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ABSTRACT In order to adapt to various real-time applications, fast coding algorithms for high efficiency
video coding (HEVC) standard maintain a hot research topic in recent years. In this paper, a complexity
reduction algorithm based on hierarchical classification for HEVC inter coding is proposed. It consists of
five fast algorithms which is accomplished by hierarchical classification trees at coding unit (CU) level,
prediction unit (PU) level and transformation unit (TU) level respectively. At the beginning of proposed
algorithm, intra features and inter features which describe the texture and context properties of CU, PU
and TU are extracted from the training set. Then the classification trees for CU, PU and TU are generated
by carefully selecting features and designing the classification criteria. By analyzing the spatiotemporal
correlation, two strategies including early termination and early split are applied to fast coding by referring to
these classification trees. The objective evaluation demonstrates that the proposed algorithm can significantly
reduce coding complexity with little compression loss. Particularly the subjective evaluation based on
similarity measurement for color histogram approves that decoded video quality between the original
HM16.9 algorithm and the proposed algorithm is nearly identical.

INDEX TERMS HEVC, inter coding, fast coding, coding unit, prediction unit, transformation unit,
classification tree, histogram similarity.

I. INTRODUCTION
With the development of high definition videos such as digital
broadcasting and mobile video, video services are quickly
evolving with the popularity of the internet and mobile
networks. But it requires more bandwidth to accommodate
higher data stream. Although computer storage capacity and
network bandwidth are increasing, the previous H.264/AVC
video coding standard will lead to a large amount of data
redundancy in encoding the high-resolution video. In order
to solve this problem, the high efficiency video coding
(HEVC) standard is developed by the Joint Collaborate Team
on Video Coding (JCT-VC) which consists of the ITU-T
Video Coding Experts Group (VCEG) and the ISO/IEC
Moving Picture Experts Group (MPEG)[1]. It can provide
higher compression efficiency and more flexible network
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adaptability. HEVC achieves 50% bit-rate coding gains while
maintains the similar decoding quality in comparison with
preceding H.264/AVC standard. In order to adapt to var-
ious video content, HEVC adopts hybrid coding structure
with many advanced compression technologies, including
quadtree-based data partition, intra prediction, inter predic-
tion, multi-reference frame motion estimation, sample adap-
tive offset (SAO) filter and so on. In order to reduce the
spatiotemporal redundancy, coding redundancy and visual
redundancy in the high definition video, the coding tree unit
(CTU) is coded as an independent processing unit in HEVC.
A CTU can be encoded into diverse blocks to accommo-
date different video content. Each coding unit (CU) at each
depth can be encoded with different prediction unit (PU) and
different transformation unit (TU). And the rate distortion
(RD) costs of all possible combinations of CU, PU and TU
are calculated by the method of exhaustive search. Then the
optimal combination of coding pattern is selected in terms of
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the minimumRD cost. However, these strategies have greatly
increased the coding complexity, which make it difficult in
real time applications.

In order to tackle this problem, a large amount of fast cod-
ing algorithms have been proposed. Most of them are based
on the statistical analysis of block partition and prediction
mode selection. In these algorithms, various features such as
texture features and coding features are firstly extracted dur-
ing video coding. Then the correlation among these features
and optimal CU depth, PU mode and TU depth is exploited.
Based on it, early decision algorithms for block partition and
mode selection are fulfilled. For example, a fast coding algo-
rithm by early mode selection based on the intra block simi-
larity is presented in [2]. And in [3], the grayscale similarity
and inter-view correlation are jointly applied to early decide
the PU mode. An early termination of CU partition algorithm
is proposed in [4]. At first, the feature of CU depth history
is recorded. Then its average value and standard deviation
are calculated and used to define the CU depth range. Conse-
quently, the trivial CU depth is skipped. In [5], according to
the correlation between edge feature and CU depth, the opti-
mal CU depth can be predicted. In [6], the spatial and tempo-
ral homogeneity is used to classify different size of CU so that
the CU quad-tree division process can be early stopped. And
in [7], the depth correlation coefficient is computed in terms
of scene content change. It can be used to predict CU depth
range in the homogeneous region and the heterogeneous
region. In [8], motion consistency between current frame
and its adjacent frame is used to classify the motion region.
Then based on the statistical RD model, the PU mode can be
early decided. In addition, a fast mode decision algorithm is
proposed in [9], where adaptive ordering of modes is used
to skip the unnecessary modes according to RD cost and
bit cost. Traditionally CTU is visited from top to bottom
at each level of recursion to select the best depth. But a
conversely bottom to top visiting order for CTU partition is
proposed in [10] where the coding information acquired from
the small CU is used to reduce testing options in the large
CU. Specially in [11], targeting the TU coding, a fast TU split
algorithm based on the Bayesian decision rule by employing
the correlations between current TU and its adjacent TUs
is proposed. In [12], in order to decrease the computational
complexity in motion estimation, an adaptive algorithm for
skipping fractional-pixel motion estimation is presented to
fast select the reference frame based on content similarity
between the parent PU and the child PU. In [13], combining
the spatiotemporal and depth correlation with the classifi-
cation of motion activity, a fast PU decision algorithm is
addressed. In [14], CU is classified into motion or static block
at first. Then formotion block, CU is split by the texture quad-
tree model and temporal correlations model of CU. While
for the static block, the depth range and prediction mode of
largest CTU are predicted. Additionally, an early termina-
tion of reference frame selection method together with early
decision of SKIP mode method is proposed in [15]. In our
previous work [16], early decision for CU depth and PUmode

is implemented by fully exploiting the correlated information
among luminance, gradient and neighboring blocks in screen
video coding. Also a fast inter-mode decision algorithm by
jointly using the correlations of PU, motion vector and RD
cost at different CU depth is proposed in [17]. Recently
some fast coding algorithms involved with machine learning
are published. In these algorithms, block partition and mode
selection in video coding are modeled as data classification
via online learning or offline learning. In [18], an efficient
CU decision method based on machine learning for flexible
complexity allocation is proposed. It mainly consists of the
three-output classifier which is designed to control the risk
of false prediction, and a sophisticated RD complexity model
is derived for the optimal training parameter determination.
In [19], a fast CU decision algorithm is addressed by utilizing
the Fisher’s linear discriminant analysis and the k-nearest
neighbor classifier. The statistical data used in it are updated
by an adaptively online learning method. In order to optimize
the traversal process of coding trees, prediction units and
residual quadtrees, a fast coding algorithm based on decision
tree using the C4.5 algorithm is presented in [20]. In [21], an
early CU termination classifier relying on the framework of
reinforcement learning is proposed, where the RD cost com-
parison process is modeled as the Markov decision process.
In addition in [22], the dimension reduction and classifica-
tion techniques including stepwise regression, random forest,
variable selection, principal component analysis, polynomial
classifiers are employed for fast CU split. On the other side,
the support vector machine (SVM) based fast coding algo-
rithm is reported in [23] and [24]. In [23], the CU decision
and PU selection are determined by binary and multi-class
SVM algorithm. And the performance is further improved
by a learning scheme based on a multiple-reviewer system
and a flexible complexity allocation algorithm. Again in [24],
a fuzzy SVM for fast CU decision algorithm based onRD cost
optimization is proposed, where CU partition is regarded as a
cascaded process of multi-level classification. In our previous
work [25], CU depth is early decided by the CU partition
threshold which is acquired by online learning the random
sample set. One merit of machine learning based algorithm is
that coding features can be acquired by adequately exploiting
the massive coding data by the learning tool, which is more
beneficial to fast coding. Consequently, it motivates us to
propose a new algorithm.

In this paper, a fast inter coding algorithm is proposed
based on hierarchical classification trees generated by the
classification and regression tree (CART) algorithm [26]. The
decision for CU, PU and TU is modeled as the process of
multiple-level classification. There are several characteristics
in the proposed algorithm. At first, new classification features
for CU, PU and TU based on statistical analysis are exploited.
Then classification trees are generated by carefully selecting
features and designing the classification criteria. In addition,
different from most of current algorithms using early termi-
nation only, both early termination and early split are applied
in this paper. Besides the objective evaluation, the histogram
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FIGURE 1. Distribution probability of CU depth.

similarity is employed to measure the subjective video qual-
ity. The structure of this paper is arranged as several sections.
Section II explains the primary theory of HEVC coding,
and the specific description about the proposed algorithm is
presented in section III. The experimental results are given in
section IV and the conclusion is drawn in section V.

II. PRIMARY THEORY
Video compression is a block-based coding framework
involved with hybrid prediction and transformation modules,
where prediction coding, transformation coding, and entropy
coding are applied. At first, video frame is divided into non-
overlapped coding blocks. In order to remove spatiotemporal
redundancy, intra prediction and inter prediction are used to
obtain the predicted value of each pixel. Then it is subtracted
from the original value to acquire the residual value. After-
wards DCT transformation and quantization are used to attain
the quantized transformation coefficients which are finally
applied to entropy encoding. Meanwhile, the obtained trans-
formation coefficients are inversely transformed and quan-
tized. Then the result is filtered and stored in the reference
frame list as inter prediction for the subsequent frames.

A. CODING STRUCTURE OF CU, PU, and TU
Three flexible coding structures including CU, PU and TU
are used in HEVC standard to improve the compression
efficiency. Based on the CU structure defined in the HEVC
standard, each frame begins coding from a largest coding unit
(LCU) with size of 64 × 64, which is recursively divided
into four sub-CUs in terms of the quad-tree structure until
the smallest coding unit(SCU) with size of 8 × 8. There are
four depths of CU from 0 to 3 corresponding to four sizes of
CU from 64 × 64 to 8 × 8. Meanwhile each CU coding is
associated with the decision of PU and TU. The distribution
probability of CU depth for seven different sequences which
are encoded under the configuration of low delay P (LDP) is
shown in Fig. 1. It can be seen that CU depth distribution in
some sequences such as Johnny hold high probability in the
small depth and low probability in the large depth. Therefore,
early termination of CU partition may reduce the complexity
of CU decision under this condition. On the other hand,
sequence BQSquare has the reverse probability distribution
that depth 0 is less probably selected. At this case, CU coding

FIGURE 2. Distribution probability of PU mode.

can be speeded up if early split of CU is applied at depth 0.
Therefore, fast coding strategies of early termination and
early split are both employed in this paper.

At each CU depth level, PU is the basic unit for intra/inter
prediction which contains vital prediction information. PU
mode includes MERGE/SKIP mode (MSM), symmetric-
mode-prediction (SMP)mode and asymmetric-mode- predic-
tion (AMP)mode. The SMPmode includes four PUmodes of
2N×2N, N×2N, 2N×N, N×N and the AMP mode includes
four PU modes of 2N×nU, 2N×nD, nL×2N, nR×2N. The
MSM mode is only applied to the 2N×2N mode and its
motion information such as motion vector is expressed as
motion index which is obtained by exploiting the temporal
and spatial correlation between the adjacent blocks. At the
decoder, the wholemotion information can be recovered from
the motion index. Therefore, plenty of coding bits can be
saved. In addition, the SKIP mode is a special MSM mode
where only a skip tag is transmitted. When it is adopted,
high compression rate is achieved. Seen from Fig. 2, MSM
mode occupies the maximum distribution probability in all
modes. Therefore,MSMmode is themost preferred PUmode
because a large number of time and coding bits can be saved.
It is usually chosen as the optimal prediction mode for the
static or motion-smooth regions.

Similar to CU split, TU partition is implemented by using
the residual quad-tree (RQT). The TU size can be adaptively
determined from 4 × 4 to 32 × 32 according to the local
characteristics of prediction residual. It is a basic unit for
transformation and quantization of prediction residual block.
And TU size cannot exceed the corresponding CU size. Sub-
ject to each CU size, TU can be divided into different size.
Associated to depth 0 of CU, TU can be split into size of
32 × 32 or 16 × 16. For the depth 1 of CU, TU can be split
into size of 32×32 or 16×16 or 8×8. In terms of depth 2 of
CU, TU can be split into size of 16×16 or 8×8 or 4×4. And
TU can be split into size 8×8 or 4×4 when the depth of CU
is 3. The small TU is suitable for the high frequency region
where the texture is complicated and the luminance changes
discontinuously. While the large TU is suitable for the low
frequency region with slow variation.

B. CODING OPTIMIZATION BASED ON RD COST
In HEVC standard, the selection of best mode for CU, PU and
TU is depended on the RD cost. At first, the RD costs of all
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possible modes are calculated then the coding mode with the
least RD cost is regarded as the optimal pattern. This strategy
can adapt to various video contents including static back-
ground and moving objects. Based on this mechanism, each
coding block can find its consistent prediction block in the
reference frame during inter coding. If the resulting residual
is small, the number of coding bits will greatly decrease. The
Lagrangian rate-distortion-optimization (RDO) function [27]
is used for the optimal mode decision, which is formulized as,

Li = Di(rec, org)+ λ · Ri (1)

where Li is the RD cost of mode i,Di(rec, org) represents the
distortion of the reconstructed value in comparison with the
original value. And Ri represents the number of bits required
to encode the current mode information. The parameter λ is
related to the Quantization Parameter (QP), which is used to
control the balance betweenDi(rec, org) andRi. Since there is
a close relationship between RD cost and distortion in (1), it is
considered as the important coding features in the proposed
algorithm.

After CU is split at each depth, four sub-CUs are obtained.
The division process continues until the depth of current CU
reaches 3. Then starting from SCU, the sum of RD costs of
four sub-CUs is compared with the RD cost of their parent
CU at the previous depth. The CU depth with minimum RD
cost is retained. Then the next similar comparison continues
until the comparison with the RD cost of LCU is completed.
Finally the optimal CU depth is decided by the minimum RD
cost. General speaking, large CU is coded for the flat region
with simple texture in order to save coding bits. While for
the complex areas, the small CU coding is usually adopted to
describe local details. Thus prediction accuracy and coding
efficiency can reach a balance. After PU mode selection,
the residual for each CU is obtained by subtracting the origi-
nal block from the motion compensated block. Small residual
indicates current CU will not be divided into the smaller size
because of good matching between the original block and
prediction block. At this case, it can attain good decoding
quality but suffer the increase of bit rates. On the contrary,
large residual implies low prediction accuracy, which results
in the degradation of decoding quality and the decrease of bit
rates. In this situation, the RD cost is high so that current CU
will continue to be split into the smaller CU.

The inter mode selection is performed at each CU level.
At first, theMSMmode prediction is performed and followed
by the SMP mode prediction and the AMP mode prediction.
It is noted that the AMP mode prediction is enabled only
when the CU depth is less than 3. The RD cost for each PU
mode is calculated and compared, and the prediction mode
with the minimum RD cost is selected as the best mode.
In addition, theMSMmode is preferred because it can reduce
the computational workload by sharing the inter motion infor-
mation with the adjacent block. In Fig. 2, it also exhibits
that the MSM mode accounts for the highest proportion.
Consequently, if the MSM mode can be decided in advance,
the remaining PU mode decision will be skipped.

Similar to CU split, TU partition is performed based on the
RQT structure. After the residual block is coded, its energy
usually concentrates on the low frequency region. If the
energy of TU is scattered, many transformation coefficients
will extend to the high frequency region. Under this condi-
tion, the current TU will be divided into four smaller TUs.
Large TU can favorably condense the energy while small
TU can maintain more details in the video. And large TU
can attain satisfactory quality in the smooth area but cause
visual distortion at the edges of the object. Comparatively
small TU can alleviate the edge distortion but aggravate the
coding complexity. In order to attain the optimal TU depth,
a traversal RD optimization algorithm depending on RQT
structure is performed in the HEVC coding, which results in
heavy workload.

In summary, the flexible block partition andmode selection
are beneficial to video compression but introduce high coding
complexity. Obviously fully traversing all block depth and
prediction mode causes significant increase in the coding
complexity for HEVC. If the decision for CU, PU and TU
can be early terminated or early split, the corresponding
calculation of RD cost will be exempted. Such that the inter
coding can be accelerated.

III. THE PROPOSED ALGORITHM
There are several main steps in the proposed algorithm.
At first, the selected frames from seven sequences form the
training set. Then it is coded by the normal HEVC algorithm
to extract intra features and inter features which are applied to
generate the classification trees. Afterwards they are used to
implement fast coding algorithm consist of early termination
of CU partition based on temporal similarity (ETCU_T) algo-
rithm, early split of CU partition (ESCU) algorithm, early
termination of PU selection (ETPU) algorithm, early termi-
nation of TU partition (ETTU) algorithm and early termina-
tion of CU partition based on spatial similarity (ETCU_S)
algorithm.

A. TRAINING SET
In order to obtain different type of samples, seven sequences
representing different content and resolution are encoded
by original HEVC algorithm. In order to balance the data
quantity from different sequences, the training set is built
by selecting every eight frames from the designated range
in Table 1. According to the optimal depth or mode, each
feature extracted from the training set are attached with tag 1
or tag 0 where the former represents normal HEVC coding
while the latter represents fast coding of early termination
(ET) or early split (ES). Taking the ETCU_S algorithm for
example, if the optimal depth of CU is 2, all features of CU
extracted at depth 0 and depth 1 are labeled 1. Namely CU
at depth 0 and depth 1 should be split further. But for CU at
depth 2, the extracted features are labeled 0 because it reaches
the optimal depth. Afterwards the feature set is constructed by
equivalently selecting the samples with tag 0 and tag 1. Then
it is used to generate various classification trees. An example
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TABLE 1. Training set.

of classification tree for the ETCU_S algorithm is illustrated
in Fig. 5.

B. INTRA FEATURES
The intra features describe the spatial correlation among
various blocks and modes in the inter coding.

1) The deviation of CU is represented by DEV,

DEV =
1

W × H

W∑
i=1

H∑
j=1

|P(i, j)− P_avg| (2)

where P(i, j) is the luminance of each pixel and P_avg
is the average of allP(i, j) in the current CU.AndW and
H are the width and height of CU respectively. Small
DEV indicates current CU is flat and smooth, the MSM
mode is preferred in this situation.

2) The deviation of residual for the current CU is
expressed by DER,

DER =
1

W × H

W∑
i=1

H∑
j=1

|Pres(i, j)− Pres_avg| (3)

where Pres(i, j) is the pixel residual in the current CU,
and Pres_avg is the average of all Pres(i, j) in the current
CU. IfDER is small, it indicates the prediction accuracy
is high. Under this condition, current CU partition often
adopts a large size because the prediction block is alike
the original block. On the contrary, the CU tends to
be divided into smaller size when the residual value
is large. The distribution probability of feature DER
for ET or non-ET of CU at depth 0 by encoding the
training set with QP 32 is shown in Fig. 3. It can be
observed that the distribution probability for CU with
ET operation is much larger than those with non-ET
operation when featureDER is less than 4.9. Otherwise
CUwith non-ET operation gains remarkable advantage
over those with ET operation. Therefore, feature DER
is suitable for the binary classification.

3) The difference between DER and ADR is expressed by
DDA,

DDA = |DER− ADR| (4)

FIGURE 3. Distribution probability of the feature DER.

where ADR is defined by the average DER of four sub-
CUs under the current CU,

ADR =
1
4

3∑
k=0

(DER)k , k = 0, 1, 2, 3 (5)

4) The sum of residual gradient is represented by SRG,

SRG =
W∑
i=1

H∑
j=1

Gres(i, j) (6)

where Gres(i, j) is the gradient value at the coordinate
(i, j) which is computed by performing the Sobel opera-
tor on the residual matrix, which is defined byGres(i, j),

Gres(i, j) =

∣∣∣∣∣∣
−1 0 1
−2 0 2
−1 0 1

Pres(i, j)
∣∣∣∣∣∣

+

∣∣∣∣∣∣
−1 −2 −1

0 0 0
1 2 1

Pres(i, j)
∣∣∣∣∣∣ (7)

If the block contains some objects with complicated
texture or inconsistent motion, SRG will become large.
It hints that current CU is probably split into small CU.
Otherwise the current CU will be coded with big size.

5) The distribution of TU coefficients shows that most
of the non-zero coefficients concentrate on the above-
left corner of TU. When the location of final non-
zero coefficient approaches to the above-left corner,
the current TU depth may be adopted as its optimal
depth. Accordingly, the coordinates of final non-zero
coefficients final_CNZ (i, j) can indicate early termina-
tion for TU partition, which is denoted by CNZ,

CNZ = {(i, j)|final_CNZ (i, j) 6= 0} (8)

6) If the non-zero coefficients of TU only spread in a
limited scope, most of them will be the low-frequency
coefficients. In this case, it is unnecessary to split TU
because few coding bits are created by the following
entropy coding. The number of non-zero coefficients
is obtained by NNC,

NNC =
∑
i

∑
j

CNZ (i, j) (9)

where CNZ (i, j) is equal to 1 when the corresponding
coefficient is not zero, otherwise CNZ (i, j) is equal to 0.
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7) The energy of TU can be calculated by ENG,

ENG =
W∑
i=1

H∑
j=1

C2(i, j) (10)

whereC(i, j) is the quantized coefficient. If the residual
blocks are evenly distributed, ENG is small because
most of C(i, j) is zero. Consequently the current TU
need not be divided further in this situation.

8) The average depth of spatially adjacent CUs is denoted
by AVD,

AVD =
1
3

(
Depabv + Deplef + Depabl

)
(11)

where Depabv,Deplef ,Depabl are the depths of above
CU, left CU and above-left CU associated with current
CU respectively.

9) The average mode value for spatial neighboring PU is
expressed by AVM,

AVM =
1
3
[PUabv(i, j)+PUlef (i, j)+PUabl(i, j)] (12)

where PUabv,PUlef ,PUabl are the optimal PUmode of
above CU, left CU and above-left CU associated with
current CU respectively.

10) The Boolean operator denotes whether the optimal
mode is SKIP after all 2N×2N modes are coded. It is
expressed byMSP,

MSP = Bool(Mode2N×2N == SKIP) (13)

For SKIP mode, little information is encoded because
only the mode tag is transmitted. If SKIP mode is
selected as the optimal PU mode after all 2N×2N
modes are coded, early termination for PU mode deci-
sion may be feasible. For the CU with simple texture,
slow motion or stationary objects, SKIP mode is often
selected as the optimal PU mode.

11) The ratio of RDC is represented by RRC,

RRC =
RDCMSM
RDC2N×2N

(14)

where RDCMSM is the RD cost of MSM mode, and
RDC2N×2N is the RD cost of 2N×2N mode. This
feature is also used in [20]. Because only mode tags,
index or residual data are encoded in MSM mode, its
RD cost is less than other modes. When RRC is small,
it specifies current CU is inclined to stop partition in
advance.

12) The ratio of RDC and distortion for MSM mode is
denoted by RRD,

RRD =
RDCMSM
DMSM

(15)

where RDCMSM and DMSM are the RD cost and dis-
tortion for MSM mode respectively. The feature RRD
is small when MSM is selected as the best PU mode.
In addition, Fig. 4 illustrates the distribution probability

FIGURE 4. Distribution probability of the feature RRD.

of feature RRD for ET or non-ET of CU at depth
0 by encoding the training set with QP 32. It can be
observed that the ET operation will be applied to most
of CU if RRD is less than 1.4. Otherwise, the non-ET
operation is preferred for the remaining CU. Therefore,
the feature RRD is also fit for binary classification.

C. INTER FEATURES
Temporal correlation specified by inter features is an impor-
tant clue for fast coding. If current CU is verified similar to
the co-located CU, current CU determination may be early
stopped.

1) The normalization of difference of distortion between
temporal adjacent CU is expressed by NDD,

NDD =

∣∣∣∣log10 |Dcur − Dcol |Dcol

∣∣∣∣ (16)

whereDcur andDcol is the distortion of current CU and
its co-located CU in the reference frame respectively.

2) The difference of feature RRD between temporal adja-
cent CU is measured by DRD,

DRD = |RRDcur − RRDcol | (17)

3) The difference of sum of gradient elements between
temporally adjacent CU is measured by DSG,

DSG = |Gcur_sum− Gcol_sum| (18)

where Gcur_sum and Gcol_sum are the sum of gradient
of current CU and co-located CU respectively. They are
both calculated by,

G_sum =
W∑
i=1

H∑
j=1

G(i, j) (19)

where G(i, j) is the gradient matrix computed by the
Sobel operator, which is similar to (7).

4) The normalization of difference of deviation between
the current CU and its co-located CU is calculated by
NDV,

NDV =
log10 |DEVcur − DEVcol |

log10DEVcol
(20)
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D. CLASSIFICAITON TREES
Both intra features and inter features are applied to generate
the classification trees by the CART algorithm. The main
merit of CART algorithm is that it can automatically choose
the continuous and discrete features and build the interactions
among them. When it is used to generate the classification
tree, the essential features will be identified and the insignifi-
cant features will be neglected. These merits make it efficient
to select proper features to build classification tree. In this
paper, the Gini index [28] is used to select the attribute of
node partition, which is defined by,

G = 1−
m∑
i=1

p2i (21)

where pi is the percentage that sample quantity of category
i accounts for total sample quantity. Gini index denotes the
impurity that one category is wrongly assigned in the decision
procedure. When Gini index becomes smaller, the classi-
fication tree becomes more accurate. When constructing a
classification tree, the Gini index for all available splits at
each internal node are computed by the CART algorithm, then
the feature and its threshold corresponding to the split with
the minimum Gini index is adopted in the classification tree.
However, the resulting classification tree usually has high
complexity because of the over-fitting problem. Therefore,
the original classification trees have to be pruned before it is
applied to the fast coding.

Because early termination and early split are used in the
proposed algorithm, the binary classification at each node is
defined that the tag 1 represents the normal HEVC coding
while the tag 0 represents early termination or early split in
different algorithms. Because large amount of feature sam-
ples can result in high complicated classification tree, addi-
tional constraints are necessary in the proposed algorithm.
The maximum depth of classification trees is set to 10. The
sample quantity for each parent node and each child node
is restricted by no less than 1% and 0.5% of the quantity of
total samples respectively. In addition, the credible rate that
the samples from parent node are correctly allocated to the
child node with tag 0 is calculated by collating their initial
properties. And the credible threshold is utilized to prune
the classification tree. The child node will become the leaf
node if its credible rate is larger than the credible threshold.
Otherwise the child node is still an intermediate node and
continues to be divided further. Higher credible threshold
leads to more accurate classification tree but decreases the
time gains in the fast coding algorithm. Considering the
difference among the individual sub-algorithm, the credible
threshold is defined 85% for the ETCU_T algorithm, 70% for
the ETTU algorithm and 80% for the remaining algorithms.
An example of classification tree for ETCU_S algorithm at
depth 2 with QP 32 under random access (RA) configuration
is shown in Fig. 5. It illustrates that the classification tree is
built by recursively deciding the node partition according to
different features. At each internal node, the feature and its

FIGURE 5. An example of classification tree.

threshold which results in the minimal Gini index is deter-
mined by the CART algorithm. Beginningwith root node, it is
divided into two child nodes by the first judgement RRC <=
0.6595. When it is false (F), the child node is assigned with
tag 1 which denotes that current CU will be split according
to the normal HEVC algorithm. Conversely if it is true (T),
it continues to the second judgement DER <= 3.6418.
Similarly current CU will be split by the normal HEVC
algorithm when the judgement is false. Otherwise it turns
to next judgement AVD <= 2.1667. Until when the fourth
judgement DER <= 3.0475 is true, the child node with
tag 0 becomes a leaf node and its following nodes are pruned
because its credible rate 98.4% is larger than the credible
threshold. In this situation, current CU partition is early ter-
minated and the optimal depth is decided. The classification
process continues until the fifth judgement RRD <= 1.1023
is completed. At the bottom of classification tree, there is
another leaf node which satisfies the condition of early termi-
nation. It can be seen in the Fig. 5, classification tree can build
up clear interconnection among different features, which is
easy to be implemented.

E. FAST CODING ALGORITHM
The fast coding algorithm at CU level consists of three
sub-algorithms ETCU_T, ESCU and ETCU_S. At first,
the ETCU_T algorithm is performed at CU depth 0 or 1. Tem-
poral correlation between the current frame and its reference
frame for sequence BasketballPass is shown in Fig. 6, where
most of background region characterized by simple texture
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FIGURE 6. An example of temporal similarity in the inter coding.

TABLE 2. The similarity between current CU and its co-located CU.

and slow variation is encoded by large CU in both frames.
The similarity that the current CU and its co-located CU in
sequence BasketballPass have same depth under LDP con-
figuration is given in Table 2. It can be seen that the current
CU and co-located CU have high similarity at depth 0 and 1.
Consequently, if current block belongs to the background
meanwhile its co-located block is coded as depth 0 or 1 in
the reference frame, it is highly probable that current block
will adopt the same depth as the co-located CU. Under this
condition, early termination of CU partition can be applied at
depth 0 or 1. Here the feature NDD, DRD, DSG and NDV are
used for ETCU_T algorithm.Afterwards the ESCU algorithm
is used. As the region with complicated texture or fast motion
is often coded by small size block, the coding time can be
saved if CU decision at the small depth is skipped. The
features DER, DDA and SRG are used for ESCU method.
Finally different from the ETCU_T algorithm depending on
the inter features, the ETCU_S algorithm based on the intra
features AVD, DER, RRC and RRD is performed to decide the
early termination of CU partition by referring the spatially
adjacent CU.

At each CU level, the ETPU algorithm is executed.
As shown in Fig. 2, the MSM mode accounts for the highest
distribution probability. Hence the MSM mode and non-
MSM mode are assorted at first. If MSM mode is selected
as the best mode of PU, the remaining decision for SMP
mode and AMP mode is skipped. Otherwise, the non-
MSM mode will continued to be divided into SMP mode
and AMP mode. If the SMP mode is chosen, the decision
for AMP mode will be skipped. The static or slow changing
block is often coded by large CU, where the inter-predication
residuals are small and the coding coefficients are also sparse
after transformation and quantification. Therefore, the RD
costs are small for these blocks. In this situation, MSMmode
is often adopted to save coding bits. On the other side, for
fast moving block, the SMP or AMP mode may be applied
in order to accurately describe the complicated motion mode.
Consequently, the featureAVD, AVM, DEV,MSP andRRD are
used to decide the PU mode in the ETPU algorithm.

Associated to each CU level, the fast coding algorithm
ETTU is fulfilled. After inter prediction, transformation

coding is performed on the residual blocks which are divided
into different size based on RQT structure. Additional com-
plexity is introduced by the iterative decision process of RQT
as well as the integer transformation and scanning mode
for the transformation coefficients. If the residual blocks are
evenly distributed in spatial domain, most of the quantized
transformation coefficients are 0. At this case, TU is subject to
big size. On the contrary, if the residual block has rich texture,
TU is probably divided further because the quantization coef-
ficients become more complicated. Because of the fact that
entropy coding includes the position coding and the ampli-
tude coding of non-zero coefficient, the position of the final
non-zero coefficient in TU is very important because the
trailing zero coefficients can be omitted. In addition, the non-
zero coefficients often spread in the narrow range if it is
flat or gradually varied inside the TU. According to these
principles, the feature CNZ, NNC and ENG are used for the
ETTU algorithm.

F. THE FRAMEWORK OF PROPOSED ALGORITHM
At last, the framework of proposed algorithm is illustrated
in Fig. 7. Firstly the classification features including intra
features and inter features are extracted by encoding the
training set. Then the classification trees are created by using
these features. Based on them, five sub-algorithms are per-
formed on CU, PU and TU respectively. After starting to
encode a CTU, the ETCU_T algorithm is performed. If the
judgement of ET is No, the ESCU algorithm is carried out.
Otherwise the CU split is early stopped and shifted to the
optimal depth decision. If the judgement of ES is Yes, the fol-
lowing calculation of RD cost for mode selection is skipped
and current CU can be directly split. Otherwise, the pro-
gram advances to the ETPU algorithm. Meanwhile the ETTU
algorithm is executed. Afterwards the ETCU_S algorithm
is used to decide whether CU will be split further. At the
end of the whole algorithm, the optimal depth is decided
for CU.

IV. EXPERIMENTAL RESULTS
In our experiments, the recent version of HM16.9 and two
popular configurations including LDP andRA are used. In the
LDP configuration, the coding frames consist of the first I
frame followed by P prediction frames. Since the sequence
of coding frame maintains invariant, the coding delay is
low. While in the RA configuration, the coding efficiency is
enhanced by the bi-directional hierarchical prediction struc-
ture. But it undergoes large coding delay because of the frame
reordering. All simulation setting is conformed to the com-
mon HM test conditions and software reference [29]. The
Windows 7 operating system and Intel i7-6700 processor at
3.4GHz is used for the simulation platform.

Total 18 sequences belonging to 5 classes are used to eval-
uate the proposed algorithm, which is listed in Table 3. And
the coding complexity is measured by the average encoding
time saving (TS) under four QPs including 22, 27, 32 and 37,
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FIGURE 7. The framework of proposed algorithm.

which is formulated as,

TS =
1
4

4∑
i=1

Torg_i − Tprop_i
Torg_i

× 100% (22)

where Tprop_i denotes the encoding time by using the pro-
posed algorithm and Torg_i represents the encoding time by
using the original HM16.9 algorithm. The average coding
efficiency is measured by the BDBR and BDPSNR [30].
Because of the limited space, BDBR and BDPSNR are abbre-
viated as BR and BP respectively. The average performance

TABLE 3. Test sequences.

TABLE 4. Coding performance at three-level [unit:%/%].

for each class and the total average performance are abbrevi-
ated as Avg and T_Avg respectively.

A. OBJECTIVE EVALUATION
At first, the coding performance at three levels including
CU, PU and TU under RA configuration is given in Table 4.
It can be found that the fast algorithm at CU level reaches
the highest time saving of 46.4%. It is because early termi-
nation or split of CU will skip all associated mode decision,
which can be seen in Fig. 7. And the fast algorithm at TU
level endures the limited time saving because the original
coding time for RQTmodule accounts for small portion in the
whole coding. The BDBR is comparatively higher at TU level
because lower credible threshold is used in the classification
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TABLE 5. Performance comparison between popular algorithms and proposed algorithm under LDP configuration [unit:%/dB/%].

TABLE 6. Performance comparison between popular algorithms and proposed algorithm under RA configuration [unit:%/dB/%].

tree for the ETTU algorithm in order to attain the reasonable
time saving.

The coding performance for the whole fast algorithm in
comparison with several popular algorithms are enumerated
in Table 5 and 6 under the configuration of LDP and RA
respectively. In both tables, the average performance for each

class of sequence and all sequences is calculated respectively.
The comparative algorithms contain the multiple SVM clas-
sifier (MSVM) based algorithm [18], adaptive ordering of
modes (AOM) based algorithm [9], adaptive visiting order
(AVO) based algorithm [10], binary and multi-class learning
(BML) based algorithm [23] and fuzzy SVM (FSVM) based
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FIGURE 8. Subjective evaluation for sequence BasketballPass. (a)the decoded frame by HM16.9 under LDP
configuration, (b)the decoded frame by the proposed algorithm under LDP configuration, (c)the histogram for
figure (a) and (b), HS = 97.7%, (d)the RD curve for the HM16.9 and the proposed algorithm under LDP
configuration; (e)the decoded frame by HM16.9 under RA configuration, (f)the decoded frame by the proposed
algorithm under RA configuration, (g)the histogram for figure (e) and (f), HS = 98%, (h)the RD curve for the
HM16.9 and the proposed algorithm under RA configuration.
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FIGURE 9. Subjective evaluation for sequence RacehorsesC. (a)the decoded frame by HM16.9 under LDP
configuration, (b)the decoded frame by the proposed algorithm under LDP configuration, (c)the histogram for
figure (a) and (b), HS = 97.9%, (d)the RD curve for the HM16.9 and the proposed algorithm under LDP
configuration; (e)the decoded frame by HM16.9 under RA configuration, (f)the decoded frame by the proposed
algorithm under RA configuration, (g)the histogram for figure (e) and (f), HS = 98.1%, (h)the RD curve for the
HM16.9 and the proposed algorithm under RA configuration.
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algorithm [24]. In terms of average performance for each
class in Table 5, the class E achieves the largest time saving
for most of the algorithms. Because of simple content and
slow motion in the sequences of class E, small depths are
adopted by most of CU partition. It leads to easy accom-
plishment of early termination algorithm, which brings about
large amount of time saving. On the contrary, most of the
fast algorithms are inefficient for class D. One reason is that
these sequences are composed of complication texture and
fast motion. The other reason is that original coding time for
these sequences is less than other sequences because their
resolutions are the smallest in all sequences. Observing the
total average performance in Table 5, the BML [23] algorithm
achieves the maximum time saving of 66.9% while the mini-
mum time saving of 29.8% occurs in the AOM [9] algorithm.
The second highest time saving of 58.2% is attained by the
FSVM [24] algorithm but it attains 1.21% lower BDBR than
the BML [23] algorithm. In addition, the AOM [9] algorithm
obtains the lowest BDBR of 0.86%while the BML [23] algo-
rithm endures the high BDBR of 4.05%. The proposed algo-
rithm have the similar time efficiency to the MSVM [18]
algorithm and the AVO [10] algorithm, but it achieves 0.07%
and 2.64% lower BDBR than the two algorithms respectively.
It is also found that the BDPSNR for the MSVM [18]
algorithm, the AOM[9] algorithm and the proposed algorithm
are approximately -0.05dB, which is higher than the other
three algorithms. According to the average performance for
each class in Table 6, the maximum time saving still appears
in class E and the minimum time saving also occurs in class
D for most of fast algorithms. Watching the total average
performance in Table 6, both the maximum time saving
of 64.1% and the highest BDBR of 3.42% are attained by
the BML [23] algorithm. Although the AOM [9] algorithm
suffers the minimum time saving of 26.8% but achieves the
lowest BDBR of 0.37% and attains the highest BDPSNR of
-0.02dB in all algorithms. Resembling the situation
in Table 5, the second highest time saving of 55.3% is attained
by the FSVM [24] algorithm but it attained 0.75% lower
BDBR than the BML [23] algorithm. It is also found that the
proposed algorithm is superior to the MSVM [18] algorithm
and the AVO [10] algorithm in time efficiencies. Namely
it achieves 2.7% and 3.6% higher time saving than the two
algorithms respectively. Meanwhile, the BDBR of proposed
algorithm decreases 1.09% and 2.16% in comparison with
the two algorithms respectively. Furthermore, the proposed
algorithm gains 0.02dB and 0.06dB higher BDPSNR than the
two algorithms respectively. Another merit for the proposed
algorithm in Table 6 is that the BDBR for each sequence
is lower than 2%. It indicates that the proposed algorithm
can attain the favorable time efficiency meanwhile control
the compression loss well. The experimental results also
show that the promotion of time saving is accompanied by
the degradation of BDBR and BDPSNR. Consequently the
trade-off between time efficiency and coding quality usually
depends on different algorithms in different applications.
Considering that the video quality becomes more significant

for many viewers in recent years, the proposed algorithm
is designed to obtain good overall performance with little
compression loss.

B. SUBJECTIVE EVALUATION
The average BDPSNR for the proposed algorithm under the
configuration of LDP and RA is −0.05dB and −0.04dB
respectively, which are small enough not to injure the video
quality. The decline of BDPSNR is due to the fact that
some non-optimal modes in the original HEVC algorithm
are judged as the optimal modes in the proposed algorithm.
On the other hand, BDPSNR is often considered as an objec-
tive evaluation method, which is uncertain to be consistent to
the subjective evaluation. In order to demonstrate the subjec-
tive quality of proposed algorithm, the histogram similarity
is used to measure the disparity between the HM16.9 and
the proposed algorithm. In Fig. 8 and Fig. 9, both the 10th
frame is selected to verify the subjective quality from two
representative sequences of BasketballPass and RacehorsesC.
Both the decoded frames under LDP and RA configuration
are illustrated for each sequence. In Fig. 8(a) and Fig. 8(b),
no matter in the region with rich texture or flat texture,
the subjective perception of the decoded frame is almost
the same between the proposed algorithm and the origi-
nal HM16.9 algorithm. Similar conclusion can be drawn
for Fig. 8(e) and Fig. 8(f), Fig. 9(a) and Fig. 9(b) as well
as Fig. 9(e) and Fig. 9(f). Furthermore, the histograms for
Fig. 8(a) and Fig. 8(b) are nearly overlapped in Fig. 8(c)
where three waveforms represent three histograms for color
channel R, G and B respectively. Each one ranges from
0 to 255 because all testing sequences have 8-bit color depth.
Similar definitions and results can be seen in Fig. 8(g),
Fig. 9(c) and Fig. 9(g). We use histogram similarity (HS) to
measure these results, which is defined as following,

HS = 1−
1

m× n

m∑
i=1

n∑
j=0

|HP(i, j)− HHM (i, j)|
Res_seq

(23)

where m = 3 and n = 255. HHM (i, j) is the histogram for
HM16.9 while HP(i, j) is the histogram for the proposed
algorithm. Res_seq is the resolution of sequence. HS reaches
97.7% and 98% for sequence BasketballPass as well as 97.9%
and 98.1% for sequence RacehorsesC under LDP and RA
configuration respectively. The final rows in both Fig. 8 and
Fig. 9 exhibit that the RD curves for HM16.9 and the pro-
posed algorithm match well, which indicates the proposed
algorithm can maintain compression efficiency and video
quality well.

V. CONCLUSION
In this paper, the intra features and inter features related
to fast decision for CU, PU and TU are exploited. Based
on these features, the classification trees are constructed by
carefully selecting features and designing the classification
criteria. By analyzing the spatial and temporal correlation,
a fast coding algorithm based on hierarchical classification
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tree is proposed. Experimental results show that the proposed
algorithm can achieve good overall performance by balanc-
ing time efficiency and compression efficiency. Particularly
it is demonstrated that the proposed algorithm causes little
quality loss in terms of objective evaluation by BDPSNR and
subjective evaluation by the histogram similarity.
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