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ABSTRACT Weighted network contains a lot of sensitive information and may seriously jeopardize
individual privacy. In this paper, we study the problem of differential privacy for weighted network.We found
most existing methods add noise to edge weights directly and neglect the structural role of node. These
methods perform with low accuracy. To address the above issue, we propose two approaches. One approach
describes a differential privacy method for Stochastic Block Model. This private SBM reveals and the
structural role of node and respects the privacy of it. Another approach develops a differential privacymethod
for weighted network through structuring a private probability model. We use Variational Bayes to learn the
private model parameters. It adds noise to the parameters of the probability model instead of edge weights,
and achieve high data utility. Experiments on real datasets illustrate that our algorithm privately releases
weighted network and achieves high accuracy.

INDEX TERMS Weighted network, differential privacy, stochastic block model, variational bayes.

I. INTRODUCTION
Social network is a form of dataset consisting of interactions
between pairs of individuals. Network data is represented
by graph structure where vertices represent individuals and
edges represent interactions. Recently, social network is
studied by sociologists, economics and informatics. Many
networks contain highly sensitive personal information, and
releasing them would pose seriously threats to individual’s
privacy. To respect the privacy of personal information, net-
work data should be released for public with ‘‘sanitization’’.
Anonymization techniques(e.g., k-anonymity [1] and
l-diversity [2]) are traditional methods to ensure network data
privacy. Recently, differential privacy has been proposed as a
way to address such privacy problem. Unlike the anonymiza-
tion methods, differential privacy provides strong theoretical
guarantees against adversaries with prior knowledge. The
standard technique of ensuring differential privacy is to
‘‘sanitization’’ the presence or absence of an edge.
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Unlike the relational data, vertices of network data are
pairwise related and play latent structural roles in generating
the network’s structure. Community is a common represen-
tation of such structural role, and identifies a network par-
tition which groups together vertices with similar structural
roles. Such structural role is important to the structure of
network. It is necessary to respect the privacy of structural
role. However, current locus of differential privacy of network
is around topological structure and neglect the structural role.
These methods cannot generate synthetic network which has
similar structural features with origin network. It is difficult
to analyze the cluster features using these private synthetic
network. In this paper, we first propose a differentially private
SBM algorithm called SSN(Sufficient Statistic Noisy). The
stochastic block model (SBM) [3], [4] is a popular generative
model for learning community structure of unweighted net-
works and it presents the connecting probability of pairwise
interactions among n vertices. Each vertex belongs to one of
K latent groups and the probability of each edge only depends
on the group memberships of the vertices. Vertices in the
same group play similar structural roles and are equivalent in
generating the network’s structure. Thus, we could respect the
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privacy of structural roles through the differentially private
SBM algorithm.

For unweighted networks, the presence or absence of
edge is represented as a binary variable. However, most
real-world networks are weighted networks which network
edges have weights. Christopher Aicher et al. [5] introduced
the Weighted Stochastic Block Model (WSBM), a general-
ization of the SBM for weighted networks. WSBM uses an
efficient variational Bayes approach to learn the parameters
and it handles one technical difficulty in fitting in with weight
distributions of edges, such as the degeneracy in the likeli-
hood calculation. What’s more, WSBM is important to our
differentially private weighted network releasing method.

Perturbing the edge weights directly is a common approach
to release differential privacy weighted network. However,
this kind of approaches incur excessive noise. As the sen-
sitivity of direct perturbation is the maximum edge. When
most of edge weights are much less than the maximum
edge, it results that the sensitivity to be prohibitively high
and suffers poor performance. In this paper, we propose a
differential privacy method for weighted networks, called
VB-WNDP(i.e.,Variational Bayes-Weighted Network Differ-
ential Privacy). Firstly, we use the idea of SSN algorithm to
protect the privacy of structural role. Then, we construct a
probability model of weighted network and use Variational
Bayes to learn the model parameters. We propose a method
to add noise to the model parameters in order to make the
model satisfies differential privacy. At last, we generate the
sanitized weighted network through synthetic network gen-
eration. VB-WNDP not only offer better data utility, but also
protect the the privacy of structural roles.

In summary, we present several contributions: (1)We intro-
duce a differentially private SBM algorithm named SSN.
This technique makes SBM satisfying differential privacy
and protects the privacy of structural role. (2) We develop
a differential privacy method for weighted network named
VB-WNDP. This method uses the idea of SSN to protect the
privacy of structural role and constructs a private weighted
network probability model to release the private weighted
network. (3) Through formal privacy analysis, we prove
that SSN and VB-WNDP both satisfy ε-differential privacy.
We experimentally study over real datasets, and the results
demonstrate that SSN and VB-WNDP perform with high
accuracy.

Our paper is organized as follows: Section II provides a lit-
erature review on differential privacy for networks. Section III
presents necessary background on differential privacy and
SBM. Section IV describes the differentially private SBM
algorithm SSN. Section V presents the weighted networks
differential privacy method VB-WNDP. Section VI reports
the comprehensive experimental results. Section VII con-
cludes the paper.

II. RELATED WORK
Many existing works about social network differential pri-
vacy focus on social network analysis. These methods output

some network statistics under differential privacy such as
degree distribution, subgraph number and clustering coeffi-
cient. Dwork et al. [6] added noise to outcome directly and
answered the queries under differential privacy. Hay et al. [7]
proposed a differentially private method in a post-processing
phase to compute the consistent input most likely to have
produced the noisy output. They used this to estimate
the private degree distribution. Karwa et al. [8] expanded
this concept to calculate the k-star count of network.
Zhang et al. [9] analysed the statistics through a lad-
der function and reduced the sensitivity effectively.
Cheng et al. [10] presented a two-phase differentially private
frequent subgraph mining algorithm called DFG. In DFG,
frequent subgraphs are privately identified in the first phase,
and the noisy support of each identified frequent subgraph is
calculated in the second phase. Ding et al. [11] published the
triangle counts satisfying the node-differential privacy with
two kinds of histograms: the triangle count distribution and
the cumulative distribution. Sun et al. [12] studied fundamen-
tal problems related to extended local view. They formulated
a decentralized differential privacy scheme named DDP,
which requires that each participant consider not only her own
privacy, but also that of her neighbors involved in her ELV.
They also designed a multi-phase framework under DDP that
enables an analyst to accurately estimate subgraph counts.

Differentially private social network releasing also
draws attention. Sala et al. [13] introduced a differen-
tially private graph model called Pygmalion for publishing
social network. Pygmalion extracts a graph structure into
private dK -graph and generates a synthetic graph.
Mir and Wright [14] used maximum likelihood estimation
to privately estimating the parameters of stochastic Kro-
necker graph model. Xiao et al. [15] proposed a differen-
tially private network publishingmethod HRG-MCMC. They
computed an estimator of graph in the hierarchical random
graph(HRG)model under differential privacy, and sampled
possible HRG structures in the model space viaMarkov chain
Monte Carlo (MCMC) witch satisfies the exponential mech-
anism. Qin et al. [16] investigated techniques to ensure local
differential privacy of individuals while collecting structural
information and generating representative synthetic social
graphs. They proposed LDPGen which incrementally clus-
ters users based on their connections to different partitions
of the whole population and adapted existing social graph
generation models to construct a synthetic social graph.
Chen et al. [17] presented a method for publishing differ-
entially private synthetic attributed graphs, which is able
to preserve the community structure of the original graph
without sacrificing the ability to capture global structural
properties.

Many existing works also focus on weighted network pri-
vacy. Liu et al. [18] identified weighted 1∗-neighborhood
attacks and defined probabilistic indistinguishability to
resist this attack. They proposed a HIGA scheme to gen-
erate a probabilistically indistinguishable social network.
Maria Skarkala et al. [19] presented a clustering-based
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k-anonymization technique for weighted network. This
method groups nodes with similar sets of neighbors and their
connections into supernodes and superedges, respectively.
Chen et al. [20] proposed k-histogram-inverse-l diversity to
investigate the sensitive label privacy disclosure problem in
weighted graph. Liu et al. [21] proposed privacy preserving
methods using the centrality based on complex network the-
ory to protect privacy of virtual assets.

Several works focus on weighted network differential
privacy. Li et al. [22] proposed the Merging Barrels and
Consistency Inference strategy to protect weighted social
graphs. They merged the barrels with the same count into one
group to reduce the noise required. They also did consistency
inference according to original order of the sequence as an
important postprocessing step to keep most of the shortest
paths unchanged. Wang and Long [23] proposed a modified
algorithm LMBCI to reduce the more substantial error MBCI
generated. Qian et al. [24] investigated the problem of pub-
lishing the topological information with the weight distribu-
tion of the weighted graph. They proposed two clustering
approaches based on sequence-aware and local density to
aggregate histogram.

According to the above mentioned works, we find that
only a few works focus on weighted network differential
privacy. These works neglect the structural role and incur
excessive noise on account of adding noise to weights. Hence,
we introduce a differential privacy method for weighted net-
work which could solve above problems.

III. BACKGROUND
A. DIFFERENTIAL PRIVACY
We model an input network dataset as a graph G = (V ,E),
where V is the set of vertices and E is the set of edges. Given
a graph G, differential privacy [6] insures the outputs to be
approximately same even if any edge is arbitrarily added or
deleted in the graph. Thus, the presence or absence of any
edge has a negligible effect on the outputs. We define two
graphs G1 = (V1,E1) and G2 = (V2,E2) to be neighbors if
they satisfy V1 ⊂ V2 where |V2| = |V1| + 1, E1 ⊂ E2 where
|E2| = |E1| + d(V2−V1). The degree of the node is denoted as
d (·). ε-differential privacy is defined as follows:
Definition 1 (ε-differential privacy): A randomized algo-

rithm A is ε-differential privacy if for any two neighboring
graphs G1 and G2, and for any output O ∈ Range (A),

Pr [A (G1) ∈ O] 6 eεPr [A (G2) ∈ O] . (1)

Differential privacy are based on the concept of global
sensitivity of a function f . It is used to measure the maximum
change in the outputs of f when any edge in the graph is
changed. The global sensitivity of f is defined as 1f =
maxG1,G2 ‖f (G1)− f (G2)‖1.
Differential privacy can be achieved by Laplace mecha-

nism and exponential mechanism. The Laplace mechanism
is mainly used for functions whose outputs are real values.
Differential privacy can be achieved by adding properly noise
drawn randomly from Laplace distribution to the true answer.

Theorem 1 (Laplace Mechanism): [6] For any function f :
G→ Rd with sensitivity 1f , the algorithm

A (G) = f (G)+
〈
Lap1

(
1f
ε

)
, . . . ,Lapd

(
1f
ε

)〉
. (2)

satisfies ε-differential privacy, where Lapi
(
1f
ε

)
are i.i.d

Laplace variables with scale parameter 1f
ε
.

The exponential mechanism is mainly used for functions
whose outputs are not real numbers. The main idea is to
sample the output data O from the output space O according
to the utility function u. The global sensitivity of u is 1u =
maxO,G1,G2 |u (G1,O)− u (G2,O)|.
Theorem 2 (Exponential Mechanism): [25] Given a

graph G and a utility function u : (G×O) → R, the arith-
metic A whose output is with probability proportional to
exp

(
ε·u(G,O)
21u

)
satisfies ε-differential privacy.

Theorem 3 (Sequential Composition 1): [26] If each arith-
metic Ai provides εi-differential privacy, a sequence of
(A1 (D) ,A2 (D) , . . . ,An (D)) over the same database D
provides

∑n
i=1 εi-differential privacy.

Theorem 4 (Sequential Composition 2): [27] Any sub-
set Diter sampled from D satisfies each data point is
included independently with probability p. If algorithm
A (Diter ) satisfies εiter -differential privacy, A (D) satisfies
log (1+ p ((eεiter )− 1))-differential privacy.

B. STOCHASTIC BLOCK MODEL
The adjacency matrix of social network contains binary val-
ues Aij which represents edge existences, i.e., Aij ∈ {0, 1}.
K denotes a fixed number of latent groups and each vertex
belongs to one of the K groups. The vector z represents the
group label of each vertex, i.e., zi ∈ {0, 1, 2, . . . ,K}. Vertices
in the same group play similar structural roles and connect
with vertices from other groups in the same distribution. The
variable lr represents the probability of vertices belongs to
group r , and the element θzizj in K -by-K matrix θ repre-
sents the connection probability of groups which vertex i
and vertex j belongs to respectively. πr represents the prior
distribution of lr and satisfies

∑K
r=1 πr = 1.

In SBM, {Aij} represents the observed data, {zi} represents
the latent data which can not be observed directly, 2 =
{θ, π} represents the parameters of the model. The likelihood
function of SBM is

Pr(A, z | θ, π)

= Pr(A, z, θ | π ) · Pr(z | θ, π)

=

∏
j

πzi ·
∏
i,j

θ
Aij
zizj (1− θzizj )

1−Aij

=

∏
j

πzi ·
∏
i,j

exp

(
Aij · log

(
θzizj

1− θzizj

)
+ log

(
1− θzizj

))

=

∏
j

(∑
i

πzi · exp
(
s
(
Aij
)
· n
(
θzizj

)))
. (3)
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where s (·) are sufficient statistics and s (x) = {x, 1}; n (·) are
natural parameters and n (x) =

{
log

(
x

1−x

)
, log (1-x)

}
.

IV. DIFFERENTIALLY PRIVATE SBM
A. DIFFERENTIALLY PRIVATE SBM DESCRIPTION
This section shows the details of differentially private SBM
algorithm. During the parameter learning process, maximum
likelihood estimation is used normally. EM algorithm intro-
duces a probability distribution over latent variables to give
rise to a lower bound on log likelihood. EM algorithm itera-
tively alternates between the parameters and the probability
distribution over the latent variables, and its iterative process
is

E-step: Given the parameters {θ, π}, output the latent
variables {z}.
M-step: Given the latent variables {z}, output the

parameters {θ, π}.
To satisfies the differential privacy, a straightforward

approach is to add perturbation noise to both the parameters
and the latent variables directly in each iteration. However,
this approach may produce much cumulative noise and suf-
fer poor performance. The root cause is: (1) The parame-
ters of each vertex in each iteration produce noise respec-
tively. (2) Latent variables in each iteration produce noise.
Thus, we propose a differentially private SBM algorithm
called SSN, which uses Variational Bayesian EM(VBEM) to
compute the model parameters and obtain the differentially
private SBM.

In VBEM, latent variables and model parameters are both
treated as random variables. Their posterior distributions
Pr (z, θ, π | A) are learned. However, the posterior distri-
bution is generally difficult to calculate. Instead, we use a
factorizable distribution q (z, θ, π) = q (θ, π) ·

∏
N q (z) to

approximate the posterior distribution. As SBM falls in the
conjugate-exponential (CE) family, the iterative process of
VBEM is composed by updating the parameters of CE family:

VBE:

q (z) =
∏
N

q (zi) . (4)

where CE family is expressed as q (zi) ∝ exp
(
n̄> · s

(
Aij, zi

))
,

and the expected natural parameters is expressed as n̄ =
〈n (θ, π)〉q(θ,π).
VBM:As the prior over the parameters are conjugate to

q (θ, π), q (θ, π) can be expressed as:

q (θ, π) = h
(
η′, ν′

)
· g (θ, π)η

′

· exp
(
ν′> · n (θ, π)

)
. (5)

where η′ = η + N and ν′ = ν +
∑

N s̄
(
Aij
)
are the

hyperparameters of prior; g (θ, π) =
(
πzi
)i; h (η′, ν′) is

a normalizing constant. The expected sufficient statistics is
expressed as s̄

(
Aij
)
=
〈
s
(
Aij, zi

)〉
q(zi)

.
To satisfies the differential privacy in each iteration,

we need to add noise to q (zi) and q (θ, π). For q (θ, π),
we update ν′ by calculating expected sufficient statistics
s̄
(
Aij
)
, and then compute q (θ, π). As the algorithm needs to

FIGURE 1. The framework of SSN.

look at the original data Aij when computing s̄
(
Aij
)
, we need

to add noise to s̄
(
Aij
)
. When we compute q (zi), the algorithm

needs to look at the original data Aij directly. So we also
need to add noise to q (zi) directly. However, it produces a
excessive amounts of additive noise when adding noise to
q (zi) directly. The reason is that it is necessary to add noise
to the latent variables of each vertex and we do not need to
output the latent variables during the process of iteration.

To this end, we introduce our SSN algorithm. During the
iteration process, we only need to add noise to s̄

(
Aij
)
. The

output of computing q (zi) is only treated as the input of
computing s̄

(
Aij
)
, not other variables. And it is not necessary

to look at the original data Aij when computing the natural
parameters n (θ, π). Thus, it is not necessary to add noise to
n (θ, π). In Fig. 1, we show the framework of SSN.

B. THE GLOBAL SENSITIVITY OF SSN ALGORITHM
As discussed above, SSN algorithm satisfies the differential
privacy by adding noise to the sufficient statistics during
each iteration. The global sensitivity of the sufficient statistics
is the maximum difference of sufficient statistics when any
vertex and its adjacent edges both change. More specifically,
it equals to maxA,A′

∣∣s̄ (A)− s̄ (A′)∣∣, where A′ is the neighbor
network. The K ×K expected sufficient statistics of SBM set
corresponds to the K × K bundles.

We assume that P is the edge set between arbitrary groups
a and b, and the size of P is p. Q is the number of changing
edges of P when any vertex changes, and the size of Q is q.
We know that q is less than the number of vertices in group a
and b. The global sensitivity of the sufficient statistic between
group a and group b is expressed as:

maxA,A′
∣∣s̄ (A)− s̄ (A′)∣∣

= maxA,A′

∣∣∣∣∣∣
∑
ij

∑
(zi,zj)=u

s (A)−
∑
ij

∑
(zi,zj)=u

s
(
A′
)∣∣∣∣∣∣

=

∣∣∣∣∣∣1p
∑
Aij∈P

s
(
Aij
)
· li,zi · lj,zj

−
1

p− q

∑
Aij∈

(
P-Q

) s
(
Aij
)
· li,zi · lj,zj

∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣1p
∑

Aij∈(P−Q)

s
(
Aij
)
· li,zi · lj,zj

−
1

p− q

∑
Aij∈

(
P-Q

) s
(
Aij
)
· li,zi · lj,zj

+
1
p

∑
Aij∈Q

s
(
Aij
)
· li,zi · lj,zj

∣∣∣∣∣∣
6

∣∣∣∣∣∣∣
q

p(p− q)

∑
Aij∈

(
P-Q

) s
(
Aij
)
· li,zi · lj,zj

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣1p
∑
Aij∈Q

s
(
Aij
)
· li,zi · lj,zj

∣∣∣∣∣∣ . (6)

where li,zi is the probability that vertex i belongs to group zi,
and satisfies li,zi 6 1. As a result, the global sensitivity
maxA,A′

∣∣s̄ (A)− s̄ (A′)∣∣ 6 2q
p .

V. DIFFERENTIAL PRIVACY FOR WEIGHTED NETWORK
We now formally describe the differential privacy weighted
networks publishing method VB-WNDP. Unlike the meth-
ods which adding noise directly to the weights, VB-WNDP
uses the idea of partition in WSBM. The weights in the
same group-group relationship obey the same distribution and
have the same parameters. In this paper, we model the edge
weights with the normal distribution and the edge weights
are real-valued. The parameter θzizj represents the existence
probability of an edge between group zi and group zj. It only
depends on the group memberships of vertices i and j. It is
parameterized by a mean and variance θzizj =

(
µzizj , σ

2
zizj

)
,

and the likelihood is

Pr
(
A, z | µ, σ 2, π

)
=

∏
j

πzi ·
∏
ij

N
(
Aij | µzizj , σ

2
zizj

)
=

∏
j

πzi ·
∏
ij

exp

(
Aij ·

µzizj

σ 2
zizj

− A2ij ·
1

2σ 2
zizj

− 1 ·
µzizj

σ 2
zizj

)
.

(7)

where the sufficient statistic s =
(
x, x2, 1

)
, and the natural

parameter n =
(
µ

σ 2
,− 1

2σ 2
,−

µ2

2σ 2

)
.

We define r as the K × K indexes between groups.
Thus, the parameters 2 = {θ, π} can be represented
as 2 = {21,22, . . . ,2r }. The sufficient statistic and
the natural parameter are sr and nr respectively. The
expected sufficient statistic can be represented as s̄r =
1
pr

∑
ij
∑
(zi,zj)=r s

(
Aij · li,zi · lj,zj

)
, where pr is the number of

edges in r .
We add noise to satisfy the differential privacy by using

the idea of SSN algorithm. The variables should be perturbed
are merely the expected sufficient statistics. We add Laplace

noise to the expected sufficient statistics as

˜̄sr = s̄r + Yr . (8)

where Yr ∼ Lap
(
1s̄
ε

)
.

A. SENSITIVITY COMPUTATION OF VB-WNDP
We separate the edge into the edge existence and the edge
weight respectively. For the edge existence, the number of
edge represents the edge existence, specifically 1 represents
the existence of edge and 0 represents the inexistence. The
linear summation of egde weights represents the number of
edges. When we use the node differential privacy, we could
use the linear summation of egde weights to compute the sen-
sitivity. However, for the edge weights with integer, the linear
summation of edge weights neither represents the number
of edges nor the maximum change of the number of edges
which the existence or the inexistence of any vertex leads to.
What’s more, it also do not represents the maximum change
of a single edge weight. As a result, we cannot use the linear
summation of edge weights to compute the sensitivity when
the node differential privacy is used. So we use the edge
differential privacy and the neighbour network only changes
an edge. We could use the change of an edge weight to
compute the global sensitivity.

The global sensitivity of s̄r is represented as 1s̄r =
maxA,A′

∣∣s̄r (A)− s̄r (A′)∣∣. We assume that the neighbour net-
work A′ changes the maximum edge weight Ar0 in r . The
global sensitivity of s̄r is

1s̄r
= maxA,A′

∣∣s̄r (A)− s̄r (A′)∣∣
=

∣∣∣∣∣∣ 1pr
∑
ij

∑
(zi,zj)=r

s
(
Aij
)
· li,zzi · lj,zj

−
1

pr − 1

∑
ij

∑
(zi,zj)=r excluding Ar0

s
(
Aij
)
· li,zzi · lj,zj

∣∣∣∣∣∣
6

∣∣∣∣∣∣ 1pr
∑
ij

∑
(zi,zj)=r excluding Ar0

s
(
Aij
)

−
1

pr − 1

∑
ij

∑
(zi,zj)=r excluding Ar0

s
(
Aij
)
+

1
pr
· s
(
Ar0
)∣∣∣∣∣∣

=

∣∣∣∣∣∣ 1
pr (1− pr )

∑
ij

∑
(zi,zj)=r excluding Ar0

s
(
Aij
)
+

1
pr
· s
(
Ar0
)∣∣∣∣∣∣

=
1

pr (1− pr )

∣∣∣∣∣∣
∑
ij

∑
(zi,zj)=r excluding Ar0

s
(
Aij
)

+ (pr − 1) · s
(
Ar0
)∣∣ . (9)

As s =
(
x, x2, 1

)
is a decreasing function, we could

get s
(
Ar0
)
> s

(
Aij
)
(zi,zj)=r excluding Ar0

. So the global
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sensitivity is

1s̄r 6
1

pr (pr − 1)
· 2 (pr − 1) · s

(
Ar0
)
=

2
pr
s
(
Ar0
)
. (10)

B. VB-WNDP ALGORITHM DESCRIPTION
The weighted network differential privacy algorithm
VB-WNDP is shown in Algorithm 1.

The likelihood has the form of an exponential family and
we could compute the sufficient statistics and the natural
parameters. We use the idea of SSN algorithm to satisfy the
differential privacy. In VBEM, we aim to compute an approx-
imation to the posterior distribution. In conjugate-exponential
(CE) class, we could update the hyperparameters (η, ν) dur-
ing the iteration process to get the approximation to the
posterior distribution. During the iteration process, we add
noise to the expected sufficient statistics and use them to
update the hyperparameter ν. The iteration process operates
until the hyperparameters converge. At last for each pair of
vertices, we could sample the edge weight through the noisy
parameters of exponential family, and then get a sanitized
synthetic network.

Algorithm 1 VB-WNDP Algorithm
Input: Input network A, group number K , privacy parameter
ε

Output:Sanitized network Ã
1. Turn the likelihood of the model to CE class.
2. Update the model parameters (π, θ) in a differentially
private way. See Algorithm 2.
3. For each pair of vertices (i.j), place an edge weight Aij ∈ R.
4. Return sanitized network Ã.

The process of parameter learning is shown in Algorithm 2.
We first initialize the latent variables l. Vertices are divided
in each group with the same probability and we set the initial
value of the latent variables as l = 1

k (line 1). As the
model parameters are divided by K ×K bundles, the privacy
parameter ε is divided into εr = log

(
K 2
· (eε − 1)+ 1

)
by

the sequential composition property of differential privacy
(line 2). For computing the expected sufficient statistics of
each edge bundles,we need to compute the sufficient statis-
tic of each edge in r (line5-7). To satisfy the differential
privacy, we need to add Laplacian noise to s̄r . The global
sensitivity of s̄r is denoted as 1s̄r = 2

pr
s
(
Ar0
)
by using (10)

(line8-9). Based on the conjugate property of exponential
family, we update the hyperparameter ν′r by ˜̄sr and then
compute the posterior distribution of the parameters (θ, π)
(line10-11). To compute the latent variables, we need to
compute the expected natural parameters n̄r (line 12). As it
is unnecessary to look at the data A directly when comput-
ing ν′r and n̄r , we only need to add noise to the result of
computing ˜̄sr . Suppose we update ν until convergence takes
O (J) time, all the iterative process takes O

(
JK 2

)
. When

computing the latent variable li,zi of each vertex, vertex
i must sum over its connected vertices in r . Then we

Algorithm 2 The Process of Parameter Learning
Input: Input network A, group number K , privacy parameter
ε

Output:Sanitized model parameters (θ, π)

1. Initialize l = 1
K .

2. Divide privacy parameter ε into ε1, ε2, . . . , εK2 ,
where εr = log

(
K 2
· (eε − 1)+ 1

)
.

3. repeat
4. for r = 1, 2, . . . ,K 2 do
5. Compute the edge number pr in bundle r .
6. Compute the sufficient statistic S

(
Aij
)
of each edge in

r .
7. Compute the expected sufficient statistic

s̄r = 1
pr

∑
ij
∑
(zi,zj)=r s

(
Aij
)
· li,zi · lj,zj .

8. Ar0← maximum edge in r , 1s̄r = 2
pr
s
(
Ar0
)
.

9. Add Laplacian noise to s̄r and get
˜̄sr = s̄r + Yr , where Yr ∼ Lap

(
1s̄
ε

)
.

10. Update the hyperparameter ν′r = νr + ˜̄sr .
11. Output the posterior distribution q (θ, π).
12. Compute the expected natural parameter

n̄r =
〈
nr(θ,π)

〉
q(θ,π).

13. end for
14. for i = 1, 2, . . . ,N do
15. Compute

li,zi ∝ exp
(∑

r
∑
(zi,zj)=r

∑
j s
(
Aij
)
· li,zi · n̄r

)
.

16. end for
17.until l, ν converge.
18.return θ, π.

get li,zi in exponential family(line14-16). Moreover, we do
not need to add noise to li,zi directly. The reason is that
it is unnecessary to output li,zi most of the time. It will
take O (JN ) time for all N vertices for all the iterative
process.

C. PRIVACY ANALYSIS OF VB-WNDP
Taken with the sequential composition theorem of differential
privacy, we can prove that VB-WNDP ensures ε-differential
privacy.
Theorem 5: VB-WNDP satisfies ε-differential privacy.
Proof: Suppose the hyperparameter ν and the latent

variable l converge taking J times. In Algorithm 2, the iter-
ative process of each bundle satisfies εiter -differential pri-
vacy. Based on Theorem 4, each iterative process satis-
fies log

(
1+ 1

K×K ((e
εiter )− 1)

)
-differential privacy, all the

iterative process satisfies J · log
(
1+ 1

K×K ((e
εiter )− 1)

)
-

differential privacy. After getting the model parameters,
it does not consume any privacy budget when we output the
synthetic network. Hence, VB-WNDP satisfies ε-differential
privacy, and ε = J · log

(
1+ 1

K×K ((e
εiter )− 1)

)
. �
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TABLE 1. The statistics of adjnoun, football and karate.

VI. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the algorithm
we propose on several real-world networks. As differential
privacy need to produce random noise, we measure the accu-
racy of the result by the median relative error where we run
the Laplace mechanism for 10 times.

A. DATASETS
(1) We evaluate the utility of SSN algorithm over three
real-life datasets, namely Adjnoun, Football and Karate. Adj-
noun contains the network of common adjective and noun
adjacencies for the novel ‘‘David Copperfield’’ by Charles
Dickens. Nodes represent the most commonly occurring
adjectives and nouns in the book and edges connect any pair
of words that occur in adjacent position in the text of the
book. Football contains the network of American football
games between Division IA colleges during regular season
Fall 2000. The nodes have values that indicate to which
conferences they belong. Karate contains the network of
friendships between the 34 members of a karate club at a US
university.The statistics of these data is shown in Table 1.

(2) We evaluate the utility of VB-WNDP algorithm over
three real-life weighted network datasets, namely Bison [28],
Macaque [29] and Residence hall [30]. Bison describes the
usual aggressive behaviors (fighting, nod-threats, broadside
threats, head-on threats, rush threats and supplanting) were
recorded among 26 males in a herd of American bison.
Observations were recorded for 12 hours per day from
July 25 through August 14, 1972 on the National Bison
Range in Moiese, Montana. A node represents a bison and
an edge represents dominance of the left bison over the right
bison. Macaques records dominance of the row animal over
the column animal in a colony of 62 adult female Japanese
macaques (Macaca fuscata fuscata). They are known as
the "Arashiyama B group". Records were made during the
non-mating season, April to early October, 1976. A node
represents a macaque and a directed edge A to B represents
dominance of macaque A over macaque B. Residence hall
collects friendship data among the 217 residents living at a
residence hall located on the Australian National University
campus. A node represents a person and an edge represents
the friendship. The statistics of these data is shown in Table 2.

B. EVALUATION OF SSN
To show the utility of SSN algorithm,we compare the Nor-
malizedMutual Information (NMI). NMI is a kind ofmeasure
to score the accuracy of community detection. The NMI is

TABLE 2. The statistics of bison, macaque and residence.

FIGURE 2. Normalized mutual information.

represented as:

NMI (X ,Y ) =
2I (X ,Y )

H (X)+ H (Y )
(11)

where H (X) is the Shannon entropy of X, and I (X ,Y ) =
H (X) − H (X | Y ). It takes a value close to one if the
assignments are identical and zero if they are uncorrelated.
We compare with a straightforward method which adding
noise to the model parameters {θ, π} directly during the
iterative process of SBM. We allocate the privacy budget ε
as follows: 0.5,1.0,1.5,2.0 and 2.5.
From Fig. 2, we can see that SSN outperforms the straight-

forward method. When privacy budget is relatively large, its
NMI always stays high. With the increase of ε, the NMI rises.
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FIGURE 3. Relative error of edge weights on different ε.

As ε increases, the scale of noise reduces. From
Figs. 2(a) and 2(b), we can also see NMI increases gradually
with increases. However in Figs. 2(c), we can see NMI
increases massively with increases. The reason is that the
scale of Karate is smaller than Adjnoun and Football and it
leads to a greater influence on NMI when we add more noise.

C. EVALUATION OF VB-WNDP
To show the utility of VB-WNDP algorithm, we compare the
relative error of edge weights and evaluate the relative error
for VB-WNDP under the group number K.. We represent the
relative error of edge weights as:

rel.err =
1
m

∑
ij

∣∣∣Aij − Ãij∣∣∣ . (12)

where Ãij is the differentially private output and m is the
number of edges.

In Fig. 3, we evaluate the relative error of edge weights,
comparing with two methods. The main idea of the first
one method is adding noise to the edge weights directly,
we named it Lap-edge. Another method is MB-CI. What’s

FIGURE 4. Relative error of edge weights on different K .

more, we use the method which generating synthesis net-
works by SBMwithout differential privacy as a base.We allo-
cate the privacy budget ε as follows: 0.5,1.0,1.5,2.0 and 2.5.
From Fig. 3, we can see that VB-WNDP outperforms

both Lap-edge andMB-CI. When privacy budget is relatively
large, its relative error always stays low. With the increase
of ε, the relative error increases. As ε increases, the scale of
noise reduces.

In Fig. 4, we show how the group number K affects the out-
put of the relative error of edge weights. In this experiment,
we set the privacy budget ε to be 0.5, and we use the method
which adding noise to the edge weights directly as a base.
We set the group number K as follows: 2,4,6 and 8. Form
Fig. 4, we can see, adding noise to the edge weights directly
generates poor results. With the increase of K , the relative
error decreases. When K increases, the level we divide the
group is higher. As each group-group partition has indepen-
dent parameters, the noise we need to add is independent
to each other. By dividing the vertices into a greater group
number, the parameters are more accurate.
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VII. CONCLUSION
In this paper, we investigate the problem of differential pri-
vacy for weighted network.We observe that the structural role
of the node affects the topological structure of the network
and it is necessary to take it into account in differential
privacy for weighted network. We introduce a differential
privacy algorithm for stochastic block model named SSN
to solve the problem. By leveraging such technique,we also
design a differential privacy method for weighted network
named VB-WNDP. It can improve the utility of the
method which adding noise to edges directly. In particular,
VB-WNDP establishes a probability model of weighted net-
work through Variational Bayes. To improve the accuracy,
we add noise to sufficient statistic instead of the model
parameters during iteration process. Privacy analysis and the
results of extensive experiments on real datasets show that our
algorithm can achieve a high data utility.
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