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ABSTRACT A complex network is a powerful tool that enables a complex system in the real world to
be represented as a network structure. Due to the heterogeneous edges and nodes implying rich semantic
information, network representation has received considerable attention in both research and industrial
domain. Over the recent years, the graph convolutional network (GCN) has provided a novel approach
for learning network embeddings. However, this primarily supports undirected unsigned networks; that is,
it cannot be directly applied to directed signed networks because it is challenging to effectively depict the
direction and signs of edges in suchmodels. In this paper, we therefore propose a method for semi-supervised
gated spectral convolution in directed signed networks. We first extend the concept of the GCN to directed
signed networks, which not only preserves the advantages of the traditional GCN but also properly describes
the significance of the directions and signs of the edges. We then innovatively define sign (label) propagation
rules in directed signed networks, rendering the networks semi-supervised. Furthermore, we enhance the
balance theory to constrain the process of sign propagation to obtain network embedding with better
interpretability. To satisfy the needs of large-scale complex networks, we propose a gating mechanism
to adaptively forget sign information, which significantly reduces the time–space complexity of the sign
propagation process. Finally, we compare the proposed method with state-of-the-art baselines using four
real-world data sets for the classical link sign prediction task. Experimental results demonstrate that the
proposed method is competitive.

INDEX TERMS Directed signed networks, spectral graph convolutional networks, balance theory, gating
mechanism, network embedding, link sign prediction.

I. INTRODUCTION
Acomplex network is a powerful tool that enables a compli-
cated system in the real world to be described as a network
structure [1]. These networks can be classified from different
perspectives.When a network contains edges with signs (pos-
itive or negative) and directions, it is called a directed signed
network or a directed polar network. A directed signed net-
work can portray complex real-world systems in more detail,
as its directed positive edges can depict positive meanings,
such as like, friendship, trust, cooperation, and its directed
negative edges can represent negative meanings, such as
dislike, hostility, suspicion, competition. This system has
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been widely used to model many complex networks with
dichotomous relationships, such as the relationships between
friends and foes in social networks [2], trust networks with
credible and suspicious comments [3], protein interactions
in biological networks [4], traffic control networks [5], rep-
resenting support or confrontation in international relation
networks [6]. Therefore, the appropriate representation of
directed signed networks is critically important and very
challenging [7].

The current mainstream method for network represen-
tation is network representation learning (NRL), which
learns a network representation as a low-dimensional vec-
tor. Deep-learning-based NRL has achieved great success in
many graph-theoretic data mining tasks of networks, such
as node classification [8], [9], link prediction [10]–[12],
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clustering [13], [14], and visualization [15], [16]. One of
the most important deep-learning-based NRL methods is
the graph convolutional network (GCN), which defines the
convolution of a graph structure using spectral theory and
introduces the relationship between the Laplacian matrix and
the Fourier transform. This not only extends the traditional
convolution neural network characteristics but also performs
well in undirected and unsigned networks. Therefore, the
GCNmodel has inspired our researchwork on directed signed
networks. However, there are some unsatisfactory aspects
of GCNs that need to be addressed. First, they only focus
on undirected unsigned networks without considering the
direction and polarity of edges. However, both the direction
and the polarity of edges have a critically important influ-
ence on the formation and evolution of networks. Second,
a GCN has a high time–space complexity, as it operates on
the global structure of networks. Although some improved
GCN methods such as fast GCN [17] reduce the complexity,
the computational cost of GCNs is still very high. Third,
balance theory, a critical tool in signed network analysis [16],
[18]–[21] is not properly combined in GCN-based methods.
Overall, none of the existing GCN-based methods possess all
of the desired properties: considering the signs and directions
of edges, low time–space complexity, and social theoretical
interpretation.

To address these problems, we propose a method for an
innovative semi-supervised gated spectral convolution in a
directed signed network (DS-SGS-GCN). The main contri-
butions of our method are as follows.
• We extend the notion of the GCN to directed signed
networks, which not only preserves the advantages of a
traditional GCN but also properly describes the signifi-
cance of the directions and signs of edges. The formation
and evolution of networks can therefore be depicted
more accurately.

• We innovatively define sign (label) propagation rules
in directed signed networks, thus making the networks
semi-supervised. Based on the semi-supervised sym-
bol propagation, more sign information is obtained for
GCN, which significantly improved the experimental
effect.

• We enhance balance theory to constrain the process
of sign propagation to obtain network embedding with
better interpretability.

• To satisfy the needs of large-scale complex networks,
we propose a gating mechanism to adaptively forget
some sign information, which not only significantly
reduces the time–space complexity of the sign propaga-
tion process but compared with that before application,
it can maintain or even further improve the effectiveness
of the experiment.

Finally, we compare our method with state-of-the-art base-
lines using four real-world data sets for the classical link
sign prediction task. Experimental results demonstrate that
our method is competitive.

The rest of the paper is organized as follows. In Section II,
we discuss some related works. In Section III, we intro-
duce some related definitions about DS-SGS-GCN method.
In Section IV, we explain our proposed model’s process
in detail. In Section V, we show experiment tasks and the
data sets we used, list the comparative experiments, and
give the experimental results and parameter analysis. And
we conclude our work and discuss some future works in
Section VI.

II. RELATED WORK
Due to the wide range of possible application scenarios for
directed signed networks, they have attracted more attention
in recent years [22].

The signed network concept was first proposed by soci-
ological researchers in the 1940s. Based on the theory of
social psychology, Heider analyzed the interaction between
negative and positive relationships in human cognitive tri-
angles [23]. Cartwright and Harary used graph theory to
describe the existence of balanced and unbalanced cognitive
triangles and put forward the concept of balance theory [24].
Research had been conducted into signed social networks
with positive and negative polarity based on balance theory.
The researchers aimed to analyze the characteristics and evo-
lution of signed networks, reveal their community structure,
and find groups in them. However, these studies were suitable
for small-scale social networks and had certain limitations.
So researchers subsequently began to pay more attention to
signed networks. Leskovec andKunigis first began to conduct
signed network research with positive and negative relation-
ships and established public data sets [2], [25], [26].

With the development of network representation learn-
ing (NRL), researchers began to study signed NRL. Kunigis
expanded the spectrum analysis method for an unsigned
network, reduced the dimension of the the signed network
characteristics, and further predicted the links and communi-
ties [16]. Wu used the spectrum of the adjacency matrix of
the sign graph to divide the communities in k-balanced sign
graphs, and further proved that k-balanced sign graphs were
separable in the spectral space [27]. Zheng and Skillicorn [22]
defined two normalized Laplacian eigenspectrum methods
based on a random walk according to Kunigis’ signed
network spectrum analysis, which represents the nodes as
low-dimensional vectors and ensures the first-order nearest-
neighbor approximation [28].

In recent years, deep-learning-based network representa-
tion methods were proposed. SiNE [18] was a good attempt
in the task transition from unsigned networks to signed
networks. It analyzed the role of the negative edges in
signed networks, and further introduces balance theory in
a deep-learning framework. Kim proposes SIDE [7] that
combined balance theory with a random walk. It learned
the node representation in networks based on the connected
sign of edges. Tyler presents SGCN [29] which integrated
balance theory with the spatial GCN method. It defined a
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loss-function constraint using balance theory, which is more
effective than many previous results.

Although the deep learning based representation learning
methods for signed networks achieve some success, they
ignore the edge direction and sign in the sampling process,
thus making the neighbor relationship violate the balance
theory of the signed network [24], that is, the learned repre-
sentation misses part of the original polarity semantic relation
of the network. In fact, the key of the representation learning
for directed signed network is how to correctly handle the
propagation relationship between positive and negative edges
of the network, so that the final representation can not only
retain the original network sign information but also dig out
the unknown or high-dimensional symbol information. This
is the goal of this paper.

III. RELATED DEFINITION
For the convenience of our proposed method’s descrip-
tion, we give the related definition about semi-supervised
gated spectral convolution on a directed signed network
(DS-SGS-GCN) in this section. We first define the directed
signed network and describe it using an adjacency matrix,
then we explain the signed reachable matrix and the signed
Laplacian matrix.

A. SIGNED NETWORKS
Definition 1 (Unsigned Network): An unsigned network

can be abstractly defined as G = (V ,E), where V =

{1, 2, . . . , n} denotes the set of N nodes, and E is the set of
edges with e(i, j) ∈ E, e(i, j) ∈ {0, 1}, where e(i, j) = 0
denotes that there is no edge between i and j, and e(i, j) = 1
means that there is an edge between i and j. In an undirected
network, e(i, j) is equal to e(j, i), and in a directed network,
e(i, j) may not be equal to e(j, i).
Definition 2 (Signed Network): The definition of a signed

network emphasizes the sign of the edges. It is defined as
G = (V ,E,W ), where w(i, j) ∈ W , w(i, j) ∈ {−1, 0, 1},
wherew(j, i) = −1 indicates that the sign of e(i, j) is negative,
w(j, i) = 0 means that the sign of e(i, j) is unknown, and
w(j, i) = 1 shows that the sign of e(i, j) is positive. A signed
network G = (V ,E,W ) can be represented as an adjacency
matrix denoted as A ∈ Rn×n.

A(i, j) =


1, if sign of e(i, j) is positive
0, if sign of e(i, j) is unknown
−1, if sign of e(i, j) is negative

(1)

Figure 1 shows a randomly selected local trust network
structure from the Epinions data set [30] (It provides the
relationship between users’ trust and distrust of others’ com-
ments. More information about this data set will be covered in
V-A2), in which positive relations (trust) are expressed with
red edges and negative relations (distrust) with black edges.
Its corresponding adjacency matrix is shown in (2). It can be
seen that the adjacency matrix is asymmetric and relatively
sparse, and the task of link sign prediction is to predict the true

FIGURE 1. Simple graph of a signed network from the Epinions data set.

FIGURE 2. Balanced and unbalanced triangles in balance theory.

symbol value of elements with zero values in the adjacency
matrix.

A =



1 0 0 0 −1 0 0
0 1 1 0 1 0 0
0 0 1 0 1 0 0
0 1 1 1 1 0 0
0 0 0 0 1 0 0
0 0 0 0 −1 1 0
0 0 0 0 −1 0 1


(2)

B. BALANCE THEORY
Since Heider proposed the theory of social structure balance,
it has become the basic theory of symbolic networks. Some
basic rules defined in theory have beenwidely used in the task
of link sign prediction in signed networks. The definition of
balance theory is described by the structural balance triangles
in Figure 2, where a positive relation is expressed with a red
‘‘+’’ and a negative relation as a black ‘‘−’’. In Figure 2,
(a) and (b) are balanced triangles, whereas (c) and (d) are
unbalanced triangles.

These fundamental balance structures imply the common-
sense ideas that ‘‘a friend’s friend is a friend, a friend’s enemy
is an enemy, and an enemy’s enemy is a friend.’’ Similarly,
they can also be applied in trust networks and many other
signed networks. Based on these structural balance triangles,
we can obtain high-order sign relations through label prop-
agation. Taking Figure 2(a) as an example, when knowing
any two edges, the sign of the third edge can be predicted
as positive. We call the third edge a ‘‘virtual edge’’. The
existence of the virtual edge is the basis of balance theory con-
straining the process of label propagation in signed networks.
Based on this kind of constraint, the symbol propagation
processes in signed networks are much improved, and this
further embodies the advantages of semi-supervised learning.

It is noted that we only focus on the balanced struc-
tural triangles rather than the unbalanced ones to ensure the
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correctness of the signed reachable matrix defined below.
This is because in the real world, the number of unbal-
anced triangles is much smaller than the number of balanced
triangles [29].

C. DIRECTED SIGNED NETWORK
As mentioned above, most complex systems in the real world
are the best described using directed signed networks. There-
fore, we need to handle the representation problem of directed
signed networks. For convenience, we first define the propa-
gation matrix, denoted as Asign of such networks.
Definition 3 (Directed Signed Network Propagation

Matrix Asign): Asign is defined in (3).

Asign = A+ AT + I (3)

Specifically, each element in Asign is calculated with (4).

Asign(i, j) = A(i, j)+ A(j, i)+ bi/jc ∗ bj/ic (4)

It can be seen that Asign not only retains original weights
but also filters the conflict of zero-order sign values. This
eliminates wrong polarity relationships in signed networks
and adds self-connections to pave the way for subsequent sign
propagation. Specifically, each element of the propagation
matrix Asign is expressed as follows.

Asign(i, j) =



3, sign of self-connection
2, sign of e(i, j) is positive
1, sign of e(i, j) may be positive
0, sign of e(i, j) is unknown
−1, sign of e(i, j) may be negative
−2, sign of e(i, j) is negative

(5)

The propagation matrix Asign is consistent with first-order
balance theory. Taking the social network as an example. ( In
the real network, self-connection is irrelevant data, but in the
sign propagation, self-connection is essential.)

• If user i is user j’s friend and j is i’s friend, then i
and j must be friends with each other, and the value of
Asign(i, j) is 2.

• If user i is user j’s friend and the relationship from j to i
is unknown, then i and j may be friends with each other,
so the value of Asign(i, j) is 1.

• If user i is j’s friend but j is i’s foe, then the relationship
between i and j is unknown, so the value of Asign(i, j)
is 0.

• The result of the first-order negative relation propagation
between user i and user j is still correct.

The propagation adjacency matrix quantifies the expres-
sion of first-order balance theory. However, it is noted that the
weight of each element of Asign may interfere with the sign
propagation based on normal balance triangles. Therefore,
we simplify the propagation adjacency matrix to Ãsign which
is called the ‘‘activated propagation adjacency matrix’’.

Definition 4 (Directed Signed Network Activated Propa-
gation Adjacency Matrix Ãsign): Ãsign is defined in (6).

Ãsign = sgn(Asign) (6)

where sgn(·) is a signum function described in (7).

sgn(x) =


1, if x > 0
0, if x = 0
−1, if x < 0

(7)

This means that Ãsign eliminates the weight but retains the
sign information for each element. Therefore, the elements of
Ãsign can be expressed as (8).

Ãsign(i, j) =


1, for positive information
0, none valid information
−1, for negative information

(8)

We take Ãsign as the first-order signed reachable matrix (we
will visual this later) to realize the high-order interpretation
and sign propagation task.

D. DIRECTED SIGNED REACHABLE MATRIX
Based on the definitions above, we define the directed
signed network reachable matrix to realize a semi-supervised
sign propagation process in our DS-SGS-GCN model using
enhanced balance theory.
Definition 5: (Directed SignedNetworkm-Step Reachable

Matrix Mm): The reachable matrix of a directed signed net-
work G = (V ,E,W ) is defined in (5).

Mm(i, j) =


1, for positive reachability
0, unreachable
−1, for negative reachability

(9)

Theorem 1: The directed signed networkm-step reachable
matrixMm ∈ RN×N makes sense.
Here, we prove theorem 1 with a constructive method:
Step 1. Zero-order and first-order reachable matrices make

sense.
We define the zero-order and first-order reachable matrices

in (10a) and (10b).

M0 = I (10a)

M1 = Ãsign (10b)

where M0 is the zero-order reachable matrix and I is a unit
matrix. M0 implies that, each node in the directed signed
network G has a positive relation with itself. This is the most
essential relationship, as it affects the subsequent sign prop-
agation process from low-order to high-order. M1 in (10b) is
the first-order reachable matrix. As mentioned in the previous
subsection III-C, this is just the activated propagation adja-
cency matrix.

Step 2. The second-order signed network reachable matrix
M2 makes sense.
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FIGURE 3. Second-order sign propagation diagram.

FIGURE 4. m-order sign propagation diagram.

The second-order signed network reachable matrix M2 is
expressed in (11).

M2 = sgn(M1 ·M1) = sgn(
n∑

k=1

M1(i, k) ∗M1(k, j)) (11)

The meaning of M2 is as follows. For any two nodes
(i, j) in the directed signed network, we find all the common
neighbors (k) based on first-order reachability. If the signs
of edge e(i, k) and edge e(k, j) are determined, then the sign
of the edge e(i, j) can be predicted using balance theory.
Otherwise, there is no valid sign propagation from node i to
node j. As mentioned in Definition 4, because the low-order
sign information needs to be propagated continuously to the
high-order using balance theory,M2 should be activated with
the signum function.

Step 3. If the (m-1)-order reachable matrix Mm−1 makes
sense, then the m-order reachable matrix Mm also makes
sense, because it can be expressed as in (12).

Mm = sgn(Mm−1 ·M1) = sgn(
n∑

k=1

Mm−1(i, k) ∗M1(k, j))

(12)

The result of Mm can be regarded as the activated
weighted sum of symbol information from node i to node
j through different paths in m-steps (we will visual this in
subsection III-E). Similar to M2, Mm needs to be activated
with the signum function to eliminate the bias caused by the
weight.

Proof completed. �
The intuitive meaning of M2 is shown in Figure 3. It can

be seen from this that both the sign prediction of the virtual

FIGURE 5. Example of visualizing the first-order reachable matrix.

edge and the second-order sign propagation are based on the
known first-order information and the added self-connection.

Similarly, we get the intuitive meaning ofMm as shown in
Figure 4.

From the above diagram, we find that the virtual link plays
an important role in the transmission of signs in the subse-
quent propagation process, which embodies the advantage
of graph-based semi-supervised learning in a directed signed
network.

Now, we take the network in Figure 1 as a toy exam-
ple to explain the significance of the directed signed reach-
able matrix. The first-order reachable matrix is visualized in
Figure 5, and its formal expression is shown in (13).

M1 =



1 0 0 0 −1 0 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
0 1 1 1 1 0 0
−1 1 1 1 1 −1 −1
0 0 0 0 −1 1 0
0 0 0 0 −1 0 1


(13)

In Figure 5, a red edge indicates a positive link between
two points, and a black edge indicates a negative link. It can
be seen that the result of Figure 5 is exactly the same as the
meaning ofM1.

Based on the first-order reachable matrix, the second-order
reachable matrix is visualized in Figure 6, and its formal
expression is described in (14). In Figure 6, solid lines repre-
sent low-order (original) sign information, and dashed lines
represent high-order (virtual) sign information.

M2 =



1 −1 −1 −1 −1 1 1
−1 1 1 1 1 −1 −1
−1 1 1 1 1 −1 −1
−1 1 1 1 1 −1 −1
−1 1 1 1 1 −1 −1
1 −1 −1 −1 −1 1 1
1 −1 −1 −1 −1 1 1


(14)

It is noted that, with the increase of the order, the amount
of information contained in the reachable matrix increases
sharply, and even tends to be saturated (complete graph).
Because of this, the cost of the subsequent training will
increase. We will tackle this problem in IV-B2.

E. SIGNED LAPLACIAN MATRIX
In this subsection, we will define the Laplacian matrix
for directed signed networks, and further derive the
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FIGURE 6. Example of visualizing the second-order reachable matrix.

spectral-domain convolution operation for directed signed
networks.

The Laplacian matrix is the basis of spectral-domain
GCNs. Its excellent properties, such as being a semi-positive
definite and symmetric matrix, support the traditional
Fourier transform and the spectral convolution of undirected
unsigned networks. The normal Laplacian matrix [31] of an
undirected unsigned network, denoted as L, is defined in (15).

L = D− A (15)

where A is the adjacency matrix of a network and D is the
diagonal degree matrix of A. As the Laplacian matrix is only
suitable for undirected unsigned networks, we should define
an effective Laplacian matrix for directed signed networks
and apply it to our DS-SGS-GCN model.
Definition 6 (The Directed Signed Laplacian Matrix

Lsign): The Laplacian matrix of directed signed networks
Lsign ∈ RN×N is defined in (16).

Lsign = D− Ãsign = D− sgn(A+ AT + I ) (16)

where D is the diagonal degree matrix defined by (17) and
Ãsign is the activated propagation adjacencymatrix of directed
signed networks in Definition 4.

D = diag(
n∑
j=0

∣∣∣Ãsign(i, j)∣∣∣) (i = 1, 2, . . . , n) (17)

Now we carry out spectral decomposition to Lsign and
obtain the expression in (18).

Lsign = U3U (18)

where 3 = diag(λ1, λ2, . . . , λn) is the diagonal eigenvalue
matrix and U = (−→u1 ,

−→u2 , . . . ,
−→un ) is its corresponding

eigenvector matrix. By using U as the basis of the Fourier
transform, we define the rules of forward and inverse Fourier
transformation as shown in (19a) and (19b).

P̂ = UTP (19a)

P = UP̂ (19b)

where P represents any node vector in the directed signed
network. According to these two formulas, the representation
of a directed signed network can be converted from the spatial
domain to the spectral domain (UTP), and the convolution
kernel can also be converted to the spectral domain (UTX ).
Then, the convolution operation between the directed signed

FIGURE 7. Frame of our DS-SGS-GCN model.

Laplacian matrix and the convolution kernel is fulfilled,
which is described by (20).

(X ⊗ P)← U ((UTX ) · (UTP)) (20)

where⊗ represents the convolution rule of the directed signed
network, and X is the convolution kernel matrix.

IV. DS-SGS-GCN
This section describes the DS-SGS-GCN method, including
the model framework, methods, and the algorithm descrip-
tion.

A. MODEL
The model architecture of the DS-SGS-GCN is shown in
Figure 7, which consists of four parts as follows.

In Part A, we first process the signed network based on
traditional theory and compute its adjacent matrix, reachable
matrix, and Laplacianmatrix. Then, these are fed to the gating
mechanism. The output, that is, the m-order reachable matrix
or the m-order forget-gate-controlled reachable matrix of the
directed signed network, is the input layer of Part B.

In Part B, there is a series of spectral graph convolution
layers that are used to encode the directed signed networks
to learn the node vector representation. In order to intro-
duce non-linear transformations, we add non-linear activation
function layers between the spectral graph convolution layers.
The non-linear activation function used here is a hyperbolic
tangent function (tanh), as this can transfer the information of
the nearest neighbors better than ReLU or some other oper-
ators, which makes the training process more efficient. After
passing through these layers, we get the node representation,
which is the input for Part C.

Part C decodes the output from Part B. The decoding
strategy is an open problem; the method could also use deep
learning. However, in this paper, we use the simple inner
product decoder and sigmoid activity function to get the result
of the link sign classification. The original directed signed
network is then reconstructed.
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In Part D, we obtain the reconstructed adjacency matrix to
verify the effectiveness of our model in link sign prediction
tasks.

B. METHODS
In the framework shown in Figure 7, the following meth-
ods are employed. First, the spectral convolution theory of
unsigned networks is extended and applied to directed signed
networks. Secondly, social balance theory is introduced into
the spectral convolution, and the constraints of label propaga-
tion are defined. Thirdly, the gating mechanism is designed to
complete the encapsulation of label propagation in directed
signed networks. Among which, the forget gate adaptively
retains high-order constraints and forgets low-order con-
straints. Finally, an encoder–decoder network is designed to
implement the link sign prediction task for directed signed
networks. This will be explored in detail.

1) SEMI-SUPERVISED LEARNING
In a directed signed network, there is a large amount of
unlabeled data and a small amount of labeled data. If these
two kinds of data are both fed to our DS-SGS-GCN model,
it should gain better performance. Therefore, we introduce
balance theory to determine the basic regulation of sign
propagation, so as to comprehensively consider the positive
and negative sign propagation rules and find the relationships
between labeled and unlabeled data. Inspired by graph-based
semi-supervised learning [31], we define the sign transfer
matrix S in (21).

Sm(i, j) = sgn(αSm−1(i, j)+ (1− α)

∗ sgn(
n∑

k=1

Sm−1(i, k) ∗ S1(k, j)))

with S1 = Ãsign (21)

It can be seen that the first-order sign propagation depends
not only on the information from neighbors but also on the
existing sign states. The parameter α adjusts the effect of
balance theory and the known low-order sign state. It can be
seen that when the value of α is set to 0, the label transfer
matrix is just the reachable matrix of the directed signed
network, as shown in (22).

Sm(i, j) = sgn(
n∑

k=1

Sm−1(i, k) ∗ S1(k, j)) with α = 0 (22)

2) GATING MECHANISM
As mentioned above, in the process of sign propagation,
a large amount of unlabeled data obtains labels. However,
this causes a sharp increase in the amount of information in
the reachable matrix, which in turn increases the time–space
complexity of the model. To address this problem, inspired by
the gating mechanism of LSTM networks [32] and GRU [33],
we define the corresponding update gate, reset gate, and for-
get gate for the acquisition of the m-order reachable matrix.

A gated reachable matrix can selectively ignore low-order
sign information and retain high-order sign information, thus

FIGURE 8. Flow diagram of our gating mechanism.

making the matrix sparsity and the model validity balanced.
It is noted that the gating units in our model are not the
same as those that are most commonly applied. They are
not used in the convolutional network but only encapsulate
the iterative propagation of sign information. Therefore, the
convolution kernel parameters do not need to be trained. Our
gating mechanism is shown in Figure 8.

There are three kinds of gates in the gating mechanism:
update gate, reset gate, and forget gate. The input of the
m-th gating unit is the zero-order signed reachable matrix
M0, the activated propagation adjacency matrix Ãsign, and the
output value from the previous reset gateMm−1. The output is
the m-order reachable matrix Mm or an m-order forget-gate-
controlled reachable matrix M̃m.

The update gate updates the output from the previous layer
according to the sign propagation rules defined by balance
theory to obtain the quasi-output result from this layer. Its
formal representation is as follows.

update gate:M ′m = sgn(Mm−1 · Ãsign) (23)

The reset gate summarizes the original reachable sign
information and the quasi-reachable sign information of this
layer. Its formal representation is shown in (24).

reset gate:Mm = sgn(αMm−1 + (1− α)M ′m) (24)

The forget gate is used to forget some information in the
lower order, so it adopts the principle of coexistence at the
same order. In other words, the information transmitted by
the sign is not randomly forgotten, but the gate selectively
forgets the low-order symbol reachable information while
retaining the symbol reachability information of this itera-
tion and the zero-order symbol reachability information. Its
formal expression is as follows.

forget gate: M̃m = Mm −Mm−1 +M0 with M0 = I (25)

Therefore, the sign operations in Figure 8 represent
matrix multiplication, matrix subtraction, and matrix addi-
tion, respectively. The function f (x, y) = (αx + (1 − α)y)
is the basic rule of sign propagation of balance theory in
graph-based semi-supervised learning, where α is the hyper-
parameter α ∈ [0, 1].

The gatingmechanism therefore encapsulates the recursive
process of the high-order signed reachable matrix, and further
implements the semi-supervised sign propagation algorithm
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in directed signed networks. In addition, the forget gatemakes
an effective initialization for application to large networks.

C. ALGORITHM
According to the above series of processes, our
DS-SGS-GCN method is described as Algorithm 1.

Algorithm 1 Semi-Supervised Gated Spectral Convolu-
tion on a Directed Signed Network
Input: Directed Signed network adjacency matrix A;

Graph G based on signed networks; The order of
reachable Matrixm; The number of hidden
layers L; Epochs E.

Output: Node repression matrix H(L); Reconstructed
Ãr;

1 Asign← A+ AT + I
2 Ãsign← sgn(Asign)

3 D̃← diag{
∑n

i=1

∣∣∣Ãsign(i, j)∣∣∣}
4 Lsign← D̃− Ãsign
5 M0← I
6 M1← Ãsign
7 for i ∈ {2, . . . ,m} do
8 M′i← sgn(Mi−1 · Ãsign)
9 Mi← sgn(αMi−1 + (1− α)M ′i )

10 if use forget gate then
11 M̃i← Mi −Mi−1 +M0
12 end
13 end
14 if use forget gate then
15 H(0)

← M̃m
16 else
17 H(0)

← Mm
18 end
19 for epoch ∈ {1, . . . ,E} do
20 for l ∈ {1, . . . ,L} do
21 H(l)

← σ (D̃−1/2ÃsignD̃−1/2H (l−1)W )
22 Z← H (l)

23 QAr← σ (ZZT )
24 Update parameters (W ) with Ãr
25 end
26 end

From line 1 to line 6, we obtain the propagation adjacency
matrix, the activated propagation adjacency matrix, and its
corresponding degree matrix based on the initial adjacency
matrix. Then, the signed Laplacian matrix and the low-order
signed reachable matrix are determined.

From line 7 to line 13, the gating mechanism is imple-
mented iteratively. The update gate and the reset gate must
be used, but the forget gate is optional.

Therefore, at line 14, it is determined whether the input
of the model is an m-order reachable matrix or an m-order
forget-gate-controlled reachable matrix.

From line 19 to the end its encoder adopts semi-supervised
gated spectral convolution, its decoder is the inner product,
and the loss function is weighted cross entropy with logits.
Therefore, unlike a non-probabilistic GAE [34], we use our
proposed methods as the encoder. The specific formula is as
follows.

Ãr = σ (ZZT ), with Z = SGS-GCN(Mm,A) (26)

where Ãr is the reconstructed adjacency matrix. During the
training process, we add the option of L2 regulation to prevent
over-fitting.

V. EXPERIMENTAL ANALYSIS
In this section, we compare our methods with state-of-
the-art methods on four data sets to evaluate their perfor-
mance. Experimental results show the improved effects of our
DS-SGS-GCN model.

A. EXPERIMENTAL SETUP
Before we show the results of our experiment, it’s necessary
to introduce the experiment setting briefly.

1) BASELINE METHODS
We regard four excellent algorithms involved in signed net-
works as baselines.
• Signed spectral embedding (SSE) [16]: This proposes
two normalized spectral analysis methods for signed
graphs and uses the spectral clustering algorithm to get
a good graph embedding representation.

• Signed network embedding in social media (SiNE) [18]:
This presents a deep-learning framework SiNE for
signed network embedding. Balance theory is applied in
the model, and the validity of this method is proved.

• Representation learning in signed directed net-
works (SIDE) [7]: This gives a general network embed-
ding method that represents the sign and direction of
edges in the embedding space. The SIDE method is
mainly based on a randomwalk and balance theory. This
has achieved excellent results in some real data sets.

• Signed graph convolutional network [29]: This applies
balance theory and GCNs to signed networks. The
appropriate application of spatial convolution and bal-
ance theory makes the model excellent.

2) DATA SETS
Four real-world signed network data sets have been chosen
for our experiments. Their details are as follows [30].
• The Bitcoin-Alpha and Bitcoin-OTC data sets are trust
networks for bitcoin transactions from two different
bitcoin trading platforms. Since Bitcoin users are anony-
mous, the platform records the trust scores of both par-
ties to maintain a record of users’ reputations. Therefore,
applying the link sign prediction task to this kind of data
set can help users avoid transactions with fraudulent and
risky users.
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TABLE 1. The summary of four real world signed networks.

• Slashdot is a technology-related newswebsite. Each user
of this website can tag another user as a friend (positive)
or a foe (negative). They may have different opinions,
ideas, and even factions, and the link relationship pre-
dictions will have a positive impact on the analysis of a
certain point of view.

• Epinions is a general consumer review site. Members of
the website can decide whether to trust others’ reviews.
Trust-signed networks aremade from these relationships
to determine which reviews are shown to the user.

The specific information in the experimental data sets is
summarized in Table 1. It can be seen that positive and
negative linkes are imbalanced in these datasets.

In the experiment, for large networks, i.e., Slashdot and
Epinions, we used a breadth-first search algorithm to select
users and find a suitable and complete network randomly.

3) PARAMETER SETTINGS
In all experiments, we set two layers of spectral graph convo-
lutional, with dimensions of 64 and 32. The hyperparameter α
is set to 0. For the convolution kernel parameter, we used the
Xavier initialization [35]. And the parameters were optimized
using Adam with a fixed learning rate of 0.01. The hyperpa-
rameter m was tuned using matrix sparsity and grid search
on the validation set. In general, the second-order signed
reachable matrix is used to achieve the best effect when
the forget gate is not applied. However, when it is applied,
the high-order forget-gate-controlled reachable matrix of a
6th-order could achieve better results.

Our baselines’ parameters were set as those in the original
paper. The node embedding representations obtained were
used as the encoding layer to participate in the evaluation
of the subsequent link sign prediction. If the corresponding
source code was not published, we adopted the best-known
experimental results for these data sets [29].

B. EVALUATION CRITERIA
We used two final evaluation standards: the area under the
receiver operating characteristic curve (AUC) and the F1
score. The usual definitions of these accuracy measures are
as follows.

Consider a binary classification prediction problem in
which the outcomes are labeled either as positive (p) or
negative (n). There are four possible outcomes from a binary
classifier:
• True positive: The outcome from a prediction is p, and
the actual value is also p.

TABLE 2. AUC scores for link sign prediction.

TABLE 3. F1 scores for link sign prediction.

• False positive: The outcome from a prediction is p
whereas the actual value is n.

• True negative: Both the prediction outcome and the
actual value are n.

• False negative: The prediction outcome is n whereas the
actual value is p.

The definition of the true positive rate (TPR) describes how
sensitive the model is to the positive case category, and the
mean of the false positive rate (FPR) represents how sensitive
the model is to the negative category. The mathematical
expressions of TPR and FPR correspond to the following
formulas (27) and (28).

TPR =
TP

TP+ FN
(27)

FPR =
FP

FP+ TN
(28)

Based on the value of TPR and FPR, we can obtain the
receiver operating characteristic (ROC) curve, which is used
to reflect the changing relationship between TPR and FPR.
The AUC value is the area under the ROC curve, which is cre-
ated by plotting the TPR against the FPR at various threshold
settings. The larger the AUC is, the better the discrimination
ability of the model.

The F1 score is the harmonic mean of precision and recall,
which is equivalent to the comprehensive evaluation index of
precision and recall.

F1 =
2 ∗ precision ∗ recall
precision+ recall

(29)

with precision = TP/(TP+ FN ) and recall = TPR

C. EXPERIMENTAL RESULTS
The comparison results in terms of the AUC and F1 scores
are summarized in the charts 2, 3 and Figure 9.
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FIGURE 9. Left, AUC comparison results and right, F1 comparison results.

FIGURE 10. The comparative experiments result on Bitcoin-Alpha data
set.

FIGURE 11. The comparative experiments result on Bitcoin-OTC data set.

• DS-SGS-GCN: This directly utilizes the m-order signed
reachable matrix as the constraint information and input
layer.

• DS-SGS-GCN+: This uses a forget gate based on
DS-SGS-GCN and uses an m-order signed forget-gate-
controlled reachable matrix as the input layer for the
model.

It can be seen that the network representation effect of
our method is better than for the other algorithms. More
importantly, the DS-SGS-GCN+ model did not reduce the
prediction of the model by forgetting the low-order infor-
mation and even performed slightly better than the normal
DS-SGS-GCN on some data sets. This may be due to the
inclusion of higher-order information for low-order infor-
mation and the redundancy expressed by low-order infor-
mation and the signed Laplacian matrices. In addition, the
time–space complexity of DS-SGS-GCN+ using high-order
information is significantly reduced due to the setting of the
forget gate. We will cover this in the next subsection.

D. RESULT ANALYSIS
For the standard DS-SGS-GCN model, the low-order reach-
able matrix has a good effect on each data set. However, if the

FIGURE 12. The comparative experiments result on Slashdot data set.

FIGURE 13. The comparative experiments result on Epinions data set.

FIGURE 14. The effect of the methods of ‘‘gating mechanism’’ and
‘‘spectral convolution’’.

scalability of the model is to be increased to facilitate sub-
sequent research or application, learning high-order, signed,
reachable information is an indispensable step. This also
explains the reason why the forget-gate-controlled matrix is
used in the higher order when the effect of the second-order
signed reachable matrix is good. Taking the Bitcoin-Alpha
data set as an example, the time–space complexity will be
expressed by the sparsity of the matrix [36] as shown in
Figure 10(a).

We then try to control the amount of constraint information
in the signed reachable matrix, i.e., the sparsity of the matrix,
and encapsulate the series of processes into the forget gate in
the gating mechanism for experimental processing. We then
obtained the results shown in Figure 10(b). It can be seen
that when the sparsity s of the signed reachable matrix is
between 0.0 and 0.1, the effect of the model is relatively
good, some even better than the low-order’s performance. The
results of our comparative experiments on the other three data
sets are shown in (11) to (13). Above all, we can find the
forget-gate-controlled reachable matrix’s good performance
on these data sets. Not only decrease the time-space com-
plexity to a certain degree but maintain the signed prediction
effect. Therefore to better observe the effect of gating mecha-
nism (graph-based semi-supervised learning is encapsulated
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in it) and spectral convolution on link sign prediction task,we
have made an additional comparative experiment, as shown
in Figures 14(a) and 14(b), which demonstrate the validity of
our proposed method.

VI. CONCLUSION
This paper combines balance theory, sign propagation the-
ory, the semi-supervised learning method in an unsigned
network, and the spectral-domain convolution method to
propose a semi-supervised gated spectral convolution for a
directed signed network.We first extended the notion of GCN
to directed signed networks, which not only preserves the
advantages of traditional GCN but also properly describes
the significance of the directions and signs of edges. Then,
we innovatively defined sign (label) propagation rules in
directed signed networks, thus making the networks semi-
supervised. Thirdly, we enhanced balance theory to constrain
the process of sign propagation to obtain network embed-
ding with better interpretability. Moreover, to satisfy the
needs of large-scale complex networks, we proposed a gat-
ing mechanism to adaptively forget sign information, which
significantly reduces the time–space complexity of the sign
propagation process. Finally, we compared our method with
state-of-the-art baselines using four real-world data sets for
the classical link sign prediction task. Experimental results
demonstrate that our method is competitive.

We have three plans for future work. The first is to integrate
the gating mechanism with spectral convolution and add a
forget gate between the convolution layer and the activation
layer to reduce the representation similarity of each node
caused by over-convolution. The second is to increase the
spectral convolution depth to increase the effect of the model.
The third is to introduce a multi-granularity gating mecha-
nism to construct amixed symbolic reachablematrix to obtain
a better model effect.
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