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ABSTRACT Driven by the vision of Internet of Things, some research efforts have already focused on
designing a network of efficient speech recognition for the development of edge computing. Other researches
(such as tpool2) do not make full use of spatial and temporal information in the acoustic features of
speech. In this paper, we propose a compact speech recognition network with spatio-temporal features
for edge computing, named EdgeRNN. Alternatively, EdgeRNN uses 1-Dimensional Convolutional Neural
Network (1-D CNN) to process the overall spatial information of each frequency domain of the acoustic
features. A Recurrent Neural Network (RNN) is used to process the temporal information of each frequency
domain of the acoustic features. In addition, we propose a simplified attention mechanism to enhance the
portion of the network that contributes to the final identification. The overall performance of EdgeRNN has
been verified on speech emotion and keywords recognition. The IEMOCAP dataset is used in speech emotion
recognition, and the unweighted average recall (UAR) reaches 63.98%. Speech keywords recognition uses
Google’s Speech Commands Datasets V1 with a weighted average recall (WAR) of 96.82%. Compared with
the experimental results of the related efficient networks on Raspberry Pi 3B+, the accuracies of EdgeRNN
have been improved on both of speech emotion and keywords recognition.

INDEX TERMS RNN, speech emotion recognition, speech keywords recognition, edge computing.

I. INTRODUCTION
According to the IHS Markit perspective [1], the number
of Internet of Things (IoT) devices is expected to reach
125 billion by 2030. Those IoT has attracted lots of attention
in the industry and academia because they can be widely
used in many applications [2]. Because of their constrained
resources [3], those micro-instruments are commonly named
as edge computing devices. This large-scale edge comput-
ing devices will revolutionize the processing center of data
from large-scale cloud centers to a wide range of termi-
nal devices [4]. Processing data on terminal devices near
the edge of the network is also called edge computing.
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Edge computing can address issues such as privacy, band-
width cost, data processing costs, and scalability [5].

However, processing tasks directly on edge comput-
ing devices requires real-time and high accuracy. Further
research is required because this area is still a challenging
work. Customer satisfaction can be improved by offload-
ing compute-intensive applications to the cloud. However,
this will have many problems mentioned above. In general,
increasing the complexity of the network in the deep learning
method can improve the performance of the network [6].
Under the edge computing device, this expanded network
structure may become a bottleneck. Therefore, a key issue at
present is how to reduce the complexity of the deep network
without significantly reducing the performance. Specifically,
it is to reduce the amount of computations and parameters
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of the model. In the study of Cheng et al. [7], the network
showed some redundant weights. This research provides a
theoretical basis for designing a deep neural network (DNN)
for edge computing devices.

DNNs have achieved remarkable performance in computer
vision, natural language processing, and speech recognition.
However, in the field of DNNs for edge computing devices,
only computer vision has achieved rapid development. This
phenomenon is mainly due to two reasons. On the one hand,
the field of natural language processing and speech recog-
nition are mainly dealing with time-series issues. The time-
series issues basically require the use of recurrent neural
networks (RNN). However, RNN is computationally inten-
sive and storage costly. Compared with a typical Convo-
lutional Neural Network (CNN) cell [8], a RNN neuron
requires 8 times of weights and multiply-accumulate oper-
ations. On the other hand, advances in computer vision have
benefited from the discovery of group convolutions [9]. But
the computation of RNN relies heavily on historical records.
Therefore RNN is an atomic entity which cannot be grouped.

As a result, many proposals use 2-Dimensional (2-D) CNN
for speech recognition. For example, Sainath and Parada [10]
used 2-D CNN and DNN to build a speech keywords recog-
nition network. However, 2-D CNN deals with local spa-
tial information. In the spatial information of the processing
sequence problem, 1-D CNN is better than 2-D CNN. In the
time information of the processing sequence problem, RNN
is also more efficient than 2-D CNN. 1-D CNN can extract
spatial information over the entire time series features. The
hidden layer in RNN retains the information of the previous
time step to predict the value of the current time step. This
technique is helpful to deal with different speech speed and
time dependence problems in speech recognition [11].

Consequently, a combination of 1-D CNN and RNN is
required to design a speech recognition network model for
edge computing devices. The actual running speed, accuracy
and model size in the network for edge computing are the
most important indicators. The computations of a model can
affect its processing speed, whilst the parameters of a model
can enlarge its storage size. Hence, in the process of design-
ing a network model for edge computing, it is necessary to
consider the amount of computations and parameters. In [12],
Krizhevsky have proposed two observations that we recall as
follows.
• The convolutional layer accounts for approximately
90-95% of the computation.

• The fully connected layer occupies 95% of the
parameter.

These two observations provide a statistical basis for design-
ing a networks for edge computing devices. In language
analysis, utterance level denotes that a single utterance, not
a single word, or multiple utterances. In addition, not all
frames in speech recognition have the same contribution to
the final utterance level representation. For example, the short
silent period in speech usually has little relevance with emo-
tion [13]. The attention mechanism can focus on the part

that contributes to the final recognition while solving the
dependency problem. Due to its good results, the attention
mechanisms have been widely used in speed recognition.
For example, Sun and Wu [14] combined attention mech-
anisms with sparse-autoencoder for speech emotion recog-
nition. Therefore, a network model for edge computing can
obtain better network performance by adding attention mech-
anisms. However, many attention mechanisms have intensive
parameters, such as the multi-head attention mechanism [15].
Thus the number of parameters should be considered for the
performance of attention mechanism.

To solve the performance and accuracy problems of speech
recognition on edge computing devices, we propose a com-
pact RNN which is named EdgeRNN. EdgeRNN consists
of 1-D CNN, RNN and attention mechanism, which is a very
common network structure for speech recognition. To our
best knowledge, it is the first to be used in speech recognition
tasks for edge computing devices. This is mainly because
of the computations and parameters of 1-D CNN, RNN and
attention mechanism. EdgeRNN focuses on solving the prob-
lems of computation and parameter of RNN, fully connected
layers, and attention mechanisms.

The performance of EdgeRNN has been experimented on
speech keywords and emotion recognition tasks. EdgeRNN
has been successfully run on the Raspberry Pi 3B+1. To facil-
itate subsequent research, the complete project implementa-
tion can be obtained by its Github repository2. In general,
the contributions of this paper are listed as follows:

1) The accuracies of the EdgeRNN model in both speech
keywords and emotion recognition are better than exist-
ing efficient networks.

2) The EdgeRNN model runs on the Raspberry Pi 3B+
can recognize and process 2 voices faster than the time
taken to collect the speech. This performance meets the
practical requirements of speech recognition for edge
computing.

The remainder of this paper is organized as follows.
Section II introduces the related work of speech recogni-
tion. Section III describes the EdgeRNN model. Section IV
presents the performance comparison and experimental anal-
ysis of EdgeRNN and other related networks. Section V
concludes the paper.

II. RELATED WORK
Speech emotion recognition is a branch of the field of speech
recognition that aims to use speech to understand user emo-
tions and opinions. Speech keywords recognition is also a
branch of the field of speech recognition, aiming to find all
corresponding keywords from the speech data. These two
branches are popular research topics in speech recognition.
Currently, speech recognition using deep learning methods
can be classified into the following two types.

1https://www.raspberrypi.org/
2https://github.com/yangshunzhi1994/EdgeRNN
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The first method is to use deep learning to directly model
the original speech. For example, Zeghidour et al. [16]
replaced the artificially generated acoustic features with
trainable filterbanks. Latif et al. [17] used multi-convolution
kernels and multi-step parallel convolution layers to extract
features directly from audio. However, there are two issues
here. The first problem is that the number of parameters
becomes larger. For example, the acoustic feature is obtained
by extracting 1-second audio at a sampling frequency
of 16KHz. There are 4864 parameters with 152 dimensions,
each dimension is 32 in length. The number of parameters
extracted by acoustic features is 30.4% of the model proposed
by Latif et al. The second problem is that the accuracy is low.
For example, the current highest accuracy from the original
speech directly modeled on the IEMOCAP dataset [18] is
only 60.23% [17].

The second method is deep learning modeling after
acoustic feature extraction, which is the most widely stud-
ied method. The most widely used acoustic features are
Mel-frequency cepstral coefficients (MFCC) and Mel spec-
trogram. Certainly, extracting more acoustic features is not
necessary. Because the computations will be costly and not
all of those features are valid for identification [19].

The above analysis shows that design a speech recogni-
tion network model for edge computing should use acoustic
features. In addition, there are two ways to obtain a deep
learning network for edge computing. The first way is to
accelerate the network from the perspective of algorithm and
hardware through pruning, quantification, etc. For instance,
BCRNN [20] uses a binary neural network to compress the
speech recognition network model.

The second way is to directly design an efficient deep
learning network. For instance, tpool2 [21] uses a total
of 5 layers of CNN network for speech keywords recog-
nition. SANAS [22] uses the Neural Architecture Search
(NAS) method to dynamically adjust the architecture of the
neural network for real-time speech keywords recognition.
res15 [23] uses extended convolutions of residual struc-
ture for speech keywords recognition. L-CRNN [24] per-
forms speech keywords recognition by reducing the number
of parameters between the RNN and the fully connected
layer. DS-CNN [25] uses depthwise separable convolution for
speech keywords recognition. Full-DCNN [26] uses depth-
wise separable convolution for speech keywords recognition
on specific hardware platforms (Movidius’ Myriad 2).

Furthermore, many methods of running speech recog-
nition on edge computing devices use traditional machine
learning methods. For example, both Walid et al. [27] and
Wiem and Lachiri [28] use support vector machines (SVM)
classifiers for speech recognition systems on Raspberry Pi.
Mnassri et al. [29] use the discrete wavelet transform (DWT)
SVM method for speech keywords recognition.

III. DESIGN OF EdgeRNN
The EdgeRNN model is divided into the following parts:

1) Acoustic feature extraction layer.

2) Spatial information extraction layer.
3) Feature pooling layer.
4) Time information extraction layer.
5) Self-attention mechanism and classification layer.

The above layers are illustrated separately.

A. ACOUSTIC FEATURE EXTRACTION LAYER
First, acoustic feature extraction of the original speech is
required. In EdgeRNN, several experiments were carried
out from the two aspects of accuracy and speed. Finally,
128-dimensional (128-D) Mel spectrogram, 12-D delta, and
12-D double-delta features were selected. The delta features
are obtained by the first-order difference of the MFCC fea-
tures. The double-delta features are obtained by the second-
order difference of the MFCC features. The extraction of
double-delta features needs to go through the following pro-
cesses in order:

1) Obtaining the Mel spectrogram features.
2) Taking the logarithm of the Mel spectrogram features

for each dimension.
3) Obtaining the MFCC features by discrete cosine trans-

form (DCT).
4) Obtaining the delta features based on the MFCC

features.
5) Obtaining double-delta features based on delta

features.
Because the existing acoustic feature extraction libraries

(such as the librosa [30] library) have encapsulated the
features mentioned above. Thus, the extraction of acoustic
features needs to avoid double computations. If the delta
features of librosa are used directly, the Mel spectrogram
features have been computed. However, the features of the
Mel spectrogram are also an intermediate result required by
the experiment. Accordingly, the EdgeRNN model avoids
the repeated computation of features by gradually acquiring
acoustic features. For details, see the implementation code for
data processing in the EdgeRNN model.

EdgeRNN uses the librosa [30] library to extract the 152-D
acoustic features, which include 128-D Mel spectrogram,
12-D delta and 12-D double-delta features. The neighboring
features of the Mel spectrogram are highly correlated. There
is overlapped between adjacent filter banks, which is ben-
eficial for CNN modeling. Moreover, the Mel spectrogram
has a higher dimension than MFCC, which retains more
information. The delta features represent the relationship of
adjacent frames, whilst the double-delta features depict the
relationship among three adjacent frames. They are all good
at expressing the dynamics of speech on the MFCC. There-
fore, the delta and double-delta features used in EdgeRNN
are extracted after MFCC.

Take the four emotions in IEMOCAP dataset [18] as exam-
ples. The extracted acoustic features are shown in Figure 1.
The horizontal direction represents the acoustic features
of a certain dimension, such as the pitch features of the
speech. The vertical direction represents the acoustic features
of a certain moment. As can be seen from Figure 1, speech
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FIGURE 1. Acoustic features (Black blocks indicate that they are filled
with ‘‘0’’).

FIGURE 2. 2-D convolution (yellow block representation) and 1-D
convolution (blue bar representation).

recognition has both time and spatial domain information.
The time domain is the process of a voice signal changing
with time, and the spatial domain is a feature of a voice
signal. In the acoustic features of speech, the time domain
information refers to the time-series features in the frequency-
domain direction. The spatial domain information refers to
the spatial features in the frequency-domain direction. The
frequency-domain direction is shown in the blue bar repre-
sentation in Figure 2.

Therefore, in the speech recognition task, how to integrate
the information in time and spatial domain is critical issues.
This requires a combination of CNN and RNN to handle
speech recognition. The extracted acoustic features are low-
level, while CNN is suited for the extraction of low-level
features.

B. SPATIAL INFORMATION EXTRACTION LAYER
After extracting the acoustic features, these low-level features
are modeled by using a deep learning approach. In our previ-
ous work [31] elaborated on the importance of learned group

convolution [32] and DenseNet [33] for designing a net-
workmodel for edge computing. Although group convolution
can reduce the multiply computations, it adds extra memory
accesses [34]. This means that group convolution depends on
the specific use environment and network model. To verify
the effect of group convolution on speech recognition tasks,
EdgeRNN-G was designed. The only difference between
EdgeRNN and EdgeRNN-G is whether the convolutional
layer uses learned group convolution. EdgeRNN-G uses a
learned group convolution, and EdgeRNN uses a normal
convolution. The learned group convolution reduces convo-
lution operation in multiples. It also enables the network
to automatically group in the learning process to solve the
information circulation problem. The principle of DenseNet’s
feature reuse can be expressed by the following formula:

XL = HL([X0,X1, . . . ,XL−1]) (1)

XL represents the output of the Lth layer, and HL(·) is
a composite function representing the combined operation.
DenseNet is used to improve the performance through feature
reuse. Each layer in DenseNet generates only a few features.
But after the connection, the last layer of the network can
obtain the feature maps of all previous layers.

The design of the EdgeRNN model still uses the Edge-
Block designed by EdgeCNN [31] and the introduced net-
work model principles. However, the previous convolution
layer process is a computer vision task. 2-D convolution can
be used for computer vision tasks. The different ways of
processing the 2-D and 1-D convolutional layers are shown
in Figure 2. Obviously, the 2-D convolution deals with the
local spatial information of the acoustic features. However,
1-D convolution deals with the overall spatial information
of the frequency-domain direction of the acoustic features.
Accordingly, the 1-D convolutional layer is more suitable
for modeling acoustic features. EdgeRNN-G’s EdgeBlock
changes the previous learned group convolution from 2-D
to 1-D for speech recognition. Similarly, EdgeRNN’s Edge-
Block uses a normal 1-D convolution.

The difference between EdgeBlock used by EdgeRNN and
EdgeCNN are that in addition to the 1-D CNN used for the
convolution layer, the activation layer used is also different.

As shown in Figure 3, the main activation functions used in
speech recognition are Tanh, ReLU and its variants. In com-
puter vision, the pixel value of a picture is between [0, 255].
ReLU can be used in computer vision because the gradi-
ent does not decay when the pixel value is greater than 0.
However, there are negative values when converting speech
into digital signals. If the activation function in EdgeRNN’s
EdgeBlock uses ReLU, nearly half of the features will be
lost. The ELU activation function does not distinguish much
when it is negative. Our experiments prove that the per-
formance PReLU> ELU> Tanh> ReLU in the process of
learning higher-level features. Therefore, both EdgeRNN-G
and EdgeRNN’s EdgeBlock use the PReLU activation func-
tion. The details of EdgeRNN-G’s EdgeBlock are present
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FIGURE 3. Four commonly used activation functions in speech
recognition.

TABLE 1. Structure diagram of EdgeBlock in EdgeRNN-G (1D-LConv
stands for 1-Dimensional learned group convolution, G stands for number
of groups, C is Condensation Factor. The out_channels represents the
feature dimension of the output, and the growth_rate represents the
growth factor of the features).

TABLE 2. Structure diagram of EdgeBlock in EdgeRNN (1D-Conv stands
for 1-Dimensional normal convolution).

in Table 1, and the details of EdgeRNN’s EdgeBlock are
shown in Table 2.

For acoustic feature maps, EdgeRNN uses the principle
of DenseNet to continuously extract higher-level features.
Different from the previous model [31], EdgeRNN retains
the original acoustic feature map. Meanwhile, EdgeRNN
continuously extracts higher-level features using 1-D CNN
based on all previous layers. The original acoustic and the
higher-level features are incorporated into the RNN layer to
extract time-series information.

C. FEATURE POOLING LAYER
The pooling layer is one of the common components in
deep learning networks. It has four main functions: feature

invariance, feature dimensionality reduction, noise reduction,
and prevent overfitting. Feature invariance means that the
model will pay more attention to the existence of features
rather than the specific location. Feature dimension reduc-
tion refers to reducing the amount of computations and
parameters. The noise reduction means reducing local noise.
Preventing overfitting is due to the number of parameters
reduction.

The pooling layer of EdgeRNN reduces the dimensionality
of spatial features, thereby reducing the computations and
parameters of the model. This is because the computations
after the pooling layer are intensive, such as the RNN layer.
Pooling is necessary before these layers. Unlike computer
vision tasks, EdgeRNN uses a 1-D max pooling layer. The
schematic diagram of the 1-D max pooling layer is depict
in Figure 4.

FIGURE 4. The schematic diagram of the 1-D max pooling layer.

D. TIME INFORMATION EXTRACTION LAYER
Speech recognition not only has time domain information, but
also spatial domain information. It is inefficient to identify
speech separately from the time or spatial domain dimen-
sions. The strength of CNN lies in spatial information, whilst
the strength of RNN lies in time information. Consequently,
many proposals use a combination of CNN and RNN for
speech recognition networks. For instance, Zhao et al. [35]
take advantage of CNN and Long Short Term Memory
(LSTM) for speech emotion recognition. Wang [36] com-
bined CNN and Gated Recurrent Unit (GRU) for hate speech
recognition. However, the RNNs used in these models are
variants of RNN, such as LSTM [37] and GRU [38]. RNN
uses one gate, GRU uses three gates, and LSTM uses four
gates. This means that the computational complexity of the
GRU is three times that of the RNN. The computational
complexity of the LSTM is four times that of the RNN.
It is known that RNN has the problem of gradient explo-
sion or gradient disappearance in long sequences. Therefore,
LSTM and GRU are introduced to solve the time dependency
problem in long sequences. However, many tasks in speech
emotion and keywords recognitions are short/medium-term
dependent (i.e., short-time pronunciation). RNN is appli-
cable in the short/medium-term dependency issues. More-
over, attention mechanisms can be used to enable RNNs
to learn short/medium-term dependencies in short/medium-
term sequences.
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TABLE 3. Architecture of EdgeRNN-G (Feature Transpose refers to the
process of converting the two-dimensional tensor (344,90) to (90,344) to
meet the RNN input format requirements. 152, 344, and 4 are the
dimensions of the feature. 181 and 90 represent the length of features.
1 indicates a single-layer RNN).

E. SELF-ATTENTION MECHANISM LAYER AND
CLASSIFICATION LAYER
In order to make up for the shortcomings of the RNN and
to enhance the network part that helps the final recogni-
tion, an attention mechanism should be added to EdgeRNN.
However, most of the attention mechanisms use the fully
connected layer to remap features. For example, the multi-
head attention mechanism [15] uses multiple fully connected
layers to capture different aspects of the input features.
Capturing multiple aspects of information helps improve the
accuracy of predictions [39]. But the fully connected layer
contains a large number of parameters and will increase
the computational cost. In order to meet the needs of edge
computing, this paper proposes an efficient self-attention
mechanism with negligible parameters and computations.

Assuming that xi is the contextual feature of the current
time series computed by the RNN, αi is scored by the follow-
ing formula:

αi =
1

1+ e−xi
(2)

In fact, the αi calculation method is the sigmoid function.
Its value is between [0, 1]. αi can be interpreted as the
contribution score of the frame to the final utterance level
representation of the speech. The attention score αi is used
for the weighted average to obtain the representation of the
utterance level C:

C =

∑
i
αi · xi∑
i
αi

(3)

∑
i
αi · xi is the weighted sum of features at each location.

After the results obtained by the utterance level are activated,
they are passed to the fully connected layer to summarize
the final results. The final result of the summary is passed
to the softmax layer of the network to obtain the posterior
probability of each speech category.

F. THE OVERALL STRUCTURE OF EdgeRNN
EdgeRNN and EdgeRNN-G still use the feature reusing
principle introduced by DenseNet [33]. In other words, the

TABLE 4. Architecture of EdgeRNN (Same parameters as EdgeRNN-G).

features obtained at each stepwill enter the final classification
layer. The model structures of EdgeRNN-G and EdgeRNN
are shown in Table 3 and Table 4, respectively. The model
structure is present in a 4-category IEMOCAP dataset.

The EdgeRNN model retains the acoustic feature maps
generated by the audio, and continuously extracts time
and spatial features based on all previous layers. The
visualization of EdgeRNN is shown in Figure 5. The
Ses01F_impro02_F000 sample in the IEMOCAP dataset was
used to visually display the model structure of EdgeRNN.
Because EdgeRNN and EdgeRNN-G are approximately the
same, there is no need to display the structure of EdgeRNN-G
visualization.

Figure 5 illustrates the principle of feature reuse.
EdgeRNN adds 16-D higher-level spatial features from Edge-
Block at a time. EdgeRNN uses EdgeBlock 12 times, which
adds 192-D higher-level spatial features. It is worth not-
ing that new feature is extracted based on all previous
layers. For example, the new 16-dimensional higher-level
features of dense9 in Figure 5 are extracted based on the
entire feature map of dense8. Due to the limited space of
a page, the visualizations of the third to seventh higher-
level spatial feature extraction layers are omitted in Figure 5.
Meanwhile, the visualization diagrams of the tenth and
eleventh higher-level spatial feature extraction layers are also
omitted. However, it does not affect viewing the visual struc-
ture of EdgeRNN. Instead, it better shows the visual structure
of EdgeRNN. Because the added features are more obvious,
such as the features added from the second to the eighth are
obvious.

After the model is designed, the loss function and the set-
ting of an optimizer need to be chosen. The experiments used
Softmax loss function and SGD optimization technology. The
SGD optimizer minimizes the Softmax loss function with a
learning rate of 1e-2 and a weight decay of 5e-4. Meanwhile,
after 80 epochs, the learning rate dropped by 10% after every
5 epochs.

IV. EXPERIMENTAL PERFORMANCE OF EdgeRNN
The performances of EdgeRNN are demonstrated on
two subtasks: speech emotion and keywords recognition.
A widely used dataset for speech emotion recognition is
Interactive Emotional Dyadic Motion Capture Database
(IEMOCAP) [18]. IEMOCAP dataset was recorded by the ten
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FIGURE 5. Visualization of EdgeRNN network structure (Each picture is the result of EdgeRNN’s latest concatenation. In EdgeRNN, the latter network has
more features than the former. However, each picture is compressed to a uniform size).

81474 VOLUME 8, 2020



S. Yang et al.: EdgeRNN: Compact Speech Recognition Network With Spatio-Temporal Features for Edge Computing

actors of the Signal Analysis and Interpretation Laboratory at
the University of Southern California (USC). It is generated
during a binary interaction. The IEMOCAP dataset is a multi-
modal emotional corpus of action, including audio, video and
text data. The experiment uses only audio data. Consistent
with most previous work, excitement was added to the happy
category to achieve a more balanced label distribution. There
are totally 4 emotion classes {happy, sad, angry, neutral}.
The training and validation datasets are not specified in the
IEMOCAP dataset. Moreover, its category distribution is not
uniform. Therefore, EdgeRNN uses 80% of each category for
training and 20% for testing. The total data used was 5531,
of which 4423 was used for training and 1108 was used for
testing.

The length of the IEMOCAP dataset is inconsistent. First,
this paper arranges the IEMOCAP dataset from short to long.
Second, selects 75% of the positions (5.78 seconds) as the
unified audio length. For audio less than 5.78s, fill it with ‘‘0’’
to 5.78s (Figure 1); those longer than that will be trimmed
to 5.78s.

The most widely used dataset for speech keywords recog-
nition is Google’s Speech Commands datasets V1 [40]. The
dataset consists of 65,000 1-second long audio clips con-
sisting of 30 keywords and 1 noise. Each clip containing
only one keyword. EdgeRNN focuses on identifying the fol-
lowing 11 keywords:{yes, no, up, down, left, right, on, off,
stop, go, unknown}. The {unknown} includes the remaining
20 keywords and 1 noise in the dataset. The Speech Com-
mands datasets V1 is divided into training, validation and test
datasets in a ratio of 80:10:10. EdgeRNN adds validation to
test datasets to verify the performance of the network model.
That is to say, 80% of the Speech Commands Datasets V1 is
used for training and 20% is used for testing.

TABLE 5. EdgeRNN and EdgeRNN-G performance on IEMOCAP database
for speech emotion recognition.

Few work in speech emotion recognition tasks has focused
on the design of efficient network models. Only BCRNN [20]
was found in speech emotion recognition. The method used
by BCRNN has been introduced in the related work of this
paper. BCRNN shows the accuracy and size of the model
on the IEMOCAP dataset. The performance comparison of
EdgeRNN, EdgeRNN-G and BCRNN are shown in Table 5.
The accuracy used in Table 5 is the unweighted average
recall rate (UAR). The UAR is defined as the accuracy per
class averaged over all classes so that the accuracy for each
class has the same importance [41]. In short, UAR is the
average accuracy of the class. UAR is a widely used indicator
in speech emotion recognition due to class imbalanced of
the dataset. The indicators for evaluating the accuracy of
speech emotion recognition also haveweighted average recall
(WAR). TheWAR is the ratio of the total number of correctly

predicted and test audio. In short, WAR is the accuracy of the
test dataset. It can be seen from Table 5 that the UAR and
model size of EdgeRNN have been improved from the work
of BCRNN. In experiments, EdgeRNN has a UAR of 63.98%
and a WAR of 64.00% in speech emotion recognition.

Research on speech keywords recognition is more popular.
The performance comparison of EdgeRNN, EdgeRNN-G and
other network models on speech keywords recognition are
shown in Table 6. The speech keywords recognition in Table 6
uses Google’s Speech Commands Datasets V1 [40]. There
are multiple network models in other works. In Table 6, only
the most accurate models are listed. WAR is a widely used
indicator in speech keywords recognition. The other methods
used in Table 6 for speech keywords recognition works
have been introduced in related work in this paper. It can
be seen from Table 6 that the accuracies of the EdgeRNN
and EdgeRNN-G models can be improved from other works.
In experiments, EdgeRNN has a WAR of 96.82% and a UAR
of 93.63% in speech keywords recognition.

TABLE 6. EdgeRNN and EdgeRNN-G performance on Google’s Speech
Commands datasets V1 for speech keywords recognition.

TABLE 7. Time delay and power consumption for EdgeRNN and
EdgeRNN-G running on Raspberry Pi 3B+ (Energy calculations and peak
power exclude idle power draw).

The EdgeRNN and EdgeRNN-G models have been suc-
cessfully run on Raspberry Pi 3B+. The performance of
the running speed and power consumption compared with
other networks are shown in Table 7. As with tpool2 [21],
energy calculations and peak power values do not include the
energy consumed by the Raspberry Pi 3B+ in its idle state.
Two power meters (UT230C-II and kewode) are used for
power consumption testing of EdgeRNN and EdgeRNN-G.
The power of the Raspberry Pi 3B+ tested by the UT230C-II
power meter in the idle state is 1.4W, but the kewode power
meter is 1.754W. The power of the Raspberry Pi 3B+ in
the idle state tested by the two power meters is different.
However, the energy consumptions of the speech recognitions
are the same in our power meters tests. Because the energy
consumed by speech recognition equals the energy during
speech recognition minus the energy in idle state. As shown
by the speech keywords recognition task in Table 7, the speed
of EdgeRNN is 1/3 of tpool2. In the meanwhile, EdgeRNN
consumes three times asmuch energy as tpool2 for processing
one voice. It implies that EdgeRNN and tpool2 consume
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similar energy in the same time despite the different model
complexity. As energy consumption equals power times time,
the energy consumption is mainly reduced by increasing the
speed of the model.

Total latency in Table 7 is the total time to process a
voice, which includes speech acoustic feature extraction. The
tpool2 [21] network uses the 2-D CNN structure. But the
EdgeRNN uses a combined structure of 1-D CNN, RNN and
attentionmechanism. As can be seen fromTable 7, EdgeRNN
runs slower on the Raspberry Pi 3B+ than the full 2-D CNN
network model. However, in speech emotion recognition,
5.78 seconds of speech can be processed on the Raspberry
Pi 3B+ in 1.01 seconds. In speech keywords recognition,
1 second of speech can be processed on the Raspberry Pi 3B+
in 0.59 seconds. In practical applications, speech recognition
by edge computing devices consists of the following two
steps:
• The sensor collects speech from the surrounding
environment.

• The edge computing device processes the speech
collected by the sensor.

It should be noted that these two steps are parallel.
Obviously, EdgeRNN takes less time to perform speech
recognition than to collect speech. This means that EdgeRNN
can meet the practical requirements of speech recognition
for edge computing. In addition, EdgeRNN is 5.08% bet-
ter than tpool2 [21] in terms of accuracy. Compared to
tpool2, EdgeRNN is a more efficient model in terms of
accuracy. Consequently, we construct a compact model with
improved accuracy, while its processing speed reaches the
actual requirements of edge computing devices.

The memory access speed of the mobile phone, Raspberry
Pi 3B+ and its SD Card interface were tested in this paper.
The write speed of the SD card interface of the Raspberry
Pi 3B+ is 22.61 MB/s. The memory access speed of the
Raspberry Pi 3B+ is 267 MB/s. The memory access speed
of the ordinary mobile phone (honor8 lite) is 222.26 MB/s.
Although the memory access speed of the Raspberry Pi 3B+
is faster than that of a mobile phone, the Raspberry Pi uses
an SD card to store data. What determines the actual memory
access speed of the Raspberry Pi is the write speed of the
SD card interface. This implies that those embedded devices
can access memory 10 times faster than edge computing
devices. Therefore, those embedded devices can use mod-
els based on group convolution for its fast memory access
speed. Experiments with EdgeRNN and EdgeRNN-G show
that using group convolution on edge computing devices with
slow memory access is not necessarily efficient. The use of
group convolution depends on the specific networkmodel and
operating environment. In general, group convolution needs
to consider the cost ofmemory access in resource-constrained
edge computing devices.

The number of computations will definitely affect the
speed of the network model. Therefore, the number of com-
putations needs to be reduced as much as possible. It is worth
noting that the number of computations cannot be used as an

indicator of the network for edge computing. The number of
computations is only one of the indicators of the speed of
the network. Other factors can also affect the speed of the
network, such as the memory access speed of the network
operating platform [34]. This means the factors that affect
the speed include not only the number of computations, but
also the speed of memory access and others. Only the sum of
all factors (such as the number of computations and memory
access costs) can determine the speed of the network. For
example, the A network has a computation amount of 10M
and other factors of 30M. The computation amount of B
network is 20M and its other factors are 10M. B is better than
A, not A is better than B. Even if the number of computations
can affect the speed of the network, it cannot be directly used
as an indicator of a compact network for edge computing.
The processing speed on certain devices, for which will be the
critical metrics of the networkmodel towards edge computing
environments.

As seen in Table 5, the group convolution not only reduces
the speed but also increases the size of the model. Because
the model not only needs to store the parameters of the net-
work, but also the network structure. Obviously, the network
structure using group convolution is relatively complicated.
From the metrics of Table 5, we note that the parameter sizes
of EdgeRNN and EdgeRNN-G are the same. Meanwhile,
group convolution requires more storage space than normal
convolution under the same conditions. In particular, it is not
advantageous to use group convolution on an edge computing
device with limited storage.

Besides, accuracy is the proportion of correct judgments
in total observations, and it is also an important indicator.
Therefore, it is also necessary to improve the accuracy of
the model as much as possible when designing the model.
Through the analysis, it can be concluded that accuracy,
speed, and model size are the most important indicators for
evaluating the performance of a network for edge computing.

As depicted in Table 6 and Table 7, both the computation
amount of EdgeRNN and EdgeRNN-G are lower than tpool2.
But their running time on Raspberry Pi 3B+ becomes the
opposite. The main reason for this problem is the sequential
processing method of RNN, which will inevitably lead to a
reduction in speed. In addition to RNN, the low speed of
EdgeRNN also has a 1-D CNN factor. 1-D convolution is
a special case of 2-D convolution. It can also be seen from
Figure 2 that in the same case, the convolution kernel of 1-D
convolution is larger than that of 2-D convolution. This makes
1-D CNN more complicated than 2-D CNN. However, 1-D
CNN and RNN can make full use of the time and spatial
information in the acoustic features. This can improve the
accuracy of network prediction. Therefore, it is necessary to
combine 1-D CNN and RNN for speech recognition.

V. CONCLUSION
In this paper, EdgeRNN has been proposed as a compact
RNN model with spatio-temporal features for edge com-
puting. Compared to the existing efficient network models,
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EdgeRNN has better accuracy in the speech keywords and
emotion recognition. Meanwhile, EdgeRNN can be practi-
cally implemented on the typical edge computing devices,
such as Raspberry Pi 3B+. The downside is that EdgeRNN
cannot actually run faster on the Raspberry Pi than the full
2-D CNN network model. In the future, its performance
tuning will be a time-costly work for practical applications
of EdgeRNN.
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