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ABSTRACT With the proliferation of mobile devices and a wealth of rich application services, the Internet
of vehicles (IoV) has struggled to handle computationally intensive and delay-sensitive computing tasks.
To substantially reduce the latency and the energy consumption, application work is offloaded from a mobile
device to a remote cloud or a nearby mobile edge cloud for processing. Compared with remote clouds,
mobile edge clouds are located at the edge of the network. Therefore, mobile edge computing (MEC) has
the advantages of effectively utilizing idle computing and storage resources at the edge of the network
and reducing the network transmission delay. In addition, mobile devices are increasingly moving toward
intelligence. To satisfy the service experience and service quality requirements of mobile users, the vehicle
Internet is transforming into the intelligent vehicle Internet. Artificial intelligence (AI) technology can adapt
to rapidly changing dynamic environments to provide multiple task requirements for resource allocation,
computational task scheduling, and vehicle trajectory prediction. On this basis, combined with MEC
technology and AI technology, computing and storage resources are placed on the edge of the network
to provide real-time data processing while providing more efficient and intelligent services. This article
introduces IoV from three aspects, namely, MEC, AI and the advantages of combining the two, and analyzes
the corresponding architecture and implementation technology. The application of MEC and AI in IoV is
analyzed and compared with current approaches. Finally, several promising future directions in the field of
IoV are discussed.

INDEX TERMS Internet of Vehicles (IoV), mobile edge computing (MEC), artificial intelligence (AI).

I. INTRODUCTION
With the rapid development of Internet of things (IoT) tech-
nology and the increasing number of vehicle networks, the
traditional vehicle ad hoc network (VANET) is gradually
being integrated into the Internet of vehicles (IoV). IoV is a
new model that combines VANETs and vehicle remote infor-
mation processing to connect vehicles, people and things [1].
In addition, it is a highly important field in intelligent trans-
portation systems (ITSs), as it covers intelligent transporta-
tion, cloud computing, vehicle information services, logistics
transportation services [2], [3], modern wireless technology,
Internet access and communication and other technologies
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and applications [4]. According to the forecast report from
Cisco, the global monthly mobile data usage in 2021 will
be approximately 49 exabytes, and the number of mobile
devices will be 11.6 billion, increasing about approximately
seven times between 2016 and 2021 [5]. With the explo-
sion of mobile data, mobile phones are increasingly being
used for various computation-intensive applications, such as
augmented reality; natural language processing; face, hand
gestures, and object recognition; and various forms of user
configurations used for recommendation [6]; hence, mobile
users enjoy a rich experience in the service network. Faced
with the surge of mobile data flow, reducing the delay of data
transmission between vehicles and improving the through-
put of data transmission between vehicles are urgent prob-
lems [7]. Therefore, the vehicle networkmust adopt advanced
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FIGURE 1. The architecture of IoV.

communication technology and data acquisition technology
to improve the safety and efficiency of the traffic system,
reduce accidents and reduce traffic congestion [8]. Generally
speaking, public communication interfaces are divided into
wireless networks (such as bluetooth and wi-fi) and cellular
networks (such as 3G, 4G and 5G) [9]. However, the limited
network bandwidth in traditional cellular networks limits the
fast growth of the data transmission rate. In the emerging
5G network, the application of D2D (device to device) com-
munication technology promises to substantially improve the
spectrum efficiency to support data transmission between
caching vehicles and mobile users [5]. The federal commu-
nications commission (FCC) authorized the 75-mhz band for
the provision of vehicle-to-vehicle wireless communications
as dedicated short-range communications (DSRC). In addi-
tion, IEEE standardizes the entire communication stack
according to IEEE 802.11p as a wireless access to the
vehicle environment (WAVE) to support the interconnec-
tion between vehicles and between vehicles and roads [10].
In addition, various communication modes coexist in
IoV, which include vehicle-to-vehicle (V2V), vehicle-
to-infrastructure (V2I), vehicle-to-sensor (V2S), vehicle-
to-pedestrian (V2P), and vehicle-to-network (V2N) [11]
communications, which form a dynamic mobile communi-
cation system. Fig. 1 illustrates the architecture of IoV. This
enables the sharing and collection of information about vehi-
cles, roads and their surroundings. While the development of
communication technology can alleviate a certain amount of
traffic congestion, the limited ability of the infrastructure to
communicate, compute, and store resources can lead to long
delays and massive data transmission problems. In order to
overcome this challenge, combined with the deployment of

resources on the edge of the wireless network, the proposed
vehicle edge network has attracted wide attention.

Mobile edge computing (MEC) technology can over-
come the challenges of traditional mobile cloud comput-
ing (MCC). For example, (1) centralized cloud servers are
located far away from the terminal devices, thereby result-
ing in low efficiency in computation-intensive environments;
(2) the offloading of computing to the cloud consumes
energy, thereby reducing the service life of mobile batteries;
and (3) providing mobile users with complex memory-
utilization applications and higher data storage capacity is
difficult [12]. Reference [13] studied the multi-user com-
puting offloading problem of mobile edge cloud computing
under multi-channel wireless interference, and put forward
a distributed computing offloading algorithm by using the
game theory method. In addition, MEC can provide sub-
stantial value to mobile operators, service providers and
end users. The application scenarios of MEC span multiple
fields, such as augmented reality, online games, big data
analysis and health monitoring in the medical Internet of
things [14], [15].

With the emergence of IoV and vehicle intelligence, vehi-
cles are transforming from transport tools to intelligent ter-
minals [16]. In addition, the variety and quantity of on-board
equipment are increasing, and people’s requirements for auto-
mobile service quality are constantly increasing [17]. In the
age of IoV, vehicle-mounted intelligent modules can pro-
vide intelligent vehicle control, traffic management, accident
prevention and navigation capabilities, along with rich mul-
timedia and mobile Internet application services and many
emerging interactive applications [12] that improve the user
experience, reduce operating costs and promote a safe driving
environment. Artificial intelligence (AI) can substantially
improve the cognitive performance and intelligence of vehi-
cle networks, thereby contributing to the optimal allocation
of resources for problems with diverse, time-varying and
complex characteristics [18]. Reinforcement learning (RL)
is an important branch of machine learning. It refers to the
process of realizing objectives via multiple steps and suitable
decisions in a series of scenarios, which can be regarded as
a multi-step sequential decision problem [8]. To overcome
the problem of decentralized management of connected vehi-
cles in a distributed intelligent transportation system, refer-
ence [19] designed an ant colony optimization algorithm that
is based on swarm intelligence (SI) for dynamic decision-
making of networked vehicles, which enables vehicles to
automatically and adaptively identify the best path to the
destination. In [20], an intelligent resource management strat-
egy for joint communication mode selection, resource block
allocation and power control in D2D-V2V communication
vehicle networks is proposed. The model-free participant
critical learning framework is used to effectively improve the
learning efficiency and identify the optimal strategy to ensure
that the vehicle-to-vehicle link satisfies the communication
requirements of ultra-reliability and low latency while maxi-
mizing the overall network capacity.
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The main contributions of this article are as follows:
• We introduce the architecture of IoV, the deployment
of V2X in vehicle-mounted communication, and the
application of MEC and AI in IoV. We describe
the advantages and development history of MEC and
the relationship between AI and DRL, and We ana-
lyze the previous research on the application of AI to
vehicle edge networks.

• We study the architecture of MEC-based IoV and dis-
cuss the use of MEC in IoV. In addition, the charac-
teristics of MEC, FC and MCC are analyzed, and the
key technologies for supporting MEC are introduced.
In addition, the previous studies on efficient MEC cal-
culation for IoV are analyzed.

• We consider the theoretical characteristics of AI; ana-
lyze DRL, which is a key method for realizing AI, and
demonstrate the architecture of AI in IoV. In addition,
We introduce the effective key AI algorithms for calcu-
lating the offload and resource allocation in IoV, andWe
analyze the previous AI research on IoV.

• We combine the application of AI and MEC technology
in IoV and analyze the key technologies that support the
application of AI in vehicle edge networks. In addition,
the previous studies on edge caches and on joint com-
puting resources and caches are introduced. Finally, the
future development directions and research challenges
of IoV are discussed.

This article reviews the architecture, implementation tech-
nology and application of IoV that is based on AI and MEC.
We explore the characteristics of IoV development, the com-
munication mode, and the impact of combining AI and MEC
technology on the construction of intelligent IoV. This article
is divided into the following parts: Section II describes the
architecture of MEC in IoV and introduces the development
history of edge computing and the characteristics of MEC.
In addition, the research on computing offloading of MEC
in IoV is analyzed. Section III mainly studies the applica-
tion of AI In IoV, expounds on the architecture in which
AI is combined with IoV, and discusses DRL, which is an
important technique for realizing AI. The key algorithms and
applications of AI in IoV are analyzed. In Section IV, the
significance of the combination of AI and MEC technology
in IoV is discussed, the key technologies in AI-based vehicle
edge networks are studied, and relevant studies on IoV are
analyzed. In Section V, the challenges that are faced by IoV
and the future development directions are discussed. Finally,
Section VI summarizes the study.

II. MOBILE EDGE COMPUTING IN INTERNET OF VEHICLES
With the proliferation of mobile devices in the IoV, there
are stringent computing and processing requirements for
computation-intensive applications and delay-sensitive appli-
cations. The combination of IoV and MEC has emerged as
a promising approach for addressing the growing demand
for computing by shifting heavy computing tasks to cloud
resources on the edges of mobile networks. In this part, we

describe the development history ofMEC and theMEC archi-
tecture in IoV, and we explain the advantages of MEC in IoV.
Then, the key MEC technology of IoV is introduced. Finally,
the research status of MEC-based computational offloading
in IoV is discussed.

A. ARCHITECTURE
With the continuous improvement of the number and intel-
ligence of mobile devices, increasingly many mobile appli-
cations require many computing tasks. However, due to the
limited computing power and battery capacity of the user’s
device, it is difficult to handle computationally intensive tasks
locally. The emergence of cloud computing as a potential
solution formally initiated the third Internet revolution. Based
on the concept and advantages of cloud computing, mobile
cloud computing (MCC) was proposed in 2009 and refers
to a centralized cloud computing platform that migrates data
processing, storage and other tasks of intensive applications
from the original mobile device terminals to the cloud.

For applications that are closely involved in data-intensive
and delay-sensitive computing tasks, MCC has difficultly
satisfying the stringent requirements of real-time operations.
Therefore, a new computing paradigm, namely, fog comput-
ing (FC), is extended from cloud computing. A fog can be
described as a cloud that is closer to the ground, which pushes
computing resources and application services to the edge of
data generation and processing. In reference [21], the author
considers the mobility of fog nodes. The task assignment
process between fixed and mobile fog nodes is regarded as
a two-objective optimization problem in which the service
latency and quality loss must be balanced. An event-triggered
dynamic task assignment framework that is based on linear-
programming-based optimization (LBO) and binary particle
swarm optimization (BPSO) is proposed for solving joint
optimization problems. In reference [22], a real-time traf-
fic management unloading scheme in IoV systems that is
based on fog computing is proposed, which can minimize the
average response time of vehicle reporting events. Although
fog computing has the advantages of location-awareness and
low latency, ubiquitous connectivity and ultra-low latency
requirements pose challenges to real-time trafficmanagement
in smart cities [23].

To extend the cloud computing capacity to the edge of
the network, to enable the end users to use cloud computing
services more quickly and efficiently, and to improve the
user experience, in 2013, mobile edge computing (MEC) was
proposed for the provision of IT and cloud computing capa-
bilities for wireless access networks by deploying common
servers on the wireless access side. MEC is not a replacement
for MCC but an extension of cloud computing that relaxes
the transmission bandwidth and delay requirements. Com-
pared withMCC,MEC has the following characteristics [24]:
(1) low delay and low energy consumption: data genera-
tion and processing are conducted close to the data sources
and users, thereby reducing the data transmission delay and
energy consumption; (2) diversity: edge devices with various
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TABLE 1. Comparison of MEC,FC and MCC.

computing capabilities, such as roadside units (RSUs), vehi-
cles and WiFi hotspots, coexist; and (3) resource limitation:
the computing power of edge nodes is typically lower than
that of cloud servers.

With the progress of MEC standardization, the focus has
gradually shifted from targeting 3GPP mobile networks to
supporting non-3GPP networks (Wi-Fi and wired networks)
and even 5G networks. The name is also modified from
moving edge calculation to multi-access edge calculation.
The multi-access edge computing technology can realize the
interconnection of multiple wireless access technologies to
enable the computing/storage tasks of multiple servers to
be conducted cooperatively. [25] The emergence of MEC
servers enables wireless access networks to flexibly use com-
puting and storage resources while providing time-sensitive,
computation-intensive and highly reliable application ser-
vices. In reference [26], a scenario in which co-driving vehi-
cles and free-driving vehicles that are facilitated by HD
map interconnection via a wireless network co-existence is
designed, and a multi-access edge computing architecture
that is based on SDN and NFV technology is proposed. The
joint optimization of computing/storage resource manage-
ment between MEC servers and bandwidth resource slices
between Base Satations (BSs) effectively improves the uti-
lization of computing/storage resources. MEC, FC and MCC
are compared in TABLE 1.

Fig. 2 shows that the architecture of vehicle edge comput-
ing can be divided into a mobile user layer, an MEC layer
and a cloud layer. Communication between mobile users
generates a large amount of mobile data. By offloading to
RSUs, BSs, and other relay nodeswith computing and storage
capabilities, tasks that requiremore computational processing
can be offloaded to MEC servers or even to remote cloud
servers to fully utilize the computing resources to provide
efficient computing services.

B. TECHNOLOGIES
1) NETWORK FEATURES VIRTUALIZATION(NFV) AND
SOFTWARE-DEFINED NETWORKS(SDN)
NFV enables the abstraction of physical network resources
and the flexible sharing of resources between isolated

FIGURE 2. The architecture of MEC for IoV.

users [27]. Virtualization technology is a key technology of
MEC and realizes the separation of the service layer and the
physical resource layer of edge computing, and can assign
tasks to various physical resources, thereby efficiently uti-
lizing resources. By integrating NFV into the MEC server,
virtualized computing and storage resources can support the
functions of various applications and services and can be
applied to the server for functional programming to support
a variety of application services, thereby enhancing the flexi-
bility of the server and reducing the cost function supply [26].
SDN is a new network mode that was proposed by the CLean
State research group of Stanford University in the United
States. It is an implementation method of NFV. By separating
the control surface of network devices from the data surface
and opening the programmability, the logic centralized con-
trol of distributed network nodes and mobile devices can be
realized. Reference [28] studies SDN in super-dense network
task offloading problems and designs the edge of a cloud or
offloads tasks on a local process scheme; the main calculation
and control function is separated from the distributed small
unit base station, which is integrated into the centralized SD
UDN in the macrocell base station controller. Based on the
decision of the SD UDN controller, it is decided whether
the mobile device should perform tasks locally or offload
tasks to the edge cloud for processing, and the computing
resources should be optimally allocated to each task to realize
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the objectives of minimizing the delay and preserving the
user’s device battery life.

2) COLLABORATIVE MOBILE EDGE CLOUD COMPUTING
Collaborative mobile edge cloud computing combines the
advantages of MEC and MCC, which is of substantial
significance for ensuring the full utilization of MEC and
cloud computing resources. While cloud computing may pro-
duce long delays during offloading, it can provide sufficient
cloud computing resources. Although an MEC server out-
performs cloud computing in reducing the communication
delay and the energy consumption, with the increasing use
of computation-intensive applications, the limited comput-
ing resources of the MEC server cannot fully satisfy all
the uninstallation requirements. With the increasing num-
ber of computing tasks, the resource bottleneck problem of
the MEC server becomes increasingly prominent. Therefore,
cloud computing and MEC should be highly complementary.
Reference [29] proposed a collaborative offloading scheme
for vehicle-to-vehicle networks that is based on mobile edge
cloud computing and cloud computing, and it developed a
distributed computing offloading and resource allocation
algorithm for computational offloading optimization in
vehicle-to-vehicle networks. Reference [30] proposes a
design framework for edge computing in wireless broadband
access networks that supports smart cities by embedding a
green, viable virtual network. A suitable resource partitioning
approach is used for each virtual network embedding, and
backing up edge devices by using heuristic policies to deter-
mine the number and geographic location is recommended.
In reference [31], Ning et al. designed an iterative heuristic
MEC resource allocation algorithm for making unloading
decisions dynamically. In reference [32], Hu et al. consid-
ered the collaborative calculation of the offloading, combined
power and time distribution. They proposed a capture-unload
protocol that is based on the block-time-division mechanism
for minimizing the transmission power of wireless access
points.

3) CONTENT DISTRIBUTION
In the context of mass content delivery, a suitable content
distribution scheme can facilitate the avoidance of repeated
content transmission by the network. In addition, the applica-
tion of the content distribution framework in heterogeneous
IoV systems can improve the message accuracy and reduce
the communication overhead between vehicles and the infras-
tructure [37]. Current mobile users have consumed a substan-
tial amount of the capacity, and the demand for in-vehicle
infotainment services is still growing rapidly. To improve the
network performance and the user quality of service (QoS),
content distribution is often combined with content caching
technology and data prefetching technology to further reduce
the data access latency. In reference [38], a content propaga-
tion box that is based on edge calculation is proposed. First,
a two-stage relay selection algorithm is designed to facil-
itate edge computing devices in the selective transmission

of content via V2I communication. Then, the vehicle that
is selected by the edge computing device relays the content
via V2V communication to the vehicle that is interested in
the content during the trip to the destination. Reference [39]
proposed a content distribution framework that utilizes 5G
edge network caching and wireless link time slot scheduling.
The wireless resource allocation and return link utilization of
vehicle-to-roadside-unit communication at each information
station are considered. To maximize the throughput, wireless
links are dynamically allocated to vehicles using time slots.
In reference [40], we studied the impacts of the storage cost
and the retention time of content storage on cache optimiza-
tion in mobile scenarios. In addition, a cache problem in a
vehicle network is modeled, and its complexity is analyzed.
For symmetric cases, an optimal dynamic programming algo-
rithm with polynomial time complexity is developed. For
general cases, a multi-helper caching algorithm with low
complexity and effective retention perception is proposed,
which can obtain the best caching solution.

C. APPLICATIONS
For satisfying the strict requirements of limited mobile
terminal resources and computation-intensive and delay-
sensitive applications, computational offloading technology
is regarded as a key technology. Within the framework of
MEC, the mobile terminal can offload a task to the nearby
edge computing server for processing and feed back the
calculation results to the mobile terminal, thereby effec-
tively overcoming the resource limitation and reducing the
power consumption of the terminal during local calculation.
Offloading decision, computational resource allocation and
mobility management of computational offloading are three
key issues in the field of MEC-based computational offload-
ing. In the following, we analyze the previous research on
MEC in IoV.

1) OFFLOADING DECISION
In offloading decision-making, data transfer between depen-
dent tasks is typically considered. Mobile terminal com-
puting offloading methods mainly include local computing,
offloading to the MEC server for execution and offloading
to the cloud server for execution. Many studies have been
conducted on offloading decision-making, such as studies on
whether to offload, the quantity and location of offloading,
service type, user perfection, access technology, network traf-
fic, device performance, and edge node property [41]. The
offloading method is mainly based on the resource size, the
calculation and return time and the power consumption of
the calculation. The main influencing factors are the delay
and the energy consumption. To minimize the cost in terms
of communication and computing resources, the author of
reference [25] proposed a task diversion mechanism in the
edge computing network of vehicles under the condition of
high mobility of the vehicles. The task offloading scheme
is analyzed in the scenario of an independent mobile edge
computing device server and in the scenario of a collaborative
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mobile edge computing device server. Reference [6] proposed
a polynomial-complexity algorithm for computing the equal
distribution of wireless and cloud resources in dense wireless
networks to minimize the computing costs. The resource allo-
cation problem of offloading computing to the mobile cloud
by mobile users is considered, where a single mobile device
can stream computations to the mobile cloud via multiple
access points or a base station.

2) COMPUTATIONAL RESOURCE ALLOCATION
The objective of computing resource allocation is to min-
imize the cost of task processing so that resources can be
fully and reasonably utilized. It consists of two processes:
task assignment, namely, the assignment of tasks that can
be executed in parallel to specified resources, and resource
allocation. The execution order of tasks is determined accord-
ing to the pre-established resource allocation strategy. In the
MEC scenario, computing resource allocation is also used to
improve the overall system performance and to reduce the
overall execution time and resource consumption. Computing
resources are often considered in conjunction with offloading
decisions, which can be divided into single-node comput-
ing resource allocation and multi-node computing resource
allocation according to the numbers of users and computing
nodes, where in single-node allocation, a base station can
only serve one computing task in a time interval, and in
multi-node allocation, a base station in a time gap can serve
more than one computing task. In the multi-node comput-
ing resource allocation scenario, the main problems focus
on communication interference between users and resource
competition [41]. In reference [33], the author proposed a
multi-user and multi-task offloading scheduling scheme in
the updatable mobile edge cloud system. Considering the
energy arrival of the mobile edge cloud and the dynamics
of task arrival of various mobile devices, an energy acqui-
sition strategy is proposed by combining energy acquisition
with mobile edge cloud computing. To maximize the system
utility and match the offloading energy consumption of the
mobile edge cloud with the acquired energy, a task offloading
scheduling scheme is proposed for mapping the computing
workload of a mobile device to multiple wireless devices.
In reference [34], a mobile cloud computing system that
consists of multiple users, a computing access point and a
remote cloud server is studied. An efficient heuristic algo-
rithm is proposed for handling the joint task of loading and
allocating computing and communication resources to mini-
mize the energy consumption, the calculated weighted total
cost, and the maximum latency among all users. In refer-
ence [35], an algorithm is designed for making joint selec-
tion decisions and calculating resources and the offload rate.
A comprehensive task processing delay is used to develop
the system utilities, which considers both the transmission
and computation times. This scheme substantially improves
the performance of load balancing and maximizes the system
availability.

3) MOBILITY MANAGEMENT OF COMPUTATIONAL
OFFLOADING
Mobility management of computing resource offloading is
of substantial significance to the integrity of the user com-
puting offloading process. Due to the mobility of the user,
it is inevitable that the user will be disconnected from the
base station. Mobile cellular networks ensure the continuity
and quality of service by switching among base stations.
For scenarios with low user mobility, during the process of
offloading the application to the MEC server, the power of
the current base station can be adjusted adaptively to ensure
uninterrupted service. If the user switches to a new service
base station, virtualmachinemigration of the compute node is
used to solve the problem. In reference [24], a joint task allo-
cation, subchannel allocation and power allocation problem is
formulated. Aiming at maximizing the total offloading rate,
a hybrid computing shunt management framework for real-
time traffic in 5G networks is proposed. A joint power control
and channel allocation scheme is designed based on non-
orthogonalmultiple access andmobile edge computing.MEC
can reduce the computing limitations and extend the service
life of mobile devices; however, it will lead to the dense
distribution ofMEC servers. AlthoughMEC servers are close
to the mobile users, they face user-related challenges, which
will affect the computing shunt. Reference [36] focuses on the
joint computing of offloading and multi-task user correlation,
and it studies the scheduling problem in distributed MEC
systems with densely distributed MEC servers. To reduce the
energy consumption or improve the performance, an efficient
algorithm for calculating offloading is proposed by consider-
ing the distribution of the computational resources and the
transmitted power. A comparison of computing offloading in
MEC is presented in TABLE 2.

III. ARTIFICIAL INTELLIGENCE IN INTERNET OF VEHICLES
DRL is an essential technology for realizing AI. DRL utilizes
the advantages of deep neural networks (DNNs) to train the
learning process, thereby improving the learning speed and
performance of the RL algorithm and overcoming the unsuit-
ability of reinforcement learning for large-scale networks.
In this part, we introduce the development of AI, analyze
the relationship between AI and DRL, discuss the theory and
architecture of AI, and analyze the application of AI in IoV
research.

A. ARCHITECTURE
The objective of artificial intelligence (AI) is to endow
machines with human intelligence. Machine learning (ML) is
a method for implementing AI by using algorithms to parse
data, learn from data, and make decisions and predictions
regarding real-world events. Deep learning (DL) is a tech-
nology for realizing ML, which enables ML to realize many
applications and expands the scope of AI. Reinforcement
learning (RL), which is also known as evaluation learning,
is a technique of ML. Deep reinforcement learning (DRL)
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TABLE 2. Comparison of Computing Offloading in MEC.

FIGURE 3. The relationship between AI, ML, RL, DL and DRL.

is the combination of DL and RL. It aims at realizing the
optimization objective of RL with the operation mechanism
of DL to advance toward general AI. Fig. 3 illustrates the
relationship among AI, ML, RL, DL and DRL.

AI is a promising approach for making vehicle networks
intelligent. RL is a powerful tool in ML. In contrast to

traditional ML, RL does not have an immediate end result;
only a temporary reward (set primarily according to human
experience) is observed. Therefore, RL can also be regarded
as delayed supervised learning [16]. In the case of small
state space and behavior space, RL technology can be used
to enable network entities to identify the optimal strategy
for decision-making or behavior. However, in a complex
large-scale network, for improving the learning efficiency,
a learning method that combines RL with DL, namely,
DRL, is regarded as a potential solution [42]. The three key
elements of RL are the system status, the system actions,
and the rewards. In RL, the environment is typically repre-
sented as a Markov decision process (MDP). Agents interact
with the unknown environment through repeated observation,
action and reward to construct the optimal strategy [8]. Due
to the limited data that are obtained from outside, DRL
systems often rely on their own experience to learn by
themselves. Via this approach, knowledge is acquired and
solutions are adapted to the environment. For the spatial-
temporal coverage problem in mobile crowdsensing systems,
reference [43] proposes a vehicle selection scheme that is
based on DRL.
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FIGURE 4. Architecture for AI in IoV.

Fig. 4 illustrates the architecture of AI in IoV, where
the agent observes its current environmental state, takes
action, and receives its immediate reward along with the new
state. The observed information, which includes immediate
rewards and the new status, is used to adjust the agent’s
strategy, and the process is repeated until the agent’s strategy
approaches the optimal strategy.

B. TECHNOLOGIES
1) MARKOV DECISION PROCESSES(MDP)
The theoretical basis of MDP is a Markov chain (MC),
which is a stochastic process in a discrete index set and
state space. MDP provides a mathematical framework for
modeling decision problems in which the results are partially
random and controlled by the decision maker or agent. MDP
is used to model RL problems in ML, which facilitates the
study of dynamic programming and optimization problems
that can be solved via RL technology [42]. In reference [44],
the author proposed an architecture that combines a satellite
network with 5G cloud on-board Internet and designed a
joint optimization problem of computation offloading under
time-delay and cost constraints that is based on an incen-
tive mechanism. The solution uses the Markov chain Monte
Carlo and simulated annealing algorithms to effectively sup-
port seamless coverage and global resource management.
To overcome the inability of mobile IP to cope with high-
speed and frequent vehicle movements, reference [45] adopts
a switching management scheme that is based on machine
learning in a two-tier intelligent transportation network.
In the first layer, the recursive neural network model is used
to predict the received signal strength of the access point to
obtain the switch trigger decision. In the second layer, the
randomMarkov model is used to predict the next access point
using the vehicle flow.

2) Q-LEARNING AND DEEP Q-LEARNING(DQL)
Q-learning is a typical time-difference RL algorithm. The
Q-function is defined for the evaluation of the long-term
return of the strategy, and a neural network is used instead.
For each event, Q-learning makes a decision that is based
on the Q-value, which evaluates the selected operation in

the current scenario [16].When state space and action space
are small, Q-learning algorithm can effectively obtain the
optimal strategy. However, in practical applications, these
Spaces are often large due to the complexity of the system
model. In this case, the Q-learning algorithm may not be able
to find the optimal strategy. Therefore, the introduction of
DQL algorithm can overcome this shortcoming [42]. Using
Q-learning or DQL algorithms can intelligently control the
use of network resources in IoV [20].Reference [46] estab-
lished a generic, green, intelligent, and scalable scheduling
strategy for resource distribution, which is used to adapt to
the randomness of the traffic environment, to learn from high-
dimensional input scheduling policies using the depth of the
Q-network, to support the efficient operation of the vehicle
network and balance the IoT gateway of the available energy,
and to minimize the total cost.

3) LONG SHORT-TERM MEMORY(LSTM)
LSTM enables a recurrent neural network (RNN) to evolve
into one of many network topologies. It is a time-cycling
neural network that can remember features in data at any
time interval. LSTM is composed of forward components and
backward components. LSTM solves the vanishing gradient
problem of RNN by explicitly introducing a storage unit.
LSTM can be used to create large recursive networks to facil-
itate the solution of difficult ordering problems in machine
learning and to obtain the latest results [11]. In reference [47],
the author used a Markov decision process to model the
content caching problem in the Internet of vehicles and pro-
posed an active caching strategy of Q-learning which is based
on LSTM. In a service scenario in which Non-Orthogonal
Multiple Access (NOMA) users are randomly deployed by
a BS, reference [48] proposes a method that is based on deep
learning, the NOMA technology with LSTM integration,
a framework that can be automatically and completely
learned via the method of offline learning in an unknown
channel environment, end-to-end processing of a NOMA
wireless channel, and optimization that is based on NOMA
user activity and data detection.

C. APPLICATIONS
Compared with the traditional DRL-based centralized
approach, the DRL-based distributed approach can learn
information from the environment more quickly and can
substantially reduce the communication overhead of vehicles.
In reference [49], an intelligent unloading framework of
a vehicle-mounted network that supports 5G is built.
To balance the transmission load, the cellular channel and the
multiplexed sub-channel are used for the task transmission.
According to the bilateral matching algorithm, all users are
divided into V2R and V2I users to allocate the unauthorized
spectrum. Then, a distributed deep reinforcement learning
algorithm is proposed for scheduling the cellular channel,
which can minimize the unloading cost under the premise
of satisfying individual delay constraints. Reference [50]
uses an online learning algorithm based on reinforcement
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learning to propose a collaborative online caching strategy
to achieve content caching and updating. In reference [51],
the author proposes an RSU cloud, which is an infrastructure
that supports computing and communication in the Internet of
vehicles, that utilizes the dynamic programmability of SDN
and the cost analysis method of reconstruction. Modeling
cloud resource management as a multi-objective optimiza-
tion problem, with a heuristic algorithm and reinforcement
learning approach for the selection of the configuration that
minimizes the cost of reconfiguration, may yield high vir-
tual machine mobility immediately, but in the long run, the
opposite may occur. Most studies focus on the optimization
of mobile edge networks in consideration of the network,
communication and computing costs and cache. To satisfy
the requirements of system resource management scheduling
and system performance optimization, this is considered a
promising solution for improving the predictive performance
of channel state information in an edge computing network.
In reference [11], a channel prediction model that is based
on LSTM is proposed, and the associated algorithm, which is
based on deep learning, can predict future channel parameters
based on past and present channel parameters. Basic methods
of machine learning often incur a large training cost. Samples
are difficult to obtain in practice, and if the network param-
eters change, task mismatch easily occurs. Reference [7],
the authors designed a transmission strategy that is based
on deep learning by considering the social characteristics
of the edge of vehicle equipment and physical properties,
and they established a connection framework for assessing
interactions, in which a clustering algorithm that is based on
triangular patterns is used to control the network size and a
discovery algorithm that is based on a convolutional neural
network is used for data sharing with partners.

IV. ARTIFICIAL INTELLIGENCE EMPOWERED
EDGE OF VEHICLES
In the age of intelligent IoV, the application of AI to vehicle
edge networks is a promising approach for the development
of intelligent transportation. In this part, we introduce the
advantages of AI in applications to vehicle edge networks and
the architecture of AI-based vehicle edge networks. Then, the
related key technologies are described. Finally, we introduce
the previous research on the application of AI to vehicle edge
networks.

A. ARCHITECTURE
Traditional data sources are typically transferred remotely
to the cloud center, and services that are based on the
mobile cloud cannot guarantee the satisfaction of low-latency
requirements for content transfer [52]. Therefore, mobile
edge computing has the potential to overcome this challenge.
According to [53], not only can MEC reduce the commu-
nication latency, but MEC nodes can also use the poten-
tial resources in the network to reduce the workload of the
central base station. In reference [54], a joint communica-
tion, caching and computing (3C) model is proposed for the

provision of infotainment services in smart cars. It mini-
mizes the latency of access to infotainment services under
resource constraints. The problem of mixed-integer, nonlin-
ear and non-convex optimization is transformed into a linear
programming problem via the relaxation technique, and its
convergence is demonstrated. In addition, according to [55],
by using the mobile edge cache to store the content on the
edge of the network, the content can be transmitted directly
via wireless transmission without the need for backhauling or
core network transmission, thereby reducing the end-to-end
delay and the backhaul pressure.

As the applications of mobile users become richer and
more intelligent, they are faced with the requirements
of massive data processing, delay-sensitivity, and location
awareness, among others. In recent years, artificial intelli-
gence (AI)-based vehicle edge computing has attracted sub-
stantial attention. DRL is a tool of machine learning. The
available DRL technology can be applied to image process-
ing, pattern recognition, natural language processing and
computation-intensive applications. The integration of DRL
technology and vehicle edge computing is used to construct
the intelligent computing shunt system, which faces such
problems as high mobility of vehicles and difficulty finding
continuous image sequences. In reference [53], the authors
use the finite-state Markov chain, DRL and the calculation
integration vehicle edge to build an intelligent offloading
system, and they develop a joint optimization of task schedul-
ing and resource allocation problem in a traffic network,
which is decomposed into two sub-optimization problems:
task scheduling among multiple vehicles and the allocation
of resources. The former is solved via a bilateral matching
algorithm, while the latter is handled by an integrated DRL
method. In addition, shared edge computing services can be
provided by mobile edge servers that are deployed on the
edge of the network to improve the user quality of service.
However, due to the unevenness of space and the dynamics of
time, the distribution of vehicles is unbalanced. Therefore, an
unbalanced communication load of the mobile edge server is
generated. Reference [56] proposes an active load balancing
method, namely, an end-to-end load balancer, which uses a
deep CNN to learn spatiotemporal correlations and predict
road traffic conditions. A new framework that is based on
CNN is used to address the optimization problem of NLP,
to fine-tune the network from end to end, and to implement
the efficient collaborative scheduling of cached data between
mobile edge servers. In reference [57], the hybrid compu-
tation offloading and intelligent cache problems in layered
IoV with edge intelligence are studied. However, to satisfy
the demand of real-time analysis of heterogeneous data from
an intelligent vehicle network and its environment, deep rein-
forcement learning still faces many challenges [58].

Fig. 5 illustrates the architecture of a vehicle edge network
that is based on AI. The mobile vehicle communicates with
a roadside unit (RSU) that is equipped with an MEC server
via an on-board unit (OBU). RSUs have computing and
storage capabilities, and multiple RSUs can communicate.
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FIGURE 5. The architecture of vehicle edge network based on AI.

Computationally heavy tasks can be offloaded to the base
station (BS), and the collected data can be used to make intel-
ligent decisions (such as predicting the direction of vehicle
movement) with the help of high computing power, and can
be used to support deep learning.

B. TECHNOLOGIES
1) COLLABORATIVE EDGE CACHING
Collaborative edge caching combines the advantages of
mobile edge caching and collaborative caching. By actively
storing files in the base station (BS), the mobile edge cache
can provide content directly without remote file extraction,
which reduces the end-to-end latency and the backhaul stress.
Simultaneously, to effectively utilize the limited cache size,
collaborative caching can be used to improve the diversity of
the cache. Under the new user-centered network architecture,
multiple base stations can serve users. In addition, collab-
orative caching can improve the cache hit performance to
overcome the moderate cache hit performance bottleneck that
is caused by the relatively small cache storage on a single BS.
In reference [55], collaborative edge caching in large-scale
user-centered clustered mobile networks is studied, and a
greedy content layout algorithm that is based on optimal
bandwidth allocation is proposed for minimizing the cache
size and the average file transfer rate under bandwidth con-
straints. In reference [59], the author proposed an edge net-
work cache replacement strategy that is based on deep learn-
ing using a deep LSTM network. The joint framework is
used to merge the smart cache replacement algorithm and
the corresponding collaboration mechanism. The cache strat-
egy is automatically learned in real time from the request
sequence to reduce the transmission latency and the backhaul
data traffic.

2) MULTI ARMED BANDIT
MAB is a reinforcement learning method. It has been
extensively studied for addressing the key tradeoff between
exploration and development in sequential decision-making

under uncertain conditions. The original k-armed bandit
problem assumed that one option was selected from k options
repeatedly. The option is the arm. Each time an option is
selected, a reward is obtained as feedback, and the action
selection is repeated to focus the action on the best arm
to maximize the expected total reward in a period of time.
To cope with the unknown service requirements in the
changing user groups, reference [60] proposed a combined
context bandit learning problem. A spatiotemporal edge
service placement algorithm is used to solve the problem.
Multiple learners are considered, and each learner can main-
tain a distinct location-specific context space. The con-
text information of connected users is collected according
to users’ preferences, and location-awareness and context-
awareness are realized for renting computing resources flexi-
bly and economically in the shared edge computing platform.
Reference [61] proposed a distributed adaptive task
offloading algorithm that is based on learning that is based
on multi-arm bandit theory. It enables the vehicle to learn the
offloading delay performance of an adjacent vehicle while
offloading the calculation task, eliminates the need for fre-
quent state exchanges, and increases the input and occurrence
awareness for adaptation to the dynamic environment.

3) NONORTHOGONAL MULTIPLE ACCESS (NOMA)
As an emerging technology in 5G networks, NOMA has
advantages in terms of its spectrum, connectivity, energy
efficiency and other aspects, thereby enabling multiple users
to reuse frequency resources nonorthogonally. NOMA tech-
nology not only has advantages in increasing the system
throughput and supporting large-scale connections but can
also be used to eliminate multi-user interference in multi-
user detection systems by assigning power levels according to
users’ channel conditions. Reference [65] studied the cache-
assisted non-orthogonal multiplexing access of the onboard
network that supports 5G. Considering the full-file cache
and split-file cache, the optimization problem of the overall
probability of decoding the files successfully in each vehicle
is formulated and solved in the first scenario. In the second
scenario, a joint power distribution optimization problem
is proposed for determining the power distribution between
vehicles and individual files. In reference [66], the author
considers task offloading and user selection between macro
units and edge devices. A moving edge algorithm that is
based on non-orthogonal multiple access is proposed, and a
heuristic algorithm is designed from the aspects of offloading
decision, channel allocation and power control to improve the
transmission rate gain and the discharge offloading efficiency.

C. APPLICATIONS
The emerging 5G mobile network has the advantages of high
bandwidth and low latency. By expanding the antenna scale,
the 5G wireless network can improve frequency reuse and
increase the capacity of the cellular network via network den-
sification. However, in the face ofmassive data, the traditional
caching strategy has encountered a bottleneck. Therefore, the
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proposal of a moving edge cache is extremely important in
the 5G network, which can provide higher service quality
for many new applications. Caching content in the base sta-
tion can significantly reduce the network latency, whereas
caching content on the edge can reduce the data traffic in the
core network and conserve bandwidth for the Internet [59].
In addition, edge caching can improve the spectrum effi-
ciency and reduce the energy consumption due to device het-
erogeneity and dense deployment [67]. IoT data are transient;
for example, the popularity distribution of data may vary
with the time and location, and static-based caching strate-
gies have difficulty satisfying the various requirements of
IoT services, such as mobility and geographically distributed
support. In reference [62], for caching temporary data on
the edge of the IoT, the author proposed a framework of
the IoT system that is based on the edge cache. Considering
both the ‘‘data freshness’’ and the ‘‘edge cache’’, the cache
strategy of the deep reinforcement learning method can make
smart cache decisions without assuming the data popularity
or user request distribution. In reference [63], the author
uses a convolutional neural network to predict and obtain the
user’s age and gender characteristics. By deploying multiple-
access edge computing servers on roadside units, WiFi access
points and acer stations for caching infotainment content
in and around self-driving cars, fog computing extends the
infrastructure of traditional cloud computing to the edge of
the network, thereby substantially reducing the long-distance
latency from the terminal to the cloud server. Since edge
servers are distributed in the surrounding area, fog comput-
ing is expected to improve the data transmission efficiency.
Reference [52] proposed a vehicle edge collaborative filtering
content transmission scheme that is based on fog calcula-
tion. A collective filtering algorithm and a two-dimensional
Markov chain are used to combine positional awareness, con-
tent caching, and decentralized computing for content pre-
caching at the edge of the vehicle network. Due to the highly
dynamic network environment and the uncertainty of mobile
users, reference [5] proposed the concept of vehicle caching,
which uses vehicle mobility to improve the service scope and
cache capacity. The interaction between a cached vehicle and
the mobile user is modeled as a two-dimensional Markov
process. On this basis, an online vehicle cache design scheme
that is based on network energy efficiency optimization is
proposed. It is proved to outperform the available scheme
in terms of the hit ratio, energy efficiency, cache utilization
and system gain. Machine learning is also an emerging tool
for solving caching, computing and communication prob-
lems in 5G wireless communication. Various studies, such as
[18] and [27], have investigated the joint optimization
of computing resources and caching. In reference [18],
large amounts of data and popular content are produced
by computation-intensive applications, time-delay-sensitive
applications, and on-board sensors. This paper discusses the
resource processing and storage of vehicles with limited
resources in the Internet of vehicles. An AI-based algorithm
is proposed for dynamically orchestrating the architecture of

edge computing and cache resources, and a novel resource
management scheme is developed, which uses deep rein-
forcement learning. In contrast to other studies, this study
uses a two-layer cross-layer offloadingmodel that combines a
heterogeneous network and mobile edge computing to realize
dynamic resource allocation. In reference [27], the principle
of programmable control of the network that is defined by
software, the principle of caching in information and com-
munication technology and the principle of network virtual-
ization are used to construct the framework of the dynamic
arrangement of integrated network, cache and computing
resources. The main disadvantage is the lack of consideration
of the energy consumption. In references [64] and [8], the
joint optimization of resource allocation for caching, com-
puting and communication is considered. In reference [64],
an algorithm that is based on an AI multi-temporal frame-
work is designed, which facilitates the configuration of cache
placement and the calculation of the parameters of resource
allocation. For cost minimization under the constraints of
limited RSU storage capacity, dynamic fluctuations in com-
puting resources, vehicle mobility, and strict end-to-end delay
limits, reference [8] proposed a deep reinforcement learn-
ing method that is based on a multi-time-scale framework.
Vehicle mobility is leveraged to enhance the caching and
computing strategies. A long-time-scale model of motion
perception reward estimation is proposed to reduce the com-
plexity that is due to large action spaces. Resource alloca-
tion and computational offloading are inextricably linked.
Reference [68] studied the optimal utility task offloading
scheme in a heterogeneous vehicle network with multiple
mobile edge computing servers under constraints on the relia-
bility and waiting time and proposed an adaptive redundancy
offloading algorithm that is based on deep Q-learning to
ensure the reliability of offloading and to improve the practi-
cability of the system. Reference [16] proposed an energy-
saving task offloading scheme that is based on DRL and
combined it with fog computing technology. Considering
load balancing and time delay constraints, an optimization
problemwas formulated for minimizing the energy consump-
tion of traffic offloading, which was decomposed into two
parts: flow redirection and offloading decision. Algorithms
that are based on Edmonds-Karp and DRL were developed
for solving the problem. In reference [69], a distributed
dynamic computing offloading strategy that is based on DRL
is proposed for dynamic task offloading control of multi-user
MEC systems to minimize the long-term average computing
cost consumption and the task buffer delay in the power.
A comparison of edge caching that is based on AI algorithms
is presented in TABLE 3.

V. RESEARCH CHALLENGE AND OPEN ISSUES
In the previous sections, we reviewed the architecture and
related technologies of MEC, AI, and AI-based vehicle edge
networks in IoV. In addition, we analyzed the previous
research from three aspects. However, the future IoV still
faces challenges. In this section, we will discuss several
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TABLE 3. Comparison of edge caching based on AI algorithm.

possible research challenges and propose several promising
research directions.

A. SECURITY AND PRIVACY
In recent years, security and privacy issues in IoV have
received extensive attention. Mobile vehicles collect infor-
mation via V2V communication between vehicles and via
V2I communication from vehicles to roadside infrastruc-
ture. Due to the high mobility of vehicles, communication
is often interrupted, thereby resulting in frequent failures of
communication links. In addition, hackers’ security attacks
on communication channels and sensor tampering will lead
to severe privacy invasion. In addressing these security and
privacy issues, challenges in the solution of identity privacy,
data privacy and location privacy issues will be encountered.
Potential solutions include communication authentication,
MEC and access control of cloud computing servers [70].
Reference [71] proposes an architecture of edge auxiliary
network connecting vehicles. To solve the problem of loca-
tion privacy, a location-based differential privacy protection
service framework is proposed for ensuring location privacy
within the coverage of the edge nodes. Li et al. [72] proposed
an online double auction scheme for k-anonymous location
privacy protection, which could solve the problems of optimal
charging scheduling for electric vehicles and location privacy
protection for owners of electric vehicles. Chen et al. [73]
designed a data trading method for the Internet of vehi-
cles that is based on block chain. An iterative dual auction
mechanism is used to protect the privacy of both parties in
data transaction, to reduce the data transmission cost and to
improve the system stability.

B. GREEN ENERGY SAVING
Green energy saving has a profound impact on the construc-
tion of a green IoV. Automobile exhaust emission is the
main factor that affects the human environment and the air
environment. To alleviate the current environmental pollution
scenario while adapting to the highly dynamic traffic envi-
ronment, it is highly important to use RSUs to communicate
with nearby vehicles to realize efficient task scheduling to
satisfy vehicle communication requirements. Energy saving
in RSU scheduling and RSU energy collection are essential
for solving the problem of energy consumption. The imple-
mentation of a wind or solar RSU in an energy-constrained
vehicle environment can increase the network capacity and
promote energy recovery. In addition, the minimum number
of active RSUs can be set to maintain the network operation
and connectivity [74]. To minimize the total energy con-
sumption of RSUs under the delay constraint, reference [75]
constructed an MEC-based IoV energy-saving scheduling
framework for balancing the computing tasks among RSUs.
A heuristic algorithm is designed that considers the task
scheduling among MEC servers and the energy consumption
of the RSU downlink. In addition, electric vehicles, which are
powered by electric engines instead of internal combustion
engines, which are powered by fossil fuels, can effectively
reduce the carbon footprint and play an important role in
realizing efficient energy management [76].

C. HIGH MOBILITY
Mobility is an important feature of vehicle networks. With
the rapid increase of the road traffic density, high speed
and frequent vehicle movements are the main factors that
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render the network topology dynamic. The high mobility
of intelligent vehicles not only adds considerable complex-
ity in co-optimizing the allocation of computing and cache
resources but also hinders the provision of stable and reliable
wireless communication [77]. First, the data transmission
distance is constantly changing due to vehicle movements.
Therefore, the data rate and the effective duration of channel
transmission in V2X communication will also be affected.
Second, the changes in the vehicle speed and direction over
time will lead to frequent handovers between edge servers.
Active communication management is transferred from one
RSU or BS to another RSU or BS. The duration for which a
vehicle remains within the coverage area of the RSU or BS
also varies. Due to the widespread use of various Global Posi-
tioning System (GPS) devices and mobile Internet in daily
life, vehicle trajectory data can be easily obtained on a large
scale [78]. Therefore, addressing the high mobility of IoV by
predicting the vehicle movement direction and studying data
routing distribution protocols is a feasible solution [79].

D. INTELLIGENT COMPUTATION
With many edge nodes deployed in 5G networks, edge com-
puting has the advantage of reducing the traffic load and
the backhaul pressure, but edge devices still face the chal-
lenge of real-time processing. Edge cognitive computing has
become a new paradigm. By analyzing and interpreting the
available data and information in cyberspace, the intelligence
of machines can be increased for the prediction and genera-
tion of new information, thereby providing more intelligent
cognitive services. Reference [80] proposed an architecture
of edge cognitive computing by combining edge computing
and cognitive computing. Considering the elastic distribution
of cognitive computing services and the mobility of users,
a dynamic cognitive service migration mechanism that is
based on edge cognitive computing is designed. It integrates
the communication, computing, storage and application on
the edge network, improves the user experience and real-
izes rational resource allocation and cognitive information
circulation.

VI. CONCLUSION
In this study, two key technologies, namely, MEC and AI,
were analyzed by focusing on the development of intelli-
gent IoV and the previous research on combining the two
technologies. First, the communication mode and architec-
ture of the traditional Internet of vehicles were introduced,
along with the advantages of the emerging 5G network.
In addition, MEC, FC and MCC were compared by studying
the development history of MEC. The advantages of MEC
were analyzed, the MEC, FC and MCC were compared by
studying the development history of MEC. The advantages
of MEC were analyzed, the key technologies of MEC were
evaluated, and several key technologies for calculating the
unloading in MEC were studied. Then, the differences and
connection between AI and DRL in realizing intelligent
IoV were discussed, with a focus on the characteristics and

application status of DRL in dynamic vehicle networks. Then,
combining the advantages of MEC and AI technologies, the
previous research on the application of AI to vehicle edge
networks was analyzed. Finally, the possible future research
directions of IoV were discussed.
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