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ABSTRACT Trust represents the belief or perception of an entity, such as a mobile device or a node,
in the extent to which future actions and reactions are appropriate in a collaborative relationship. Reputation
represents the network-wide belief or perception of the trustworthiness of an entity. Each entity computes
and assigns a trust or reputation value, which increases and decreases with the appropriateness of actions
and reactions, to another entity in order to ensure a healthy collaborative relationship. Trust and reputation
management (TRM) has been investigated to improve the security of traditional networks, particularly the
access networks. In 5G, the access networks are multi-hop networks formed by entities which may not
be trustable, and so such networks are prone to attacks, such as Sybil and crude attacks. TRM addresses
such attacks to enhance the overall network performance, including reliability, scalability, and stability.
Nevertheless, the investigation of TRM in 5G, which is the next-generation wireless networks, is still at
its infancy. TRM must cater for the characteristics of 5G. Firstly, ultra-densification due to the exponential
growth of mobile users and data traffic. Secondly, high heterogeneity due to the different characteristics of
mobile users, such as different transmission characteristics (e.g., different transmission power) and different
user equipment (e.g., laptops and smartphones). Thirdly, high variability due to the dynamicity of the entities’
behaviors and operating environment. TRM must also cater for the core features of 5G (e.g., millimeter wave
transmission, and device-to-device communication) and the core technologies of 5G (e.g., massive MIMO
and beamforming, and network virtualization). In this paper, a review of TRM schemes in 5G and traditional
networks, which can be leveraged to 5G, is presented. We also provide an insight on some of the important
open issues and vulnerabilities in 5G networks that can be resolved using a TRM framework.

INDEX TERMS Next-generation networks, 5G, cooperation, trust and reputation management, artificial
intelligence.

I. INTRODUCTION

5G is the next-generation wireless network that aims to
improve spectral efficiency and energy efficiency in the pres-
ence of a large number of mobile devices (or nodes) and data
traffic in order to increase data rate (or network capacity),
as well as to reduce latency and energy consumption [1],
[41]. Figure 1 shows a 5G network that must cater for the
next-generation network characteristics, including: a) ultra-
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densification in which there is a significant increase in the
number of network entities (e.g., the number of small cells,
such as pico cells and femto cells, in an area); b) high het-
erogeneity in which there are different network entities (e.g.,
network cells and devices), network characteristics or scenar-
ios (e.g., indoor and outdoor), user requirements (e.g., quality
of service), and so on; and ¢) high variability in which bursty
traffic (or network traffic that changes significantly) causes
insufficiency and surplus of bandwidth within a short period
of time. Network entities, such as network cells and user
devices, must cooperate and coordinate with each other via
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message exchange to perform cooperative tasks in order to
enhance the overall network performance (e.g., end-to-end
delay, successful packet transmission rate, and scalability).
Examples of cooperative tasks are: a) cooperative communi-
cation that enables neighboring nodes to cooperate with each
other and work as relays to forward information or packets
to intended destinations [42]; b) channel access that enables
neighboring entities to gather network information about
channel availability; and c) clustering that enables nodes to
segregate themselves into logical groups in order to enhance
network stability and scalability.

While cooperation is important for network functionalities
[22], [52], it has opened door to various security vulnera-
bilities, particularly in access networks. A successful coop-
eration must remove or reduce the detrimental impacts of
malicious or misbehaving entities as time goes by. Trust and
Reputation Management (TRM), which is embedded in an
entity, calculates the trust and reputation values of another
entity in an independent manner [21], or in cooperation with
neighboring entities [4], [5], or a third party entity [50]. TRM
rewards and increases the trust or reputation values of legiti-
mate entities, as well as punishes and reduces the trust or rep-
utation values of malicious or misbehaving entities, as time
goes by. This helps to identify malicious or misbehaving
nodes so that countermeasures, such as to remove them
from collaboration and to reduce their detrimental impacts
to cooperation, can be taken. The unique characteristics of
next-generation networks, including ultra-densification, high
heterogeneous, and high variability, have brought about new
challenges to the provision of TRM in 5G.

Traditional security measures, such as cryptography [2],
[12], and intrusion detection systems [12], [40], which pro-
vide confidentiality, integrity and authentication, provide
security services to countermeasure external attacks (e.g.,
man-in-the-middle [2] and eavesdropping [2], [40]) at the
application layer. In contrast, TRM provides security services
to countermeasure both external and internal attacks, such
as crude [33], [35], [53], wormhole [21], [50], [53], black
hole [4], [5], [35], and routing loop [5], [34], [50], attacks at
lower layers, particularly the network and data link layers (see
Table 5, for more details). For instance, TRM continuously
monitors the trust and reputation values of nodes despite
a successful initial authentication so that any changes of
behaviors from legitimate to malicious can be detected.

A. CONTRIBUTIONS

This paper presents a review of the state of the art of TRM
in 5G, as well as other networks, particularly cognitive radio
networks (CRNSs), vehicular ad-hoc networks, and 4G, which
can be leveraged to 5G. This paper focuses on TRM in access
networks, rather than core networks. The review is neces-
sary as collaboration is essential to various schemes in 5G
access networks, including channel access, channel sensing,
interference mitigation, and collaborative applications that
require content sharing, and TRM has shown to detect mali-
cious nodes and manipulated data efficiently in collaboration.
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Various aspects of TRM are covered, including objectives,
challenges, characteristics, attacks, and performance metrics;
and these aspects are related to the state of the art. This paper
also explains various open issues that can be explored to
further enhance TRM in 5G.

B. ORGANIZATION OF THE PAPER

The rest of this paper is organized as follows. Section II
presents background and the roles of TRM in 5G. Section III
focuses on the taxonomy of TRM in 5G. Section IV presents
a TRM framework covering the mechanisms of TRM.
Section V presents existing TRM schemes in 5G. Section VI
presents open issues, and finally Section VII concludes the

paper.

Il. BACKGROUND AND THE ROLES OF TRM IN 5G

This section presents the background of 5G, including its
architecture and new features with emphasis on the security
vulnerabilities of the new features that are brought about
by their needs for collaboration in 5G. This section also
presents the background of TRM with the main interest on
the roles of TRM in addressing the security vulnerabilities of
the new features of 5G. Further description about TRM in 5G,
including its challenges, is presented in Section III.

A. WHAT IS 5G?

5G is the next-generation wireless network aspired to achieve
high data rate (or network capacity), as well as low latency
and energy consumption. Table 1 summarizes some notable
differences and significant improvement in terms of network
performance in 5G as compared to 4G.

1) 5G ARCHITECTURE

5G uses a control-data separation architecture (CDSA) in
which the control and data planes are available in separate
hardware devices in 5G. However, they are tightly coupled in
a single hardware device in traditional networks. The control
plane, which has controllers and network-wide information,
performs management and services, such as routing and
resource allocation, that impose policy on the data plane;
while the data plane performs data storage and forwarding
[1]. Specifically, the functions of the control plane are per-
formed using software running based on software-defined
networking (SDN) [14], [40], network function virtualization
[34], [40], and network slicing [14], and the functions of the
data plane are performed using less complex user devices
in 5G. Hence, 5G provides programmability and reconfigu-
ration. On the other hand, both control and data planes are
performed by specialized hardware devices, such as routers
and switches, in 4G.

Figure 2 shows that: a) macro cell, which serves as the
control plane, has the largest coverage at the expense of
lower data rate because lower frequency bands (e.g., less
than 2 GHz) are used; and b) small cell (i.e., pico and femto
cells), which serves as the data plane, has smaller coverage
although it has higher data rate because higher frequency
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TABLE 1. Comparison between 4G and 5G.

Category Details Performance enhancement
4G 5G
Data rate Up to 1 Gbps Up to 20 Gbps
Spectral efficiency 30 bps/Hz 120 bps/Hz
Performance | Latency 10 ms 1 ms
Mobility support Up to 350 Km/h | Up to 500 Km/h
Energy efficiency 0.1 mJ/100 bits | 0.1 pJ/100 bits
Frequency band 2-8 GHz 2-300 GHz
Channel - - o o
Connection density 1,000/km 1,000,000/km
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FIGURE 1. The features and cooperative scenarios of 5G wireless networks. These include SDN, clustering,
D2D communication, beamforming, CoMP, and CRN. The malicious users MU* are characterized by high
heterogeneity and ultra-densification in the presence of various kinds of network cells and user equipment
(UE) such as mobile (MU), laptop, cluster head (CH) as relay node, including macro cell, small cells (i.e., pico
and femto cells), base stations (BSs)/controllers, and cloud.

bands (e.g., mmWave or more than 30 GHz) are used. TRM
has been investigated to improve the security of UE in access
network, whereby UEs form a multi-hop network and may
connect to BSs [6], [17], [39]. However, TRM has not been
investigated to improve the security of BSs in the network
core, whereby multiple BSs from different network cells
communicate with each other [16], [54]. Both macro cell and
small cells can use different frequency bands. As an example,
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high transmission power and low frequency bands are used to
provide long-range transmission (as shown using solid lines
in Figure 2). As another example, low transmission power
and high frequency bands are used to provide short-range
transmission (as shown using dotted lines in Figure 2). The
base station (BS) of each network cell has different kinds
of radio access technologies (RATSs) to access licensed (or
cellular) and unlicensed (or cognitive) channels; contributing
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FIGURE 2. 5G architecture. Macro cell, pico cell, and femto cell overlap
among themselves. Macro cell handles the control plane and is
connected to the cloud network, which consists of the central

controller or management node, via backhaul. Dotted lines represent
communication in a network cell, such as data transmission from one UE
(or network device) to another UE via a relay UE (or service node). Solid
lines represent communication between network cells, such as control
message exchange between macro cell and small cell BSs (or terminals).
For simplicity, BS refers to terminal, UE refers to network device, relay UE
refers to service node, and central controller refers to management node.

to the heterogeneous nature of 5G. In addition, the BS of
the macro cell is connected to the cloud, which provides
access to a central controller. The central controller collects
network-wide information on traffic characteristics (e.g., traf-
fic pattern, congestion level, and interference level), network
performance, network resources (e.g., computing and storage
capabilities), and network services (e.g., medium access con-
trol, route selection, and resource allocation).

Cognition (or intelligence) can be incorporated in macro
cells, small cells, and the central controller to make intel-
ligent decisions. Artificial intelligence approaches, such as
reinforcement learning (RL) [34], and its deep variant called
deep reinforcement learning (DRL) [25], [58], enable an
agent (or decision maker such as the central controller and
BS) to observe and learn from the operating environment.
In order to use the artificial intelligence approach, the three
main representations of RL and DRL, namely state, action,
and reward, must be designed. The state represents the deci-
sion making factors (e.g., the estimates of trust values) that
affect action selection and reward. The action represents a
selected action, such as a forwarding entity (or node). The
reward represents network performance (e.g., packet delivery
rate, malicious node detection rate, and false alarm) achieved
by the agent for taking the action under the state, which
may either improve or deteriorate. As an example, artificial
intelligence can be used by network cell BSs to choose the
right RAT so that they can establish communication with
their nodes with higher quality of service (QoS) and qual-
ity of experience (QoE). The agent is embedded in each
network cell BS. The state represents radio frequency (i.e.,
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TABLE 2. Characteristics of network cells.

Cells Coverage | Transmission power Users
Macro 1-30 km 5-25 watts Upto 1000
Pico 100-250 m 250 mw 32-64
Femto 10-50 m 100 mw 8-16

lower or higher frequencies), the action represents the selec-
tion of an ideal radio technology to communicate, and the
reward represents successful packet delivery rate, which is
a QoS performance metric. As another example, artificial
intelligence can be used by network cell BSs to adjust their
transmission power so that they can reduce inter-cell interfer-
ence with both neighboring and overlapping network cells,
which helps to improve channel sharing. Similarly, the agent
is embedded in each network cell BS. The state represents the
coverage or position of a user or network entity, the action
represents a beam towards the user or network entity, and the
reward represents the reduced interference level.

Table 2 summarizes the characteristics of macro cell, pico
cell, and femto cell. The macro cell has the largest coverage,
the highest transmission power, and the highest number of
users supported. The largest coverage is attributed to the
use of lower frequency bands that provide higher penetra-
tion power and longer propagation distance. The small cells
(i.e., pico cell and femto cell) have smaller coverage, lower
transmission power, and lower number of users supported.
The small cells are suitable for small areas. For instance, pico
cell can be used in the university and airport compounds, and
femto cell can be used in the indoor environment. Neverthe-
less, the small cells provide: a) higher data rate because higher
frequency bands (e.g., mmWave or 2-300 GHz frequency
bands) and beamforming with multiple MIMO for directional
transmission are used; b) lower delay because of local pro-
cessing at close proximaty BSs; c¢) lower energy consumption
because of communication among close proximity BSs and
nodes; and d) higher connectivity and larger coverage because
of its coverage extension. Small cells can offload traffic from
the macro cells.

2) 5G FEATURES

Collaboration requires different network entities to share
information and make intelligent decisions based on
collective information in order to improve network perfor-
mance. However, malicious entities can exploit collaboration
to reduce network performance. One common method is
that the malicious entities manipulate the information being
exchanged among the network entities in order to affect
the final decision. TRM assists network entities to calculate
trust or reputation values, identify, and isolate malicious
entities from collaboration. The security vulnerabilities of
the collaboration required in various new features being
introduced in 5G, as shown in Figure 1, can be exploited as
shown below.
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o Massive multiple-input and multiple-output (MIMO)
uses an array of antennas (e.g., 16 antennas per sector
[24]) at transceivers so that multiple mobile users can
communicate with a BS simultaneously, leading to a
higher beamforming gain, as well as spectral and energy
efficiencies. Nevertheless, the use of a large number of
antennas can increase interference, computational com-
plexity, and hardware cost. Cooperation enables network
entities (e.g., BS) equipped with antennas at different
locations to direct transmission in different locations in
order to reduce interference using beamforming. How-
ever, when malicious or misbehaving network entities
share and exchange manipulated information (e.g., loca-
tion information), direct transmission in the inaccu-
rate or wrong direction can cause interference.

o Millimeter wave (or mmWave) transmission allows
nodes to communicate in the frequency bands between
3 GHz to 300 GHz, providing a high data rate of up
to 20 Gbps, which improves spectal and energy effi-
ciencies. This means that the operating frequency bands
from 2 to 8 GHz in the conventional 4G networks must
be extended to higher frequency bands (i.e., 8-300 GHz)
[10], [36]. Nevertheless, mmWave has a high frequency
range and so it has short wavelength, resulting in poor
penetration through obstacles and high propagation loss
[36]. In other words, mmWave is suitable for short-
range communication. Collaboration enables network
entities to share channel availability information (e.g.,
channel sensing outcomes) so that transmission can be
made in the right channel. However, malicious and mis-
behaving network entities can cause interference. The
malicious nodes share and exchange manipulated chan-
nel availability information, and so the legitimate net-
work entities may not access available channels causing
reduced bandwidth availability, and may access unavail-
able channels causing interference.

e Device-to-device (or D2D) communication allows
neighboring nodes to communicate with each other
directly without going through the BS in order to
increase data rate, as well as reduce latency and energy
consumption. Collaboration enables network entities to
share information so that the proximal nodes, which are
located within a particular distance with each other, can
benefit from each other in a diverse range of applications
(e.g., content sharing and public safety) via collabo-
ration and communication. However, when malicious
nodes share manipulated information with other nodes,
the inaccurate information or malicious codes can affect
other nodes’ trust value and deteriorate network perfor-
mance.

o Dynamic channel access allows nodes to sense for and
use white spaces (or underutilized channels), which can
be in the conventional or mmWave frequency bands,
in order to improve spectral efficiency. Similar to cog-
nitive radio, distributed or cooperative channel sensing
enables unlicensed or secondary users (SUs) to sense
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for underutilized channels and share sensing outcomes
amongst themselves in order to make final decisions on
channel access, which is more accurate as compared
to channel sensing performed by individual SUs [7],
[13], [31], [45]. The characteristics of 5G networks,
including ultra-densified, highly heterogeneous, and
highly variable, have posed new challenges to collab-
oration. For instance, the highly variable data traffic
that changes abruptly and unexpectedly increase the
difficulty to detect malicious and misbehaving SUs.
Cognition or artificial intelligence has been the enabler
for nodes to make intelligent decisions. Collabora-
tion enables SUs to share channel availability infor-
mation (e.g., channel sensing outcomes) so that SUs
can make the right decision on channel availability.
However, when malicious and misbehaving SUs share
and exchange manipulated channel availability infor-
mation, they cause higher interference (i.e., unavailable
channels are reported to be vacant and consist of white
spaces) and lower bandwidth availability or channel
utilization (i.e., available channels are reported to be
occupied) to legitimate SUs [13], [37], [45]. While
existing works [13], [37], [45], show that TRM is
feasible and can be used to tackle such security vul-
nerabilities, securing the exploration and exploitation
of white spaces, which is a new 5G feature that does
not exist in 4G, is yet to be solved. TRM is still
at its infancy in 5G and it must cater for the 5G
characteristics.

Clustering segregates nodes into clusters or logical
groups in order to increase network scalability, reduce
control overhead and energy consumption, as well as
to support collaboration [47]. Each cluster consists of a
cluster head (CH) and cluster members (CMs). The CH
is the leader of a cluster and CMs are the member of
the cluster. Clustering addresses heterogeneity, whereby
nodes with the same characteristics form clusters and
share information via D2D [28]. In the multi-hop sce-
nario, CMs can send data through CH that forward
packets towards the destination. There are two main
mechanisms in clustering, namely cluster formation and
cluster maintenance. Cluster formation selects CH and
CMs using metrics such as the residual energy level and
mobility of neighboring nodes, channel availability, and
so on. In this collaboration, channel sensing outcomes
can be sent from CMs to CH; subsequently, the CH
makes final decision on channel availability for channel
access. Cluster maintenance allows nodes to re-elect
CHs, as well as join and leave clusters as time goes by.
However, when the malicious nodes share and exchange
manipulated clustering metrics and information, mali-
cious nodes: a) can be selected as clusterheads; and b)
can join a cluster. Subsequently, the malicious nodes
share and exchange manipulated information in a clus-
ter, affecting essential tasks that require collaboration
such as data aggregation [38].
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o Network virtualization decouples control and data
planes in order to provide virtually centralized environ-
ment for processing and managing heterogeneous net-
works, devices, and resources. A controller, as the main
component of network virtualization, is used to make
policies for the control and data planes according to the
users/ applications requirements. The controller is flexi-
ble and programmable, where interfaces can be modified
according to the user/ application requirements. For
instance, mobile network operators can allocate network
resources to fulfill the user/ application low latency
requirement by providing radio access to the network
edge [49]. Cooperation enables multiple controllers to
share information and make globally optimized and
consistent decisions in multi-controller environment.
However, malicious or misbehaving: a) controllers can
share and exchange manipulated information (e.g., inac-
curate policies for resource allocation); and b) applica-
tions can provide manipulated information and codes
via the open programmable interfaces. Consequently,
both vertical (i.e., the controller itself in the control
plane) and horizontal (i.e., the other controllers and
network entities in the data plane) components can be
affected, causing inappropriate policy or decisions made
for routing or resource allocation [34], [40], [49].

o Coordinated multipoint (or CoMP) enables network
entities to share channel state information, which is
used to make intelligent decisions on the selection
of BSs to serve nodes in order to reduce inter-cell
interference [11], and improve spectral efficiency under
ultra-densified and heterogeneous environment. CoMP
is essential to reduce the high inter-cell interference
caused by the deployment of a large number of small
cells that communicate using low transmission power
and high frequency bands (i.e., the mmWave frequency
bands). The small cells provide short-range transmission
that provides higher data rate, as well as lower latency
and energy consumption, to cater for ultra-densification.
When malicious or misbehaving BSs share manipulated
information (e.g., bandwidth requirement) about UEs
with other BSs, and nodes associate with the BSs,
inter-cell interference and network performance can be
affected [8].

B. WHAT IS TRM?
The main difference between trust and reputation is that,
while trust is the belief of an individual entity in another
entity [23], reputation is the collective belief (or aggregated
opinion or global perception) of a group of entities in another
entity in a network community [32]. Nevertheless, both trust
and reputation depend on a node’s historical actions, and they
are directly proportional to each other; specifically, an entity
with a higher reputation value has a higher trust value, and
vice-versa.

TRM detects and removes malicious and misbehaving
entities that manipulate information from collaboration [41],
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[52], in order to improve data authenticity and to minimize
the detrimental effects, including false positives (i.e., the false
detection rate of legitimate entities instead of the malicious
entities). TRM is necessary because mistrust can arise when
some entities behave maliciously in an intentional or unin-
tentional manner to gain self-benefit (e.g., increasing the trust
values of the entities in order to promote themselves as trusted
entities) or to disrupt services. The reputation value can be
shared among entities in a collaboration.

C. WHAT ARE THE ROLES OF TRM IN 5G?

This section presents how TRM can solve and mitigate secu-
rity vulnerabilities in collaboration, which is essential to 5G
(see Section II-A.2). In general, there are three types of
malicious and misbehaving characters.

 Faulty in which entities have hardware or software mal-
functions.

« Selfish in which entities gain benefits at the expense of
other entities.

e Malicious in which entities influence other enti-
ties or network operations/ activities negatively.

Cooperation among heterogeneous entities is anticipated
in 5G. At the network level, there are different kinds of
network cells, particularly macro cells and small cells (i.e.,
pico cells, and femto cells), to improve network capacity
and coverage in order to address ultra-densification. At the
device level, there are different kinds of network entities
that cooperate to perform essential functions in 5G, such as
dynamic channel access, clustering, CoMP, and D2D, that
require information sharing and exchange. The network enti-
ties can behave maliciously (e.g., sharing manipulated infor-
mation) and affect decisions made on collaboration in order
to reduce network performance. For instance, the malicious
and misbehaving entities can launch attacks, such as Sybil
(A.1) and denial of service attacks (A.3) against D2D. Due
to the extensive reliance on D2D, many essential functions
such as traffic offloading, packet forwarding, and information
sharing, are affected, resulting in reduced network perfor-
mance (e.g., higher energy consumption and latency). TRM
assists network entities to calculate trust and reputation val-
ues in order to identify and isolate malicious nodes from
cooperation, which is essential for information sharing and
aggregation.

D. WHICH PART OF THE 5G NETWORK USES TRM IN
LOWER LAYERS?

TRM has been investigated to improve the security of both
application (or upper) and lower layers in 5G. In general,
the application layer uses traditional security measures, such
as cryptography and intrusion detection systems, to counter-
measure external attacks and ensure trusted systems. On the
other hand, the lower layers must calculate the trust and rep-
utation values to identify and isolate malicious nodes. While
TRM has been investigated in access networks, it has not
been well investigated in core networks. This is because core
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networks are traditionally closed trusted networks established
by national or multinational corporations on the basis of trust
among network operators [44]. Since the core networks are
accessed by a few trusted network operators only, security
measures are not incorporated in some core networks (e.g.,
SS7 core networks [44]). Moreover, core networks can reject
packets from malicious entities in the access networks [51].
On the other hand, the access networks, whereby UEs, which
may not be trustable, form a multi-hop network, and so such
networks are easier targets for attack and prone to trust and
security challenges [51]. 5G access network is distinguished
from the existing cellular networks which are centralized
in nature, and is distinguished from the traditional multi-
hop networks due to its complexity characterized by ultra-
densification, high heterogeneity, and high variability. The
need to secure 5G access networks becomes essential for the
essential distributed schemes, such as channel access, channel
sensing, interference mitigation, content sharing, and so on.

However, the belief of core networks being closed trusted
networks is no longer safe with the convergence and incor-
poration of new technologies, as well as deregulation, and
some works, particularly the application layer solutions, have
emerged recently [44]. While our focus is the access net-
work, we have provided some open issues related to the core
networks, particularly addressing security vulnerabilities in
network virtualization in Section VI-A.

E. WHAT ARE THE COMMON TECHNIQUES TO
IMPLEMENT TRM IN 5G?

This section presents different techniques that can be used
and leveraged to implement TRM in 5G networks. There are
four main techniques as follows:

o TRM approaches based on rules calculate trust values
based on various metrics, such as the energy level [5],
and compared the trust values with thresholds. In [21],
the reputation and trust values of entities are used to
adjust the contribution of the information received from
them.

« Probabilistic TRM approaches, such as the Dempster-
Shafer theory [25], calculate probabilities used to syn-
thesize trust values of entities. The probabilities are
calculated based on various metrics, such as packet for-
warding rate, delay, integrity, and so on. In [53], entropy
is used to minimize the subjectivity of monitored metrics
and maximize the accuracy of the decisions made on
identifying malicious entities.

« Artificial intelligence-based TRM learns about states
(e.g., trust value, channel condition, and computation
capability) from the operating environment or neighbor-
ing entities, takes actions (e.g., the selection of a col-
laborative entity in collaboration), and receives rewards
(e.g., revenue and performance enhancement) from the
operating environment [20].

« Blockchain-based TRM allows network entities to use
blocks to exchange and collect trust values about a
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subject entity from neighboring network entities, and
calculate the trust value of the subject entity in a dis-
tributed manner. Subsequently, network entities with
credible information incorporate the trust value of the
subject entity into the block of the blockchain [50].

Further description about the TRM approaches is presented
in Section V.

1. TAXONOMY OF TRUST AND REPUTATION IN 5G
WIRELESS NETWORKS

This section presents and explains the taxonomy of TRM
in 5G as shown in Figure 3.

A. TRM OBJECTIVES
Collaborating entities establish trust to share information and

make reliable relationship. There are three main objectives of
TRM in 5G.

O.1 Trust establishment: Network entities, such as nodes
and BSs, may be heterogeneous and are connected to
licensed or unlicensed RATSs, and they may collabo-
rate to improve network performance. To establish trust
in collaboration, they share direct or indirect informa-
tion for trust computation. However, malicious or self-
ish nodes may manipulate the information prior to the
dissemination of information leading to various kinds
of attacks, such as bad-mouthing (or ballot-stuffing)
attacks [50], and black hole attacks [4], [53]. For
instance, malicious nodes that launch bad-mouthing
attacks provide false recommendations of itself or other
nodes in order to raise its own trustworthiness and reduce
other nodes’ trustworthiness. TRM detects and removes
malicious network entities from collaboration in order to
establish trust among network entities. This means that,
while malicious network entities may exist in a network,
they are functionally removed from the network.

0.2 Data reliability: Network entities share direct and indi-
rect information (e.g., opinion about other nodes) in a
collaborative environment to make the decision impact-
ful. The malicious or the selfish network entities alter the
information and propagate it for their advantage or with
malicious intention (e.g., increasing interference with
licensed or primary users or among network cells),
resulting in the degradation of network performance.
TRM detects and removes malicious network entities
from collaboration in order to increase the number of
legitimate network entities, and hence improves data
reliability (e.g., the accuracy of channel sensing out-
comes).

0.3 Scalability: Network entities despite being highly het-
erogeneous (e.g., possess different RATs and network
cells) and variable (e.g., traffic and requirements dynam-
ics), collaborate among themselves to make intelli-
gent decisions while providing services and managing
resources to be more scalable in terms of the number
of supported users. For instance, the right RATs are
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FIGURE 3. Taxonomy of trust and reputation in 5G.

selected to fulfill the QoS and QoE requirements. Mali-
cious nodes may provide false information about chan-
nel access to increase interference among network cells,
whereby the scalability of the network is affected. TRM
detects and removes malicious nodes from collaboration
to improve scalability.

B. CHARACTERISTICS
There are two main characteristics for TRM.

R.1 Centralized: In a centralized TRM model, a central

entity, such as a macro cell BS, a fusion center (FC), or a
centralized server, collects and stores data, as well as
calculates, monitors, and distributes the globally com-
puted trust value of each network entity among the
network entities in the network, as shown in Figure 4.
Specifically, the central entity rewards and punishes
network entities based on their behaviors by rewarding
legitimate network entities with higher trust values, and
punishing malicious network entities with lower trust
values. In [21], [30], [50], the central entity is assumed
to be trusted, and it provides data collection, calculation,
storage, and trust dissemination services; however, due
to the highly heterogeneous and dynamic 5G network,
it affects QoS (e.g., delay and spectrum efficiency).
In [30], the vehicles sense an event regarding the traffic,
and broadcast messages to other vehicles. The credibility
of the vehicles are checked and given some feedback,
which is then forwarded to the central entity. The central
entity calculates decision based on the feedback, updates
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the trust value, and releases certificates to vehicles in the
network. Nevertheless, there are two main shortcomings:
a) the centralized TRM model must cater for the massive
amount of heterogeneous and highly variable data and
network entities in the next-generation networks; and b)
it is prone to single point of failure that can affect the
availablity of TRM, resources, and services.

R.2 Decentralized: In a distributed TRM model, distributed

entities, such as small cell BS, UE, or an edge server
in edge computing [21], collect and store data, as well
as calculate, monitor, and distribute locally computed
trust values of network entities among themselves in
the network, as shown in Figure 4b. Specifically, a UE
calculates the trust value of a neighboring UE either
through direct interaction with the UE, or using rec-
ommendations from other neighboring UEs, and prop-
agates the trust value of a particular neighboring UE
in the neighborhood. Nevertheless, there are two main
shortcomings: a) the trust values are computed based on
local knowledge only (or a small portion of the entire
network); and b) the trust values can be manipulated by
the UE itself, or neighboring UEs during propagation.

C. ATTACK MODELS
There are seven main types of attacks against TRM.

A.1 Sybil attacks: The malicious nodes use more than

one identity to confuse other nodes. They change to
a fake identity and launch attack to avoid detection.
Once detected, they change or impersonate others’
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FIGURE 4. Traditional TRM models.
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identities and re-launch attacks. This process repeats
until their intention is achieved (e.g., presenting them-
selves as trusted entities or sharing manipulated infor-
mation about the operating environment).

Crude attacks: The malicious nodes forward incorrect
information to the decision FC (i.e., the nodes forward
manipulated information about themselves) in order to
maximize their trust values about another neighboring
node with the purpose of degrading the trust value of the
node.

Denial of service(DoS): The malicious nodes prevent
data forwarding and processing at legitimate nodes and
applications. If the malicious nodes take control over the
role of the controller(s), devices and applications in the
data plane may experience a complete denial of service.
Black hole attacks: The malicious nodes suggest them-
selves as good packet forwarding candidates but drop
received packets. For instance, when the malicious
nodes gain control of the controller in the control plane,
the forwarding function in the data plane can be manip-
ulated, whereby devices and their routing tables can
be manipulated with undesirable intention, particularly
dropping packets/ data in the network.

Routing attacks: The malicious nodes change routing
decisions, such as modifying the number of intermediate
nodes to the destination node, and the actual destina-
tion address. The malicious controller(s) can modify
the routing table so that data/ packets can be routed to
manipulated destinations.

Bad-mouthing attacks: The malicious nodes make false
recommendations about other nodes which affect deci-
sions made. For instance, malicious nodes recom-
mend a legitimate node as malicious to reduce its
trust value, or recommend malicious nodes or itself as
highly trusted nodes to increase their respective trust
values.

On-off attacks: The malicious entities keep changing
their behaviors (i.e., normal and malicious) from time to
time to remain undetected. The malicious nodes remain
undetected by confusing TRM with different behaviors
at different points of time. So, at one time, a node is
On (or malicious), while at another time, it is Off (or
legitimate).
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(b) Distributed

D. PERFORMANCE METRICS

This section presents various performance metrics evaluated
in the TRM models.

M.1

M4

Misbehavior detection: The network nodes or entities
misbehave to gain self-benefit or influence other entities
negatively. For instance, a node changes (impersonates)
its identity to fool the network or other nodes, or manip-
ulates the information about itself or others, to fulfill its
malicious intention like suggesting itself as a good data
forwarder. It increases with the detection of misbehav-
ing entities in a collaboration.

False/ true positive rate: The false positive rate shows
the false detection rate of legitimate entities instead of
the malicious entities, while the true positive rate shows
the correct detection rate of the malicious entities.
Energy consumption: The energy consumption of a net-
work entity is caused by various actions (e.g., exchang-
ing control messages and forwarding data packets to
neighboring nodes), which increases with more attacks
from malicious entities.

Latency: The end-to-end delay of packets/ information
from a source to a destination affects the time period
required for control message exchange, opinion dissem-
ination, and trust value propagation.

E. CHALLENGES

C.1

C2

High heterogeneity: The presence of distinctive network
entities and characteristics contributes to network het-
erogeneity. This includes network architecture that con-
sists of macro and small cells, access technologies that
consists of 5G, 4G, IEEE 802.11, types of UEs such as
tablets, computers, and smart mobile devices, character-
istics such as indoor and outdoor environment, as well as
inband and outband transmissions. The challenge is to
enable trust among heterogeneous devices and networks
for collaboration to enhance network performance and
perform network operations.

High dynamicity: The next-generation networks have
ultra-dense and heterogeneous characteristics, and this
leads to highly dynamic processes and data traffic
that can change abruptly and unexpectedly. Due to
the ultra-densification of network entities and devices,
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the behavior and the traffic are unexpectedly changing
instantly, creating issues for controllers. The challenge
is to predict, measure, and monitor the behaviors for
evaluating and managing trust dynamically.

C.3 High energy consumption: Moving from the traditional
tightly coupled planes to loosely coupled control and
data planes promotes cooperation among networks and
devices/ nodes that may be operating in a cellular or ad-
hoc mode. Entities with different types of network cells
(e.g., macro and small cells) can co-operate with each
other, and different types of communications (e.g., direct
communication in the cellular mode and D2D in the ad-
hoc mode) can be used to share information to enhance
network performance, such as meeting the capacity
and coverage requirements. Network entities consume
energy while sharing information in cooperation.

C.4 High communication/ control overhead: Since informa-
tion is shared among participating entities in a coop-
eration, communication overhead can increase. The
challenge is to minimize the communication/ message
overhead throughout the collaboration process to maxi-
mize network performance.

IV. TRM FRAMEWORK

TRM is a framework for detecting malicious entities, includ-
ing faulty, selfish, and malicious network entities, in a col-
laboration. In general, there are six main stages as shown
in Table 3. More in-depth description about these stages for
different schemes are presented in Section V.

1) BOOTSTRAPPING

Bootstrapping (or initialization) initializes the trust value of
network entities during which their behaviors are unknown.
The network entities may be assigned the same trust value,
which is adjusted according to their behaviors as time goes
by. For instance, in [26], nodes are initialized in three ways,
either: a) neutral trust value; b) high trust value (i.e., trust-
worthy); or c¢) low trust value (i.e., untrustworthy). When the
interaction with a network entity is infrequent, its trust value
is updated infrequently, and so artificial (or dummy) beacons
can be generated to increase the number of interactions so that
its trust value reflects its behavior.

2) INFORMATION GATHERING
Network entities gather information from neighboring net-
work entities through:

o Direct interaction information. A network entity gathers
information about a network entity through direct inter-
action with the network entity.

o Indirect interaction information. A network entity gath-
ers information about a subject network entity through
indirect interaction with other network entities. In other
words, the information about the subject network entity
is shared among network entities, and it is learned
through information exchange. Nevertheless, at least a
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single network entity must learn about the subject net-
work entity through direct interaction.

3) INFORMATION DISSEMINATION
Network entities propagate direct and indirect interaction
information with their neighboring network entities. The
direct interaction information becomes indirect interaction
information once it is propagated from one network entity to
another. The information can be propagated either:
o a) locally (i.e., with neighboring nodes); or b) globally
(i.e., with all nodes in the network).
o a) proactively (i.e., every time interval); or b) reactively
(i.e., upon the occurence of an event or a significant
change to the network).

Nevertheless, malicious nodes can share:

« positive information whereby only good experiences
about a subject network entity is shared, resulting in
false praise attacks or ballot stuffing attacks [50].

o negative information whereby only bad experiences
about a subject network entity is shared, resulting in bad-
mouthing attacks [50].

4) INFORMATION REFINEMENT
Network entities refine the direct and indirect interaction
information. There are two considerations:

o Credibility of information provider. Since the indirect
interaction information can be manipulated, the credibil-
ity of the information provider (i.e., network entity that
provides the information) must be taken into consider-
ation to prevent false reporting. For instance, different
statistical distributions (e.g., Beta, Gaussian, Poisson,
and Binomial distributions [52]) and deviation tests have
been used to assess the credibility and consistency of the
information provider. The deviation test enables a node
to detect a malicious node if the difference between the
indirect information about a subject node given by the
malicious node and the direct information received by
the node is greater than a threshold.

o Recency of information. Weight factor can be calculated
because: a) the accuracy of the information reduces with
the passage of time, and so newer information is given
a higher weight factor compared to older information
[22], [52]; b) the significance of the information should
be taken into consideration (e.g., permanent link failure
is more significant compared to temporary link fail-
ure), and more significant information is given a higher
weight factor compared to less significant information.
The weight factor can be subsequently used to calculate
trust values.

5) DECISION MAKING

Network entities calculate the trust and reputation values and
separate legitimate and malicious network entities in order
to choose the best possible network entities for interaction.
Network entities, such as BS and FC, can aggregate trust and
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reputation values to provide collective and robust decisions.
The decision can be based on the following methods:

o Threshold is used to determine trustworthiness. As an
example, the trust value is higher (lower) than a thresh-
old for a legitimate (malicious) network entity.

o Ranking is used to rank network entities based on their
behaviors or trustworthiness. As an example, the neigh-
boring nodes are ranked according to the accuracy of
their channel sensing outcomes, which represent their
trustworthiness. As another example, the individual
nodes are ranked to select trusted routes for routing and
packet transmission.

o Weightage is used to assign a weight to an aggregated
information, which is received from network entities,
based on the conditions of the network and operating
environment. As an example, information received from
different sensor nodes are combined in a FC or BS in
order to provide a final judgment or summary on the
condition of the network and operating environment
being monitored.

6) DECISION DISSEMINATION

Network entities propagate the decisions made on a subject
network entity (i.e., being legitimate or malicious) with their
neighboring network entities either instantly or during the
next interaction. Network entities, such as centralized enti-
ties (e.g., FC and BS), with high computational and storage
capabilities can store the decisions and share them with other
network entities, while network entities, such as sensors, with
low computational and storage capabilities can disseminate
the decisions (or trust values) to other nodes in distributed
networks.

V. STATE OF THE ART

This section presents the state of the art, classified on the
basis of common TRM techniques (see Section II-E). The
description includes how the stages of the TRM framework
(see Section I'V and Table 3) are implemented in each state-of-
the-art scheme. As TRM is at its infancy in the 5G networks,
there are limited existing work in the literature. A qualitative
comparison is given in Table 4.

A. TRM APPROACHES BASED ON RULES
This section presents two state-of-the-art schemes using the
TRM approaches based on rules.

1) ENERGY-BASED TRUST SYSTEM FOR DETECTING SYBIL
ATTACKS

Alsaedi et al. [5] propose an energy-based multi-level trust
scheme that detects malicious nodes at different levels (i.e.,
CH, CM, and BS) in clustered networks [28], [47]. The pro-
posed scheme achieves the objectives of trust establishment
(O.1), ensuring data reliability (O.2), and ensuring network
scalability (O.3). The proposed scheme manages trust in a
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distributed manner (R.2) to countermeasure Sybil attacks
(A.1). The proposed scheme addresses the challenges of high
heterogeneity (C.1) in the presence of heterogeneous nodes
(i.e., CM, CH and BS), and high dynamicity (C.2) whereby
the behaviors of different network entities change with their
available resources (i.e., residual energy) as time goes by.

The entities from different levels have different roles in
detecting malicious nodes that launch Sybil attacks. There
are two main stages. The first stage is information gather-
ing, whereby the CMs sense and gather information about
events in the operating environment (e.g., road accidents, fire,
and natural disaster), and send information about themselves
(e.g., their node IDs, geographical locations, and residual
energy levels) and the events to the CH. The second stage
is decision making, whereby the trust values are calculated
by the CH at the cluster level. The CH maintains the node
IDs, geographical locations, and residual energy of CMs in
its storage. The CH identifies legitimate nodes in two steps.
Firstly, the CH determines whether the information received
from CMs is legimate or not by verifying their respective
locations and node IDs stored in the CH. Secondly, the CH
calculates the trust values of legitimate CMs based on their
energy levels such that the trust value increases with the
accuracy of the residual energy levels reported by the CMs.
The total energy Eipiai = Eresidual + Econsumed 18 compared
with the previously saved total energy E. Specifically, when
E > ¥ (Eipa1 +X11), where X1 is the change in the total energy
of a CM, then the number of successful interactions with
the CM is increased, otherwise the number of unsuccessful
interactions with the CM is increased. Subsequently, the CH
forwards the legitimate CMs’ information to the BS. Next,
the similar processes in the second stage is applied by BS to
calculate trust values at the network level. So, the BS main-
tains the node IDs, geographical locations, and the residual
energy levels of CHs in its storage, and identifies legitimate
CHs.

The proposed scheme has shown to: a) increase misbe-
havior detection (M.1); b) improve the detection rate (M.2)
of the Sybil node; and c) reduce energy consumption (M.3)
by minimizing message exchanges between CMs and their
respective CHs.

2) DISTRIBUTED REPUTATION MANAGEMENT IN EDGE
COMPUTING

Huang et al. [21], propose a distributed reputation manage-
ment system (DREAMS) that manages reputation values at
edge server in a vehicular network. In edge computing, edge
servers have high computational capabilities and resources,
and so they can collect, aggregate, and compute reputation
values efficiently in order to identify and punish malicious
vehicular nodes. The proposed scheme achieves the objec-
tive of trust establishment (O.1) whereby the edge server
calculates and provides reputation values of the vehicular
nodes, ensuring data reliability (O.2) whereby the vehicu-
lar nodes receive reliable information about an event, and
ensuring network scalability (O.3) whereby the edge server
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TABLE 3. TRM Framework.
NO.| STAGE DESCRIPTION
1 Bootstrapping Initializes the trust value of network entities.
2 Information gathering Network entities gather information from neighboring network entities through direct

or indirect interaction.

3 Information dissemination | Network entities distribute direct and indirect local or global information to neighbor-
ing network entities in a proactive or reactive manner.

4 Information refinement Network entities refine the received information based on the credibility of the
information provider and the recency of the information.

5 Decision making Network entities calculate trust values and separate legitimate and malicious network
entities. Network entities, such as BS and FC, can aggregate trust values to provide
collective decisions.

6 Decision dissemination Network entities distribute decisions made on subject entities with neighboring

network entities.

TABLE 4. Summary of objectives, characteristics, performance metrics, and challenges for different TRM schemes in 5G, which is the next-generation

wireless network.
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provides trust values to all vehicular nodes. The proposed
scheme manages reputation in a distributed manner (R.2) to
countermeasure crude attacks (A.2), black hole attacks (A.4),
and worm hole attacks. The proposed scheme addresses the
challenges of high dynamicity (C.2) whereby the vehicu-
lar nodes communicate with the distributed edge server to
receive quick response about the trustworthiness of the other
vehicular nodes, and high energy consumption (C.3) whereby
communication with the edge server, rather than the core
network, reduces energy consumption.

There are two main components based on their locations:
a) cloud server, which has higher computational capabilities
and resources, is located far away from vehicular nodes; and
b) edge servers are located at close proximity to vehicular
nodes. The edge server can: a) provide computing services
with improved network performance (e.g., lower end-to-end
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delay) to the vehicular nodes; and b) communicate and share
information with the vehicular nodes. There are three main
stages. The first stage is information gathering, whereby the
edge server collects opinion metrics, which represents the
legitimacy about a subject vehicular node that newly joins the
network, from knowledgeable vehicular nodes. The second
stage is information refinement, whereby the edge server uses
the reputation value of the knowledgeable vehicular nodes to
calculate a weight factor in order to adjust the opinion metrics
given by the knowledgeable vehicular nodes. The reputation
value of the knowledgeable vehicular nodes are obtained
from the Cloud based on the historical and new reputation
values. The third stage is decision making, whereby the edge
server calculates the reputation value of the subject vehicular
node using the weighted opinion metrics from the knowl-
edgeable vehicular nodes. Knowledgeable vehicular nodes
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with reputation values lower than a threshold are considered
malicious, and so they are either isolated or blacklisted. Sub-
sequently, the reputation values are used to select vehicular
nodes with high reputation values and to allocate resources
to them.

DREAMS has shown to increase misbehavior detection
(M.1) and reduce latency (M.4).

B. PROBABILISTIC TRM APPROACHES

This section presents a state of the art using the probabilistic
TRM approach.

1) EFFICIENT TRUST EVALUATION SCHEME FOR INTERNET
OF THINGS

Yu et al. [53], propose an efficient quantitative model for
trust management in Internet of things (IoTs). The source
node calculates and monitors the trust value of the next-
hop and intermediate nodes based on various factors (e.g.,
whether the next-hop and intermediate nodes forward or drop
its packets) in multi-hop networks. The proposed scheme
achieves the objectives of trust establishment (O.1) whereby
the source node calculates trust values of next-hop and
intermediate nodes, ensuring data reliability (O.2) whereby
packet integrity is monitored, and ensuring network scala-
bility (O.3). The proposed scheme manages reputation in a
distributed manner (R.2) to countermeasure crude (A.2), DoS
(A.3), and black hole (A.4) attacks. The proposed scheme
addresses the challenge of high energy consumption (C.3)
whereby the exchange of control messages in a distributed
environment is reduced.

There are two main stages. The first stage is information
gathering, whereby the source node monitors the behavior
of the relay node that has different forwarding characteristics
(i.e., constant or variable forwarding and repetition rates
causing different amount of delays). The second stage is
decision making, whereby the source node calculates trust
values based on the different forwarding characteristics using
entropy. Entropy calculates different weight factors for dif-
ferent trust values to reduce the uncertainty of information.
The direct trust value between node i and a next-hop node
J is given by Tig = ZQ/[: | Wi Ty, where the weight factor
is 0 < Wi < 1 and T} is a forwarding characteristic
of the entropy. The indirect trust values are gathered from
neighboring nodes, and then aggregated with the direct trust
value using the Dempster-Shafer theory [19], which merges
information from independent (or different) nodes to mini-
mize uncertainty.

The proposed scheme has shown to: a) increase malicious
detection (M.1); b) reduce energy consumption (M.3); and ¢)
minimize latency (M.4), whereby trust values are shared and
communicated directly with next-hop or relay nodes rather
than going through the BS.

C. ARTIFICIAL INTELLIGENCE-BASED TRM
This section presents two state of the art schemes using the
artificial intelligence-based TRM approach.
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1) TRUSTED NEIGHBOR NODE SELECTION FOR SECURE
ROUTING

Alfarraj et al. [4], propose an activation function based on
artificial neural networks, which use risk assessment and
route probability, to calculate trust values of neighboring
nodes in order to maintain a secured route between a source
node and a destination node. The proposed scheme achieves
the objectives of trust establishment (O.1), ensuring data
reliability (0.2), and ensuring network scalability (O.3). The
proposed scheme manages trust in a distributed manner (R.2)
to countermeasure DoS (A.3), black hole (A.4), and rout-
ing attacks (A.5). The proposed scheme addresses the chal-
lenges of high dynamicity (C.2), whereby there is a dynamic
selection of trusted neighbors and less exchange of control
messages (C.4), whereby it is a lightweight technique for
constrained environment.

The proposed scheme has two main mechanisms in deci-
sion making. Firstly, the source node maintains the trust val-
ues of its neighboring nodes as time goes by so that malicious
nodes can be identified and a new route can be discovered.
The source node i calculates the trust value of its neighbor
node j at time instant 7 is S . [ =F ! L /R i j» Where F] !  j Tepresents
the number of packets forwarded, and R! ;j represents the
number of packets arrived (or received). Secondly, the source
node performs risk assessment on routes by calculating a
probability, which takes account of the interaction quality
(i.e., the number of communication) and response time (i.e.,
the time duration between sending a route request and receiv-
ing a route response). The risk assessment is performed after
sending packets to the destination node whereby the trust
value of the route is known, which is calculated by verifying
the trustworthiness of each hop in the shortest route. Higher
interaction quality indicates higher consistency of the quality
of a route, while lower response time indicates lower packet
loss caused by malicious nodes. A node is considered legiti-
mate if it: a) has a trust value S! i higher than the trust value of
aroute; b) has a trust value S; ! higher than a threshold; and c)
has aresidual energy level hlgher than half of its initial energy
level. If a malicious node is identified in a route, the source
node initiates a route discovery mechanism to establish a new
secured route among the available routes.

The proposed scheme has shown to: a) increase misbehav-
ior detection (M.1); b) reduce false positive (M.2); and c)
reduce energy consumption (M.3).

2) DEEP Q-LEARNING BASED SECURE SOCIAL
NETWORKING IN 5G

He et al. [20], propose a social trust scheme for mobile
social networks, which provide social relationship in social
platforms (e.g., facebook and twitter) among users of var-
ious applications and services (e.g., content sharing). The
proposed scheme achieves the objectives of trust establish-
ment (O.1) based on social trust, ensuring data reliabil-
ity (0.2) whereby data is monitored for manipulation, and
ensuring network scalability (O.3). The proposed scheme
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manages reputation in a centralized manner (R.1) The pro-
posed scheme addresses the challenges of high dynamicity
(C.2) whereby the users have dynamic requirements, and high
energy consumption (C.3) whereby the social trust values
are exchanged with the nearest mobile edge server, which
provides computational resources to close proximaty mobile
users at the edge of the wireless mobile network.

The proposed scheme has two main stages. The first stage
is information gathering, whereby a central entity (e.g., a BS,
which is equipped with mobile edge computing (MEC) and
cache, that provide high computational and storage capa-
bilities at close physical proximity to users): a) uses the
Bayesian inference model, which is a statistical method that
computes the probability of receiving more evidences (or
information) [34]. The Bayesian inference model is used
to calculate the direct trust value TiD of a subject node i
based on direct interaction experience (e.g., either forward,
discard, or manipulated data); and b) uses the Dempster-
Shafer approach, which combines evidences about a subject
node from multiple nodes in order to improve the accuracy of
the trust value of the subject node [19], [53]. The Dempster-
Shafer approach is used to calculate indirect trust value TI-I
of a subject node i based on its direct trust value and indirect
trust values gathered from neighboring nodes, which helps
to identify malicious nodes that exhibit different behaviors
towards different nodes. The second stage is decision making,
whereby the BS calculates the trust value of a subject node
iusing T; = W x TiD—i—(l — W) x TiI where 0 < W < 1
represents a weight factor. The BS uses deep Q-learning (refer
to [46]) to make decisions on which BS or D2D transmitter is
assigned to serve arequest (e.g., for a video) from a user based
on various factors and characteristics, including the channel
state (e.g., whether the channels are available or unavailable),
version (e.g., whether the requested version is compatible
and can be played at the requesting node), computational
capabilities (e.g., whether the serving network entity, such
as a BS or a node, is capable of computing, decoding, and
sending the requested video), and trust value of a network
entity. The trust value is used to make intelligent decision
about the need for collaboration and communication for the
required services (e.g., video content streaming).

The proposed scheme has shown to: a) increase malicious
user detection (M.1); and b) reduce energy consumption
(M.3) by receiving services from a close proximity D2D
transmitter with high trust value.

D. BLOCKCHAIN-BASED TRM

This section presents a state of the art using the blockchain-
based TRM approach.

1) BLOCKCHAIN BASED DISTRIBUTED TRUST MANAGMENT
IN VEHICULAR NETWORKS

Yang et al. [50], use blockchain among road side units (RSUs)
for trust management. Blockchain is a peer-to-peer shared
and distributed database that consists data and information
in blocks [58]. RSUs are computing devices with higher
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resources and computational capabilities deployed at the road
side [21], to collect information (e.g., geographical location
and traffic condition) from vehicles. The proposed scheme
achieves the objectives of trust establishment between vehic-
ular nodes (O.1), ensuring data reliability (O.2) whereby the
credibility of the messages are verified, and ensuring network
scalability (O.3) upon the detection and removal of malicious
entities from the network. The proposed scheme manages
reputation in a distributed manner (R.2) to countermeasure
crude (A.2) and bad-mouthing (A.6) attacks. The proposed
scheme addresses the challenges of high dynamicity (C.2) by
managing trust at close proximity to RSU, high heterogeneity
(C.1) by managing network entities with different computa-
tional capabilities on the road, and high energy consumption
(C.3) by exchanging messages with the nearest RSU.

In general, a RSU receives opinions about a subject vehicu-
lar node from other vehicular nodes, computes the trust values
of the subject vehicular node, and adds them to the block.
There are three main stages. The first stage is information
gathering, whereby RSUs collect messages about events and
occurrences on the road from vehicular nodes. The second
stage is information refinement, whereby RSUs calculate the
credibility value of the vehicular nodes based on the distance
between the vehicular nodes and the event, where a +1 value
indicates a credible message, and a —1 value indicates a
message with low trustworthiness. The third stage is deci-
sion making, whereby a RSU aggregates the creditability
values from vehicular nodes to calculate a weighted offset
trust value. This is necessary because the RSU may receive
different number of 4+1 and —1 values. The RSUs elect a
miner among themselves. The RSU with a higher number
of stakes can find a nonce, which is a single-use random
number used to calculate the hash of a block. The RSU
with a hash value below a threshold, which is similar for all
RSUs, wins the election. A miner has higher computational
and storage capacities that can solve complex problems and
perform complex tasks, such as proof-of-work that provides
consensus strategies among miners while solving complex
problems that require high computational capability, proof-
of-stake that represents the sum of the stakes (or the amount
of the trust value offsets), and proof-of-capacity that provides
consensus strategies among peers to publish a block of trust
value offsets [25], [58]. Upon receiving blocks from a miner,
the RSU verifies the validity of the nonce, and then appends
the block to the blockchain.

The proposed scheme has shown to: a) increase misbe-
havior detection (M.1) by verifying the credibility of the
messages; b) reduce energy consumption (M.3) by using
RSUs for complex calculations; and c) low latency (M.4)
by communicating with nearby RSU rather than the core
network.

VI. OPEN ISSUES AND FUTURE DIRECTIONS

This section presents open issues that can be further inves-
tigated in this research area. Collaboration is significant to
various network functionalities, however at the same time,
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TABLE 5. Trust and reputation attacks.

Authors Year TRM attacks
9] s}
= s ) =~ g =] é =
e, 5 % B £ %
5. a oo
Yang Yu, et al. 2016 X X X
Ing-Re Chen, et al. 2016 X
Xumin Huang, ef al. 2017 X X
Noor Alsaedi, et al. 2017 | x X X
V.Ram Prabha, et al. 2017 X X X X
Osama Alfarraj, et al. | 2018 X X
Zhe Yang, et al. 2018 X X
Weizhi Meng, et al. 2018 X X
Ying He, et al. 2018 X X
Bilal Mughal, et al. 2018 X X X X

it opens doors to different security vulnerabilities. This
section presents open issues, covering use of TRM to detect
and remove malicious entities in collaboration schemes,
which have not been investigated in the literature. Future
directions of the use of TRM in our context are also presented.

A. ADDRESSING SECURITY VULNERABILITIES IN
NETWORK VIRTUALIZATION

Network virtualization decouples a network into control and
data layers to enable programmability, whereby requirements
can be incorporated into networks elastically using 5G tech-
nologies, such as SDN and network slicing. The control layer
consists of controllers that generate and exchange control
messages comprised of commands and instructions, while
the data layer consists of BSs, UEs and switches that receive
control messages and follow the commands and instructions
required for data forwarding. There are two main security
advantages: a) data traffic monitoring in which controllers
have global network information to determine whether a
network entity is malicious or non-malicious; and b) vulner-
ability robustness in which the programmable nature of the
network allows rapid response to security vulnerabilities and
attacks.

Nevertheless, controllers must communicate and cooperate
with each other to ensure the consistency of the network infor-
mation in a multi-controller environment, including in core
networks. Controllers can be manipulated by malicious enti-
ties and behave maliciously, such as providing manipulated
policies for data forwarding and resource allocation, to reduce
network performance. Two examples are presented. Firstly,
a controller offers many open programmable interfaces to the
application layer, which allows user applications to customize
and modify the controller policies and operations accord-
ing to the requirements and needs. This means that user
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applications can manipulate the interfaces, such as embed-
ding malicious codes to the controllers that can affect the
virtualized environment in a horizontal (i.e., other controllers
in the same control layer) and vertical (i.e., the BSs, UEs, and
switches in the data layer) manners. Secondly, the controllers
in the control layer and the BSs, UEs, and switches in the
data layer communicate with each other in order to exchange
control messages; however, the communication can be inter-
cepted by malicious entities that launch attacks either on the
controllers, BSs, UEs, or switches. While the vulnerabili-
ties of open programmable interfaces and the collaboration
among controllers (or operators) have been investigated in [9]
and [15], respectively, they have not been investigated in the
5G context. Research and investigation could be pursued to
secure the network entities in the control and data layers to
detect malicious entities.

B. ADDRESSING SECURITY VULNERABILITIES IN
BEAMFORMING

With a higher frequency band (i.e., 2-300 GHz), mmWave
provides a higher bandwidth to support an increased number
of users. Nevertheless, mmWave has high penetration loss
through walls and obstacles. Beamforming tracks a particular
user’s location and transmits packets to the user in a beam
to reduce interference and penetration loss. BSs at different
locations must exchange messages and cooperate with each
other to focus beams towards their respective users while
reducing interference. BSs can be manipulated by malicious
entities and behave maliciously. Two examples are presented.
Firstly, malicious entities generate and share manipulated
information (e.g., the required beam and bandwidth, as well
as the location, of a user) to increase interference and reduce
spatial reuse. Secondly, malicious entities can intercept the
location information in the communication among the BSs
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and exploit a user’s privacy. While the vulnerabilities of
beamforming have been investigated in [18] and [57], respec-
tively, they have not been investigated in the 5G context.
Research and investigation could be pursued to detect mali-
cious entities and secure beamforming using security mea-
sures including TRM.

C. ADDRESSING SECURITY VULNERABILITIES IN
ACCESSING mmWave FREQUENCY BANDS

Using mmWave transmission can help to access underutilized
channels in the high frequency bands in order to increase net-
work capacity, which has been limited by the fixed traditional
spectrum allocation policy. This helps to cater for the increas-
ing data traffic under ultra-densification scenario in 5G. Each
network entity must sense for channel availability. Cooper-
ation enables network entities to share and exchange chan-
nel information (e.g., channel availability) among network
entities so that they can make intelligent decisions on chan-
nel access in an autonomous manner. Nevertheless, network
entities and channel sensing outcomes can be manipulated by
malicious entities and behave maliciously to reduce network
performance. As an example, malicious entities generate and
share manipulated channel information (e.g., channel avail-
ability). This causes network entities to access unavailable
channels or miss opportunities to access available channels.
Consequently, this can increase interference, as well as reduce
bandwidth and spatial reuse. While the vulnerabilities of
the access to mmWAve frequency bands have been inves-
tigated in [59] and [48], respectively, they have not been
investigated using TRM in the 5G context. Research and
investigation could be pursued to detect malicious entities
and secure dynamic channel access in mmWave frequency
bands in order to secure channel access in an intelligent and
collaborative manner.

D. USING SUBIJECTIVITY OF DATA IN TRM

The subjectivity of data provides opinion about a network
entity based on one’s personal experience and recommenda-
tion while interacting with the network entity. Hence, a net-
work entity’s opinion about another network entity may differ
dependent on the perception generated from an interaction,
which may or may not provide accurate recommendations.
Malicious entities can use subjectivity for their malicious
benefits. As an example, if a subject node i has a high trust
value, and a recommender node j provides false recommen-
dation or negative opinion to reduce the subject node i’s trust
value. Hence, assigning accurate weight to opinion or recom-
mendation affects the trust evaluation process. A node can
use statistical theorems and mathematical models to reduce
the misleading effect of inaccurate recommendations in trust
evaluation. In [55], a node uses a regression technique to eval-
uate the recommendations received from neighboring nodes,
and an alignment mechanism to counteract biases in the rec-
ommendations substantially. The aligned recommendations
are propagated among neighboring nodes so that the effect of
inaccurate recommendations can be minimized. In [3], a node

VOLUME 8, 2020

uses triangular fuzzy numbers [43], to represent the weights
of different trust criteria used to evaluate a trust value so
that more accurate criteria are given higher weight values.
Despite the abundance of literature on trust and reputation,
the subjectivity issue has not been well investigated [27],
particularly in the 5G context. Specifically, mechanisms to
address the effect of ultra-densification, high heterogeneity,
and high variability, to the accuracy of recommendations as a
result of subjectivity is yet to be discovered. Research could
be pursued to investigate statistical theorems and mathemat-
ical models for trust evaluation and management in order to
manage subjectivity and its effects.

E. ADDRESSING SECURITY VULNERABILITIES IN
NETWORK SLICING

Network slicing separates resources into various parts (or
slices) to meet different user and network requirements
on resources and services (e.g., the RAN requirements for
remote surgery and driverless vehicles). The requirements
can be incorporated into networks elastically using 5G tech-
nologies, such as SDN and network function virtualization
[14], [56]. The controller manages and updates the slices
on the fly to fulfill the specific requirements. Controllers
must communicate and cooperate with each other to ensure
the consistency of network information in a multi-controller
environment. Controllers can be manipulated by malicious
entities and behave maliciously, such as providing manip-
ulated policies for resource allocation, to reduce network
performance. Research could be pursued to secure network
slicing, particularly the controllers that manage resources in
the control layer.

F. ADDRESSING QUANTITATIVE ANALYSIS
COMPLICATIONS

Due to the different characteristics and features of TRM
schemes proposed in the literature, as well as the underly-
ing network initialization settings and topologies, there is
lack of study on qualitative comparison among the TRM
schemes. The characteristics of 5G networks, including
ultra-densification, high heterogeneity, and high variabil-
ity, contribute to the diversity of the investigations made
in this research topic. While traditional security schemes,
such as cryptography [2], [12], are mathematically tractable,
the TRM schemes proposed in the literature [20], [31], that
are based on artificial intelligence approaches are not math-
ematically tractable. This means that qualitative compari-
son among the security schemes can be non-mathematically
tractable, such as using Monte Carlo simulation, yet the inves-
tigation must be comprehensive to minimize security vulner-
ability. Further research could be pursued to conduct a fair
qualitative comparison among the schemes under a compre-
hensive set of network initialization settings and topologies.

G. FUTURE DIRECTIONS
5G access network is expected to be: a) highly dynamicity,
whereby the network requirements of the network entities
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change dynamically and are unpredictable; and b) highly
heterogeneous, whereby the network entities have different
natures and characteristics. High dynamicity and heterogene-
ity increase security vulnerabilities due to the complexity of
managing the network. We present two future directions of
research in TRM applied to 5G access networks as follows:

1) HYBRID TRM FRAMEWORK

Centralized and distributed TRM schemes [4], [5], [53],
have been proposed to handle dynamicity and heterogeneity,
respectively. The centralized TRM schemes are embedded
in a central entity, such as FC, BS, and CH, to manage
and disseminate trust values among network entities in order
to assess their behaviors in a centralized manner. On the
other hand, the distributed TRM schemes are embedded
in different network entities, such as nodes and RSUs,
to manage and exchange trust values among themselves.
Nevertheless, due to the highly dynamic and heterogenous
5G network scenarios, the traditional centralized and dis-
tributed TRM approaches are insufficient. The centralized
approach requires network-wide information which may not
be able to cater for real-time response; while the distributed
approach requires local information only which may not
be optimal for making network-wide decision. In addition,
the centralized approach can handle low dynamic aspects,
while the distributed approach can handle highly dynamic
aspects. Hence, a hybrid framework that incorporates both
centralized and distributed approaches is needed to cater for
dynamic schemes (i.e., from low to high dynamicity) and
heterogeneous schemes (i.e., from real-time to delay tolerant
schemes) that requires different levels of responses. More-
over, the hybrid framework can address security vulnerabili-
ties at both local (i.e., node) and global (i.e., BS) levels of a
5G access network. Hence, more investigations on a hybrid
framework for TRM is expected in 5G access networks.

2) APPLICATION OF ARTIFICIAL INTELLIGENCE TO TRM
Artificial intelligence approaches, such as reinforcement
learning [20] and the Bayesian approach, have been incorpo-
rated into TRM to learn and detect malicious entities, as well
as to make security decisions, with increased accuracy in
the presence of dynamic operating environment. Dynamicity
changes the operating environment that warrants different
policy (or sets of actions) for achieving optimal network
performance. Nevertheless, traditional artificial intelligence
approaches may not be sufficiently efficient and flexible to
cater. While the centralized approach (e.g., embedded in
BS) can use more complex artificial intelligence approaches,
such as deep learning [29], [46] to handle complex network
scenarios, the distributed approach (e.g., embedded in UEs)
can only use less complex artificial intelligence approaches.
Meanwhile, the malicious entities can also use artificial intel-
ligence approaches to learn the best strategy to launch attacks.
Hence, more investigations on the use of artificial intelligence
to TRM, as well as to address artificial intelligence-based
attacks, are expected in 5G access networks.
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VIi. CONCLUSION

This article presents a review on the limited works on trust
and reputation management (TRM) in 5G. 5G is envisioned
to address the limitations of traditional cellular networks (i.e.,
low network capacity, high latency, inefficient data forward-
ing, and low scalability) and to cater for the characteristics of
next-generation network scenarios (i.e., high heterogeneity,
ultra-densification, and high variability). Collaboration has
become indispensable to support important functions in 5G,
particularly dynamic channel access, device-to-device com-
munication, network virtualization, and coordinated multi-
point in order to enhance spectral efficiency, network capac-
ity, QoS performance (e.g., latency), and energy efficiency.
Nevertheless, collaboration is susceptible to security vulner-
abilities and attacks, such as Sybil, crude, denial of service,
black hole attacks, and so on. TRM has been proposed to
establish trust among collaborating entities, as well as to
improve data reliability and scalability. Nevertheless, TRM
must address challenges brought about by 5G, including high
heterogeneity, dynamicity, energy consumption, and over-
head. Traditional TRM must be enhanced to be applied in 5G
networks. This article discusses how TRM can improve 5G
networks, and open research opportunities. Future investi-
gation could be pursued to apply TRM to enhance security
in 5G networks, including channel access and sharing, beam-
forming, D2D communication, and network virtualization.
In addition, future investigation could also be pursued to
improve TRM approaches, such as extending the centralized
and distributed approaches to the hybrid approach, and to use
more advanced learning approaches, such as deep learning.
Certainly, this article has laid a solid foundation and opened
up new research interests in this area.
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