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ABSTRACT Accumulating studies have indicated that essential proteins play critical roles in numerous
biological processes. With the rapid development of high-throughput technologies, a large number of Protein-
Protein Interaction (PPI) data have been found in Saccharomyces cerevisiae, which facilitate the formation
of PPI networks. Up to now, a series of computational methods for predicting essential proteins from
PPI networks have been proposed successively. However, the prediction accuracy of these computational
methods is still not quite satisfactory. In this paper, a novel prediction method called CVIM is proposed
to infer potential essential proteins. In CVIM, original PPI networks will be first transferred into weighted
PPI networks by implementing PCC (Pearson Correlation Coefficient) on protein gene expression data.
And then, based on weighted PPI networks and information of orthologous proteins, some critical network
topological features and protein functional features will be extracted for each protein in the weighted PPI
network. Finally, based on these newly extracted topological and functional features of proteins, an iterative
algorithm will be designed to predict essential proteins. In order to evaluate the identification performance
of CVIM, we have compared CVIM with 13 kinds of state-of-the-art prediction methods. Experimental
results show that CVIM can achieve prediction accuracies of 92%, 80% and 71% out of the top 1%, 5%
and 10% candidate proteins separately, which significantly outperform the prediction accuracies achieved
by those state-of-the-art prediction methods. We have demonstrated that the prediction accuracy of essential
proteins can be effectively improved by integrating the functional and network topological characteristics of
proteins, which means that the novel method CVIM may be an excellent addition to the protein researches
in the future.

INDEX TERMS Characteristic vector, orthologous proteins, essential proteins, weighted protein-protein
interaction network, iteration method.

I. INTRODUCTION

More and more evidences have shown that essential proteins
are critical to the development and survival of organisms,
and absence of these proteins will lead to loss of biologi-
cal functions of protein complexes and death of organisms.
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Prediction of essential proteins plays a crucial role in research
of bioinformatics, which is not only of great significance to
the study of life sciences, but also of great application value
in drug design and treatment of diseases. In recent years,
a number of computational methods for essential protein
prediction have been proposed successively. However, the
identification accuracy of essential proteins is still not quite
high. Hence, it is an important and challenging task to design
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efficient prediction methods to identify potential essential
proteins [1]-[3].

Up to now, existing prediction methods for essential
protein can be roughly divided into two major categories.
Methods of the first category mainly rely on the topological
features of PPI networks. For instance, Li M et al. proposed a
topology potential based calculative method to infer essential
proteins from PPI Networks [4], and a calculative method
called LAC (Local Average Connectivity-based) to infer
essential proteins through evaluating the relationship between
proteins and their neighborhoods [5] separately. Xu, Bin and
Guan, Jihong et al developed a model to detect key proteins
by weighting random walks on protein-protein interaction
networks [6]. Y. Jiang and y. Wang et al. established a method
for the identification of key proteins based on the prediction
of key protein-protein interactions based on comprehensive
edge weights [7]. Especially, based on the centrality-lethality
rule proposed by Jeong et al. [9], researchers have developed
various centrality-based methods, such as DC (Degree Cen-
trality) [10], SC (Subgraph Centrality) [11], BC (Between-
ness Centrality) [12], EC (Eigenvector Centrality) [13], IC
(Information Centrality) [14], CC (Closeness Centrality) [15]
and NC (Neighbor Centrality) [16]. These methods identify
important proteins based on the topology of the PPI network,
such as the number of protein connections, the number of
common neighbors, and so on. Although methods of the first
category have made great progress compared to traditional
bio-experiments, however, due to the incomplete PPI data,
which are obtained through biological experiments and often
contain noise such as false positive data and false negative
data, the first category of methods cannot achieve satisfac-
tory identification accuracy of essential proteins on most
occasions.

Hence, different from methods of the first category, the sec-
ond method is to combine the topology of PPI network
with biological information (gene expression data, subcellu-
lar location data, orthology data, gene ontology) to construct
a prediction model and improve the prediction accuracy. For
example, Chen Lei et al. used the rich gene ontology and
KEGG pathway to predict and analyze essential genes [8].
Zhao and Wang designed an iteration method called RWHN
for identifying yeast essential proteins from heterogeneous
network by combining PPI networks with protein domains,
the subcellular localization information and orthologous
information [1]. M Li et al. proposed a prediction method
called PEC to identify essential proteins by combining PPI
network topology and gene expression [17]. Zhang et al.
developed a computational method called CoEWC through
combining the characteristics of PPI network topology and
protein co-expression characteristics based on gene expres-
sion profiles [18]. Seketoulie Keretsu et al. proposed a calcu-
lative method based on the weight of the edge between two
interacting proteins to identify protein complexes, in which,
the weight was defined by the edge clustering coefficient
and the gene expression correlation between the interacting
proteins [19]. Bingjing Cai et al. presented a biased random

VOLUME 8, 2020

walk based method to identify protein complexes by integrat-
ing Tandem Affinity Purification/Mass Spectrometry Data
with PPI networks [20]. Jiawei L et al. put forward a com-
putational method for detecting essential proteins by inte-
grating local interaction density and protein complexes [21].
B.H. Zhao et al. adopted the gene expression data and net-
work topology attributes to construct a reliable weighted
network, based on which, a novel computational method
called POEM was further designed to forecast essen-
tial protein based on overlapping essential modules [22].
Yijia Zhang et al. constructed a dynamic PPI network by
integrating dynamic active information into high-throughput
PPI data, based on which, a novel method for predict-
ing protein complexes from the dynamic PPI networks is
proposed based on core-attachment structural feature [23].
Ma CY et al. presented a novel algorithm called NEOCom-
plex to infer protein complexes by integrating functional
orthology information obtained from different types of mul-
tiple network alignment approaches with PPI networks [24].
Lei X et al. proposed a method called IFPA for protein
complex detection in multi-relation reconstructed dynamic
protein networks by adopting the flower pollination mech-
anism [25]. Peng W et al. put forward an iterative method
called ION to reveal essential proteins through integrating
homologous information and PPI networks [26]. Luo J ef al.
designed a new algorithm to discover essential proteins by
combining protein complex co-expression information with
edge clustering coefficient [27]. Xu B et al. developed a
machine learning based method to identify protein complex
through integrating protein-protein interaction evidence from
6 different sources [28], and a calculative method called
GANE to predict protein complexes based on go attributed
network embedding [29] separately. Lei X et al. proposed a
computational method called NABCAM to discover protein
complexes from dynamic PPI networks [30]. Ou-Yang L et al.
presented a multi-network clustering method to infer pro-
tein complexes from multiple heterogeneous networks [31].
Srihari S et al. proposed a refinement of MCL by incorpo-
rating core-attachment structure to predict yeast complexes
from weighted PPI networks [32].

In different to the first category central approach, to reduce
the negative impact of incomplete protein interaction data and
inherent PPI network topological characteristics on essen-
tial protein prediction, we combined multi-source biologi-
cal data: gene expression, direct homologous information.
Although gene expression is mentioned in the second cat-
egory method above, most methods simply combine gene
expression with network topological data, but ignore the
essential differences in the meanings of biological data and
network topological data. For example, in Pec, PCC x ECC
is used directly to get the final result. Therefore, this paper
proposes a new iterative method, called CVIM. The method
detects essential proteins by combining protein function and
network topology. In CVIM, considering the current incom-
plete PPI data set, we first used PCC (Pearson correlation
coefficient) [33] for protein gene expression data to convert
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the original PPI network into a weighted PPI network. Then,
based on the weighted PPI network and the information
of the direct homologous proteins, we will further extract
some key network topological characteristics and protein
functional characteristics of each protein in the weighted PPI
network. Generate new protein interaction matrix (network)
from network topological data. Finally, based on these newly
acquired protein interaction networks and functional proper-
ties, we will construct an iterative method called CVIM to
predict the required protein. In order to estimate the iden-
tification performance of CVIM, intensive experiments will
be implemented. Experimental results show that CVIM can
achieve the prediction accuracies of 92%, 80% and 71% in the
top 1%, 5% and 10% proteins respectively, which are much
better than that achieved by 13 state-of-the-art competitive
methods including DC [10], SC [11], BC [12], EC [13],
IC [14], CC [15], NC [16], LAC [5], RWHN [1], PEC [17],
CoEWC [18], POEM [22] and ION [26].

Original PPI Protein gene
Network expression data

I_,,fQ ¢_1

Weighted PPI
Network

Orthologous
Protein data

Topalogical
features of
proteins

Functional features
of proteins

Iterative algorithm

T
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Y

FIGURE 1. Procedure of CVIM.

Il. METHOD
As illustrated in Fig.1, the procedure of CVIM consists of the
following three major steps:

Step1: First, we adopt PPC on gene expression data to
establish weights between protein nodes in the original PPI
network, and then the original PPI network will be transferred
into a weighted PPI network.

Step2: Next, based on the weighted PPI network and
information of orthologous proteins, some critical network
topological features and protein functional features will be
extracted for each protein in the weighted PPI network
separately.

Step3: Finally, based on the topological and functional
features of proteins, a novel iteration method called CVIM
will be designed to identify essential proteins by using an
iterative algorithm.

A. CONSTRUCTION OF THE WEIGHTED PPI NETWORK
Let G = (V, E) denote an original PPI network constructed
by the dataset of known PPIs downloaded from a public
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database D. Here, V. = {p1, p2,..., pn} represents the set
of different proteins in D, and E represents the set of edges
between proteins in V. Additionally, for a pair of proteins p
and g in V, there is an edge e(p, ¢) between them, if and only
if there is a known interaction between p and ¢ in D. Based on
the original PPI network G, it is clear that we can obtain an
adjacency matrix A = (a,-j) N XN where there is a;; = 1, if and
only if there is an edge e(p;, p;) between p; and p;, otherwise
there is a;; = 0.

PCC measures the linear correlation between two vectors.
Gene expression is the process of using gene information to
synthesize functional gene products. These gene products are
usually proteins. We believe that the gene expression of key
proteins at different times may have similar performance, that
is, the gene expression vectors of the two key proteins may
have a large linear correlation. Moreover Horyuer al. [33]
found that the Pearson correlation coefficient is more suit-
able as a similarity measures for gene expression profiles.
Therefore, we use PCC as the measurement factor of the
new method calculated the co-expression intensity of the two
genes, and transformed the two original PPI networks into
two weighted PPI networks, as follows:

For a given protein p, its gene expression at different
times can be expressed by a vector: Exp(p) = {Exp(p,l),
Exp(p,2),..., Exp(p, n)}, where Exp(p, i) is the expression
level of the protein p at the ith time. Evidently, based on the
Pearson Correlation Coefficient, in an original PPI network,
the weight between two proteins p and g can be calculated as
follows:

PCC (p, q)
1 n Exp (p, i) — Exp(p)
n—1 Zi=1 ( a(p) )

y Exp (q, 1) — Exp(q)
o(q)

weight (p, q)

ey

Here, Exp(p) denotes the average expression of protein p
at all times, o (p) is the standard variance of expression for
protein p at all times. If PCC(p, g) has a positive value, then
it means a positive correlation between these two proteins p
and g, otherwise, if PCC(p, g) has a negative value, then it
means a negative correlation between these two proteins p
and q.

Evidently, based on above formula (1), an original PPI
network can be transferred into a weighted PPI networks
easily.

B. EXTRACTION OF TOPOLOGICAL AND FUNCTIONAL
FEATURES FOR PROTEINS

For a given protein p in an original PPI network G = (V, E),
let NG(p) denote the set of neighboring nodes that have
known interactions with p in G, then there is

NG (p) =1{q|3e (p.q) € E.q €V} @
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Through the analysis of the network structure formed by
protein interactions, a lot of research has been conducted on
the identification of key proteins, and some good results have
been achieved, such as the LAC [4] method. In the studies
of Hart et al. [43] and Dezso et al. [44], it was found that in
many cases, the necessities are not the functional products of
individual proteins, but the products of complex functions.
Considering that triangles have the most stable properties
in the geometric structure, the triangle structure of the PPI
network to happen to be a local measurement feature that
determines the protein necessity according to the modular
nature of the protein necessity. Therefore, the number of trian-
gles formed by the connections between proteins constitutes
a feature of our algorithm. In this section, according to the
weighted PPI network newly constructed above, we will first
calculate the number of triangles for each protein p in PPI
network G = (V, E) as follows:

. ING (p) "N NG (@)|+1; if weight (p,q)>0
Tris (p, q) = )
1; otherwise
3
Tris(p) = quNG(p) Tris(p, q) 4
Here, ING(p) N NG(q)| denotes the number of elements in
the set of NG(p) N NG(q).

Based on above formula (3) and (4), we can extract the first
network topological feature 7F; for the protein p as follows:

) Tris(p)
TF 1(p) = avgTris(p) = (&)
ING(p)|
Here, [ING(p)| denotes the number of elements in the set of

NG(p).

Next, in the study of Li ef al. [17], it was mentioned that
key proteins tended to form tightly connected clusters. The
neighbors of key proteins are also in a closely related cluster.
Based on this view, we believe that if protein p is an essential
protein, then its neighbor may also be an essential protein, for
each protein p, we will extract another network topological
feature TF, for it as follows:

NGTris(p)
NG.(p)

where NG,(p) denotes the number of edges of all nodes in
NG(p), and NGryis(p) means the number of triangles of all
nodes in NG(p), which can be calculated according to the
following formulas:

NG, (p) = Z
NGryis (p) = Z

Moreover, in the study of Peng et al. [26], the key pro-
teins proved to be relatively conservative. By studying 99
reference organisms from Homo sapiens to modern humans.
Whether each protein has homology, get the homology score
of each protein, which indicates the degree of conservation of
each protein. For each protein p in an original PPI network

TF,(p) = avgTris(p) = (6)

o NC@) @

oy | TFES@) ®)
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G = (V, E), supposing that its orthologous score is I(p),
then, we can extract its first functional feature FF;(p) from
the information of orthologous proteins as follows:

1(p)

FFi(p) = m 9
qeV

Finally, based on the weighted PPI network, for each pro-
tein p, we can further extract its another functional feature
FF>(p) as follows:

FF2 () = (), weishi(p. )/ ING()| - (10)

where Y nGy, Weight(p, q) represents the sum of the
co-expression degree of protein p and all its neighbor nodes,
and the ratio of ) 4ENG(p) weight(p, gq) to the number of
neighbor nodes represents the average level of co-expression
degree of protein p in the whole PPI network.

C. CONSTRUCTION OF CVIM

Based on above descriptions, let {TFji, TFi, ..., TFiy}
denote all these topological features (such as TF; and TF>)
extracted for the protein p; from the PPI network, then it is
obvious that we can obtain a N x M dimensional character-
istic matrix TF for all these N different proteins in the PPI
network as follows:

TF11 TF1im
TF=| : (11)
TFn1 TFNm

After normalizing above matrix TF, we can obtain a trans-
formation matrix B as follows:

B = [bily xar- WithbijoFij/ZkN_lTij (12)

Based on above formula (12), for the jth network topolog-
ical feature of proteins, we can obtain its entropy €;, which
represents the stability of the jth feature, as follows:

N
¢ =~ . bylnb;/InN (13)

Based on above formula (13), for the jth network topo-
logical feature of proteins, we can calculate its weight in
all M different network topological features according to the
following formula (14):

wi = (1 —ej)/zzl (1—e;) (14)

Thereafter, based on above formula (14), for a given pro-
tein p;, we can calculate its score of network topological
features as follows:

M
TFscore(i) = Zjﬂ w; TF; (15)

Based on above formula (15), for all these N proteins in
the PPI network, we can construct a protein interaction matrix
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TABLE 1. A rough introduction to other algorithms.

algorithm Network topology Biological information
DC[10] Degree Centrality No
SC[11] Subgraph Centrality No
BC[12] Betweenness Centrality No
EC[13] Eigenvector Centrality No
1C[14] Information Centrality No
CC[15] Closeness Centrality No
NC[16] Neighbor Centrality No
LACIS] Degree Centrality, Common neighbor node No
PEC[17] Edge clustering coefficient Gene expression data
CoEWC(C[18] Clustering coefficient, Gene expression data
ION[26] Edge clustering coefficient Orthologous data
POEM][22] Degree Centrality, Subgraph, Edge clustering | Gene expression data

coefficient, Closeness Centrality

RWHN[1] Degree Centrality, protein- domain Orthologous data, subcellular localization

H = [hyj]y .y as follows:

TFscore(i
E (i) : ifi=j
. Y k1 TFscore (k)
0=\ ' /
TF. TF
min{TFscore (i) , TFscore (I)}; Otherwise

SV, TFscore (k)
(16)

Based on above formula (9) and formula (10), for a given
protein p;, we define its total score of protein functional
features as follows:

FFscore(i) = (FF1(p;) + FF2(p;))/2 )

For all N proteins {p1, p2,...,pn} in the weighted PPI
network, then we can obtain their initial scores as follows:

T(0) = (FFscore(1), FFscore(2), ..., FFscore(N))

(18)

Finally, we adopt formula (19) to compute all the proteins’
criticality score iteratively

T¢+1)=axHx*xT(t)+(1—a)=*T(0) (19)

Here, the parameter «(0 < « < 1) is utilized to adjust the
proportion of initial score T(0) and last iteration score T(t).
Thereafter, based on above descriptions, we can present our
CVIM algorithm as follows:

IIl. EXPERIMENTAL RESULTS

A. EXPERIMENTAL DATA

In order to evaluate the performance of CVIM, we will com-
pare it with 13 representative methods in Table 1 based on
the datasets downloaded from two databases DIP [34] and
GAVIN [35] separately. During experimental, after filtering
out self-interactions and repeated interactions, we finally
obtained 5093 different proteins and 24743 interactions
including 1167 essential proteins from the DIP database,
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Algorithm CVIM
Input: Original PPI network G = (V, E), orthologous and
gene expression data, the parameters ¢ and K
Output: Top K percent of proteins sorted by the vector T
in descending order
Stepl: Generate the weighted network according to for-
mula (1);
Step2: For each protein p, extract its network topological
features TF and TF; from the novel weighted PPI network
according to formulas (5) and (6) separately;
Step3: For each protein p, extract its functional features
FF 1 and FF; from the novel weighted PPI network, orthol-
ogous data and gene expression data according to formu-
las (9) and (10) respectively;
Step4: Obtain the protein interaction matrix H according
to formula (16);
Step5: Let ¢+ = 0, Compute 7(¢) according to (18);
Step6: Let t = ¢ + 1; Compute T(;) according to for-

mula (19);
JIN <e;

Step7: Repeat Step6 until | T (r) — T(t — 1)||
Step8: Sort proteins by the value of T in the descending
order;

Step9: Output top K percent of sorted proteins.

and 1855 different proteins and 7669 interactions including
714 essential proteins from the GAVIN database. Obviously,
based on these two datasets downloaded from the DIP and
GAVIN databases, two kinds of original PPI networks, such
as a DIP-based PPI network and a GAVIN-based PPI net-
work, can be constructed.

Moreover, information of orthologous proteins was down-
loaded from the InParanoid database (Version 7) [36], which
consists of a collection of pair wise comparisons between
100 whole genomes. And additionally, the gene expression
data of yeast was downloaded from the dataset provided by
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TABLE 2. Effects of the parameter « to CVIM based on the DIP-based PPI network.

\q\o.l 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
Rank

Topl% 0.80 0.84 0.86 0.88 0.94 0.94 0.94 0.92 0.92
Top5% 0.69 0.74 0.76 0.77 0.79 0.80 0.80 0.80 0.80
Top10% 0.62 0.63 0.64 0.66 0.68 0.69 0.69 0.71 0.70
Top15% 0.57 0.57 0.58 0.59 0.59 0.60 0.60 0.61 0.61
Top20% 0.51 0.52 0.52 0.52 0.53 0.54 0.54 0.55 0.55
Top25% 0.47 0.47 0.47 0.47 0.48 0.48 0.48 0.49 0.49

Table 2: This table shows the effects of the parameter a to CVIM based on the DIP-based PPI network. While a is set
to different values from 0.1 to 0.9, the top 1 to 25 percent of identified proteins are selected, and the table records the

proportion of true key proteins in the set of selected proteins.

TABLE 3. Effects of the parameter « to CVIM based on the GAVIN-based PPI network.

\Q\O.l 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
Rank

Topl1% 0.89 0.89 0.95 1 1 0.95 0.95 0.84 0.69
Top5% 0.83 0.85 0.86 0.87 0.86 0.85 0.88 0.86 0.78
Top10% 0.79 0.81 0.82 0.85 0.86 0.85 0.84 0.82 0.71
Top15% 0.72 0.75 0.78 0.78 0.79 0.79 0.79 0.79 0.68
Top20% 0.68 0.70 0.70 0.71 0.73 0.74 0.74 0.73 0.68
Top25% 0.65 0.66 0.67 0.67 0.68 0.68 0.70 0.69 0.66

Table 3: This table shows the effects of the parameter o to CVIM based on the GAVIN-based PPI network. While a is
set to different values from 0.1 to 0.9, the top 1 to 25 percent of identified proteins are selected, and the table records
the proportion of true key proteins in the set of selected proteins.

Tu et al. [37]. In experiment, the coverage of the DIP-based
PPI network and the GAVIN-based PPI network in the gene
expression data reached over 95%. For proteins that do not
have corresponding gene expression data, we would set their
values of gene expression to zero.

Finally, we would further download a dataset consisting
of 1285 essential genes of Saccharomyces cerevisiae from
four databases such as MIPS [39], SGDP [42], DEG [40]
and SGD [41] as the benchmark set. By comparing the key
proteins screened by CVIM with these 1285 real key proteins,
the recognition rate of CVIM method in DIP database and
GAVIN database was obtained. We will present the exper-
imental results of PPI network based on DIP in detail, and
briefly present the experimental results of PPI network based
on GAVIN.

B. EFFECTS OF THE PARAMETER «o

In CVIM, we introduced a user-defined parameter o with
value between 0 and 1. By setting different values to «,
we illustrated the prediction results based on the DIP-based
PPI network and the GAVIN-based PPI network in the fol-
lowing Table 2 and Table 3 respectively.

As shown in Table 2, We sort the final score of the protein
in descending order, and selected the top 1%, 5%, 10%, 15%,
20%, and 25% of the potentially essential proteins identified
by CVIM, while o was set to 0.1, 0.2,..., 0.8, and 0.9. It is
not difficult to see that the prediction accuracy of CVIM
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will change with different « values. Overall, as the value of
« increases, the accuracy of CVIM prediction will steadily
increase. Although the recognition rate of the top 20% and
25% dropped to 0.47-0.55, this is because in the data set, key
protein data only accounts for about 20% of all data, the data
distribution is extremely uneven, and our research is mainly
for the identification of key proteins, so we mainly consider
the key protein within 20% The recognition situation, and
the proportion of more than 20% of the data corresponding
to the data of non-critical proteins has increased signifi-
cantly, resulting in a rapid decline in accuracy. Therefore,
we think that when performing comparative experimental on
a DIP-based PPI network, setting the value of « to 0.8 is the
most appropriate.

As shown in Table 3, it is easy to see that when « is
increased to 0.7, the top 5%, 15%, 20%, and 25% of the
potential essential proteins identified by CVIM all reach the
best prediction accuracy. However, when « is set to 0.5,
the first 1% and 10% identified by CVIM can obtain the
best prediction accuracy. Therefore, considering both the
experimental results, when comparing the analog network
PPI GAVIN performed based on the value of « is set to 0.7 is
the most suitable.

Although we get the best effect at « = 0.8 for DIP
dataset and at « = 0.7 for GAVIN dataset, it will cause
over-fit for different dataset with different parameter values.
Therefore, combining the two databases, we chose 0.8 as
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value of the parameter « in the following experiment. And
we also tested in Krogan [45], BioGRID database, the Krogan
dataset consists of 3672 proteins and 14317 interactions. The
BioGRID yeast data set used in [4] contains 5616 proteins and
52833 distinct interactions, which are denser than the other
three data sets. we found that the alpha parameter does not
change much in different data sets, and has little effect on the
experimental results.
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C. COMPARISONS BETWEEN CVIM AND
13 REPRESENTATIVE METHODS
First, we adopt the dataset downloaded from the DIP
database to compare CVIM with 13 representative methods
in Table 1 simultaneously. And the experimental results are
illustrated in the following Fig.2.

From observing the Fig.2, it is easy to see that in the top
1% (51), 5% (255) and 10% (510) potential essential proteins
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FIGURE 2. (a) Top 1% ranked proteins. (b) Top 5% ranked proteins. (c) Top 10% ranked proteins. (d) Top 15% ranked proteins. (e) Top 20%
ranked proteins. (f) Top 25% ranked proteins. This figure illustrates the comparison of the number of essential proteins predicted by CVIM and
13 competing methods. During experimental, the proteins calculated by 13 methods in CVIM and table 1 were sorted in PPI network in order
from high to low. Then, the top 1%, 5%, 10%, 15%, 20% and 25% ranked proteins will be selected as candidate essential proteins. Thereafter,
by comparing with known key protein libraries, the performance is judged by the number of true essential proteins identified by each method.
This figure shows the number of true essential proteins discovered by each method. Because the total number of ranked proteins is 5093. The
digits in brackets indicate the number of proteins ranked in each top percentage.
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FIGURE 4. Results of comparisons between CVIM and thirteen competing methods based on the top 600 ranked key proteins by implementing
the Jackknife methodology on the DIP-based PPI network. The X-axis of this figure denotes the number of ranked proteins, while the Y-axis
represents the number of true key proteins identified by prediction models. (a) comparison between CVIM and IC, EC and BC. (b) comparison
between CVIM and NC, DC, CC and SC. (c) comparison between CVIM and ION, RWHN and POEM. (d) comparison between CVIM and PEC, LAC

and CoEWC.

detected by CVIM, there are 47, 204 and 359 true essential
proteins respectively, which mean that the recognition rates
of CVIM can reach 92%, 80% and 71% in the top 1%,
5% and 10% newly identified potential proteins separately.
Particularly, while compared with the 8 representative predic-
tion methods based on PPI network topology in table 1, our

VOLUME 8, 2020

method CVIM can achieve the highest predictive accuracy
in all top percentages. Moreover, compared with the five
representative prediction methods based on network topology
and related biological data in table 1, our method CVIM
outperforms PEC, POEM, CoEWC and ION in any interval
of top percentages. And in the top 1%, 10%, 15% and 20%
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TABLE 4. Commonalities and differences between CVIM and 13 competing methods based on the top 200 ranked proteins and the DIP-based PPI

network.
Different prediction |CVIMNM,| | CVIM- Mi |
methods (M)

SC 34 166

BC 34 166

EC 34 166

DC 40 160

IC 39 161

CC 31 169

LAC 76 124

NC 79 79

PEC 107 93
CoEWC 104 96
POEM 107 93

ION 99 101
RWHN 110 90

Percentage of key proteins in

Percentage of key proteins in

{CVIM-M,} {M~CVIM}
87.35% 28.31%
86.75% 28.31%
87.35% 27.71%
80.63% 28.75%
80.75% 27.95%
81.07% 30.17%
80.65% 45.16%
80.17% 47.93%
72.04% 44.08%
71.88% 50.00%
68.82% 53.76%
72.28% 57.42%
93.33% 83.33%

Table 4: This table shows the commonalities and differences between CVIM and 13 competing methods, such as DC, IC,
EC, SC, BC, CC, NC, Pec, COEWC, POEM, ION and RWHN, based on the top 200 ranked proteins and the DIP-based PPI

network.

candidate proteins, our method CVIM can achieve better
performance than RWHN as well. However, in the top 5%
and 25% candidate proteins, the predictive performance of
CVIM is a little lower than RWHN. This may be because
the RWHN method uses different parameter value settings for
different data. Thus, we can draw a conclusion that CVIM is
superior to these 13 state-of-the-art methods and has a higher
recognition rate for key proteins in the overall level.

IV. ROC CURVE VERIFICATION

The receiver operating characteristic (ROC) curve was
used to evaluate the performance of the CVIM method.
If AUC = 0.5, it means random performance. The larger the
area of the model’s ROC curve (AUC), the better the model’s
performance. When FPR = 0.2, TPR = 0.58, CVIM AUC =
0.083, RWHN AUC = 0.081. Therefore, when FPR <= 0.2,
the performance of the CVIM algorithm is the best among
all algorithms. As FPR grows, the AUC of CVIM is slightly
smaller than the RWHN algorithm.

A. VALIDATION BY JACKKNIFE METHODOLOGY

Jackknife Methodology [42] is a common method utilized to
evaluate the superiority and disadvantage of algorithms for
identifying key proteins. In order to evaluate CVIM more
comprehensively and concretely, in this section, we intro-
duced the Jackknife methodology for the top 1000 candidate
essential proteins predicted by CVIM and 13 representative
methods to test their superiority and disadvantages. The com-
parison result is shown in the following Fig.4. From observ-
ing Fig.4(a), Fig.4(b) and Fig.4(d), it is easy to see that CVIM
can achieve better predictive performance than IC, EC, BC,
NC, DC, SC, CC, Pec, LAC and CoEWC. Moreover, from
observing Fig.4(c), we can find that CVIM outperforms ION
and POEM, meanwhile, the curves of CVIM and RWHN
are intersected with each other. However, through careful
observation, we will find that when the number of candidate

90800

o o o
~ o ©

The proportion essential proteins
o
[=2]

0.5

04}

0.3F —B— cVIM-MI| ]
—&— Mi-CVIM

0.2

O O @ O O g O NS
o‘@eeoe\yqec&\*qoe,@p@«\
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{ovim—m;).

key proteins increases to 500, the curve of RWHN will turn
lower than that of CVIM. That is to say, with the increasing
of predicted scale of proteins, the predictive performance of
CVIM will gradually exceed that of RWHN. Hence, we can
declare that the prediction performance of CVIM is better
than that of these 13 representative methods on the whole.

B. DIFFERENCES BETWEEN CVIM AND

13 REPRESENTATIVE METHODS

In order to analyze the difference between CVIM and 13
state-of-the-art prediction methods in Table 1, we com-
pared CVIM and 13 methods based on the top 200 ranked
proteins. Comparison results are shown in the following
table 4 and Fig.4, in which, M; denotes one of these 13 meth-
ods, |CVIMNM;| indicates the number of essential proteins
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FIGURE 6. Results of comparisons between CVIM and thirteen competing methods based on the top 450 ranked key proteins by
implementing the Jackknife methodology on the GAVIN-based PPI network. (@) comparison results between CVIM and IC, EC and DC.
(b) comparison results between CVIM and NC, BC, CC and SC. (c) comparison results between CVIM and PEC, COEWC and POEM. (d)

comparison results between CVIM and ION, LAC and RWHN.

identified by both CVIM and M;, |CVIM —M,;| represents the
number of key proteins detected by CVIM but not detected
by M;, and [M;— CVIM]| denotes the number of key proteins
identified by M; but not identified by CVIM. Additionally,
{CVIM—M;} represents the set of key proteins detected by
CVIM but not detected by M;, while {M;—CVIM} denotes
the set of key proteins identified by M; but not identified by
CVIM.

From observing table 4 and Fig.5, it is obvious that the
percentage of essential proteins in the top 200 ranked proteins
discovered by CVIM but not discovered by any given com-
peting method is much higher than the percentage of essential
proteins in the top 200 ranked proteins discovered by the
given competing method but not discovered by CVIM. That
is to say, comparing with state-of-the-art methods, CVIM
can detect more true key proteins and has stronger ability to
eliminate noise data.

C. PREDICTION PERFORMANCE OF CVIM BASED ON THE
GAVIN DATASET

In order to verify the universal applicability of CVIM, in this
section, we adopt the GAVIN dataset to compare the predic-
tive performance between CVIM and 13 previous methods.

VOLUME 8, 2020

And the comparison results are illustrated in the following
table 5 and Fig.6.

As shown in above table 5, in the top 1% (19) ranked
proteins, the number of true essential proteins discovered by
CVIM is 16, which is higher than that of EC, SC, BC, CC,
NC, Pec and LAC, equivalent to that of IC and CoEWC, and a
little smaller than that of POEM, RWHN and ION. Although
the prediction performance of CVIM in the top 1% ranked
proteins is not the best, but the prediction performances of
CVIM in the top 5% to 25% ranked proteins are better than
all these 13 competing methods.

From observing the Fig.6(a) and Fig.6(b), it is clear that
the curves of CVIM are higher than those of DC, EC,
SC, BC, IC and NC, which indicate that the performance
of CVIM outperforms these methods. From observing the
Fig.6(c) and Fig.6(d), we can find as well that the gaps
between the curves of CVIM and the curves of PEC, POEM,
CoEWC, LAC, RWHN and ION will gradually increase
with the increasing of the number of ranked proteins, which
demonstrate that with the increasing of ranked proteins,
the predictive performance of CVIM will become better and
better than that of PEC, POEM, CoEWC, LAC, RWHN
and ION. Therefore, we can believe that CVIM is a leading
method for predicting potential essential proteins.
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TABLE 5. Number of essential proteins predicted by CVIM and 13 methods based on the GAVIN dataset.

Methods  Top1%(19) Top5%(93) Top10%(196)
SC 0 17 87
EC 0 38 94
BC 9 40 85
DC 7 36 101
IC 16 55 119
cc 11 45 93
NC 11 51 123
PEC 15 69 142

CoEWC 16 69 136

POEM 17 74 148
ION 17 73 150

RWHN 18 73 140

LAC 0 22 101
CVIM 16 80 160

Top15%(279) Top20%(371) Top25%(464)
130 190 240
134 166 209
122 162 201
158 222 264
163 213 254
135 180 221
170 213 259
193 238 285
190 237 275
199 249 296
207 263 312
185 235 269
167 221 273
219 271 322

Table 5: This table shows comparison results between CVIM and 13 competing methods such as DC, EC and SC, BC, CC, IC, NC, Pec,
CoEWC, POEM, ION, LAC, RWHN based on the GAVIN dataset. The digits in brackets indicate the number of proteins ranked in each

top percentage.

V. DISCUSSION

Essential proteins are indispensable materials to sustain life
activities. Up to now, due to the high cost of identifying
essential proteins by traditional biological experiments, the
recognition of key proteins based on computational tech-
niques has become a hotspot in the research field of proteins.
It is an important and challenging work to develop stable and
accurate protein identification algorithms by using computa-
tional methods instead of biomedical experiments to identify
key proteins. More and more researchers are combining PPI
networks with biological data to build effective prediction
models. Inspired by them, we designed a novel prediction
model in this manuscript by integrating the topological fea-
tures of the weighted PPI network and functional features of
the proteins to determine the importance of proteins. Exper-
imental results show that the method can achieve excellent
prediction results, which provides a good reference for the
future researches.

VI. CONCLUSION

In this manuscript, a novel prediction method called CVIM is
proposed to discover potential essential proteins by integrat-
ing the PPI network and relevant biological data. In CVIM,
a weighted PPI network is constructed first by adopting the
PCC scheme on the original PPI network. And then, based on
the weighted PPI network and homologous data of proteins
and the real-time expression data of genes, for each protein
in the weighted PPI network, some network topological fea-
tures and functional features will be extracted. Finally, based
on these different kinds of features, an iterative method is
adopted to obtain the final scores of proteins. Based on the
DIP2010 and GAVIN yeast PPI networks, intensive experi-
ments have been implemented. Experimental results demon-
strate that CVIM outperforms 13 competing representative
prediction methods, which shows that CVIM is a unique and
effective prediction method as well.
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