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ABSTRACT There are many challengeable multiobjective optimization problems in different areas, whose
optimization objectives are usually diversionary. Decomposition methods and evolution mechanisms enable
multiobjective evolutionary algorithms based on decomposition (MOEA/D) to tackle these complex opti-
mization problems efficiently. Therefore, MOEA/D has found wide applications in various fields and been
attracting increasingly significant attention from both academia and industry since it was first proposed
by Zhang and Li in 2007. Many efforts that are dedicated to improving and extending MOEA/D have
been summarized shortly by some papers in their introductions, and there exists only one article that
reviewed MOEA/D comprehensively in 2017. However, a number of MOEA/D variants with novel methods
solving versatile problems in different fields have been emerging since then. This article is motivated by
a more systematic survey of MOEA/D from its original ideas to edge-cutting works, including its basic
framework and a comprehensive overview of the improvements on key components (decomposition method,
weight vector generation method, and evolutionary operator) and the extensions to both many-objective and
constrained multiobjective optimizations. The findings of this survey are categorized in seven aspects with
corresponding references. In addition, different from introducing briefly the future research directions of
MOEA/D in conclusion of the survey in 2017, we present a more detailed outlook that explores not only
the novel challenges but also the future research directions, including three aspects in theory and application
researches, its challenges in many-objective optimization, and some issues applyingMOEA/D to the cutting-
edge areas. It is expected that our work will help researchers to start their MOEA/D-based investigations.

INDEX TERMS Multiobjective evolutionary algorithms based on decomposition (MOEA/D), decomposi-
tion method, weight vector generation method, evolutionary operator, many-objective optimization.

I. INTRODUCTION
There are many multiobjective optimization problems
(MOPs) in various fields, for example, how to reasonably
allocate resources in the network for implementing several
goals jointly, such as maximizing resource utilization and
minimizing operational expenditure [1]. These optimization
objectives usually conflict with each other, in such a way that
an objective cannot be improved without causing degradation
to some others. Therefore, it is impossible to make them all
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optimal at the same time, and we could seek multiple Pareto
optimal solutions (POSs) for a tradeoff among all objectives
instead of a globally optimal solution. For any two feasible
solutions x1 and x2 of an MOP, x1 dominates x2 if x1 is not
inferior to x2 on all objectives and x1 is superior to x2 on at
least one objective, and x1 is a POS if it is not dominated by
all the others in the solution set.

Single-objective optimization algorithms that often find
a single optimal solution are no longer suitable for solving
MOPs. Some researchers have proposed scalarization-based
techniques and meta-heuristic algorithms based on swarm
intelligence, and corresponding examples are the weighted

41588 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3507-7561
https://orcid.org/0000-0002-8779-5322
https://orcid.org/0000-0002-5074-3887
https://orcid.org/0000-0001-5981-5683


Q. Xu et al.: Survey of MOEA/D: Variants, Challenges and Future Directions

sum and evolutionary algorithms (EAs). The multiobjective
evolutionary algorithms (MOEAs) based onmulti-population
co-evolution (CE) have gained great popularity in recent
years. In a single simulation run, a set of POSs with optimal
tradeoffs among approximately conflicting objective func-
tions can be obtained, and decision makers (DMs) can thus
choose solutions based on different preferences.

According to different selection strategies, MOEAs can
be broadly classified into three categories that are based
on domination, indicator and decomposition [2]. When the
number of objectives becomes large, it is increasingly hard
for domination-based MOEAs to select solutions, because
almost all the solutions in the population become nondom-
inated with each other. In the second category, the exact
indicator calculation is highly complex and the computa-
tional resources required grow exponentially with the increas-
ing number of objectives. Compared with other MOEAs,
the decomposition-based framework can enhance population
diversity by using a group of weight vectors or reference
points distributed properly, and allow parallel computation
to speed up the solution convergence. As a representative
of decomposition-based MOEAs, MOEA/D has been receiv-
ing focus on the multiobjective optimization field since it
was introduced in 2007 [3]. It decomposes an MOP into a
number of single-objective subproblems through aggregation
functions and simultaneously optimizes them by using EAs.
Each individual in the population represents the current best
solution to one of the subproblems, and each subproblem
is optimally solved with the solutions of all its surrounding
subproblems.

Thanks to the inherent advantages in terms of decom-
position and parallelism, MOEA/D has been widely used
to solve many practical engineering optimization problems,
including: 1) machine learning problems, most of which can
be attributed to optimization problems, and sometimes have
more than one objective to optimize, such as fuzzy classi-
fier design [4], optimization of deep neural network con-
nection structure [5] and determination of a hyper-parameter
for the regularization term of convolutional neural network
[6]; 2) scheduling problems, allocating resources to different
tasks in real time under certain constraints, such as hybrid
flow shop scheduling [7], job shop scheduling [8], and order
scheduling [9]; 3) design problems, usually achieving the
goals of low cost, low consumption, and large profit while
meeting the needs of users, such as wireless sensor network
coverage design [10] and resource optimization for network
function virtualization (NFV) requests [11]; 4) control prob-
lems, addressing the optimal parameters and mechanism in
such a system as the Internet of Things [12] or reservoir
flood control [13]; 5) operation problems, studying the cost
reduction in the operation and maintenance of a system like
hybrid energy systems [14]; and 6) investment problems, con-
sidering how to invest limited funds in a number of projects
to maximize returns like portfolio optimization problem [15].

This article consists mainly of three parts: 1) a compre-
hensive overview of the improvements and the extensions

with some new techniques; 2) findings of this survey in seven
aspects; and 3) some challenges and research directions in
four categories. Our work makes three contributions to the
field of multiobjective optimization: 1) different from the
earlier survey [2], this is a more comprehensive and timely
survey covering the recent advanced studies on MOEA/D,
which provides innovative research ideas and methods for
scholars. Further, we organize the article according to the
methods or techniques used by these variants in the review,
which will help readers to find appropriate methods to solve
the practical problems; 2) findings of this survey in seven
aspects are discussed, including the utilized techniques and
related references. The tables and figures in this article will
aid researchers to understand the algorithms more system-
atically and to select some algorithms they are interested
in for further study; 3) new challenges and future research
directions are discussed from diverse perspectives, such as
theoretical analysis, practical application, and hotspot topics,
which are more detailed and timely compared to the survey
of MOEA/D in 2017. We believe that this survey will attract
more researchers to pay attention to MOEA/D and encourage
them to develop more efficient and intelligent algorithms,
so as to cope with new challenges in solving complex opti-
mization problems, especially in some cutting-edge areas of
large-scale optimization, machine learning, software defined
networking (SDN) and NFV.

The rest of this article is organized as shown in Fig. 1.
Section II describes the framework and characteristics of
MOEA/D, and outlines its different research directions.
Section III discusses the detailed component improvements
of MOEA/D and its extensions to other fields. Section IV
presents the findings of this survey. Open problems or chal-
lenges and possible solutions are addressed in Section V.
The conclusion is given in Section VI. For convenience,
the list of abbreviations used in this article is presented
in Table 1.

II. MOEA/D OVERVIEW
A. MOEA/D FRAMEWORK
Decomposition is the main point in the MOEA/D framework,
so an MOP with m objective functions could be converted
intoN subproblems that are represented byN weight vectors.
The population size N (the number of subproblems or weight
vectors), the neighborhood size T , a set of weight vectors
(λ1, . . . , λN ) distributed uniformly, and the maximum num-
ber of generationsG are its inputs.We present the pseudocode
and main workflow of MOEA/D in Algorithm 1 and Fig. 2,
respectively. The original MOEA/D mainly includes the fol-
lowing three steps.

1) INITIALIZATION OF EXTERNAL POPULATION,
NEIGHBORHOOD, POPULATION,
AND REFERENCE POINT
The initialization process consists of the following four
actions. External population (EP) stores the nondominated
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FIGURE 1. Organization of article.

solutions found during a search, which is actually empty
when the algorithm starts running. The neighborhood of a
specific subproblem is the set of T subproblems closest
to it, which can be obtained by calculating the Euclidean
distance between its weight vector and the weight vec-
tor of any other subproblem. The initial population can
be generated randomly and the objective function value
F

(
x i

)
= (f1(x i), . . . , fm(x i))

T for each individual x i is cal-
culated accordingly. The reference point, z = (z1, . . . , zm)T ,
denotes the vector that is composed of the best objective
values, where zi represents the best value obtained so far for
the ith-objective.

2) EVOLUTION OPERATION FOR EACH SUBPROBLEM
Parents are selected with mating selection techniques from
the neighborhood of the current subproblem, and a new solu-
tion y is generated by applying reproduction operators. If y
is infeasible, a problem-specific repair algorithm would be
applied on y to produce a solution y′. Then we perform the
replacement operation. Especially, we update the reference
point by comparing the fitness values between the previous
point and y′, and the one with a better fitness value is retained.
The update process for neighboring solutions is similar to
that for the reference point. For EP update at the end of each
generation, we remove all the vectors dominated by F

(
y′

)
from EP and add F

(
y′

)
to EP if no vectors in EP dominate it.

Thus, the resulting EP consists of the best solutions that have
been found for N subproblems so far.

3) JUDGMENT OF THE ALGORITHM TERMINATION
If the number of iterations reachesG, then the algorithm stops
and outputs EP, otherwise goes to step 2. The evolution result
is to obtain the Pareto set (PS) and the Pareto front (PF),

which refer to the set of all the Pareto optimal solution points
in the decision space and the set of all the Pareto optimal
objective vectors in the objective space, respectively [2].

B. CHARACTERISTICS OF MOEA/D
MOEA/D combines the traditional mathematical decomposi-
tion method with EAs, making it easier to apply the single-
objective optimizer to each subproblem associated with a
solution, thus maintaining the solution dispersed. In addition,
the neighborhood structure introduced in MOEA/D allows
each subproblem to be optimized by using the information
only from its neighboring subproblems, greatly accelerating
the algorithm convergence. Therefore, compared with tradi-
tional MOEAs without decomposition, the MOEA/D frame-
work can significantly reduce the difficulty in both fitness
allocation and diversity control [3].

Although MOEA/D has many advantages, it has the fol-
lowing limitations: 1) fixed weight vectors are not suitable
for MOPs with complex PF shapes; 2) it is not easy to set
a reasonable neighborhood size because a larger size wastes
computational resources while a smaller size easily makes
the search fall into local optimum; 3) MOEA/D faces many
difficulties in solving many-objective optimization problems
(MaOPs), which refer to the optimization problems with
four or more objectives; 4) evolutionary operators need to
be improved to accommodate different problems. Therefore,
many methods have been investigated to improve the above
deficiencies.

C. RESEARCH DIRECTIONS OF MOEA/D
As shown in Fig. 3, the research onMOEA/Dmainly involves
two aspects of component improvements and extensions to
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TABLE 1. List of abbreviations.

other fields. The motivation for improvement is to overcome
the limitations in designing components of the MOEA/D
framework and to improve algorithm performance for solv-
ing various complex problems. For the wider application,
MOEA/D needs to be further extended to some increasingly
concerned areas, such as many-objective optimization and
constrained multiobjective optimization.

The main improvement on the original MOEA/D compo-
nents could be divided into three subaspects further, including

decomposition methods, weight vector generation methods,
and evolutionary operators. Traditional decomposition meth-
ods have been improved [16]–[19], combined with each other
[20], [22] and adaptively selected [23], [24]. Liu et al. [25]
decomposed an MOP into several multiobjective subprob-
lems without using any aggregation functions. Weight vec-
tors constructed by the simplex lattice design [3] cannot
guarantee the uniformity of the solution set on some issues.
Researchers proposed various techniques to improve the
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Algorithm 1MOEA/D
Input: N : population size

λ1, . . . , λN : weight vectors distributed
uniformly
T : neighborhood size
G: maximum generation

Output: EP: external population
{Step I: Initialization}
1 set EP= ∅;
2 foreach i 6= j ≤ N do
3 calculate Euclidean distance between λi and λj;
4 end
5 foreach i ≤ N do
6 set neighborhood of i as B(i) ={i1, . . . , iT },

where λi1 , . . . , λiT are the T closest weight
vectors to λi;

7 end
8 generate initial population {x1, . . . , xN} randomly;
9 calculate objective function
F

(
x i

)
= (f1(x i), . . . , fm(x i))

T of each individual x i

in the initial population;
10 initialize z = (z1, . . . , zm)T , where
zi = min{fi

(
x1

)
, . . . , fi(xN )};

{Step II: Evolution}
11 foreach i ≤ N do
12 mating selection: select two index k and l from

B(i);
13 reproduction: get a new solution y from xk and

x l by applying reproduction operators;
14 apply a problem-specific repair algorithm on y to

produce y′;
15 foreach j = 1, . . . ,m do
16 if fj

(
y′

)
< zj then

17 set fj
(
y′

)
= zj;

18 end
19 end
20 foreach j ∈ B(i) do
21 if gdec(y′|λj, z) ≤ gdec(x j|λj, z) then
22 set x j = y′ and F

(
x j

)
= F

(
y′

)
;

23 end
24 end
25 delete all vectors dominated by F

(
y′

)
from EP;

26 if no vectors in EP dominate F
(
y′

)
then

27 add F
(
y′

)
to EP;

28 end
29 end
{Step III: Stopping Switch}
30 if iterations = G then
31 output EP;
32 else
33 go to Step II;
34 end

weight vector generation method, such as uniform design
[26], dynamic adjustment based on computational resources

FIGURE 2. MOEA/D flowchart.

required by each subproblem [27] or PF geometry shape [28],
[29], user preferences-based [30], and hybrid [31]. Evolu-
tion operators consist of mating selection, reproduction and
replacement. The range and related techniques of mating
selection [32]–[34] and replacement mechanisms [35], [36]
have been investigated to enhance population diversity. New
reproduction operators like differential evolution (DE) [32],
[37] and other heuristic algorithms [38] have been intro-
duced into MOEA/D. The other investigations addressed the
extension of theMOEA/D framework tomany-objective opti-
mization [39]–[47], constrained multiobjective optimization
[48]–[57], and real-world optimization [4]–[15]. For the five
aspects shown in Fig. 3, we will present a detailed review of
each aspect in the section below.
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FIGURE 3. Research on MOEA/D variants.

III. SURVEY OF MOEA/D VARIANTS
This section surveys the MOEA/D variants in two aspects.
The first focuses on the improvements over key components
of the original MOEA/D, including decomposition meth-
ods, weight vector generation methods, and evolutionary
operators. These improvements mainly investigate the tech-
niques of uniform design, combination, adaptation, and user
preferences-based. The second discusses the studies about
extending the MOEA/D framework to many-objective opti-
mization and constrained multiobjective optimization. The
former addresses the extension difficulty and methods that
are integrated into MOEA/D to overcome these challenges,
and the latter briefly summarizes several constraint handling
techniques used widely for dealing with infeasible solutions.
Due to limited space, we just briefly describe the application
ofMOEA/D to real-world optimization problems in Section I.

A. DECOMPOSITION METHODS
Decomposition methods play a fundamental role in the per-
formance of MOEA/D and its variants. MOPs cannot be well
converted into appropriate subproblems if the decomposi-
tion method is selected unreasonably for a specific problem,
then MOEA/D may fail to approximate PF. Several typical
decomposition methods have been investigated in the orig-
inal MOEA/D, such as the weighted Tchebycheff (TCH),
the weighted sum (WS), and the penalty-based boundary
intersection (PBI). However, thesemethodswith fixed param-
eters result in solving MOPs with different PF shapes inap-
propriately. Moreover, due to the properties of decomposition
method contours (a set of equal scalarizing function values),
the improvement region corresponding to the method

becomes so large that population diversity declines in some
problems. As shown in the following four major aspects,
some efforts have been made on the typical methods to
address these deficiencies and the challenge of determining
appropriate decomposition methods for different optimiza-
tion problems.

1) IMPROVEMENT OF THE ORIGINAL
DECOMPOSITION METHODS
The original PBI decomposition method becomes unreliable
if the obtained reference point is far from the ideal point, then
we could not get the expected PF. An inverted PBI (IPBI)
decomposition method was presented in [16], which is an
extension of conventional PBI andWS. PBI evolves solutions
toward the reference point by minimizing the scalarizing
function value. Contrarily, IPBI evolves solutions from the
worst objective vector in the current population by maxi-
mizing the scalarizing function value, i.e., a solution with a
larger d1 is considered a better solution close to the PF, where
d1 denotes the distance between the reference point and the
projection of Pareto optimal (objective) vector in the weight
vector direction. IPBI can conduct a wide range of searches
on the objective space that WS cannot reach, thus enabling
the PF to be disseminated widely.

Yang et al. [60] studied the impact of the penalty factor
in PBI on algorithm performance, which is not considered in
[16]. The results concluded that a smaller factor is needed
for a faster convergence during the early search, while a
larger factor is required tomaintain population diversity at the
later search stage. Then, two new penalty schemes, adaptive
penalty scheme (APS) and subproblem-based penalty scheme
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(SPS), were suggested to adaptively adjust the penalty factor
in the algorithm at different search stages, which can signif-
icantly improve the algorithm performance. Ming et al. [61]
proposed a simple and effective method called Pareto adap-
tive PBI (PaP) to adjust the penalty factor online according to
the approximated PF shape and PBI decomposition method
contours. Specifically, an appropriate θ value is identified
from a set of factor candidates, i.e., the optimal solution
obtained by the PBI method with this value is closer to the
weight vector compared with the same method with other θ
values. The effectiveness of the PaP method was verified on
a real-world problem, i.e., the design of a hybrid renewable
energy system with an unknown PF.

Another improvement over the original decomposition
method is to reduce the volume of the improvement region,
which is determined by the current solution, the optimal
solution, and the contour of a subproblem, thus promoting
population diversity. In Refs. [17] and [62], the improvement
region of the solution x i for the subproblem i in the objective
space was defined as the set of all solution vectors that are
better than the x i vector, and indicated that a larger one
can decrease population diversity, i.e., a better new solution
could replace several different old solutions, resulting in the
same solution for several different subproblems. To address
this issue, various improved MOEA/D algorithms were pro-
posed. Wang et al. [17] proposed an adaptively constrained
decomposition (ACD) approach, which adds constraints on
unconstrained subproblems and uses a parameter θ to control
the improvement region size of each subproblem, making
it much smaller than the original one. Also, the approach
adaptively adjusts θ to maintain a balance between popula-
tion diversity and convergence. Cai et al. [62] presented a
constrained decomposition with grids (CDG), in which the
objective space is divided into multiple grids. Each subprob-
lem has a grid coordinate and a neighbor defined by the grid
distance between two solutions, which is simple and intuitive.
The grid system is renewed by updating the ideal point and
nadir point to evolve the solution mapping vectors toward
the PF. The proposed decomposition method can effectively
reduce the improvement region and has strong robustness to
the PF shape.

Combining the mathematical idea with the original decom-
position method, Ma et al. [18] proposed Tchebycheff
decomposition with Lp norm constraint (p-TCH) on the direc-
tion vector, where the objective function of each subprob-
lem has clear geometric properties. On the basis of such
properties, a generalized subproblem objective function can
be defined, and it is then possible to adjust the weights
or significances of subproblems in competition, mainly by
changing the p value to accommodate the preference region
of each subproblem. Therefore, more update chances can
be assigned to some subproblems to which users pay more
attention, accelerating their convergence.

Jiang et al. [19] presented two new decompositionmethods
with adjustable contours or improvement regions, namely the

multiplicative scalarizing function (MSF) and penalty-based
scalarizing function (PSF), both of which use a parameter
α to control the improvement region of each subproblem.
The influence of α on the improvement region was investi-
gated through simulation experiments, and the results showed
that the size of the improvement region decreases with the
increase of α and both methods degenerate to TCH when
α = 0. Population diversity can be well guaranteed by chang-
ing α for different subproblems.

2) COMBINATION OF THE ORIGINAL
DECOMPOSITION METHODS
Each decomposition method used widely has its own advan-
tages and disadvantages. Therefore, it is a simple and effec-
tive strategy to combine the complementary advantages of
different decomposition methods, which makes the algorithm
obtain more solutions.

TCH usually performs well on MOPs with convex and
nonconvex PFs, while WS is only suitable for the optimiza-
tion problems with convex PFs. Further, WS converges faster
than TCH and gets a smoother PF. Ishibuchi et al. [20] used
both WS and TCH for fitness assessment, which is mainly
realized by two mechanisms based on a grid that consists
of weight vectors. One mechanism assigns separate decom-
position methods to different grids, i.e., all weight vectors
within the same grid use the same decomposition method.
The other mechanism alternately uses one of these two differ-
ent decomposition methods to each of all weight vectors in a
single grid.

Wei et al. [63] presented a weighted mixture-style (WM)
decomposition method that combines the advantages of WS
and TCH, which allows the algorithm to obtain more solu-
tions. WM decomposition method was adopted in MOEA/D
to transform an MaOP into a set of single-objective subprob-
lems and to solve them in parallel. The experimental results
showed that the WM decomposition method outperforms the
three typical methods, i.e., WS, TCH, and PBI under the
framework of MOEA/D.

WS and TCH are unsuitable for handling someMOPs with
very different objective sizes. A direction-based decompo-
sition method, termed normal boundary intersection (NBI)
approach [21], is relatively insensitive to the scales of objec-
tive functions. Therefore, Zhang et al. [22] suggested a new
decomposition method, called NBI-style Tchebycheff, which
fully combines the characteristics of TCH and NBI. The
algorithm that integrates this decomposition method into
MOEA/D was presented, which finds two extreme points
with minimum function values and then lets the solutionmap-
ping vectors approximate PF by minimizing the maximum
distance between the points on the line composed of two
extreme points and the point (solution) on the weight vector.
Finally, the experimental study on portfolio optimization of
real-world problems demonstrated the effectiveness of the
proposed algorithm.
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3) ADAPTATION OF THE ORIGINAL DECOMPOSITION
METHODS
The introduction of adaptive strategies or learning mecha-
nisms into MOEA/D makes it more suitable for solving com-
plex problems. Adaptively selecting decomposition methods
according to the problem characteristics is helpful to acceler-
ating algorithm convergence and to obtaining more solutions
dispersed widely.

Ishibuchi et al. [23] designed a mechanism for automatic
selection between WS and TCH, which uses TCH only when
the current solution mapping vector is close to the nonconvex
regions of the PF, i.e., a current individual and at least T
neighbors in its neighborhood have the same objective vector.
This mechanism employsWS during theMOEA/D execution
for the other solution mapping vectors around the convex
regions. Since the PF is usually unknown before we find
POSs, a method of detecting the nonconvex regions of the PF
was proposed to determine whether TCH is required. TCH
will be used when a single individual becomes the best with
respect to the weighted sum under different weight vectors.

It is helpful for an algorithm to combine modules
with different functions together. Wu et al. [24] proposed
a learning-to-decomposition (LTD) paradigm including a
learningmodule and an optimizationmodule to adaptively set
the decomposition method. Specifically, the learning module
takes nondominated solutions from the optimization module
as the training data, and then uses the Gaussian process
regression to learn the characteristics of the estimated PF.
According to the analytical model extracted from the learn-
ing module, the optimization module that adopts MOEA/D
adaptively sets the decompositionmethod, including effective
reference points and appropriate subproblem formulations.
The validity of the LTD model was proved by a series of
experiments on the benchmark problems with different PF
shapes. This research provides an inspiration that the organic
combination of MOEA/D and machine learning algorithms
canmake better use of the information generated in evolution,
making the learning and optimization processes interact and
benefit each other.

Wang et al. [64] systematically analyzed the searching
ability of a family of scalarizing methods, the Lp scalarizing
methods, where Lp=1 represents WS and Lp=∞ corresponds
to TCH. Simulation results showed that the probability of
finding a better solution decreases with an increase of the
p value, and the difference in the improvement region size
for various Lp scalarizing methods becomes smaller when the
solution mapping vectors approach PF. Therefore, the p value
is crucial to the balance between convergence and diversity
for a specific problem. A Pareto adaptive scalarizing strategy
was then proposed to assign an appropriate Lp scalarizing
method for each weight vector during the search. To be more
specific, an appropriate p value is found from the set of
different p values when using the Lp scalarizing method,
i.e., the optimal solution obtained with this p value is closer
to the search direction compared with other p values.

4) METHODS BASED ON OBJECTIVE REGION
DECOMPOSITION
Each method of this classification does not require any
aggregation functions and only needs the DM to select a
group of direction vectors, resulting in less human labor
compared to the decomposition method used in the original
MOEA/D framework. Liu et al. [25] proposed a new version
of MOEA/D, MOEA/D-M2M. Unlike MOEA/D decompos-
ing an MOP into several single-objective subproblems, this
algorithm decomposes the target MOP into a set of simpler
multiobjective optimization subproblems, known as multi-
ple to multiple (M2M). The objectives of each subproblem
and original problem are just the same, while their feasible
regions are different. Each subproblem has its own population
to evolve its PS, and the PSs of all subproblems constitute
the PS of the original problem. The PF of each subprob-
lem has linear geometric shapes, which is applicable to the
domination-based MOEAs for processing MOPs with simple
PS shapes.

TheMOEA/D-M2M framework decomposes the objective
space and cooperatively evolves all the subpopulations, each
of which corresponds to a specific subproblem, effectively
alleviating the difficulty of the traditional MOEA/D in solv-
ingMaOPswith the high-dimensional objective space. There-
fore, more information on MOEA/D-M2M is given in the
fourth subsection (III.D), many-objective optimization.

5) SUMMARY
The decomposition methods introduced in this subsection
are summarized in Table 2, from which we can obtain the
following key findings.
• Many studies [23], [60], [61] introduce adaptive mech-
anisms into MOEA/D, which adaptively adjusts the
parameters of the methods proposed in previous studies,
and balances population diversity and convergence of
each algorithm at different search stages.

• There is a highly promising prospect if we make full use
of the advantages of different decompositionmethods by
using mixed mechanisms [20], [22], [63].

• It is helpful to enhance the solution quality by improving
original decomposition methods in terms of properties
of decomposition methods such as ideal points [16]
and contours [17], or proposing new mechanisms with
mathematical methods [18].

B. WEIGHT VECTOR GENERATION METHODS
The weight vector defines each subproblem that maintains
the optimal solution during an evolution, and its generation
method affects not only the distribution of Pareto optimal vec-
tors in the objective space but also the execution speed of an
algorithm. There are two main drawbacks of the simplex lat-
tice method in the original MOEA/D: a) zero weight vectors
affect the PS quality, and b) the distribution of weight vec-
tors is uneven because there are too many boundary weight
vectors in the experimental field. Thus, quite a few methods
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TABLE 2. Summary of studies on decomposition methods.

for appropriately generating or adjusting weight vectors have
been studied to overcome these defects, mainly including the
following four categories.

1) METHODS BASED ON UNIFORM DESIGN
The goal of these methods is to make weight vectors be
distributed more uniformly in the objective spaces. Zhang
et al. [26] introduced a uniform design method intoMOEA/D
and named the resulting algorithm as MOEA/D-UD, which
initializes the population and weight vectors based on the
mixed uniform experiment, and could uniformly explore the
region of interest (ROI) of DMs from the initial iteration. The
proposed weight vector adjustment strategy makes full use of
the information on neighboring individuals to identify crowd-
ing regions and sparse regions for the complex PF, and then a
PF distributed uniformly is found by removingweight vectors
from and adding weight vectors into two regions, respec-
tively. Compared with three outstanding algorithms, namely,
NSGA-II, MOEA/D-DE, and MOEA/D-AWA (adaptive
weight vector adjustment) on 19 test instances, MOEA/D-
UD can obtain a well-converged and diversified solution set
within an acceptable execution time.

To solve the 0/1 knapsack problem that has been proved to
be NP-complete, Tan et al. [65] embedded the so-called good
lattice point (GLP) in the MOEA/D framework, and termed

the resulting algorithm as uniform design multiobjective evo-
lutionary algorithm based on decomposition (UMOEA/D),
which determines a set of weight vectors distributed uni-
formly and thus disperses the decomposed scalar optimiza-
tion subproblems evenly. GLP first constructs a lattice point
set SN with the smallest discrepancy among all possible gen-
erating vectors over the design ROI. Then N weight vectors
scattered uniformly are obtained by using SN under certain
restrictions. Experimental results indicated that the proposed
algorithm significantly outperforms the NSGA-II, SPEA2,
and PESA.

2) METHODS BASED ON ADAPTIVE ADJUSTMENT
In real-world problems, the search complexity of each sub-
problem is usually different, and thus, weight vectors need
to be dynamically adjusted according to the computational
resources required by each subproblem.

Harada et al. [27] improved MOEA/D by adding a method
of adaptively assigning weight vectors to subproblems. The
method identifies the subproblems that are hard to search
by using the EP and weight vectors, and then divides each
of these subproblems into several subproblems to assign
multiple weight vectors, implying that more computational
resources are allocated in the direction of the subproblem
with search difficulty. Therefore, the search speed of each
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subproblem can be adjusted reasonably to find a wider and
more uniform PS distribution. Li et al. [66] proposed an
improved MOEA/D with a weight vector adaptation (WAD)
strategy, which first identifies weight vectors that waste
computational resources. Specifically, the resulting solution
mapping vectors of their corresponding subproblemsmay fall
into local optimumor point to discontinuous PF regions. Then
the strategy adjusts these weight vectors and optimizes their
computational resource allocations to accommodate specific
MOPs.

For MOPs with concave PFs, Jiang et al. [28] proposed a
novel method, termed Pareto-adaptive weight vectors (paλ),
to automatically adjust the weight vectors according to the
geometrical characteristics of the PF. This method uses the
mixed uniform design to generate an arbitrary number of
initial weight vectors with gradients denoted by λ lines, which
produce N intersection points along the PF. Then weight
vectors are adjusted so that the N intersection points have the
maximum hypervolume to realize their uniform distribution,
where the hypervolume is used to evaluate the distribution of
these points and to drive the paλ method.

WhenMOPs have an irregular PF, the fixed weight vectors
cannot guide the algorithm to obtain the solutions distributed
uniformly and widely. Particularly, in the discontinuous parts
of a PF, several subproblems have the same optimal solu-
tion. While in the peak or low-tail region of a PF, many
solution mapping vectors are distributed in a narrow region
of the objective space. Qi et al. [29] proposed an improved
MOEA/D algorithm with AWA. The AWA strategy identi-
fies real sparse regions instead of discontinuous parts of the
complex PF, and then introduces the elite population that
helps add new subproblems in real sparse regions and remove
redundant subproblems from the crowded parts of the PF. The
sparseness of a subproblem in the AWAmethod is determined
by m (the number of objectives) nearest neighbors of its
solution, which results in the AWA being inaccurate when the
solution of a subproblem has several close neighbors within
the objective space in similar directions. To overcome this
deficiency in [29], Qi et al. [67] defined a new neighborhood
relation between subproblems by using the Delaunay triangu-
lation net. Then the sparseness measurement of a subproblem
is determined by not only Euclidean distances between solu-
tions but also their distribution.

3) METHODS BASED ON USER PREFERENCES
The algorithm of this category uses the mechanism that is
dependent on user preferences to objectives. Pilát and Neruda
[30] presented an MOEA/D with the co-evolution of weights
(cwMOEA/D), which introduces the CE method to adap-
tively adjust weights in terms of user preferences during
an evolution. DMs specify their preferences by assigning
the binary preference values to the individuals in a form of
function. After every iteration, the weight vectors are adjusted
adaptively by the CE method. The update process gener-
ates new weights by the Gaussian mutation with different
standard deviations, refines the user preferences function,

assigns individuals with both the parent weights and the
offspring weights, compares the preferences of the assigned
individuals, and selects the weight that corresponds to the
individual with a lower preference. The experiments showed
that the cwMOEA/D is able to find well-spread solutions
in the preference regions specified by DMs, thus effectively
utilizing the computational resources.

Ma et al. [13] proposed an MOEA/D with the biased
weight vector (pMOEA/D), which adjusts the distribution of
weight vectors based on the geometric analysis of a modified
TCH decomposition method for handling the MOPs with
preference information. This pMOEA/D attempts to maintain
a set of nondominated solutions in the DM’s ROI, rather than
all solutions of a PS. Particularly, some subproblems whose
solutions remain far away from the preference regions are
removed while some new subproblems that may help search
the preference regions are added into the current evolutionary
population. The capability of pMOEA/D to solve practical
engineering problems was investigated by testing two multi-
objective reservoir flood control problems.

4) OTHER WEIGHT VECTOR GENERATION METHODS
There are some weight vector generation methods that are
hard to categorize. The fixed weight vectors in MOEA/D
may not work well when the PF of an MOP is irregular or
complex. An MOEA/D with both fixed and random weight
vectors (MOEA/D-RW) was suggested in [31]. The random
search direction (weight vector) is considered to optimize the
subproblems only if the solutions to all subproblems with
fixed weight vectors have no improvement over several itera-
tions. The proposed algorithmwas compared withMOEA/D-
DE and NSGA-II on a number of benchmark problems with
irregular PFs, and results showed that it outperforms the two
other algorithms.

Applying the idea of hierarchy structure of a social orga-
nization to MOEA/D, Xu et al.[68] proposed a new MOEA
based on hierarchical decomposition (MOEA/HD). The algo-
rithm builds a superior-subordinate relationship for all sub-
problems, and then layers subproblems into two different
hierarchies, higher- and lower-level ones. In addition, accord-
ing to search results of higher-level subproblems, the search
direction of lower-level subproblems is adaptively adjusted in
terms of the vertical bisector between the current solutions of
two higher-hierarchy subproblems.

5) SUMMARY
Table 3 outlines the main points of weight vector genera-
tion methods discussed in this subsection. From the different
works addressed above, we remark that the weight vector
guides the search direction of each algorithm, and the solu-
tions distribution depends highly on the weight vector gen-
eration methods. Therefore, the appropriate methods should
be adopted to generate uniform or uneven weight vectors that
suit specific problem features or user requirements well.

If the PF shape is regular or known in advance, weight
vectors generated by the uniform design method can make
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TABLE 3. Summary of studies on weight vector generation methods.

the distribution of solutions more uniform. The adaptive
adjustment strategy is more suitable for MOPs with complex
PFs, whichmay have discrete regions, sharp peaks, and a long
low-tail. According to the geometrical characteristics of the
PF or the search difficulty of each subproblem, the weight
vector is adjusted adaptively to realize the reasonable allo-
cation of computational resources and to make solution map-
ping vectors be distributedmore evenly in the objective space.
Also, user preferences can be used as a guidance to adaptively
assign the weight vector to each subproblem, aiming at pro-
viding diverse preference solutions.

C. EVOLUTIONARY OPERATORS
The evolutionary operators of mating selection, reproduction
operators, and replacement mechanisms are the main drivers
for EAs to generate promising offspring, which are discussed
in detail below.

1) MATING SELECTION
The original MOEA/D has a neighborhood-based mating
pool, which is not conducive to generating more new solu-
tions in the early search. Facing this deficiency, Li and Zhang
[32] allowed each individual to mate with any others in
the entire population with a probability (1-δ) to promote
population diversity. Chiang and Lai [33] adopted the mating
selection strategy proposed in [32], but it only works for
the individuals with unresolved subproblems and allocates
more computational resources in their search direction. It is
generally considered that a subproblem is resolved if its
solution has not been improved for α consecutive genera-
tions. However, the solution improvement of a subproblem
may stop temporarily while it continues later. Therefore,
it is not enough to judge the unresolved subproblems only

once. Besides, an adaptive mating selection mechanism was
designed to dynamically adjust the mating pool of each indi-
vidual according to the Euclidean distance between individ-
uals in the decision space instead of the distance between
weight vectors of their subproblems in the objective space.

In addition to changing the range of mating selection,
the selection technique has been improved. Many scalar sub-
problems may obtain similar solution mapping vectors on
breakpoints when the target MOP has disconnected regions
on a PF, leading to a decline in population diversity. To deal
with this issue, Jiang and Yang [34] introduced a new niche-
guided scheme into the MOEA/D framework to perform
the mating selection in the less crowded regions of the PF.
Particularly, the scheme computes a neighbor-related niche
count of each individual. If the count becomes greater than a
threshold given, which means that the individual is similar to
its neighbors, the parents for mating should be selected from
outside the neighborhood. Finally, the population diversity
is successfully improved by reducing the probabilities of
duplicated solutions in the offspring.

2) REPLACEMENT MECHANISM
In the original MOEA/D, a superior offspring solution could
replace several inferior neighboring solutions, leading to
the deterioration in population diversity. Wang et al. [17]
proposed a constrained decomposition approach that imposes
some constraints on unconstrained subproblems to reduce
the replacement range, and further developed a new strategy
to adaptively adjust constraint factors by using information
collected from the search, which is helpful to balancing pop-
ulation diversity and convergence at different search stages
for an algorithm.
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It is uncertain whether the new solution x inew of the sub-
problem i is most suitable for its neighboring subproblems
B(i), i.e., x inew may be bad for B(i), while good for other
subproblems. It is thus unreasonable to directly replace the
solutions of B(i) with x inew. Wang et al. [35] investigated
a global replacement (GR) strategy. It finds the most suit-
able subproblem j for the new solution x inew by comparing
the objective function value of each subproblem, and then
selects T closest subproblems to subproblem j to constitute
the replacement neighborhood B (j), which decreases the
probability of replacing multiple current individuals with one
generated newly. However, the replacement neighborhood is
set to a fixed size in the experiment, which is not suitable
for complex MOPs. Ref. [36] extended the GR strategy and
presented an approach to dynamically adjust the replacement
neighborhood size, which can effectively control the tradeoff
between convergence and diversity at different search stages
of an algorithm.

The mutual selection between promising solutions and
subproblems during the replacement process can be regarded
as a match between solutions and subproblems. However,
the solution does not explicitly express a preference for sub-
problems in MOEA/D. Li et al. [69] suggested the use of a
simple and effective stable matching model to coordinate the
selection process. Each subproblem ranks all the solutions
including its parent and offspring according to its aggregation
function and prefers the solutions with better function values.
Besides, each solution ranks all subproblems by calculating
its distance to the direction vectors of these subproblems and
prefers the subproblems whose direction vectors are close to
it. Finally, the model matches each subproblem with a single
solution.

3) MATING SELECTION AND REPLACEMENT MECHANISM
Different from just improving either mating selection or
replacement, it makes sense to conduct both in one algo-
rithm to further raise algorithm performance. The neigh-
borhood structure should be independent when choosing
mating parents and replacing old solutions. Also, different
MOPs or a specific problem may need different neighbor-
hood sizes, and thus, adaptive neighborhood sizes firmly
contribute to the performance improvement of an algorithm.
Ishibuchi et al. [70] introduced two neighborhood structures,
i.e., the mating neighborhood for parent selection and the
replacement neighborhood for interaction among individuals.
The effect of neighborhood size on the algorithm perfor-
mance was also studied, and a better result could be obtained
by combining a small permutation neighborhood with a large
matching neighborhood. The mating neighborhood is the
entire population, while the replacement neighborhood size
should be set to be much smaller than that of the original
neighborhood in [32].

To overcome the shortcomings of the fixed neighbor-
hood size in MOEA/D, Zhao et al. [71] suggested an
ensemble of different neighborhood sizes in MOEA/D and
adaptively adjusted their selection probabilities based on

their historical information. During an evolution, each sub-
problem selects one candidate from the pool containing K
fixed-size neighborhoods based on the candidates’ previ-
ous performance of generating improved solutions. Experi-
mental results demonstrated that the mechanism combining
adaptation and optimization is effective for improving the
performance of multiobjective optimization algorithms.

4) REPRODUCTION OPERATORS
Reproduction is a direct and effective way to generate new
solutions. Li and Zhang [32] adopted DE as a crossover
operator and proposed an MOEA/D-DE to deal with contin-
uous MOPs with complex PSs. According to the character-
istics of the DE operation, three parent solutions should be
selected from the mating pool, which can produce a wide
range of child solutions to effectively maintain population
diversity. Zamuda et al. [37] extended the work on DE in [32]
and introduced adaptive DE and local search into MOEA/D
for solving constrained multiobjective optimization problems
(CMOPs). Each individual has two parameters, self-adaptive
F (amplification factor of the difference vector) and CR
(crossover control parameter). The algorithm adjusts both
to the appropriate values during an evolution, resulting in
faster convergence than the original DE. Local search only
performs on partial individuals that have improved since the
last local search. The combination of global search and local
search could enable the improved algorithm to maintain a
good balance between exploration and exploitation.

As one of swarm intelligence algorithms, ant colony opti-
mization (ACO) can achieve segmentation estimation of a
PF by exploiting cooperative evolution among different ant
groups. To avoid heavy computational overhead and accel-
erate algorithm convergence, Ke et al. [38] proposed an
MOEA/D-ACO algorithm in which an ant is considered
as a basic evolution unit. The N ants are divided into K
groups by clustering their corresponding weight vectors, and
each group is designed to approximate the small range of
a PF. Different ant groups co-evolve with the POSs via
sharing a global solution pool. Each ant records the best
solution found so far for its subproblem and constructs a
new solution with the pheromone matrix about itself and
its neighbors. Then the algorithm performs solution updates
like the original MOEA/D. This work has implied that many
intelligent algorithms, such as particle swarm optimization,
simulated annealing and artificial immune, can be combined
withMOEA/D to further improve the algorithm performance.

Li et al. [72] proposed a bandit-based adaptive operator
selection method to determine which reproduction operator
should be selected in terms of operators’ recent performances.
To bemore specific, thismethod uses the fitness improvement
rate that refers to the solution quality difference between
the parent and its offspring to calculate the reward of each
operator, and sums all these rewards caused by its generated
offspring solution replacing several parent solutions up as the
final reward. The best operator is therefore selected from a
group of operators for use at the next point time based on these
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reward values. The idea of using cumulative improvement
rates to evaluate the quality of operators in this literature
is useful for some online selection problems, such as the
allocation of different neighborhood sizes or population sizes
to different search stages of an algorithm.

Ma et al. [73] incorporated an improved Baldwinian learn-
ing operator into the MOEA/D framework (MOEA/D-BL).
The algorithm divides the current parent population into
K disjoint clusters, and then obtains the evolution infor-
mation by building a local distribution model for each
cluster. Next, the Baldwinian learning operator constructs
an offspring descent direction by combining the evolu-
tion history of the parent individuals with the distribu-
tion model. The combination of clustering and learning
can make full use of the distribution information in the
local region, which enables MOEA/D-BL to converge faster
than MOEA/D.

Different operators have different search characteristics,
and it is promising to make full use of these operators to
balance convergence and diversity. Wang et al. [74] first
explained the search behaviors of two different operators,
namely, differential evolution operator and polynomial muta-
tion, as well as neighbor learning operator and inversion
mutation. Specifically, the former is more likely to find a set
of solutions distributed widely and uniformly, while the latter
has a good searching ability for higher quality solutions. Then
the two operators were employed jointly in the MOEA/D-GR
framework proposed by the authors to improve algorithm
performance. Similarly, Li et al. [75] embedded both DE and
covariance matrix adaptation evolution strategy (CMA-ES)
in MOEA/D. To overcome the high computational costs of
CMA-ES and to use the simplicity of DE, all subproblems
are clustered into several groups, and each group selects only
one subproblem to be solved with CMA-ES, while the others
are solved with DE.

5) SUMMARY
As the main step in the MOEA/D framework and key proce-
dure for each subproblem to produce the promising offspring,
evolution is reviewed in this subsection, which includes mat-
ing selection, reproduction, and replacement. Table 4 presents
the main idea, evolutionary operator and classification for
each reference. Some valuable conclusions are given below.
• To maintain population diversity, it is promising to rea-
sonably set the ranges of both mating selection and
replacement, or to achieve a match between solutions
and subproblems, which effectively reduces the proba-
bility that a new solution replaces old ones.

• According to the solutions distribution in an evolu-
tionary process, the adaptive selection of different evo-
lutionary operators or their combination with other
heuristic algorithms, and even with hyper-heuristic algo-
rithms, is beneficial to further improving the algorithm
performance.

• Different evolutionary operators can be applied to
different algorithm stages or populations to better

accommodate the different performance requirements of
an algorithm.

D. MANY-OBJECTIVE OPTIMIZATION
Unlike MOEAs based on Pareto dominance, the MOEA/D
framework is not easily affected by selection pressure issues.
Although MOEA/D is very effective in solving optimization
problems with no more than three objectives, there are many
challenges in applying it directly to solveMaOPs: 1) the num-
ber of weight vectors cannot be set arbitrarily, and it remains
challenging to generate and initialize weight vectors at a low
cost; 2) the population size grows nonlinearly as the num-
ber of objectives increases, resulting in high computational
complexity; 3) failing to achieve a good coverage of a PF,
i.e., maintaining population diversity presents certain chal-
lenges, mostly due to the properties of decomposition method
contours; 4) offsprings are far apart from each other or from
their parents in the high-dimensional objective space, which
greatly weakens the effectiveness of evolutionary operators
in producing promising offsprings; 5) the number of Pareto
optimal vectors required to approximate the entire PF grows
exponentially with the increasing number of objectives; and
6) the visualization of the high-dimensional PF is hard, which
makes it more difficult for DMs to select a preferred solution.
In order to overcome these challenges and improve the perfor-
mance of the traditional MOEA/D in solving MaOPs, a large
number of studies have been conducted, mainly involving the
following four aspects.

1) STUDIES BASED ON DECOMPOSITION
For MaOPs, how to select a set of weight vectors to produce
the expected distribution of PS is of great significance and
challenge. Giagkiozis et al. [39], [76] defined a mathematical
programming model with respect to the optimization of
weight vectors. Different from a nonlinear one used for the
TCH decomposition, the objective function in this model is
simply a linear transformation of the weight vector, which
means that the transformed vector is also a part of the convex
set because of the convexity of the weight vector, and thus the
model remains convex. On this basis, a generalized decom-
position method was proposed, which improves the TCH
approach and selects weight vectors by using the defined
programming model. It produces the Pareto optimal vectors
along the PF according to user preferences, and provides a
framework in which DM can guide the basic EAs to a specific
region or the entire region of the PF. Therefore, the general-
ized decomposition method can be more easily applied to a
wide range of EAs. The significant advantage of this method
is that it simplifies MaOPs by unifying three performance
criteria (convergence, diversity, and coverage [2]) of multi-
objective optimization algorithms into only convergence.

Facing the third challenge just mentioned, Yuan et al. [40]
presented an MOEA/D variant with a distance-based updat-
ing (MOEA/D-DU) strategy, which fundamentally aims at
clearly maintaining the solutions diversity during an evolu-
tion. Specifically, the K weight vectors closest to the new
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TABLE 4. Summary of studies on evolutionary operators.

solution Snew mapping vector are determined according to the
vertical distance between Snew mapping vector and weight
vectors in the objective space, and then their corresponding
solutions are replaced with Snew by comparing aggregation
function values. This differs from [77] that directly uses the
vertical distance as ameasure of the solution comparison. The
solution update process of the proposed algorithm is stable,
i.e., Snew may replace only one old solution in the current
population, resulting in a better PF coverage. In addition,
the value of parameter K was determined experimentally.
A larger K value puts more emphasis on the aggregation
function for encouraging convergence, while a smaller K
value highlights the vertical distance for promoting popula-
tion diversity.

MOEA/D-M2M, first proposed by Liu et al. [25], is also
suitable for solving MaOPs. In fact, many practical prob-
lems have m objectives, while the true PF is less than
m-dimension due to the redundancy of some objectives.
For the degenerated MaOPs with redundant objectives and
very low-dimensional PS, the uniform and fixed weight vec-
tors generated in [25] waste computational resources. Many
researchers have improved the original MOEA/D-M2M with
different mechanisms. Liu et al. [78] introduced an adap-
tive mechanism into the MOEA/D-M2M framework, which
adaptively adjusts weight vectors of each subregion with the

Max-Min method according to the distribution information
of the solutions found so far, thus enabling a region to be
decomposed adaptively. Chen et al. [79] designed a new
dominance relation called D-dominance, which combines
the advantages of decomposition and domination. Then the
D-dominance was employed into the MOEA/D-M2M as the
selection criterion for each subpopulation. Besides, the result-
ing algorithm further utilizes the weight vector and reduces
its design difficulty. Lin et al. [80] proposed an algorithm
combining MOEA/D-M2M and ISDE+ (the indicator based
on the shift-based density estimation) that contains both
information on individual distribution and convergence. The
algorithm calculates the indicator ISDE+ independently in
each subregion, which can effectively maintain population
diversity and reduce the computational cost.

Li et al. [81] combined the decomposition with the Pareto
dominance for distinguishing and selecting candidate solu-
tions, and termed the resulting algorithm as MOEA/D with
domination archive (MOEA/DD). Each weight vector in this
algorithm specifies not only a subproblem for fitness eval-
uation but also a subregion for estimating the local density
of a population. In the original MOEA/D, the nondominated
solutions are selected by comparing the aggregation function
values between solutions, while in MOEA/DD they are
selected according to both Pareto domination and crowding
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distance sorting. In addition, the update mechanism of the
parent population is stable, i.e., it considers only one offspring
to update the population each time, and performs multiple
rounds of update procedure if more than one offspring solu-
tion has been generated. To make parents closer to each other
and thus improve the effectiveness of crossover operators,
a subregion-based mating restriction scheme was introduced
into MOEA/DD. By applying D-dominance to the MOEA/
D-M2M framework, Chen et al. [82] proposed an adap-
tive D-dominance relationship-based evolutionary algorithm
called DrEA. It employs a customized D-dominance with
adjustable parameters to each subpopulation independently,
which enables parallelism of D-dominance in each subpop-
ulation. Therefore, the balance between population conver-
gence and diversity can be achieved better compared with
MOEAD/D.

Ishibuchi et al. [83] demonstrated that the shape and the
size of the PF have a large effect on the performance of the
weight vector-based algorithms that perform well only when
the distribution of weight vectors is consistent with the PF
shape. When the PF shape is irregular, the design of weight
vectors to ensure the diversity of solutions is challenging.
He et al. [84] proposed a dynamical decomposition strat-
egy for many-objective optimization. Different from existing
decomposition methods, this method decomposes the objec-
tive space into subregions dynamically without employing
a set of predefined reference vectors. Instead, the solutions
themselves are considered as reference vectors. Thus, the
performance of the proposed algorithm is less dependent
on the PF shapes and remains robust especially in solving
MaOPs with irregular PFs.

2) STUDIES BASED ON UNIFORM DESIGN
The challenges resulting from the weight vector generation
and population size design in the high-dimensional space can
be effectively overcome by the uniform design method. The
motivation of uniform design here is to extend MOEA/D to
many-objective optimization.

The method of simplex-lattice design used in the original
MOEA/D cannot generate weight vectors with an arbitrary
number, which restricts the extension of MOEA/D to solve
MaOPs. To deal with this drawback, Tan et al. [41] proposed
a transformation method and termed the resulting algorithm
as UMOEA/D. A parameter M was designed to measure the
nonuniformity, with a smaller M meaning that the weight
vector distribution is more uniform. GLP was adopted to
determine the weight vector set with a minimum M . The
algorithm not only finds a set of weight vectors that are dis-
tributed evenly over the objective space, but also prevents the
population size from becoming very large as the number of
objective functions increases. However, when the size of the
evolving population is small, UMOEA/D faces the risk of
missing some boundary parts of the PF, especially forMaOPs,
which can be effectively overcome by the hybrid method
proposed in [42].

Simplex-lattice design in [3] assigns too many weight
vectors at the boundary of the weight space. On the con-
trary, the transformation method [41] allocates no weight
vector on the boundary of weight space and can generate
any number of weight vectors. Ma et al. [42] proposed an
improved MOEA/D with uniform decomposition measure-
ment (UDM), which is called MOEA/D-UDM and combines
two methods above to construct uniform weight vectors. Par-
ticularly, it first generates alternative weight vectors, most of
which are located in the interior of theweight spacewith a few
ones distributed on the boundary of the weight space. Then
uniformweight vectors are selected based on the UDMmech-
anism from alternative weight vectors. Compared with the
UMOEA/D [41], the proposed MOEA/D-UDM converges
faster and the uniformity of obtained solutions is better.

Dai and Wang [43] proposed a new decomposition-based
EA with uniform design (UDEA/D) to make the solution
set have better convergence and diversity. The algorithm
first generates uniform weight vectors with a uniform design
method. Then, these weight vectors are used to divide the
population into multiple subpopulations, each of which is
associated with a subproblem, thus accelerating the algorithm
convergence. In addition, a crossover operator based on uni-
form design is constructed to improve the searching ability of
the algorithm. The authors also proposed the control of domi-
nance area of solutions (CDAS) [44] to sort solutions of each
subpopulation, guiding the search process to converge toward
the PS. The simulation results indicated that the proposed
algorithm has a good ability of exploration and exploitation
as in [37], and outperforms the three famous algorithms,
MOEA/D, NSGAII-CE and HypE (hyper evolving) on six
benchmark functions with 5 to 25 objectives.

The design of weight vectors is a key issue for solving an
MaOP with an incomplete PF, because the same POSs with
different weight vectors were obtained in this case [83], thus
greatly reducing population diversity. Gu and Cheung [45]
developed a novel weight design method based on the self-
organizing map (SOM), which periodically trains an SOM
network with N neurons by using the objective vectors of
the recent individuals, where N is the population size. The
weights of neurons are employed as the weight vectors. This
weight design method was then integrated into M2M and
MOEA/D, respectively. Experiments on the MaOPs with an
incomplete PF showed that these algorithms could generate
weight vectors distributed evenly based on individuals’ distri-
bution, thus leading to a set of solutions distributed uniformly.

3) STUDIES BASED ON USER PREFERENCES
In the high-dimensional objective space, it is impossible to
find all Pareto optimal vectors that approximate the real
PF. Using preference information on reference points and
reference vectors, the search range can be limited to the ROI
rather than the whole objective space or more solution vectors
can be searched in the ROI, which effectively overcomes
the fifth-and-sixth challenges as stated in the beginning of
subsection D. User preferences can be incorporated a priori,
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posteriorly, or interactively into the search process. EAs
belong to a posterior algorithm, i.e., DMs are not allowed to
express their preferences until a PS has already been obtained,
which is not conducive for DMs to making a comprehensive
decision.

Based on their previous work, the R-MEAD (a refer-
ence point based multiobjective evolutionary algorithm with
decomposition), Mohammadi et al. [46] developed a novel
algorithm termed R-MEAD2. This algorithm utilizes weight
vectors of decomposition methods to help handle user pref-
erences by guiding solutions toward the preference region,
potentially saving quite a huge amount of computational
resources. Therefore, the algorithm is less susceptible to the
selection pressure and converges to the PF more rapidly.
For MOPs with highly nonlinear and complex PFs, a set of
uniform weight vectors does not necessarily map to a set
of uniform solution vectors in the objective space. Thus,
the authors designed a feedback mechanism to adaptively
update weight vectors based on the solutions distribution.
Besides, a uniform random number generator was employed
to decouple the population size from the number of objec-
tives, making the population design easier.

Cheng et al. [47] defined the preference region by spec-
ifying a central vector and a radius, and designed a scalar-
ization approach that is on the basis of the angle penalized
distance and has a better capability in handling large-scale
problems compared to the PBI approach. The resulting algo-
rithm, called reference vector guided EA (RVEA), not only
transforms the original MaOP into a set of single-objective
subproblems, but also makes user preferences target the pref-
erence region of the PF. The distribution of reference vectors
is also adjusted adaptively according to the range of objective
function values. The experimental study demonstrated that
the RVEA can make a solution set be distributed more uni-
formly when the PF has a regular geometric structure. How-
ever, it does not workwell when the PF is irregular. Therefore,
the authors proposed a reference vector regeneration strategy,
which uses an additional reference vector set to explore the
objective space further.

Li et al. [85] presented a nonuniform mapping scheme
(NUMS), in which the original reference points distributed
uniformly on the canonical simplex can be mapped to a new
position close to the aspiration-level vector that is used to
model the DM’s preference information. Given the DM’s
requirements, the NUMS is able to obtain both a set of biased
reference points toward the ROI and the ones located on the
boundary, which enables MOEA/D not only to find preferred
solutions but also to provide DMs with global information
about the PF.

The above studies use reference points or reference vec-
tors to represent user preferences. Li et al. [86] defined the
target region that consists of the preferred range of each
objective and used it to express preference information from
DM. Then a preference-based algorithm of MOEA/D with a
target region (T-MOEA/D) was proposed, which aims at well
spreading nondominated solutions within the target region

and can be used a priori or interactively. Besides, to determine
whether a solution is replaced or not, T-MOEA/D compares
Pareto dominance and fitness values in turn, while the tra-
ditional MOEA/D only compares fitness values of solutions.
Comprehensive experiments on a series of benchmark prob-
lems with 2 to 15 objectives fully demonstrated the effec-
tiveness of the proposed algorithm, and more experimental
problems should further be performed on different object
regions.

Xiong et al. [87] constructed a preference model that
combines the target region and reference point together, and
introduced an interactive approach using the fuzzy theory
to adjust the preference information during the search pro-
cess for obtaining more reasonable solutions. This interac-
tive method is beneficial to allocating more computational
resources to the ROI of users. A tri-level ranking criterion was
then designed to focus the search process on the preference
region along with balancing convergence and diversity of a
PS. Compared with the T-MOEA/D in [86], the proposed
algorithm worked well in most of the test cases and showed
superior performance in the convergence speed and compu-
tational time.

4) OTHER RESEARCHES ON MANY-OBJECTIVE
OPTIMIZATION
To address the third challenge, He and Yen [88] proposed
a new algorithm, termed MOEA/D with diversity improve-
ment (MOEA/D-DI). The algorithm consists mainly of two
steps for different purposes. In the first step, a small num-
ber of Pareto solution vectors distributed uniformly on the
PF boundary are generated, focusing on the algorithm con-
vergence. The second step concerns population diversity.
After finding the target solutions, a population is initialized
around each solution, and the individuals in the popula-
tion are well spread and distributed by using the proposed
diversity method. In every iteration, two parents are selected
from the whole population, and offsprings are generated
after reproduction, and the next generation of individuals is
then selected from the parent and its offspring. Similarly,
Cai et al. [89] utilized two types of direction vectors, one
aiming to approximate a more complete PF by expanding the
number of direction vectors after the fast convergence along
the boundary direction vectors, and the other trying to adjust
the position of ineffective direction vectors for MaOPs with
irregular PFs.

In the high-dimensional space, weight vectors in the
weight space become sparse, resulting in insufficient search
resources for each part of a PF. Sato et al. [90] introduced
supplemental weight vectors and solutions into the original
MOEA/D. The algorithm assigns supplemental weight vec-
tors around each original weight vector and generates the
corresponding supplemental solutions to enhance the detailed
search in the objective space. Differing from the original
MOEA/D, parents are selected from the supplemental solu-
tions that have more similar objective values and variable
information even in a higher dimensional objective space.
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5) SUMMARY
In this subsection, we describe the main challenges that
MOEA/D faces in solving MaOPs in the high-dimensional
objective space. Then a series of improved algorithms to
overcome these challenges are reviewed. Table 5 presents
a summary of these algorithms based on their techniques,
such as decomposition, uniform design, and user preferences-
based.

The high-dimensional objective space makes it more dif-
ficult for MOEA/D to obtain a set of solutions distributed
widely and uniformly. Objective region decomposition trans-
forms an MaOP into several multiobjective subproblems and
divides the population into multiple subpopulations, each of
which solves a subproblem. Thus, the whole objective region
can be well searched through CE among subpopulations,
which greatly reduces the difficulty in searching over a high-
dimensional objective space. Uniform design can effectively
alleviate the difficulties of weight vector generation and pop-
ulation design. Using user preference information allows an
algorithm to search only within the ROI of DMs and to gen-
erate a well-distributed solution set in the preference region,
significantly saving the computational resources required for
searching. Briefly, many-objective optimization presents one
of the hotspots and challenges in future research and deserves
further exploration.

E. CONSTRAINED MULTIOBJECTIVE OPTIMIZATION
Many real-world optimization problems belong to CMOPs,
such as constrained multiobjective portfolio optimization
[48], resource-constrained unrelated parallel machine green
scheduling problem [49], and risk-constrained energy and
reserve procurement [50]. A CMOP usually includesmultiple
diversionary or conflicting objectives and different types of
constraints that need to be satisfied simultaneously. These
constraints lead to a number of infeasible solutions violating
such constraints. Therefore, how to deal with the infeasible
solutions generated during the search process and to realize
the effective utilization of computational resources are the
challenges when solving CMOPs. In recent years, many con-
straint handling techniques have been organically integrated
into the MOEA/D framework to solve various CMOPs suc-
cessfully. The following briefly introduces these techniques
and their algorithms combined with MOEA/D.

1) PENALTY FUNCTIONS
The method based on the penalty function adds one penalty
term to the objective functions, transforming the constrained
optimization problem into an unconstrained one. In evolu-
tionary computation, researchers choose the external penalty
function method to solve the problem, mainly because it does
not need to initially provide a feasible solution.

Jan and Zhang [51] presented a penalty function to pun-
ish infeasible solutions and introduced it into the update
scheme of MOEA/D-DE. The proposed algorithm calculates
the degree of constraint violation V (x) for the solution x, and

if V (x) = 0, x is feasible, otherwise it is infeasible. The pro-
posed penalty function uses the threshold related to the maxi-
mum and minimum values of V (x) to dynamically control the
penalty amount which increases sharply when V (x) exceeds
the threshold, encouraging the algorithm to search in both
the feasible region and the infeasible region near the feasible
one. The implementation process of the resulting algorithm
is similar to that of MOEA/D, while has the following main
variations: a) the calculation of V (x) for solution x; b) using
a new aggregation function (penalty function) to compare the
new solutionwith the old one; and c) update of theV (x) value.
The experiments showed that the algorithm performs well
in six out of ten constrained multiobjective optimization test
instances.

To keep a balance between objective minimization and
constraint satisfaction, Fan et al. [52] presented a push and
pull search (PPS) framework, and combined it with
MOEA/D. As its name suggests, the proposed PPS divides
the search process into two different stages of push and pull
search. In the first stage, a CMOP is solved by considering
only objectives without any constraints, which can help to
get across to infeasible regions. In the pull stage, an adap-
tive penalty-based function is applied to pull the infeasible
individuals achieved in the push stage to the feasible and non-
dominated regions.

To improve the PPS framework [52] further, Fan et al.
[53] proposed a self-adaptive penalty-based constraint han-
dling method and embedded it in PPS. More specifically,
inspired by the learning rate in deep leaning, the penalty fac-
tor is dynamically adjusted according to the ratio of feasible
solutions to a population, the constraint violation value, the
target value, etc. In the original PPS, the Epsilon constraint
handling method first considers constraint violation and then
considers objectives. However, the proposed algorithm deals
with objectives and constraints simultaneously, thus it can
maintain better population diversity.

2) SEPARATION OF OBJECTIVES AND CONSTRAINTS
For the penalty function method, it is not easy to select the
appropriate penalty factor for a specific problem, because the
factor is too small to be an effective punishment and/or too
large to enable an algorithm to search near the feasible region.
The separationmechanism of objectives and constraints, as its
name suggests, treats objectives and constraints separately,
which does not require any additional parameters while they
are needed for the penalty function.

Fan et al. [54], [55] improved two typical methods of
this mechanism, epsilon constraint handling method and
constrained dominance principle (CDP), respectively. More
specifically, Ref. [54] dynamically adjusted the epsilon level,
which is a parameter to control the relaxation of constraints
in the epsilon constraint handling method. Then the improved
approach was embedded in the MOEA/D framework, leading
to a new algorithm called MOEA/D-IEpsilon. This algo-
rithm compares the epsilon level of the newly generated
solution with that of its neighborhood solutions and updates

41604 VOLUME 8, 2020



Q. Xu et al.: Survey of MOEA/D: Variants, Challenges and Future Directions

TABLE 5. Summary of studies on algorithms for many-objective optimization.

the population by replacing the inferior solutions. Then the
epsilon level is updated according to the proposed equations.
The comprehensive experimental results verified that the
MOEA/D-IEpsilon outperforms the MOEA/D-CDP and the
MOEA/D-Epsilon in the performance of both convergence
and diversity.

Although the CDP is a popular constraint handling
technique, it may neglect many infeasible solutions that have
the potential to improve population diversity. Fan et al. [55]

proposed an angle-based constrained dominance principle
(ACDP), which is specifically designed to solve CMOPs with
a low ratio of feasible solutions to all ones. The ACDP adds
the angle information of objective functions to the original
CDP to enhance population diversity in the infeasible region.
For the comparison between the feasible solution and the
infeasible one, if the angle of the peer solutions remains
less than a user-defined threshold, the feasible solution is
better, otherwise they are nondominated. This differs from
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the original CDP, which considers that any feasible solution is
better than any infeasible solution. Experimental results indi-
cated that the proposed ACDP method is very effective in the
MOEA/D framework by comparing it with four popular con-
strained MOEA/Ds, including CMOEA/D, MOEA/D-CDP,
MOEA/D-Epsilon and MOEA/D-SR (stochastic ranking).

Fan et al. [56] reviewed a number of popular constrained
MOEAs based on decomposition, including MOEA/D-
IEpsilon, MOEA/D-CDP, CMOEA/D that embeds the
epsilon constraint handling approach in MOEA/D, and
MOEA/D-SR that applies SR to handle constraints in
MOEA/D. The comprehensive experimental results indicated
that the MOEA/D-IEpsilon has the best performance in the
decomposition-based CMOEAs.

3) REPAIR ALGORITHMS
An algorithm of this kind converts an infeasible solution
to a feasible one by using repair operators. Fan et al. [57]
proposed a new opposition-based repair operator to fix the
infeasible solutions and then integrated it into two clas-
sical multiobjective EAs, MOEA/D and NSGA-II. This
repair operator employs a reversed correction strategy that is
inspired by the concept of opposition-based learning (OBL)
[58]. TheOBLmethod considers not only an estimate but also
its corresponding opposite estimate, which can effectively
avoid the search falling into local optimum. Finally, for the
benchmark problems of CTPs and CMOPs, the algorithm
with the proposed operator outperforms that with the two
other kinds of repair operators used commonly in terms of
convergence and diversity.

Repair methods are crucial to dealing with dynamic con-
strained problems since they help to move the infeasible
solutions toward a feasible region. Ameca-Alducin et al. [59]
investigated four repair methods with DE for dynamic
constrained optimization, including reference-based repair,
offspring-repair, mutant-repair, and gradient-based repair.
Also, three different measures were proposed to compare
the performance of these repair methods, and then their
advantages and disadvantages were analyzed in terms of
the experimental results. Although the literature studied the
performance of various repair operators in the processing of
the dynamic CMOP under the DE algorithm, these operators
can still be applied to the MOEA/D, and the performances of
resulting algorithms are compared as well.

4) SUMMARY
Each constraint handling technique has its pros and cons.
The penalty function method is simple to implement, but the
selection of penalty factors remains hard. The mechanism of
separating objectives and constraints can be regarded as an
extension of the traditional penalty function method, but it
does not need to configure any parameters. Repair algorithms
are suitable for some instances which have a low repair cost
and a small search bias, while they have to be customized for
different problems.

Any kind of constraint handlingmechanism should achieve
a balanced search in feasible regions and infeasible regions,
which is actually a challenge faced by MOEA/D when deal-
ing with CMOPs. Concisely, for different CMOPs, we need
to design the appropriate constraint handling technique and
integrate it into MOEA/D to obtain the optimal feasible
solutions.

IV. FINDINGS OF SURVEY
A systematic summary of current research directions, related
technologies, and corresponding references of MOEA/D
variants is provided in Table 6, where it is very clear to
see the state-of-the-art investigations on MOEA/D. To make
researchers catch each category of techniques with corre-
sponding references in a limited space, the findings of this
article are also illustrated in Fig. 4 in seven aspects with the
brief discussion that follows, which hopefully presents read-
ers a clearer understanding of the techniques used commonly
in MOEA/D variants.

A. ADAPTIVE MECHANISM
The adaptive mechanism that is suitable for complex MOPs
can realize the dynamic adjustment of MOEA/D compo-
nents, such as the decomposition method [23], weight vec-
tor [29], neighborhood size [71], and reproduction operator
[72]. With the increasing focus on artificial intelligence (AI),
algorithm automation will be a hotspot in the optimization
community.

B. COMBINATION
The combination of different methods [20], [22] or diverse
operators [74] can fully utilize their complementary advan-
tages to maintain the balance between diversity and con-
vergence. Other heuristic algorithms (e.g., ACO [38]) or
mathematical optimization tools (e.g., Cplex [91]) can be
combined with MOEA/D to conduct both global and local
searches in the objective space, and to ensure the quality and
diversity of the solution set.

C. UNIFORM DESIGN
The distribution of POSs obtained depends highly on the
weight vector generation method. Uniform design methods
like the good grid point can be used to initialize population
[26], construct crossover operators [43], and generate weight
vectors [65], making the solution mapping vectors be dis-
tributed more evenly in the objective space.

D. USER PREFERENCES
EAs usually take a long time to solve problems, which is
considered as a defect of these algorithms. Embedding user
preferences in MOEA/D a priori or interactively can avoid
unnecessary space searches and thus effectively shortens the
operating time of an algorithm, where user preferences could
be represented by reference points [46], reference vectors
[47] or target region [86].
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TABLE 6. Summary of typical works on MOEA/D.

FIGURE 4. Findings of survey.

E. CONVERGENCE AND DIVERSITY
A lot of studies have been carried out on algorithm conver-
gence and population diversity. Different constraint values
are needed for different subproblems, even for a specific
problem at different stages [17]. Two evolutionary oper-
ators with different search characteristics of the solution

uniformity and quality are used to generate promising
solutions [74]. A population is initialized around each solu-
tion located on the boundary of the PS [88]. Supple-
mental weight vectors and the corresponding supplemental
solutions are generated to enhance the search in a wider
region [90].
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F. COMPUTATIONAL RESOURCES ALLOCATION
The computational cost increases sharply as the number of
objectives increases and becomes extremely high in solving
MaOPs. Therefore, it is significant to allocate computational
resources reasonably. Many algorithms have been proposed
to assign weight vectors that are used to allocate different
amounts of computational resources for subproblems accord-
ing to some criteria, such as computational difficulties of
solving subproblems [27], geometrical characteristics of a
PF [29], and user preferences [30]. To realize the adaptive
decomposition for a region [25] and overcome the defect of
wasting resources due to fixed and uniform weight vectors,
another potential method is to assign subpopulations with
different sizes to their corresponding subproblems.

G. CONSTRAINT HANDLING TECHNIQUES
Various constraint handling techniques have been well inte-
grated into MOEA/D to solve CMOPs. The penalty function
method [51] is simple to operate, but it remains difficult
to select the appropriate penalty factor for a specific prob-
lem. The mechanism that treats objectives and constraints
separately [54] does not require any parameters, and thus
it is more efficient and universal than the penalty func-
tion method. The repair algorithm [57] is another way to
convert infeasible solutions into feasible ones, which can
effectively avoid the search falling into the local optimum.
However, each algorithm is always suitable for the specific
problem only. Therefore, it is necessary to design suitable
constraint handling techniques for different problems, which
requires a comprehensive consideration of the character-
istics of practical problems and algorithm implementation
difficulty.

V. CHALLENGES AND FUTURE RESEARCH
DIRECTIONS
Despite the suitability, success, and prospect of MOEA/D for
MOPs, many problems remain to be solved in both theoretical
research and practical application. As shown in Fig. 5, wewill
discuss them and constructively propose some future research
directions.

A. MOEA/D THEORETICAL RESEARCH
1) MOPS WITH AN UNKNOWN PF
When the PF is unknown beforehand, how to get a uni-
form and diverse solution set remains a challenging prob-
lem to which users often pay attention. It is promising to
combine learning strategies (e.g., machine learning) with
multiobjective optimization algorithms to learn and optimize
interactively, so as to achieve complex PF prediction and
adaptive adjustment. Particularly, machine learning is used
to extract useful information from the data generated during
an evolution, such as the solutions distribution and population
clustering. Accordingly, these pieces of information and rules
in the data can be fully utilized to guide MOEA/D for a more
effective search.

2) CONSTRAINED MULTIOBJECTIVE OPTIMIZATION
ALGORITHMS
One of the issues that may be encountered in solving CMOPs
is how to deal with infeasible solutions. In addition to apply-
ing appropriate constraint handling techniques, designing
special encoding and decoding methods may be promising
to lower the possibility of generating infeasible solutions.

Another challenge in solving CMOPs is how to reasonably
balance searches in feasible regions and infeasible ones. If the
population diversity remains insufficient after entering the
feasible region, the search will be concentrated on a certain
part of the feasible region, thus making the solution fall into
the local optimum. On the contrary, if the initial population is
highly infeasible, then the algorithmsmay not converge to the
feasible region. This challenge can be overcome by the fol-
lowingways: a) defining an appropriate dominantmechanism
and combining it with the constraint handling techniques as
the criteria for selecting the nondominated solutions, and
b) dividing one current population into many subpopulations,
and using them to evenly search in both feasible region and
infeasible region based on the current solutions distribution.

In the cases discussed above, the constraints remain
unchanged in the optimization process. If the constraints
change, how to deal with them presents an issue uncovered
in many current studies, which is worth studying further.

3) SINGLE-OBJECTIVE OPTIMIZERS
Meta-heuristic algorithms (such as tabu search, simulated
annealing, and particle swarm optimization) or hyper-
heuristic algorithms can be integrated into optimizers that
are applied to solve single-objective subproblems. It is worth
studying to dynamically update parameters of an optimizer
according to information generated during an evolution, or to
adaptively select various optimizers to better suit different
problems. In addition, mathematical methods [92], such as
operations research, convex optimization and dynamic pro-
gramming, can be embedded in optimizers.

Tomaximize algorithm efficiency, various algorithmsmust
be coordinated. Therefore, developing efficient parallel or
distributed algorithms and proposing new hybrid algorithms
are the two main research directions of MOEA/D in the
future.

B. CHALLENGES IN MANY-OBJECTIVE OPTIMIZATION
With the sharply increasing complexity of practical problems,
many-objective optimization has been attracting researchers
in the evolutionary multiobjective community in recent years.
However, the relevant investigations are still relatively rare
and many issues remain to be studied.

1) PF VISUALIZATION
For the visualization of a PF in a high-dimensional space,
most of the existing work shows that the indicator function
value only varies along with the increase of the objective
value, instead of displaying the location and distribution of
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FIGURE 5. Challenges and future research directions.

the obtained solution vectors in a scatter plot, where each
axis represents one objective. Facing this challenge, one of
the future research directions is to apply some intelligent
algorithms, such as big data and deep learning, to reduce the
number of objectives while keeping the original objectives
features unchanged. Then, one MaOP can be simplified to an
MOP for considerable visualization, allowing DMs to easily
select their preferred solutions. The idea of treating objective
reduction as a multiobjective search problem in [93] and [94]
is worth learning. For the MaOPs whose objectives could not
be further reduced, themapping transformation technique can
be used to map solution vectors from the high-dimensional
objective space to the two-dimensional or three-dimensional
objective space, while preserving the dominance relationship
among the solution vectors.

2) ALGORITHM FOR SOLVING MAOPS
A great deal of research work has been conducted on many-
objective optimization, most of which aims at proposing
mechanisms or methods for MaOPs with a large number
of objectives, but little attention has been paid to MaOPs
with many decision variables. Therefore, the algorithms for
solving MaOPs in such a scenario need to be studied further.
Ma et al. [95] proposed an MOEA based on decision variable
analysis, which decomposes decision variables into several
low-dimensional subcomponents, and thus a complicated
MOP is decomposed into a set of simpler sub-MOPs. How
to deal with mixed variables better is also an open problem.
This literature inspires that we can use learning algorithms
to analyze the characteristics of decision variables and the
potential relationship between variables.

Due to the complexity of MaOPs, such as high-
dimensionality, computational expense, and unknown
function properties, designing or selecting an optimization
algorithm for solving these hard problems is challenging.
Ibrahim et al. [96] combined the benefits of several opti-
mization algorithms and proposed a hybrid multi- and many-
objective optimization algorithms framework to obtain the

fusion of solutions. Inspired by this idea, it is a promising
future research direction to design a hybrid algorithm that
adaptively selects a best-performing algorithm at different
stages of the search process and executes all algorithms in
parallel to reduce the computational cost.

In addition, many multiobjective optimization algorithms
have only been tested onMOPs, and their performance should
be further evaluated on various test problems with many
objectives.

C. MOEA/D APPLICATION RESEARCH
1) LARGE-SCALE OR COMPUTATIONALLY EXPENSIVE
OPTIMIZATION PROBLEMS
MOEA/D has been widely used in the fields of engineering,
industry, and science. However, it still faces challenges in
solving large-scale or computationally expensive optimiza-
tion problems. These problems involve both many objectives
and large-scale decision variables, which leads to a rapid
decline in EAs’ performance when solving them. In recent
years, some researchers have proposed various algorithms for
overcoming this challenge.

Zhang et al. [97] proposed an evolutionary algorithm based
on a decision variable clustering method that divides the deci-
sion variables into convergence- and diversity-related ones.
These two types of decision variables were optimized with a
convergence and diversity optimization strategy, respectively.
It is still possible to improve the diversity of decision variable
classification and the computational efficiency of the cluster-
ing method.

Wu et al. [98] presented a new hybrid algorithm including
two phases of decomposition and optimization. The algo-
rithm divides a large-scale problem into several small-scale
ones. A modified self-adaptive discrete scan method and a
hybrid search strategy were designed to solve the subprob-
lems on the promising regions. Designing some effective
decomposition methods for solving large-scale problems is
valuable and challenging in the future.
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Another challenge with such problems is that they require
a large number of individual evaluations, resulting in a
slow convergence speed of algorithms to solve them. Some
research directions may be promising such as: a) using
deep learning algorithms to acquire the features of large-
scale problems, and then discarding redundant information
to reconstruct the problem model [99], thus reducing its
scale greatly; b) training the historical solution data to pre-
select the better solutions to reduce the number of individ-
uals for evaluation; and c) combining the high-efficiency
parallelism of parallel computers with the natural paral-
lelism of MOEA/D to accelerate the optimization process,
such as the cooperatively distributed co-evolutionary process
mentioned in [100], [101].

2) EFFICIENT ALGORITHM DESIGN
FOR PRACTICAL PROBLEMS
Facing all kinds of practically complicated problems, how to
effectively design algorithm components by making full use
of the characteristics of a problem has a great influence on
the quality of the final solution set. From the review above,
it can be found that self-adaptation is a potential method for
dynamically adjusting operators of all kinds, thus making the
evolution toward the real PF. The divide-and-conquer algo-
rithm transforms a big problem into several small subprob-
lems, then tackles them one by one, and finally combines the
solutions of all subproblems to solve the original big problem.
Similar to this idea, the objective space can be decomposed
into several small subspaces by multiple reference vectors,
and then each of the multiple subpopulations is used to search
within its corresponding subregion, and the solution of each
subpopulation constitutes the final PS, which can effectively
lower the search difficulty. In addition, we can integrate user
preferences into MOEA/D a priori or interactively, reducing
the search in unnecessary PF regions and accelerating the
algorithm convergence.

3) DYNAMIC MULTIOBJECTIVE OPTIMIZATION
Due to scenario changes in objectives, constraints and param-
eters over time, dynamic multiobjective optimization prob-
lems (DMOPs) are increasingly a hotspot in the optimization
field as such a real-world problem becomes more compli-
cated, and how to track POSs that may not be the same as
before efficiently is a key issue.

Some intelligent algorithms may be promising: a) algo-
rithms designed by automation. These algorithms can flexibly
add or remove some constraints and variables as the scenario
changes, and be tested and improved through application
experiments. At the same time, many modules in such an
algorithm can realize the automatic selection of multiple
candidate operators according to the evolution degree of the
current solutions or scenario factors. b) prediction algorithms
aiding population-based optimization methods. Because a
new solution every time may be different from the previous
optima, thus, prediction algorithms can be used to resume
learning prediction models by training the historical POSs

under different scenarios to predict the optimal values in the
future scenarios.

Concisely, combining MOEA/D with other intelligent
technologies, such as learning and automation, to design
more flexible and generalized algorithms is useful for solving
DMOPs in the era empowered by AI.

D. RESEARCH DIRECTIONS IN SOME HOTSPOT AREAS
Except for the three ones discussed above, there are some
hotspot areas that have attracted both the academia and indus-
try, such as SDN, NFV, elastic optical networks (EONs),
edge computing [102], and 5G/6G networking. Due to
limited space, we address the first three research issues
for MOEA/D.

1) SDN
As an emerging network architecture, SDN has the dis-
tinct advantage of separating the control plane and data
plane [103], resulting in flexible and efficient usage of net-
work resources. It has found partial commercial applica-
tions and been tested extensively. However, it still faces
many challenges in several aspects before its practical
large-scale deployment, such as the software and hardware
implementations in the SDN-based data plane, control plane,
management plane and application plane. Some of the most
important issues are the network planning for network ele-
ments designer, and the resource allocation algorithms for the
operators in the scenario where there are hundreds of billions
of terminals in the emerging Internet of Things.

In the case of constrained resources, the performance
metric or multiobjective of the routing algorithm will be
diversionary, such as the minimum objectives: capital expen-
ditures (Capex), operating expenses (Opex), deployment cost,
energy consumption [103], and end to end delay [104].
The maximum objectives are operators’ profits, differenti-
ated service levels, quality of experiences, etc. For exam-
ple, S. Garg et al. [105] addressed an SDN framework for
autonomous vehicles by using MOEA/D, aiming at min-
imizing the network latency and maximizing bandwidth
utilization.

The architecture of numerous SDN controllers is reason-
ably a multi-layered tree since it matches the structure of
our community well. We could use MOEA/D variants [78] to
partition such huge terminals into thousands of autonomous
domains. Such MOEA/D variants mentioned in this article
could be used in one domain to optimize the above perfor-
mance metrics which are diversionary or in conflict with
each other. However, for the whole network, we may need
to employ the multi-agent optimization architecture in which
each of all MOEA/D optimizers or agents works with other
ones together, exploring the global optimization.

2) NFV
In traditional networks, network functions are implemented
by the dedicated hardware (e.g., video coder/decoder). How-
ever, in NFV scenarios, these functions are implemented
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in software that runs on top of general-purpose hardware
like commercial servers [106], thus flexibly and efficiently
utilizing network resources while reducing Capex and Opex.
One of the important issues is the resource allocation in NFV
(RA-NFV) scenarios. Each user request is described by a
service function chain (SFC), and the RA-NFV procedure
consists of three stages of SFC constructing, mapping, and
scheduling [107], each of which could work independently
or collaboratively with up to two others. Much attention has
been focused on SFC deployments. Sun et al. [108] designed
a heuristic algorithm to realize low-latency and resource-
efficient SFC orchestration. Similar to the idea of decom-
position in MOEA/D, Sun et al. [109] split a large flow
into a number of subflows and each subflow was redirected
to one of these ‘‘parallelized’’ sub-SFCs. Xu et al. [110]
considered the requested resource quantity of each virtual
network function (VNF) and VNFs precedence, which means
that, for an SFC, its one VNF must be executed before the
special VNF.

To face the challenges resulting from three stages and
additional constrains in the RA-NFV, we need to add some
mechanisms to enhanceMOEA/D so that it can globally opti-
mize the RA-NFV even for the case of static SFC. The first
one is to embed a heuristic algorithm in MOEA/D to check
the feasibility of a solution by inspecting various constraints
like VNFs precedence. In the second one, we could combine
the physical characteristic of a network to help MOEA/D
select a better path when co-evolving SFC mapping and
scheduling jointly, such as several centralities of closeness,
betweenness, and degree [111]. For the dynamic SFC case,
the computational time is stringent, so we have to greatly
reduce the objective space and/or search space by using
decomposition [25], [78].

3) EON
As one of the most promising candidates for future net-
working, EONs could provide a finer or huger bandwidth
granularity, resulting in high network utilization with a better
match between the user request and network resource. The
bandwidth unit in EONs is referred to as the frequency slot,
and its resource allocation performance includes blocking
probability [112], resource utilization, lightpath setup time
[113], network throughput and network bandwidth fragmen-
tation ratio [114], and load balancing. The application of
EONs to such fields as SDN [115], IT resources [116] and
NFV [107] is quite challenging. Facing these different sce-
narios, we need to improve the performance of MOEA/D
comprehensively by employing several methods reviewed
above or combining the methods that benefit each other
complementally.

In order to achieve a better application effect for the three
issues and others, an inevitable trend is to introduce more
machine learning tools like deep neuronal networks into
MOEA/D, realizing the combination of offline learning and
online optimization.

VI. CONCLUSION
This article provides a relatively comprehensive overview
of the research on the improvement and extension of the
original MOEA/D in the past decade. It also presents the
state-of-the-art MOEA/Dwith challenges and future research
directions. To solve the problems with an increasing num-
ber of objectives, constraints and decision variables, it is
expected that the satisfactory solutions in different engi-
neering fields could be obtained if our readers could use
so many mechanisms, methods and techniques addressed in
this survey, by selectively employing some of them, inte-
grating or combining some different kinds of them, or even
embedding some cutting techniques like AI-based techniques
in MOEA/D.

Many other future research possibilities exist, including
developing efficient algorithms that can adapt to more occa-
sions by taking advantages of mixing and parallelism, and a
comparison of various MOEA/D improvement methods. Our
next study is to extend MOEA/D to other hotspot areas, such
as large-scale optimization, edge computing, and machine
learning. Besides, it is recommended that researchers should
investigate future network optimization using MOEA/D in
the aspects of transmission, switching, application and overall
network architecture.
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