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ABSTRACT Object detection in aerial images is vital for autonomous guidance, navigation and control, and
situational awareness. However, there are still many challenges facing researchers in this filed, including
the target scales, the perspectives in taking pictures, and the highly complex background. The present paper
introduces a robust object detector which is optimized for handling with multi-scale objects and the overhead
capturing perspective object instances in aerial images. Firstly, in the feature extraction stage, an effective
multi-scale detector (MSD) is designed to search for objects with different scales in feature maps. After
that, when detecting a small target from a cluttered background, both the shallow and deep layer features
are densely connected by the deconvolution after tackling the issues of low dimensionality in deep layers
and inadequate representation of small objects. In the experiments part, we analyze the impacts of the
above mentioned components on the model and make a comparison between the method at issue and other
state-of-the-art approaches on two publicly-available datasets captured by satellites and high-altitude UAVs.
The results show that the proposed method, which is applicable to a wider range of aerial images, is more
effective and robust.

INDEX TERMS Object detection, aerial images, multi-scale detection, small object relative scale (ORS).

I. INTRODUCTION
As airborne cameras and remote sensing systems keep
developing, it is more and more common for high-resolution
aerial images that are captured by unmanned airborne
vehicles (UAVs) and satellites to provide data for researchers.
As a result, object detection in aerial images becomes an
essential technique in the attempt to automatically obtain
instance-level information [1], [2]. Thosemachine vision sys-
tems and algorithms based on object detection, widely used
in many critical applications such as military reconnaissance
and intelligent transportation, are often applied to collecting
information about the areas surrounding an object. But due
to the inevitable problems of small object sizes, large camera
motions and occlusions, their application in aerial images
remains a challenging task [3], [4]. What’s more, the object
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scales vary greatly in aerial images due to different shooting
heights and viewpoints of the airborne camera, making the
object detection more demanding.

Recently, after deep-learning-based methods are intro-
duced, researches on object detection have seen great
progress [5]–[7]. These technologies and algorithms,
however, generally suffer from poor localization accuracy or
missed detections when applied into aerial images, in that
their network architectures are designed and developed for
general datasets which are different from aerial images,
especially in terms of the object sizes and image fractions
occupied by an object. Besides, aerial images usually include
not only objects of fixed shapes and scales, such as ships,
airplanes and vehicles, but also that of varied shapes and
scales, such as bridges and harbors. Furthermore, aerial
images captured from a top-down view store much less
information than general images captured from the horizon-
tal point of view. One of the major reasons of that is the
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FIGURE 1. The cumulative distribution of the instance target area
proportion of the dataset.

FIGURE 2. Examples from DOTA-v1.5 and general datasets.

remote distance which, even with an imaging equipment
of a high-resolution, inevitably limits the details shown in
aerial images. The resolution with the ground sampling
distance (GSD) of images captured by satellites usually is
lower than 1m. Generally speaking, it is from objects with
large distances rather than sensors that small object cases in
aerial images are derived. Therefore, object detection is more
challenging for aerial images than natural images [8]–[11].

Though very efficient in detecting objects, deep learning
methods are laborious when processing aerial images. COCO
and VOC are general object detection datasets captured in
natural scenes, widely used to evaluate the performance of
object detection models. Most images in these datasets are
shot in the horizontal direction and a close range. The instance
target occupies a large proportion in the image, as shown
in Fig. 2(b) and Fig. 2(c). Different from the COCO and VOC
datasets, DOTA-v1.5 is an aerial image dataset captured by
satellite, as shown in Fig. 2(a). The images in this dataset
are basically shot from an overlook view, and the instances
are relatively small. Therefore, Aerial images are facing
serious challenges regarding to the targeted objects, such as
the small object relative scale (ORS), the low-resolution of
objects and the variations of object scale. The Cumulative
Distribution Functions (CDF) of DOTA-v1.5 and another two
publicly available datasets are displayed in Fig. 1. The curve
of DOTA-v1.5 is close to the top-left corner, and the share
of objects taking up less than 1% of the whole image area is
over 90%.

This paper puts forward a robust object detection method
to process aerial images. The overall architecture of the pro-
posed model is shown in Fig. 3. Firstly, inspired by atten-
tion mechanisms in the human visual system, we designed a
multi-scale detector (MSD) with different convolution kernel
sizes and residual structures. Secondly, we maximized the
mutual information between multi-scale objects and features
by combining the MSD with top-down convolution mecha-
nisms which are specifically designed for feature extraction.
The suggestedmodel is made up of four major parts. In Fig. 3,
the gray blocks in the bottom left corner represent the back-
bone network, such as VGG-16 [12], Resnet-50 [13], and
Darknet-53. These backbone networks contain the traditional
convolution and pooling operation, which are widely used for
the preliminary feature extraction in the typical CNN model.
The second part is a bottom-up pathway utilizing the layer
in the convolutional blocks of the backbone network with
MSD. These blocks get smaller from the bottom-up because
of pooling layers. The blocks with different colors represent
different features of various scales, with the blue blocks
representing MSD. The third part is a top-down pathway.
In this part, feature blocks of the same size in part 2 are lateral
connected and the blocks with the same size are labelled with
the same color. And the last part is the predictor head which
contains the fully connected layers and loss functions used to
predict regression boxes and class scores.

For convenience, a glossary is provided in Table 1 defining
important terms used in this paper.

TABLE 1. Glossary.

II. RELATED WORK
In general, object detection in aerial images is conducted with
a sliding window method which involves some hand-crafted
features and a classifier or a cascade of classifiers [14], [15].
However, there exist shortcomings with this approach. First
of all, those hand-crafted or shallow-learning based features
might exert adverse impacts on the representation ability
and effectiveness of aerial detection. Secondly, the sliding
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FIGURE 3. The overall architecture of proposed model.

window approach may impose a computation burden on
detecting. Those features are so low-level that they are not
distinct enough, therefore earlier methods often meet chal-
lenges imposed by interclass variations. In recent years, deep
learning methods resorting to features obtained by convo-
lutional neural networks (CNN) have greatly increased the
accuracy of detection on benchmark datasets compared with
traditional ones utilizing hand-crafted features for detecting
objects in aerial images [16]–[25]. In addition, the existing
deep-learning basedmethods, as their name suggests, are able
to self-learn features from given data in deep layers, an ability
enabling them to perform better.

CNN-based object-detection methods, for example
Region-based Convolutional Neural Network (R-CNN), Fast
R-CNN and Faster R-CNN [26], often go through two suc-
cessive stages: bounding box proposal and classification.
However, they have two major shortcomings when applied
to aerial images. Firstly, most of these methods consist of
two processes: proposal generation and object classification,
making the detection process too complex to operate in a
high speed. Secondly, in the detecting process, they utilize
axis-aligned bounding boxes which include both objects
and backgrounds, making it more difficult to detect in an
accurate manner [27]. Ref. [28] makes an elaboration on
the potential and limitations of Faster R-CNN when it is
used for tracking medium-sized objects in cases of pedestrian
detection. Those methods of one stage, such as You Only
Look Once (YOLO) [29], Single Shot Multi-Box Detector
(SSD) [30] and Retinanet [31], carry out the bounding box
and classification processes simultaneously [32]. These two
kinds of methods, however, have some differences in their
performance regarding to the computing speed and detec-
tion accuracy, factors that can also be influenced by the
type of CNN backbone employed, such as Googlenet [33],
VGGNet [12], Resnet [13], Darknet-53 [29] or Densenet [34].

Objects captured by aerial images, with low signal-noise
ratio (SNR), provide only limited visual information for
researchers, making the targeted objects difficult to be

distinguished from the cluttered backgrounds. In addition,
the aerial images collected by satellites or UAVs are consider-
ably different. In ref. [18], [20], [21], [27], researchers show
the optimized structure and detection performance of Faster
R-CNN, Oriented SSD, feature pyramid networks (FPN) and
FCN with feature fusion for aerial images captured by satel-
lites. These network architectures are explored and optimized
for satellite datasets which increased computational costs.
In the image datasets captured by UAVs [1], [4], [19], [22],
objects are typically centered and occupy a fixed fraction in
the pictures. These network structures are generally different
from above methods in that they are able to reach an area
of interest flexibly and take pictures with various levels of
details. Liu and Ding propose a modified image representa-
tion model, a vector of locally aggregated descriptors based
on local steering kernel (LSK+VLAD) for detecting vehi-
cles in aerial images collected by satellites and UAVs [35].
However, this model still does not live up to expectations
when targeted vehicles are partially occluded or are similar
to other objects in the backgrounds in shape.

The remaining of the paper is organized as follows:
Section 3 describes the main algorithms used, including
MSD bottleneck structure, Multi-scale feature fusion, and
loss function. Section 4 gives the experiment results. The last
section makes a conclusion and recommendations for future
research work.

III. MATERIALS AND METHODS
A. MULTI-SCALE DETECTOR
Traditional convolutional neural network architectures for
object detection are explored and optimized for particular
datasets [36], [37], resulting in poor localization accuracy or
missed detections in aerial images. In general, Max Pooling
and Spatial Pyramid Pooling are used to solve the multi-scale
problem in bottom-up feature extraction. Many objects with
small scales are missed out during the Max Pooling process.
Since the convolution kernel size is relatively simple in
the traditional backbone, such as VGG-16, Resnet-50, and
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FIGURE 4. False detections caused by single convolution kernel size.

FIGURE 5. Comparison between the Residual block and the proposed
MSD structure.

Darknet-53, instance features in feature maps are hard to
extract completely. As a result, the problems of poor localiza-
tion and false detections are easily to come up, as illustrated
in Fig. 4.

The residual block displayed in Fig. 5 (a) is a typical
bottleneck structure which is usually employed in CNNs
backbone [13]. The residual block usually uses a 3 × 3
convolution layer to extract features and two 1×1 convolution
layers with shortcut connections. Shortcut connections are
those skipping one or more layers. This design can effectively
solve the problem of gradient disappearance in the deep
convolutional neural network. Instead of using a 3 × 3 con-
volution layer to extract features as practiced in the residual
block, we look for other architectures which have a stronger
multi-scale feature extraction ability while also keeping a
good computational load. To be specific, we add a group of
5 × 5 filters and a group of 1 × 1 filters in the block and
connect them in a hierarchical residual-like manner, as shown
in Fig.5 (b). Here, 1× 1 filters are used mainly as dimension
reduction modules to remove computational bottlenecks that
would otherwise limit the size of our networks. This allows
for not just increasing the depth, but also the width of our
networks without significant performance penalty. MSD is
an architecture combining all of the layers while connecting

all the output filter banks together into a single output vec-
tor which constitutes the input of the next stage. Since our
proposed bottleneck structure employs different scales of
convolution filters to extract features, themulti-scale problem
in aerial images can be effectively solved.

The main idea behind the MSD structure is to seek an opti-
mal local sparse structure in a convolution neural network,
so as to effectively extract and cover instances that are of mul-
tiple scales and densely packed. We propose a layer-by-layer
model in which the correlation components of the layer input
shall be analyzed firstly and then split into units of a high
correlation. It is assumed that every such unit matches certain
region of the input image, and these units will be grouped into
1× 1 filter, 3× 3 filter, and 5× 5 filter banks. It means that
in lower layers, the units that are correlated with each other
will congregate in local regions and be covered by a layer
of 1 × 1 convolutions. However, in deep layers, the number
of more spatially spread out clusters covered by convolutions
over larger patches will be smaller, and the number of patches
over larger regions will also be decreased. The 5× 5 filter in
MSD can be combined with the 3×3 filter to extract features
from some difficult samples, such as small and overlapped
instances. This convolution combination covers multi-scale
objects effectively, and reduces potential false detection and
poor localization in Figure 4. As shown in Fig. 3, MSD
is dispersed in different sizes of convolution groups in the
bottom-up pathway, rather than simply repeated as a complex
backbone in space. Furthermore, this decision is more based
on simple computation rather than necessity. It also denotes
that the proposed model is a combination of all layers with
the output filter banks gathered within a single output vector
which forms the next input. Fig. 6 shows multi-scale objects
in aerial images.

B. MULTI-SCALE FEATURE FUSION
Feature pyramids composed of multi-scale features are the
recognition systems’ basic element to detect objects of mul-
tiple scales. Lin et al. [42] put forward a feature pyramid
network, an in-network feature hierarchy that draws feature
maps of different spatial resolutions but leads to huge seman-
tic gaps under the influence of various depths. However,
these high-resolution maps, showing low-level features, can
have an adverse impact on their representational capacity
when performing the detection task. To solve this problem,
we make use of a model that is characterized by low-
resolution, semantically strong features with high-resolution,
semantically weak features via a top-down pathway and
lateral connections. This architecture has a similar result with
that of FPN, but the process of up-sampling is done in differ-
ent ways with a soft-dense connection that is rich in semantics
at all levels, and that is built quickly from a single input image
scale. Dense connection is a feed-forward connection fashion
which connects one layer to all other layers [34]. Traditional
dense connections map each layer to the inputs of subsequent
layers. In order to transfer the multi-scale features in the
bottom-up pathway, we used a kind of soft-dense connection
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FIGURE 6. Multi-scale objects in aerial image.

FIGURE 7. Feature fusion by MSD with soft-dense connection.

strategy whose calculation cost is relatively small. The prin-
ciple advantage is that the multi-scale feature representation
it produces is semantically strong at all levels, including the
high-resolution levels.

Fig. 7 shows how the feature fusion works. Since this con-
volution parameter setting first proposed in darknet-53 can
effectively keep the size of feature maps unchanged, we adopt
the same convolution parameter setting in the proposed
backbone network in this paper. The parameter setting of con-
volution in Darknet-53 can keep the feature size unchanged
after convolution. It computes a feature hierarchy which
contains multiple scales of feature maps with a scaling step
of 2. There are often a large number of layers that create
same-sized output maps in the same network stage. The
output of the last MSD layer in each stage is chosen as a stage
output of feature maps which is also called the reference set
of feature maps.

The top-down pathway come into higher resolution and
semantically stronger features by up-sampling from higher
pyramid levels. The traditional up sampling method usually
leads to the discontinuity between pixels. Bilinear interpo-
lation can keep the continuity between adjacent pixels and
avoid the gradient decrease caused by resolution decrease.

The calculation of bilinear interpolation is defined as follows:

P =
P1 − P2
y1 − y0

× v+ P1 (1)

where P is the pixel value of the interpolation point. P1 and
P2 are coordinates of the interpolation points in x direction,
and they are defined as follows:

P1 =
f (x1, y0)− f (x0, y0)

x1 − x0
× u+ f (x0, y0) (2)

P2 =
f (x1, y1)− f (x0, y1)

x1 − x0
× u+ f (x0, y1) (3)

where the coordinate of P is (i+ u, j+ v), with i, j belonging
to the integer part and u, v to the decimal part. f (x0, y0) and
f (x1, y1) are pixel values of P in the upper left and lower
right, respectively. Then, a top-down model with lateral con-
nections is constructed to build high-level semantic feature
maps at all scales. These features are enhanced by that from
the bottom-up pathway via lateral connections, each of which
merges the feature maps with the same spatial size from
the bottom-up pathway and that from the top-down pathway
together.

C. LOSS FUNCTION
The joint loss function is commonly used in one-stage
object detection neural networks. It is the simple addition
of differences, including coordinate errors, confidence errors,
and classification errors. The loss function is represented as
follows:

Loss =
S2∑
i=0

coordErr + confErr + clsErr (4)

where S2 is the number of grids. Coordinate errors consist of
central coordinate errors and width-height coordinate errors.
The coordinate errors are defined as follows:

coordErr = coordErrcentral + coordErrWH (5)
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where the central coordinate errors and width-height coordi-
nate errors are defined as follows:

coordErrcentral =
S2∑
i=0

B∑
j=0

Iobjij

[(
xi − x̂i

)2
+
(
yi − ŷi

)2] (6)

coordErrWH =
S2∑
i=0

B∑
j=0

Iobjij

×

[(
√
wi −

√
ŵi
)2
+

(√
hi −

√
ĥi

)2
]
(7)

where B represents the number of anchor boxes calculated
by K-means in each cell; (x, y) is the center coordinates of
each cell;w, h are the width and height of the prediction
box; Iobjij tells whether there is a pedestrian object in the jth
prediction frame of the ith cell: if a true target exists, the value
is 1, otherwise the value is 0. The confidence errors can be
expressed by:

confErr = −
S2∑
i=0

B∑
j=0

[
Iobjij +

λnoobjI
noobj
ij

]

×

 Ĉ j
i log

(
C j
i

)
+(

1− Ĉ j
i

)
log

(
1− C j

i

) (8)

where λnoobj is the weight of the classification loss function,
and it equals to 0.5. The classification error can be expressed
by:

clsErr =
S2∑
i=0

Iobjij

∑
c∈classes

 P̂ji log (Pji)+(
1− P̂ji

)
log

(
1− Pji

) (9)

Among which C j
i is used for category determination, C j

i = 1
is equivalent to classification correctness, otherwise, it is
equal to 0, and Pji is the confidence degree. The confidence
error and classification error are calculated by cross-entropy
function, and

(
x̂, ŷ, ŵ, ĥ, Ĉ, P̂

)
is the corresponding pre-

dicted value as demonstrated in equations (5), (7), (8) and (9).

IV. EXPERIMENTS
A. DATASETS AND EVALUATION METRICS
The publicly available DOTA-v1.5 [38] and VisDrone2019
[39] datasets captured by satellites and high-altitude UAVs
are utilized in the following experiments. The DOTA-v1.5
dataset is captured by satellites. The size of each image in
the dataset is about 4, 000 × 4, 000 pixels and there are
many kinds of objects with various scales, orientations, and
shapes in sample images. These DOTA images, annotated
by aerial image interpretation experts, are classified into
16 categories by the type of objects. This completely anno-
tated DOTA dataset consists of 188,282 instances, with all
of which labeled by an oriented bounding box rather than an
axis-aligned one, a common practice to annotate objects in

FIGURE 8. PRC of different methods.

FIGURE 9. mAP value of different methods.

natural scenes. The VisDrone2019 benchmark dataset con-
sists of 10, 209 static images that are formed by 2.6 million
bounding boxes of targets and that are captured by many
drone-mounted cameras with various locations, environ-
ments, objects, and density. In this dataset, 6,471 images are
used for training, 548 for validation and 3,190 for testing,
with the size of each image being about 2, 000×1.500 pixels.
Though captured at different locations, these images from the
above three subsets share similar environments and attributes.

We made a quantitative evaluation of the performance
of our method with four commonly used methods: average
recall (AR), precision-recall curve (PRC), mean average
precision (mAP), and F1-Score.

mAP is the average of the average precision (AP) of each
class. AP metric is determined by the area under PRC [40].
The average recall (AR) metric is used to evaluate the perfor-
mance of each approach [41]. The higher the value of mAP
and AR, the better the performance. In addition, F1-Score can
be defined as follows:

F1 =
2× Recall × Precision
Recall + Precision

(10)
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FIGURE 10. The detection results of DOTA-v1.5 dataset.

where recall and precision are calculated by:

Recall =
TruePositive

TruePositive+ False Negative
(11)

Precision =
TruePositive

TruePositive+ False Positive
(12)

F1-Score is a comprehensive evaluation index and larger
values of F1-Score indicate better performance of the model.
In remote sensing image classification tasks, Recall and
Precision are often referred to as Producer’s accuracy (PA)
and User accuracy (UA). In order to compare with the

traditional object detection model, we used recall and
precision to replace UA and PA for calculation.

In our experiments, the detections with an IOU value
greater than 0.5 are defined as true, otherwise, false. We con-
ducted all of the experiments on a desktop computer which
is equipped with an Intel Xeon E5-2620 v3 CPU (6 Core,
2.4 GHz), 32 GB memory, an Nvidia GeForce GTX Titan X
12GB GPU and Ubuntu 16.04 OS.

B. DOTA-V1.5 RESULTS
The proposed method is compared with three popular
proposal-generation algorithms and three optimized methods
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TABLE 2. Statistical information of datasets.

TABLE 3. Comparison between different methods on DOTA-v1.5.

TABLE 4. Comparison between different methods on Visdrone2019.

in our experimental environment to illustrate how it performs
better. The performance of our proposed methods are eval-
uated with the recall metric which equals to the ratio of
the number of bounding boxes above a certain IOU over-
lap threshold to the entire number of ground-truth bounding
boxes. Considering the comprehensive performance, the IOU
threshold of the PRC is set to 0.5 in following experiments.

The plots of PRC and mAP are demonstrated in Fig. 8 and
Fig. 9 respectively. The experiment is repeatedly conducted
on the DOTA-v1.5 dataset, and the results represent the value
of recall and precision. As for the three popular algorithms,
it is evident that FPN performs better than SSD300 and
Faster R-CNN. This is mainly because the feature Pyra-
mid [42] employed by FPN is more suitable to detect small
targets. Unlike general detection, the recalls obtained from
SSD300 were unexpectedly low, because strategies of the
original SSD, used for detection and processed without
fully connected (FC) layers, probably became ineffective for
detecting small objects. At the same time, Faster R-CNN,
similar to common two-stage detections, utilized the last

FIGURE 11. PRC of different methods under VisDrone2019 dataset.

FIGURE 12. mAP values in different methods under two datasets.

feature map of the backbone model as an input to the RPN
and applied the axis-aligned bounding boxes to the detection
process. The fact that axis-aligned boxes generally capture
not only targeted objects but also backgrounds has increased
the difficulty of an accurate detection.

Meanwhile, our method was compared with the other three
optimized algorithms. As can be seen from Fig. 8 and Fig. 9,
contrary to the typical SSD, the mAP of Oriented-SSD is
greatly improved. Oriented-SSD offsets are predicted for
each default box to better match the object shape, and its
accuracy is equivalent to that of LSK+VLAD. Because of
its strong feature extraction and fusion ability, FCN(feature
fusion) has the highest detection accuracy among the three
optimizedmethods. In addition, our method is also performed
in another variant without the MSD bottleneck structure.
As shown in Fig. 8 and Fig. 9, the test accuracy of our method
is higher than that of any other algorithms, because the pro-
posed framework utilizes many kinds of scales convolution
filters to extract features with MSD and fusion of feature
mapping from different stages for small target detection.
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FIGURE 13. The detection results of VisDrone2019 dataset.

Table 3 makes comparisons between AR, mAP, and F1 for
several algorithms, showing that the suggested method out-
performs others, including classic detection methods as well
as the state-of-the-art ones. Compared with the highest accu-
racy of other methods, the proposed method can improve
the performance of mAP for DOTA-v1.5 by 19.79%, and
the accuracy of the proposed method with MSD structure
is 13.56% higher than that without MSD structure.
Furthermore, F1-Score is also improved correspondingly.
Our method has the highest AR value of 64.34%. A high
value for AR indicates that our method can effectively reduce

false detections. Results of the detection executed on the
DOTA-v1.5 dataset are shown in Fig. 10. The dense instances
such as the blue box are displayed in Fig. 10(j, k, and l). Most
of objects occupying less than 1% of the total image area are
the main reason for the low overall accuracy.

C. VISDRONE2019 RESULTS
The test-set of VisDrone2019 provides only aerial images
captured by high-altitude UAVs which are considerably dif-
ferent from that by satellites, particularly in object sizes and
the image fraction occupied by an object. In order to test
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the robustness of the proposed method which has already
been adopted on the DOTA dataset, we employ it on the
VisDrone2019 dataset within the same environment intro-
duced above. Fig. 11 and Table 4 display the performances of
PRCs, AR, mAP and F1. Contrary to others, our method has
achieved satisfactory results and developed the generalization
ability. As displayed in Fig. 8 and Fig. 11, the recall value
of Oriented-SSD decreases significantly compared with the
two PRC curves, which is due to the fact that VisDrone2019
includes more complex image scenes, such as those in the
early morning and the late night, those under a high exposure,
those affected by the motion blur, and those from different
angles. The experiment shows that the multi-scale feature
of the target in the regression box or candidate box is very
important. LSK+VLDA and FPN obtain a high recall value
by extracting pyramid features in the CNN stage and carrying
out some feature fusion. Compared with LSK+VLDA, our
method improves the mAP by 6.24%. In addition, the pro-
posed method obtains the highest F1-Score and can improve
its performance for VisDrone2019 by 13.92%. Based on the
feature pyramid, uses MSD to extract multi-scale features at
different stages and employs a soft-dense connection to fuse
the extracted multi-scale features. Our approach achieves the
best performance while keeping a similar computational load.

To prove the robustness of our method, Fig. 12 shows the
stacked histogram of mAP values got from different methods
executed on the two datasets. The orange part represents the
mAP value calculated on the VisDrone2019 dataset and the
blue part on DOTA-v1.5. The robustness of different methods
on different datasets are compared in this figure. It can be
noticed that some methods, such as Oriented- SSD and Faster
R-CNN, perform well on one of the two datasets, but poor on
the other, because they are explored and optimized only for
certain datasets. But our method shows a strong robustness
and a great generalization ability on both datasets. Detection
results on the VisDrone2019 dataset are shown in Fig. 13.

V. CONCLUSION AND FUTURE RESEARCH WORK
This paper firstly analyzes the disadvantages of existing
object detection methods in aerial images. In order to over-
come these shortages caused by multi-scale targets especially
small instances, a robust object detector based on the deep
neural network is proposed. The main contributions are as
follows:

(1) In the feature extraction stage, a multi-scale detector
(MSD) embedded in the deep neural network framework at
the bottom-up pathway is explored to search for instances
with multiple scales.

(2) A soft dense connection is proposed in the top-down
pathway of the network. The multi-scale feature information
extracted from MSD is transferred to all subsequent layers
through a small number of links

To demonstrate the effectiveness of our proposed method,
AR, PRC, Map and F1-Score are used to evaluate and
compare the performances of the above-mentioned meth-
ods, and extensive experiments are also conducted on two

publicly-available datasets: DOTA-v1.5 and VisDrone2019.
The experimental results demonstrate that, the proposed
method can improve the performance of mAP for DOTA-v1.5
and VisDrone2019 by 19.79% and 6.24% respectively.
In addition, by evaluating the other seven typical and state-
of-the-art methods with F1-Score metrics, the proposed
method can improve the performance for DOTA-v1.5 and
VisDrone2019 by 8.81% and 13.92% respectively.

Despite the superior performance, our method has some
limitations. One of the limitations is hard example detection.
In addition, MSD is a bit time-consuming in the inference
stage even we reduce the dimension for feature input. For
the future work, we will focus on the further optimiza-
tion of MSD and built a finer architecture for feature maps
extraction.
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