmin
X̂

2∑
i=1

(〈Y (i),A(i) − A(i)X̂ − E (i)
〉)+ 〈K , X̂

−Q̂〉 +
µ

2
‖X̂ − Q̂‖2F +

µ

2
‖A(i) − A(i)Q̂− E (i)

‖
2
F )

= (A(1)
T

A(1) + A(2)
T

A(2) + I )
−1

[A(1)
T

A(1)

+A(2)
T

A(2) + Q̂− A(1)
T

E (1)
− A(2)

T

E (2)

+
1
µ
(A(1)

T

Y (1)
+ A(2)

T

Y (2)
− K )] (16)

The above process is repeated until convergence. The detail
of the MVLRC algorithm for finding the common structural
patterns is presented in Algorithm 2.

Algorithm 2 Solving Problem (12) by Inexact ALM

Input: The adjacency matrices A(1),A(2) of the target and
auxiliary networks, trade-off parameter λ.

Output: The representation matrix X̂ , error matrix E (i), i =
1,2.

1: Initial X̂ = Q̂ = K = 0, Y (i)
= E (i)

= 0, µ = 10−6,ρ =
1.1, ε = 10−8, maxµ = 1010;

2: while not converged do
3: Fix the other variables and update Q̂ via (13);
4: Fix the other variables and update X̂ via (16);
5: Fix the other variables and update E (i) via (14);
6: Update the multipliers K and Y (i)

Y (i)
= Y (i)

+ µ(A(i) − A(i)X (i)
− E (i));

K = K + µ(X̂ − Q̂);
7: Update the parameter µ by µ = min(ρµ,maxµ);
8: Check the convergence conditions
‖A(i) − A(i)X (i)

− E (i)
‖∞ < ε and

‖X̂ − Q̂‖∞ < ε

9: end while
10: output X̂ , E (i)

D. DE-ANONYMIZATION ALGORITHM
Given an target graph SGT , the goal of our study is to
generate a de-anonymized graph SGD based on the topology
of SGT and the learned optimal structural patterns, thereby
inferring the anonymized links that are perturbed for privacy-
preserving.

According to the network representation model, the target
network can be inferred based on the linear combination of
the basis matrix with the representation weight. To maintain
the data utility for subsequent data analysis, the anonymized
operations for privacy-preserving are always limited, and the
anonymized network largely retains the intrinsic structural
features of the original network. Thus, the adjacency matrix
A(1) of the target network is the strongest candidate to be
the basis matrix. In addition, the representation matrix X (∗),
learned from the anonymized networks by Algorithm 1 or
Algorithm 2, captures the structural patterns and can be used
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for target network reconstruction. Accordingly, we can infer
the target network structure by A(1)X (∗).

The whole procedures for network structure de-
anonymization are shown in Algorithm 3. Specifically, in the
first step, the structural patterns, captured by the representa-
tion matrix of the target network can be efficiently learned
from the multi-view social networks by Algorithm 1 (i.e.,
X (1)) or Algorithm 2 (i.e., X̂ ). Then, the adjacency matrix
O of the target network can be calculated in Step 2.

Algorithm 3 Network Structure De-Anonymization

Input: The adjacency matrices A(1), A(2) of target and auxil-
iary networks.

Output: De-anonymized target network.
1: Learn the structural pattern X ′ of the available

anonymized networks by Algorithm 1 or Algorithm 2;
2: Reconstruct the target network by O = A(1)X ′;
3: Return De-anonymized target network O.

E. COMPUTATIONAL COMPLEXITY
In this section, we provide a detailed complexity analysis
of the proposed algorithms wherein, the main computation
complexity mainly focuses on nuclear norm computation,
matrix inversion, and multiplication computation. Specifi-
cally, exact SVD of an n × m matrix has time complexity
O(min{nm2, n2m}). In case of a matrix with size m×m, time
complexity of SVD is O(m3). It will be time consuming if m
is large, i.e., the number of data samples is large. Fortunately,
the SVD of an m × m matrix can be accelerated to O(r2m)
according to [72], where r is the rank of the low-rank matrix.
In addition, the computation complexity of matrix inversion
and multiplication computation all cost O(m3).
Suppose the A(1) ∈ Rn×m and A(2) ∈ Rn×m matrices,

the main time-consuming components of Algorithm 1 con-
centrates on the solving of Q(1) and Q(2) in Step 3 and
the updating of X (1) and X (2). Since Q(1), Q(2)

∈ Rn×m,
the time complexity of SVD on Q(1) and Q(2) is O(l1m3) and
O(l2m3) respectively, where l1 and l2 are the total number of
SVD. Meanwhile, in Algorithm 1, the complexity of matrix
inverse and multiplication in X (1) and X (2) costsO(l3m3) and
O(l4m3) respectively, where l3 and l4 are the total number
of matrix inverse and multiplication operations. Therefore,
the total computation complexity of Algorithm 1 is approx-
imately O(tl1m3

+ tl2m3
+ tl3m3

+ tl4m3), assuming that
there are t iterations. Moreover, the main time-consuming
processes of Algorithm 2 are SVD computation used in solv-
ing Q̂, and matrix inverse and multiplication in solving X̂ ; the
total complexity of Algorithm 2 is O(tf1m3

+ tf2m3), where
f1 represents the total number of SVD computations, f2 is
the total number of matrix inverse and multiplication oper-
ations, and t is the iteration number. In Algorithm 3, the main
complexity comes from the de-anonymization of the target
network in Step 2, and thematrixmultiplication costsO(nm2)
for A(1) ∈ Rn×m and X ′ ∈ Rn×m. Thus, the total complexity

of de-anonymization method combining Algorithm 1 and
Algorithm 2 is O((l1 + l2 + l3 + l4 + f1 + f2)tm3). Because
l1, l2, l3, l4, f1, f2, t are all small constants, the complexity is
O(m3). Similarly, the total complexity of de-anonymization
method combining Algorithm 1 and Algorithm 3 is O(m3)
+O(nm2).

It is worthwhile to note that the complexity of the proposed
method is a one-time cost and may be performed off-line.
Therefore, it is feasible for graphs with a couple of thou-
sands of nodes. For very large graphs with millions of nodes,
randomized algorithms may be used to figure out the SVD.
Furthermore, when compared with the existing graph data de-
anonymization algorithms, the complexity of the proposed
methods are competitive. For example, the method proposed
by Narayanan et al. [73] is O(n4), the method in [74] costs
O(n3), and the time complexity of the methods in [75] is
O(n3).

V. EXPERIMENTS
In this section, the performance of the proposed MVLRC
algorithm is evaluated on two synthetic networks, and three
real-world datasets which are obtained from Stanford Net-
work Analysis.1 We adopt Reliability and AUC as per-
formance metrics, and verify the superiority of MVLRC
algorithm over the comparison methods under various
anonymization techniques. In addition, we evaluate the
robustness ofMVLRC algorithmwith diverse parameters set-
ting, and visually compare the true and identified anonymized
links to demonstrate the effectiveness of the MVLRC algo-
rithm.

A. EXPERIMENTAL SETTING
Our approach is compared to three state-of-the-art single-
view and multi-view structure de-anonymization methods.
The details of the methods are given as follows:
• RPCA based Recovery Approach. RPCA [76], [77] is

applied for subspace segmentation and link prediction.
Thus, we identify the true network structure and infer
the anonymized link set by conducting RPCA on the
anonymized network (referred to as ‘‘RPCA’’).

• LRR based Recovery Approach. LRR [34] is a repre-
sentative method to recover the original row space from
a set of corrupted observations. Here, we utilize LRR to
model the anonymized network where the anonymized
links are viewed as noise, outliers, and sample-specific
corruptions (referred as ‘‘LRR’’).

• MVLRR. The method recovers the target network by
combining Algorithm 1 and Algorithm 3, where the
anonymized auxiliary network is incorporated by reg-
ularization.

• MVLRC. The method recovers the target network by
combining Algorithm 2 and Algorithm 3, where the
common structural patterns are characterized by a spe-
cific representation matrix.

1https://snap.stanford.edu/data/index.html
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TABLE 3. Reliability of different algorithms on small-world network under various anonymization coefficient k .

TABLE 4. AUC of network de-anonymization methods on small-world network under various anonymization coefficient k .

TABLE 5. Reliability of different algorithms on LFR network under various anonymization coefficient k .

TABLE 6. AUC of network de-anonymization methods on LFR network under various anonymization coefficient k .

To measure the accuracy of the proposed MVLRC method
for network structure de-anonymization and anonymized
links identification, we adopt reliability as the evaluation
metric, defined as follows:

Reliability =
AN + DN
TAN + TDN

(17)

where AN is the number of added links being accurately
found, DN is the number of deleted links being accurately
found, and TAN and TDN are the total number of added
links and deleted links for network structure anonymization,

respectively. The more the anonymized links being identified
by the de-anonymization algorithms, the higher the value
of the reliability metric. Moreover, the metric AUC (Area
Under the Receiver operating characteristic curve) is also
adopted for the performance evaluation of network structure
de-anonymization i.e., a higher value of AUC means a better
network structure de-anonymization performance.

Algorithm 4 details the overall evaluation process of
MVLRC. Firstly, based on the target network and aux-
iliary network, we infer target networks using the de-
anonymization methods. Then, we compare the inferred
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TABLE 7. Reliability of different algorithms on Email-EuAll database under various anonymization coefficient k .

TABLE 8. AUC of network de-anonymization methods on Email-EuAll database under various anonymization coefficient k .

target network with the original target network and obtain the
difference between them. Next, we sort the possible links and
compare them with the real anonymized link set to calculate
the evaluation metric.

Algorithm 4 Experimental Evaluation Process
Input: The adjacency matrix A of the target network,

the adjacency matrices A(1), A(2) of the target network
and auxiliary network, and the real anonymized link set
I generated by various anonymization techniques in the
target network.

Output: The values of evaluation metric Reliability and
AUC.

1: Estimate target network O based on A(1) and A(2) using
all candidate structure de-anonymization methods;

2: Calculate the discrepancy link set by S = A− O;
3: Rank the entries of S based on their absolute values

∣∣si,j∣∣,
and select the top |I | entries as the inferred anonymized
link set P in which the negative items correspond to the
deleted links, and the positive items correspond to the
added links in the anonymization process;

4: Calculate the evaluation metric Reliability and AUC by
comparing P and I ;

5: Return the values of Reliability and AUC.

B. RESULTS ON SYNTHETIC NETWORKS
In this section, we conduct experiments on synthetic net-
works to confirm the expectation that MVLRC would per-
form well in this case. Based on Newman-Watts-Strogatz
model [78], we generate a small-world network in which
the node number is set to 1000, average node degree is set

to 8 and the probability of random reconnection is set to
0.3. Meanwhile, we produce LFR community network with
Lancichinetti-Fortunato-Radicchi (LFR) model [79] where
the node number is set to 1000, average node degree is 5,
and the mixing ratio is 0.2. Table 3 and Table 4 show the
reliability and AUC results of RPCA, LRR, MVLRR, and
MVLRC under different anonymization techniques on the
small-world network. It can be clearly seen that MVLRC
outperforms better than the other methods for anonymized
links inference, and the reason is that the structural patterns
of small-world network can be better captured by MVLRC.
Moreover, a similar conclusion can be drawn from the exper-
imental results on LFR network, as shown in Table 5 and
Table 6. Therefore, the proposedMVLRCmethod is effective
for the de-anonymization of synthetic networks.

C. RESULTS ON EMAIL-EuAll DATABASE
The Email-EuAll Database [80] is obtained from a large,
undisclosed European research institution, and contains
3,038,531 emails between 287,755 different email addresses.
Nodes represent individual persons who sent or received
email messages, and links denote emails having been
sent or received from one person to the others. We view
the database as a simple, undirected graph. Because the
large scale of real-world networks always make the experi-
ments based directly on the them to be time-consuming and
sometimes impractical, researchers related to social network
analysis often sample the real-world networks firstly and
then conduct experiments on the sampled networks. Simi-
larly, in our study, all algorithms are tested on the networks
with the size of 1000 randomly sampled from the database.
The sampled networks are anonymized with the techniques
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FIGURE 5. Reliability of network de-anonymization methods on Email-EuAll database under various settings. The anonymization strategy of
Email-EuAll adopts Perturbation mechanism, anonymization coefficient k = 0.1. In (a), the network size equals to 1000. In (b), the tradeoff
parameter λ equals to 0.13.

FIGURE 6. The visualization of true and detected anonymized link set in Email-EuAll database. The anonymization strategy of Email-EuAll
adopts Perturbation mechanism, anonymization coefficient k equals to 0.2, trade off parameter λ equals to 0.13, and network size equals
to 1,000. In (b), the orange lines represent the detected anonymized links, while the blue lines represent the undetected links.

TABLE 9. Reliability of different algorithms on the Facebook database under various anonymization coefficients k .

TABLE 10. AUC of network de-anonymization methods on the Facebook database under various anonymization coefficients k .
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FIGURE 7. Reliability of network de-anonymization methods on Facebook database under various settings. The anonymized strategy of
Facebook adopts Perturbation mechanism, anonymization coefficient k equals to 0.1. In (a), the network size equals to 1,000. In (b),
the tradeoff parameter λ equals to 0.13.

presented in Section 2.2 to generate the target and auxiliary
networks. For each sampled network, we repeat our experi-
ments 10 times and report the average result.

Table 7 shows the results of RPCA, LRR, MVLRR, and
MVLRC under different anonymization techniques. We can
observe that multi-view approaches MVLRR and MVLRC
outperform the single view methods RPCA and LRR in
terms of reliability. The results demonstrate that the auxiliary
network is valuable for de-anonymization optimization, and
the proposed multi-view framework is effective for comple-
mentary information modeling. In addition, Table 7 shows
that LRR outperforms RPCA when only the target network
is available. This can be explained by the reason that LRR
has a stronger expressive capability than that of RPCA.
For the multi-view modeling based network structure de-
anonymization, Table 7 illustrates that MVLRC outperforms
MVLRR. Here, the advantages of MVLRC are mainly due
to its methodology. Specifically, MVLRC directly targets on
learning the common structural patterns by a specific rep-
resentation matrix, which determines the de-anonymization
results. In contrast, MVLRR is proposed for learning the tar-
get network’s structural patterns and the auxiliary network’s
structural patterns respectively, constrained by a regulariza-
tion term. Moreover, according to Table 7, the values of the
reliability metric under densification anonymization strategy
obviously increase with anonymization coefficient k increas-
ing, which indicates that the densification strategy tends to
be inefficient for network structure anonymization. Mean-
while, Table 8 shows the de-anonymization results in terms of
AUCmetric. The results show thatMVLRC generally obtains
the best performance among the de-anonymization methods
under various anonymization techniques and coefficients, and
the multi-view de-anonymization algorithms perform better
than the single-view ones.

Besides the superiorities in terms of de-anonymization
accuracy, another advantage of MVLRC is that it works well
under a wide range of parameter specifications, as shown
in Fig. 5. It can be seen that the MVLRC algorithm is better
than the other methods as the parameter λ varies from 0.10 to
0.18, as shown in Fig. 5 (a). Moreover, notice that MVLRC is

not sensitive to the parameter λ on this dataset. With the size
of the sampled network growing from 500 to 1,500, MVLRC
is better than the other methods in all cases, as shown in Fig. 5
(b). It is worthy to note that there have been similar results
when the other anonymization techniques are adopted.

To test the effectiveness of MVLRC for network structure
de-anonymization, we visually compare the true anonymized
link set and the identified anonymized links, as shown
in Fig. 6. In detail, the added and deleted links in the
anonymized network are presented in Fig. 6 (a). By compar-
ison, in Fig. 6 (b), the orange lines indicate the identified
anonymized links while the blue lines represent the unde-
tected ones. It is worth noting that most of the anonymized
links are identified correctly.

D. RESULTS ON FACEBOOK DATABASE
The Facebook Database [81] contains information of nearly
10 million pairs of users on Facebook. The website aims
to promote and facilitate the interactions across friends,
colleagues, etc. For example, if user A and user B are
friends, or they have same political tendency and hobbies,
the network would create a link between them with a high
probability. Here we sample the dataset randomly into a net-
work with 1,000 nodes and conduct RPCA, LRR, MVLRR,
and MVLRC on it. Table 9 shows the de-anonymization
results under different anonymization strategies and various
anonymization coefficients. It can be seen that our proposed
MVLRC algorithm performs better than the others in terms
of reliability metric. The experimental results agree with the
discussions addressed in Section 4, which shows that the
auxiliary network does contain valuable information for de-
anonymization, and the MVLRCmethod can perform well in
capturing common structural information. Table 10 shows the
performance of de-anonymization methods in term of AUC.
The results demonstrate that MVLRC outperforms the other
methods.

To examine the robustness of the proposedmethod, we per-
form experiments with various trade-off parameters and
different network sizes. We present the reliability values cor-
responding to the de-anonymization methods in Fig. 7. The
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FIGURE 8. The visualization of the true and detected anonymized link set in Facebook network. The anonymized strategy of Facebook
adopts Perturbation mechanism, anonymization coefficient k equals to 0.2, trade off parameter λ equals to 0.13 and network size equals
to 1,000. In (b), the orange lines represent the detected anonymized links, and the blue lines represent the undetected links.

TABLE 11. Reliability of different algorithms on the Bitcoin database under various anonymization coefficient k .

TABLE 12. AUC of network de-anonymization methods on the Bitcoin database under various anonymization coefficient k .

results verify the superiority of the MVLRC method under
various conditions, which confirms the results obtained from
the previous subsection.

After reconstructing the target network, we infer the
anonymized links by comparing the recovered target net-
work with the original target network. Then, we estimate the
consistency between the inferred anonymized links and true
anonymized links to measure the de-anonymization accu-
racy. The detailed results presented in Fig. 8 show that the
MVLRC has excellent performance for network structure de-
anonymization.

E. RESULTS ON BITCOIN-ALPHA DATABASE
To further verify the de-anonymization performance of
MVLRC, we adopt the Bitcoin-Alpha dataset [82] for eval-
uation. The data is collected from Bitcoin Alpha, which is

an online trust platform for users who make a deal by using
Bitcoin. Since anonymity makes transactions risky, many
researchers use Bitcoin-Alpha and Bitcoin-OTC to verify the
effectiveness of de-anonymization algorithms. We transform
the Bitcoin-Alpha dataset into an undirected graph with a
weight value of 1, and then use the sampled subgraphs as
experimental networks.

Considering the experimental results on EuAll-Email net-
work and Facebook network, our algorithm performs better
than other methods on the Bitcoin-Alpha network. Specifi-
cally, Table 11 and Table 12 show the evaluation results with
different anonymization strategies and various anonymiza-
tion coefficient on the size of 1000 nodes in terms of reli-
ability and AUC. When compared with the single view
methods, multi-view learning algorithms show significant
performance improvements. Furthermore, for the multi-view
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FIGURE 9. Reliability of network de-anonymization methods on the Bitcoin database under various settings. The anonymized strategy of
Bitcoin adopts Perturbation mechanism, anonymization coefficient k equals to 0.1. In (a), the network size equals to 1,000. In (b),
the tradeoff parameter λ equals to 0.13.

FIGURE 10. The visualization of true and detected anonymized link set in Bitcoin database. The anonymized strategy of Bitcoin adopts
Perturbation mechanism, anonymization coefficient k equals to 0.2, trade off parameter λ equals to 0.13, and network size equals to
1,000. In (b), the orange lines represent the detected anonymized links, and the blue lines represent the undetected links.

learning algorithms, MVLRC results in a better performance
thanMVLRR for network structure de-anonymization.More-
over, the experimental results in Fig. 9 under different
parameter settings prove the robustness of our MVLRC
approach. In addition, the results in Fig. 10 illustrate the effec-
tiveness of our MVLRC method for anonymized network
recovery.

F. TIME CONSUMPTION
We explore the average time consumption of the proposed
approaches, RPCA and LRR over 10 runs on two synthetic
networks and three real-world databases, as shown in Fig. 11.
We can observe from the results that multi-view low rank
learning methods MVLRR and MVLRC generally cost more
time than single-view low rank learning methods RPCA and
LRR. However, compared with single-view low rank learning
methods, the multi-view low rank learning methods with
higher computational cost have better performance for link
inference. Moreover, about the multi-view low rank learn-
ing methods, we can see that the running time of MVLRC
is much lower than that of MVLRR, which demonstrates

FIGURE 11. Average running time of network de-anonymization methods
on synthetic networks and real-world databases.

the efficiency of the proposed multi-view network structural
learning procedure.

VI. CONCLUSION AND DISCUSSION
Data publication has become a vital foundation for big data
analysis and applications; however, inappropriate sharing
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and usage of data could threaten users’ privacy. To the
commonly existing multi-view network data, in this study,
we propose the MVLRC algorithm for network structure
de-anonymization. The method models the target network
and auxiliary network together to learn the common struc-
tural patterns, thereby identifying the anonymized link set
of target network. Our empirical results on real-world net-
works show highly promising improvements in accuracy
of anonymized links inference compared with the methods
that only utilize single-view data. Therefore, besides the tar-
get network, the auxiliary networks collected from differ-
ent viewpoints could also be explored to strengthen privacy
inference attacks, which challenges the traditional privacy
protection methods.

Three problems for future research are worthy to be con-
sidered: 1) investigating the performance of network de-
anonymization algorithms in the face of more sophisticated
privacy preserving techniques, 2) exploring the influence of
auxiliary network on de-anonymization accuracy theoreti-
cally, and 3) developing effective anonymization methods for
multi-view network data.
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