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ABSTRACT Over the past decade, there has been an unprecedented international focus on improved
quality and availability of medical care, which has reignited interest in clinical automation and drawn
researchers toward novel solutions in the field of physiological closed-loop control systems (PCLCs). Today,
multidisciplinary groups of expert scientists, engineers, clinicians, mathematicians, and policy-makers are
combining their knowledge and experience to develop both the next generation of PCLC-based medical
equipment and a collaborative commercial/academic infrastructure to support this rapidly expanding frontier.
In the following article, we provide a robust introduction to the various aspects of this growing fieldmotivated
by the recent and ongoing work supporting two leading technologies: the artificial pancreas (AP) and
automated anesthesia. Following a brief high-level overview of the main concepts in automated therapy and
some relevant tools from systems and control theory, we explore – separately – the developments, challenges,
state-of-the-art, and probable directions for AP and automated anesthesia systems. We then close the review
with a consideration of the common lessons gleaned from these ventures and the implications they present
for future investigations and adjacent research.

INDEX TERMS Adaptive control, artificial intelligence, anesthesia, artificial pancreas, automated anes-
thesia, automation, Bergman minimal model, BMM, blood glucose, closed-loop, control, cyberphysical
systems, decision-making, diabetes, drug dosage, fuzzy-logic, fuzzy logic, F-L, general predictive control,
GPC, IDDM, in-silico, insulin, medical cyberphysical systems, model predictive control, MPC, PCLC, phar-
macodynamics, pharmacokinetics, physiological systems, physiological closed-loop control, physiology,
PK-PD, prediction, Propofol, proportional-integral-derivative, PID, remifentanil, systems pharmacology,
systems physiology, therapy, Type 1 diabetes, Type 2 diabetes, T1DM, T2DM.

I. INTRODUCTION
The modern advance of automated and intelligent systems
toward more-and-more visible roles in society (e.g.,
commercially available automated vehicles, humanoid and
biomimetic robots, household vacuums and thermostats, etc.)
has accelerated the development of many new technologies
and restored interest in several challenging fields. Principal
among these recent works, are the broad ongoing efforts to
deploy collaborative human-machine systems, such as those
designed to provide advanced support in medical diagnostics
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and therapy. In this review, we focus on a special class of
these systems that apply concepts from feedback control
to attain automatic regulation of physiological variables –
such as blood pressure, depth of anesthesia, blood glucose
concentrations, and others (see examples in Table 1) – known
as physiological closed-loop control systems (PCLCs).While
the pioneering works toward many kinds of PCLCs were
performed over a half-century ago, we are now only nascent
in an era of suitable computational/technological availability
and physiological/pharmaceutical scientific understanding to
begin realizing these devices on a broad commercial scale.

From the outset, it is important to understand that these
devices do not and are not intended to replace expert
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TABLE 1. Examples of research in physiological closed-loop systems (PCLCs).

and supporting clinical staff. In fact, automated devices
rely on the knowledge of experts and simply put, promise
to do a much better job at following clinical instruction
than present technology. By introducing sensors capable
of continuous monitoring (i.e., generating measurements
every few seconds or minutes depending on the treatment)
these devices stand to recognize and eliminate uninten-
tional variations in therapies, including missed doses and
faults like sensor detachment or blocked fluid pathways.
Furthermore, post analysis of the measurements obtained by
these devices and the treatment profiles they generate can
provide important insights into the effectiveness of treat-
ment strategies (e.g., the clinical setpoint is maintained to
no effect), possible heterogeneity in disease pathologies, and
goals for future pharmaceuticals (e.g., short or longer acting
doses). The development and adoption of these new systems
is currently providing research directions in control engi-
neering, artificial intelligence, human-machine interactions,
social science, medical practice, therapeutic technology,
pharmaceutical development, and biological/physiological
systems modeling. Further, since poor controller perfor-
mance in physiological systems can lead to immediate
adverse, potentially irreversible, and even fatal physiological
responses, PCLCs are a rapidly developing field of safety
critical control systems and additional research on safe PCLC
operation will be of particular value in the transition to
common medical practice (esp. as networked and ambulatory
systems are realized).

As a primer for researchers in these and other disciplines,
we have sought in this review to introduce key information
from various aspects of the ongoing research to provide both
a background and up-to-date perception of the field for unfa-
miliar readers. This includes a brief introduction to modeling
and control, within the scope of those methods common to
physiological systems, in Section II; the use of case studies
in Sections III-IV to frame and discuss important topics in
current research; and a minimalist presentation of the detailed
mathematical models, which are all very well documented in
the cited references. Following the case studies, in Section V
we will discuss several aspects from these investigations that

FIGURE 1. Comparison of (a) manual therapy applied by a clinician
according to observations and set guidelines for making therapy
adjustments and (b) automated therapy applied by a physiological
closed-loop control (PCLC) device according to a control algorithm with
the possibility of a clinician acting in a supervisory capacity
(e.g. monitoring Bispectral Index (BIS) for additional safety in anesthesia).

are of great importance in the broader scope of physiological
control as well as possible directions for the future.

II. PRELIMINARIES
Regardless of the controlled variables and outputs, the general
process implemented in PCLCs can be represented concep-
tually by a diagram resembling Fig. 1. Here, a control
algorithm – normally implemented on a computer/
processor – provides an interface between (i) target values for
physiological variables that have been specified by clinicians,
(ii) feedback signals containing measurements and estimates
of system variables, and (iii) the infusion pumps or other
actuators that apply treatment to the patient. Notice, from a
high-level perspective, there is little difference between the
‘‘automated’’ approach and the classical manual approach
aside from the simplification of tasks required from the
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clinician/patient, who no longer has to interact with the
infusion pump (or other actuator) directly and instead can
focus on specifying treatment goals and assessing therapy
performance.

Recognizing the generality of this concept, many agencies
and organizations are in the process of developing more
rigorous guidelines for commercial PCLCs that will help to
establish the scope of this up-and-coming class of devices.
As noted in a recent paper from researchers at the Center
for Devices and Radiological Health (CDRH) at the US
Food and Drug Administration (FDA), the CDRH maintains
a working definition of PCLC medical devices (or PCLC
devices) as, ‘‘a medical device that incorporates physiolog-
ical sensor(s) for automatic manipulation of a physiological
variable through actuation of therapy that is conventionally
made by a clinician’’ [9]. This definition – demonstrated
in Fig. 1b – recognizes the role of automation in PCLC
while allowing a great deal of flexibility in the disorder
being treated, the types of sensors and therapies used (many
are certainly yet to be discovered), and the extent to which
the PCLC operates independent of clinician intervention –
known as the level of automation (LOA) [9]. To help guide
the development of commercial PCLC devices, the United
States [10], Canada [11], and the European Union [12]
have formally recognized versions of the recently devel-
oped IEC 60601-1-10 consensus standard [13], which is the
first standard to provide, ‘‘requirements for the development
(analysis, design, verification and validation) of a physio-
logic closed-loop controller (PCLC) as part of a physiologic
closed-loop control system (PCLCS) in medical electrical
equipment and medical electrical systems to control a phys-
iologic variable’’ [13]. Beyond regulatory concerns, such
guidance may help the broader research and development
communities establish a common language (possibly even
one that is shared among medical and engineering profes-
sionals); a set of safe design practices, testing procedures, and
quality management objectives; and a platform to qualify and
address issues raised by designers, clinicians, and patients.

Treating this feedback system similar to those in more
traditional engineering disciplines, the design and implemen-
tation of PCLCs requires accurate models of the patient,
sensor, and actuator dynamics, including any fundamental
limitations and safety constraints. While it may be obvious
that the sensor and actuator dynamics can be described
using traditional differential equations, similar mathematical
modeling techniques can also be applied to develop equa-
tions representing patient physiology and pharmaceutical
action. In fact, the human body is generally modeled using
compartmental techniques (see Section II-A) from mathe-
matical systems physiology, which can describe the behavior
of healthy and perturbed organ/tissue interactions as well
as the distribution/transportation of pharmaceuticals in the
body (pharmacokinetics) and the action of these pharmaceu-
ticals on certain organ systems (pharmacodynamics) in terms
of nonlinear differential equations.

FIGURE 2. General compartmental model for 2 compartment systems.

A. COMPARTMENTAL MODELS
When working with physiological or biological systems,
the dynamic interactions of system states/variables are often
depicted in the form of compartmental models. This represen-
tation is slightly different from the standard block diagram
models of systems theory but conveys similar information.
Under this modeling paradigm, a system is comprised of
one or more compartments, each of which has a (normally)
fixed volume Vi and contains a variable state quantity qi(t).
The representation of this quantity qi(t) as a fraction of
the compartment volume gives the concentration ci(t) =
qi(t)/Vi. When the change in these quantities or concen-
trations takes the form of ordinary differential equations,
a compartmental modeling diagram can be drawn to depict
the contributions of each state quantity to the dynamics
(similar to state-variable representation). In the case of a
linear time-invariant system, every compartment is associated
with a linear first order differential equation described by
the signals entering and leaving the respective compartment.
Considering the general two-compartment model shown in
Fig. 2, the change in q1(t) is given by

q̇1(t) = u1(t)− k21q1(t)+ k12q2(t)− k01q1(t) (1)

where u1(t) is the input to compartment 1; k01q1(t) is the
leakage from this compartment to the environment; k21q1(t)
is the exchange from compartment 1 to compartment 2; and
k12q2(t) is the exchange from compartment 2 to compart-
ment 1. Similarly, based on the arrows pointing toward
and away from compartment 2, the change in q2(t) can be
written as

q̇2(t) = u2(t)+ k21q1(t)− k12q2(t)− k02q2(t) (2)

where u2(t) is the input to compartment 2; k02q2(t) is the
leakage/loss from compartment 2 to the environment; and all
other terms are the same as described previously.

Together, these equations describe the exchange between
compartments and the environment. In general, there may
be n compartments, each of which may have a constant or
changing volume Vi and can be linked to any or all other
compartments by linear or nonlinear interactions. For more
detailed information on compartmental modeling, readers are
referred to the extensive coverage in [14].
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B. CONTROL METHODOLOGIES
In this section, we briefly review the fundamentals of
the 3 most common control methods currently used in
physiological systems: (i) proportional-integral-derivative
(PID) control, (ii) model predictive control (MPC), and
(iii) fuzzy-logic (F-L) control. The application of these
control schemes to specific physiological systems, including
the advantages, variations, and recent developments to each
strategy, are described in later sections. Of course, many other
control methods are also being pursued in the literature and
will be discussed as needed.

1) PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) CONTROL
PID control is one of the most frequently used control
approaches in industrial systems due to its simple mathe-
matics, well-known gain tuning methods, and broad appli-
cation to both linear and nonlinear systems. The Laplace
domain transfer function of the ideal PID controller can be
given by

U (s)
E(s)

= kp

(
1+

1
sTi
+ Td s

)
(3)

where s is the complex-valued Laplace variable; E(s) and
U (s) are, respectively, the Laplace domain input and output
of the PID controller; kp is the proportional gain; Ti is
the integral time-constant; and Td is the derivative time-
constant. In most cases, the coefficients kp, Ti, and Td are
free-parameters that take constant values and are designed
to obtain desirable system properties. The values of these
parameters may be obtained by either theory-based design
strategies or numerical/experimental tuning methods.

2) MODEL PREDICTIVE CONTROL (MPC)
Model predictive control is a robust and optimal control
technique used to handle systems with constraints while opti-
mizing the controller action and predicting system outputs for
robustness against noise and disturbances. The basic formu-
lation of this controller can be given by

U∗t (x (t)) :=

argmin
N−1∑
k=0

q (xt+k , ut+k)

subject to

xt = x(t) (Measurement or estimation)

x(t+k+1) = Ax(t+k) + Bu(t+k) (System model)

x(t+k) ∈ χ (State constraints)

u(t+k) ∈ u (Input constraints)

U∗t (x(t)) = {u
∗
t , u
∗

(t+1), . . . , u
∗

(t+N−1)}

(Optimization variables) (4)

where U∗t (x(t)) is the optimal input sequence for the entire
planning window N ; q is the cost function; and χ and u are,
respectively, sets of state and input constraints. At any given
time t , this controller finds the set of optimal control actions

U∗t based on the predicted dynamics over the entire window
N and implements only the first control action u∗t in this
sequence.

3) FUZZY-LOGIC (F-L) CONTROL
Fuzzy systems are knowledge-based or rule-based systems
consisting of fuzzy ‘‘if-then’’ rules that represent heuristic
verbal conditions as continuous membership functions
Fig. 3 [15]. This method can be used to model and
control complex dynamics, nonlinear systems, and systems
that are difficult to express mathematically. In general,
fuzzy-logic systems can be classified as Mamdani and
Sugeno systems [16]–[18]. Fuzzy-logic systems have been
successfully implemented in many industries.

FIGURE 3. Fuzzy logic sets.

C. CASE STUDIES
In order to demonstrate and contextualize many important
principles in PCLCs, wewill proceed over Sections III and IV
with detailed case studies of the two most active areas in
physiological control: (i) automated anesthesia and (ii) auto-
mated insulin therapy for diabetes. For each system, a detailed
background on therapeutic goals, physiology, and mathemat-
ical representations is given prior to discussions on current
trends in the control methodologies and specific challenges
encountered in each area.

III. DIABETES AND THE ARTIFICIAL PANCREAS
To understand the problem of blood glucose regulation, let us
beginwith a brief review of the essential physiology of a prop-
erly functioning glucoregulatory system and build towards a
fundamental understanding of the diabetic disorders (patho-
physiology) as well as their underlying causes (etiology) and
associated health risks (complications and comorbidities).
By way of this introduction, we hope to provide clarity
for the coming discussions on system models and insights
when broaching the subjects of treatment and closed-loop
therapy.

A. PHYSIOLOGY OF THE HEALTHY BLOOD
GLUCOSE REGULATORY SYSTEM
The natural regulation of blood glucose in a healthy indi-
vidual is the result of a variety of interacting physiological
processes involving hormones, neurotransmitters, and our
own consumption of food. Historically, the accepted metric
for judging the quality of this regulation is the amount of
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glucose present in the blood stream, measured as a molar
(mmol/L) or mass (mg/dL) concentration. This blood glucose
concentration is commonly referred to as an individual’s
blood glucose level and is generally well-maintained between
about 4-6 mmol/L (72-108 mg/dL) during healthy glucose
homeostasis. However, even in healthy subjects, there are
occasional excursions above this range (e.g., after recent
meals) or slightly below it (e.g., during or after periods of
high activity). The interactions that govern glucose concen-
trations are highly diverse and most, if not all, of these inter-
actions are reciprocal – both the glucose concentration and
the acting processes are mutually affected by the regulatory
procedure. The systems involved in this regulation include
the brain, liver, kidney, gastrointestinal tract, adipose and
muscle tissues, and pancreas. Of these systems, the pancreas
is arguably the most critical for maintaining proper blood
glucose and will be our focus in the sequel.

The pancreas, located behind the stomach, is a glandular
organ primarily responsible for secreting digestive enzymes
through ducts to the small intestines and releasing pancreatic
hormones into the blood stream. While both enzymes and
hormones play important roles in proper metabolic home-
ostasis, it is the latter (i.e., hormones) that are principally
responsible for regulating blood glucose levels [19].

These hormones, known as the pancreatic hormones, are
produced at small clusters of endocrine cells (i.e., cells that
secrete directly into the blood stream), known as islets,
that are distributed sparsely throughout the pancreatic tissue
(comprising <2%). These pancreatic islets (or islets of
Langerhans) are constructed from a combination of 5 kinds
of endocrine cells called α-cells, β-cells, γ -cells, δ-cells,
and ε-cells. Each of these cell types secrete a specific set
of hormones that are known to be involved in at least some
aspects of normal glucoregulatory function. Of these cells,
the α and β types make-up >80% of all pancreatic islet
cells and are considered the 2 most essential endocrine
cells for blood glucose regulation [19]. The first of these,
α-cells, produce a single hormone called glucagon, which
drives the production of endogenous glucose by catabolizing
(breaking-down) stored glycogen in the liver (known as
hepatic glycogenolysis) and to a lesser extent by promoting
the generation of glucose from non-carbohydrate compounds
in the liver and kidneys through processes termed, respec-
tively, hepatic and renal gluconeogenesis. The latter type of
cells, β-cells, produce 3 hormones called C-peptide, amylin,
and insulin, all of which have important roles in glucose
regulation and are believed to correspond with various symp-
toms of blood glucose pathophysiology. Of these 3 hormones,
insulin is the most well-known, and is responsible for
lowering blood glucose concentrations through promotion of
glucose utilization by adipose and muscle tissues, as well as
by prompting the creation of glycogen and fatty acid energy
stores from glucose through glycogenesis and lipogenesis,
respectively. Thus, in contrast to glucagon, which raises blood
glucose levels, insulin provides the primary means to reduce
this concentration [19].

As one might expect, based on their roles in the blood
glucose regulatory function, glucagon is primarily secreted
during periods of low blood glucose such as sleep or fasting,
while insulin secretion is stimulated by elevated blood
glucose concentrations and the incretion effect promoted by
ingestion of glucose, fructose, amino acids, and long-chain
free fatty acids [19]. Of course, insulin secretion is highest
following meals (i.e., when blood glucose levels are at their
highest). Together, glucagon and insulin provide the basis for
many simple and intuitive bi-hormonal models of the pancre-
atic endocrine system. While many of the physio-chemical
mechanisms for these secretions and uptakes are quite well
known, it is important to understand that these hormones are
released directly into blood stream and interact with many
different organ systems. Thus, the specific mechanisms and
outcomes of these interactions remain highly active research
topics.

Of course, the 2 other β-cell hormones and those secreted
from the γ , δ, and ε-cells are also intrinsic to proper
physiology. Unfortunately, the functions of these hormones
are not yet as well understood as those of insulin and
glucagon and are often (perhaps necessarily) disregarded in
the control-oriented literature. However, there is reason to
believe study of these pancreatic hormones, and their roles
in both physiology and pathophysiology, will likely lead to
better multi-hormonal models and treatment approaches in
the coming years [19], [20]. For example, amylin – produced
by β-cells along with insulin – is believed to perform comple-
mentary functions to the insulin-based removal of glucose,
instead inhibiting the appearance of absorbed (exogenous)
and glycogenolytic glucose by, respectively, reducing the
flow of food from the stomach to the small intestines
(gastric emptying) and blocking the release of postprandial
glucagon (i.e., inhibiting unnecessary endogenous glucose
secretion following meals) [20]. While an FDA-approved
amylin analog (i.e., pramlintide) is available, the cost of
treatment with such complimentary hormone analogs may
be prohibitively expensive and perhaps even detrimental if
not properly (e.g., physiologically or pseudo-physiologically)
controlled.

1) PATHOPHYSIOLOGY AND ETIOLOGY
a: TYPE 1 DIABETES MELLITUS (T1DM)
The term type 1 diabetes mellitus describes blood glucose
regulatory disorders resulting from the complete (or near
complete) destruction of all pancreatic β-cells, leading to
hyperglycemia and life-threatening complications. T1DM is
generally caused by an auto-immune response, but does occur
infrequently without any known or identified cause (idio-
pathic T1DM) [21], [22]. The characteristic β-cell destruc-
tion of T1DM leads to a dependence on external sources of
insulin (i.e., insulin therapy) for survival; hence, this form
(esp. the auto-immune form) was previously identified by the
term insulin-dependent diabetes mellitus (IDDM) [21], [23].
Type 1 diabetes accounts for 5-10% of all cases [21].
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Considering the preceding discussions on healthy
glucoregulatory function, it is clear that destruction of
β-cells in T1DM suppresses the production of the insulin,
amylin, and C-peptide hormones. Without these hormones
(particularly insulin), cells throughout the body cannot
remove glucose from the blood stream for use in metabolic
processes (e.g., storage as glycogen). As a result, the body
turns toward the metabolism of fats, which leads to
increased levels of free fatty acids and ultimately ketones
in the blood stream [23]. Overproduction of the latter
leads to life-threatening diabetic ketoacidosis. Furthermore,
complications due to elevated blood glucose levels (hyper-
glycemia) appear across numerous organ systems and include
microvascular diseases such as neuropathy, retinopathy, and
nephropathy [23], [24]. In T1DM, the absence of interac-
tions between pancreatic α-cells and β-cells removes an
important pathway for natural glucagon regulation, leading
to continued glucagon production during periods of elevated
blood glucose, resulting in more severe hyperglycemia and
even greater risk of complications [23]. Unfortunately, while
many of the risks associated with T1DM can be reduced by
tight regulation of blood glucose levels [23], the destruction
of β-cells affects multiple hormones andmany systems, some
of which are not fully restored by external blood glucose
regulation. For instance, increased risk of cardiovascular
disease – the leading cause of reduced life-expectancy in type
1 diabetics – remains prevalent in type 1 diabetics with good
blood glucose control [23].

b: TYPE 2 DIABETES MELLITUS (T2DM)
The term type 2 diabetes mellitus describes a family of
blood glucose regulatory disorders that are marked by
relative insulin deficiency, due to a combination of poor
insulin production and poor insulin utilization, leading to
episodes of hyperglycemia [21], [22]. Previously identified as
non-insulin-dependent diabetes mellitus (NIDDM), current
opinion is trending towards a more graduated classification
system that may improve differentiation of T2DM by severity
and pathophysiology of impaired insulin-secretion (produc-
tion) and insulin-sensitivity (utilization) [21], [25], [26].
Type 2 diabetes accounts for about 85% of all
cases [21], [23], [26].

Unlike T1DM, T2DM is not an autoimmune disorder
and has neither a single underlying cause (etiology) nor a
unique physical origin. Instead, the term T2DM applies to
various non-specific disorders (i.e., not specifically meeting
the criteria for definition as any distinct disorder such as
monogenic, gestational, or type 1 diabetes mellitus) that
result in chronic excess blood glucose [21], [22]. While
in some cases, T2DM is marked by a reduced pancreatic
insulin secretion that results in a relative insulin deficiency,
in others, insulin production is unaffected, but cells exhibit
an inability to utilize available insulin (i.e., insulin resis-
tance). However, most of the type 2 diabetic population
exhibit both insulin deficiency and insulin resistance [21],
[22], [25], [26]. Thus, it is becoming more common to

characterize each instance of T2DM along gradients of
insulin-sensitivity and insulin secretion (among other vari-
ables including coexisting conditions), to better identify
root-causes and optimal treatment regimens [25], [26]. While
T2DM is not normally life-threatening by itself, it is asso-
ciated with reduced life-expectancy due to macrovascular
complications, as well as numerous microvascular compli-
cations that are believed to be linked with episodes of
hyperglycemia. Like T2DM itself, the accompanying compli-
cations are diverse and, some research suggests, potentially
well-correlated with pathophysiologically distinct forms of
the disorder [25]–[27].

c: GESTATIONAL DIABETES MELLITUS (GDM)
Glucose intolerance that develops in women during
pregnancy, indicated by the emergence of persistent
hyperglycemia, is known as gestational diabetesmellitus [21],
[22], [28]. Like T2DM,GDM is comprised of a highly hetero-
geneous set of disorders, which may present predominantly
insulin resistant or insulin deficient characteristics [28].
While standards for diagnosingGDMvary, the critical feature
of GDM is that it is developed during pregnancy and was not
present prior [21]. The pathophysiology of GDM is not yet
well-understood [28], but ongoing research may benefit from
more accurate and detailed sensing technologies. GDM is a
disorder of international interest and can result in complica-
tions for both mother and child and can progress into a form
of T2DM after pregnancy [21].

d: OTHER SPECIFIC TYPES OF DIABETES
In addition to T1DM, T2DM, and GDM, there are numerous,
less common diabetic disorders (together comprising <5%
of cases) with more specific association with distinct etio-
logical factors such as genetics, drug or chemical expo-
sure, and pancreatic diseases [21], [22]. Differentiation of
these specific forms from T1DM and T2DM is critical,
as the treatment requirements for many of these disor-
ders differ from general guidelines and mischaracterization
can lead to poor or detrimental outcomes and unnecessary
expenses [21], [25].

B. TRADITIONAL MONITORING AND TREATMENT
Considering the variety of disorders that may exist, or coexist,
in diabetic individuals, it is not surprising that there are a
plethora of diabetic diagnostic tools and interventions, some
of which have been shown to be most effective in monitoring
and treating specific disorders, while simultaneously poten-
tially detrimental for treating others. Likewise, treatment
guidelines are often adjusted for improved effectiveness in
specific demographics often based on age, gender, and overall
health, with the final recommendation for individuals tailored
by their physician [29], [30].

1) LABORATORY SCREENING
For the past half century, blood glucose regulatory function
and concentration targets for diabetics and non-diabetics have
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TABLE 2. FPG, OGTT, and A1C thresholds for initial diagnosis of diabetes.

primarily been specified according to 2 standard measure-
ments: (i) static blood glucose concentrations and (ii) percent
glycated hemoglobin (HbA1c, or less formally A1C).While a
static measurement of blood glucose provides insight into the
current glycemic state (i.e., the current mmol/L concentration
of glucose in the blood stream), it does not provide any
insight into recent concentrations or an indication of whether
this value is increasing or decreasing [31]. Conversely, A1C
provides an approximate indication of the average blood
glucose concentration over a period of about the preceding
2-3 months [29], [31]. While A1C is less sensitive to daily
blood glucose variations and a primary predictor of diabetes
related complications, acceptable A1C values have been
shown to vary significantly across populations and with
various environmental factors, and further do not provide any
specific information regarding occurrences of hypoglycemia,
hyperglycemia, or their severity [21], [29].

In clinical settings, diabetic screening is often performed
using plasma blood glucose concentrations that are measured
by accredited laboratories using standardized tests [32] to
determine levels under the moderately controlled circum-
stances either following a period of fasting to obtain the
so-called fasting plasma glucose (FPG) level or 1-2 hours
into an oral glucose tolerance test (OGTT) administered
after a period of fasting. If the FPG or OGTT results fall
below certain thresholds (see characteristic thresholds from
the ADA [21] in Table 2), these tests results, respectively,
indicate impaired fasting glucose (IFG) or impaired glucose
tolerance (IGT) associated with metabolic disfunction. The
accuracy of these tests depends heavily on patient adherence
to the fasting guidelines and clinical sample handling. Thus,
for clinical A1C (also performed in laboratories [32]), FPG,
and OGTT testing, confirmation of an initial diagnosis of
diabetes often requires that 2 of these values fall outside the
acceptable thresholds [21].

2) SELF-MONITORING OF BLOOD GLUCOSE
(i.e., ‘‘FINGER-STICK’’ MONITORING)
Once diagnosed, most diabetics (especially those with T1DM
or T2DM requiring insulin therapy) will require portable
diagnostic equipment so that blood glucose concentrations
can be monitored according to the severity of their disor-
ders or in the event of symptoms that indicate excursions
from normal glycemic control. For many years, the predom-
inant method for this daily testing was self-monitoring
of blood glucose (SMBG) by so-called ‘‘finger-stick’’
devices [31], [33], which require drawing a small sample of
blood during every test. Initially accepted for their marked

improvement over urine testing equipment, use of these
finger-stick devices causes pain, and measurements can be
uncomfortable or unsafe (due to blood spill) to perform in
public [31]. While significantly less accurate than accred-
ited laboratory testing [32], these portable diagnostic tools
have enabled diabetics to maintain tighter glycemic control
by regular assessment of their blood glucose levels, espe-
cially prior to meals, sleep, and insulin dosing. However,
like static laboratory measurements, SMBG does not provide
any historical or predictive information by itself and must be
combined with knowledge of recent past/future carbohydrate
intake, exercise, and medication dosing to estimate appro-
priate corrective actions. Coupled with the inconvenience and
limitations of regular blood sampling, the static nature of
SMBG has prompted the modern quest for safe, accurate, and
continuous blood glucose monitors (CGMs).

3) CONTINUOUS AND FLASH GLUCOSE MONITORS
Starting in the late 1990s, diagnostic tools for contin-
uous home monitoring of blood glucose began to emerge
as a potential remedy to the shortcomings of traditional
SMBG [31]. Originally designed to record, but not display,
blood glucose measurements over several days – to be
analyzed retrospectively by a physician [32]–[34]– more
recent real-time CGM (rtCGM) devices that log data and
provide immediate access to measurements and analytical
trends are now available on a broad commercial scale
(Table 3) [31]. Unlike SMBG, which requires taking blood
samples at each measurement time, most rtCGM devices
are minimally invasive and measure glucose concentrations
subcutaneously through the interstitial fluid rather than whole
blood or plasma [32], [34]. These sensors can be worn contin-
uously for up to a week, and provide updated measurements
every 5minutes, requiring finger-stickmeasurements for cali-
bration (up to twice per day) [32].While only one such device
is FDA approved for non-adjunctive use in insulin therapy
(i.e., for use in determining insulin dosage without the need
to confirm blood glucose levels by traditional SMBG), this is
a recent development and more devices may be expected in
the future [29].

This consistent availability of current data has led to
several important features that are impossible with tradi-
tional SMBG. First, many rtCGM systems allow users
to set alarms that indicate or even predict the onset of
hypoglycemia, allowing diabetics to increase their carbo-
hydrate/glucose intake and avoid hypoglycemia, which is
especially useful for those suffering from hypoglycemia
unawareness [31]. Second, many rtCGM systems allow
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TABLE 3. Examples of commercially available CGM components and device [31], [35]–[41].

users to automatically share data/trends with caregivers and
physicians, having important implications for young chil-
dren and their parents [31], as well as elderly and disabled
individuals who are living alone. Finally, rtCGM systems
not only provide improved predictive measures for users
through real-time measurements, measurement histories, and
predicted glycemic trajectories, many of these systems can
be interfaced with portable insulin infusion systems to auto-
matically suspend insulin dosing when near or approaching
hypoglycemia [31], [34]. Combinations of rtCGMand insulin
infusion systems, known as sensor augmented pump (SAP)
therapy, are further enabling improved overnight glycemic
control, and represent a step toward wide-spread acceptance
of closed-loop insulin therapy systems.

More recently, a new class of glucosemonitor known as the
‘‘flash’’ or ‘‘intermittently sensed’’ glucose monitor (isCGM)
have become available that provide immediate, on demand
glucose measurements (lagging true blood glucose concen-
trations by about 5 minutes) in a minimally invasive package
worn continuously for 14 days without calibration (the
sensing element is replaced after 14 days without requiring
any SMBG calibrations) [33], [34].While this device may not
be suitable for those with hypoglycemic unawareness (devel-
oped by repeated hypoglycemic excursions) as it does not
currently provide an autonomous alert, various studies have
demonstrated improved time-in-range and greatly reduced
time in hypoglycemia in both type 1 and type 2 hypoglycemic
aware populations previously using finger-stick SMBG.
Small observational studies indicate that these results may
follow from the rapid and pain-free nature of blood glucose
self-monitoring with these devices, which allows users to
follow even stringent (>10 times per day) testing guide-
lines without experiencing discomfort [33]. This research
has also reported behavioral changes in patients, including
better adherence to monitoring timelines, which may produce
additional societal benefits, as unchecked low blood sugar is

associated with otherwise avoidable injuries and a increased
risk of car accidents [42]. Due to time lag and measurement
inaccuracy – possibly exceeding 15% mean absolute relative
difference (MARD) frommatched reference measurements –
users of these devices must still perform traditional SMBG
tests when hypoglycemia is expected, measurements vary
rapidly or do not corroborate symptoms, and when required
by law [33]. While these flash monitors are available and
gaining significant interest, there remain significant concerns
in areas including sensor placement, failure modes, user
insulin stacking due to time lags, and measurement variations
over the duration of the 14-day sensor life-span.

Studies on CGM devices have consistently indicated that,
compared to control groups using SMBG, insulin treated
diabetics using CGM systems show improved HbA1c as well
as significantly decreased frequency and severity of hypo-
glycemia and hyperglycemia, with rtCGM demonstrating
superior outcomes to isCGM [29], [31], [33], [34]. Despite
their benefits, modern CGM sensors suffer from delays due
to glucose transport from plasma to the interstitial fluid, may
be subject to sensor interference from mechanical [43] and
pharmaceutical (e.g., acetaminophen [44]) sources, and are
known to demonstrate reduced accuracy during the first day
of use and at low glucose concentrations (i.e., near hypo-
glycemia) [31], [43]. With further research, these issues may
be resolved in the near future.

4) NON-INVASIVE, WEARABLE, AND
IMPLANTABLE MONITORING
During the past decade, there has been increased academic
and commercial interest in the development of non-invasive
and continuous monitoring of blood glucose levels through
wearable technologies. Unlike traditional monitors, many
of these sensors do not measure blood glucose directly,
but attempt to leverage alternative fluids such as urine,
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TABLE 4. Characteristics of various commercially available insulin formulations.

sweat, saliva, breath, ocular fluid, and interstitial fluid [45].
While some of these devices are promising, with many
designed to be discrete and comfortable, measurements taken
from these alternative physiological fluids tend to be less
reliable than traditional methods, and any such technology
will surely require rigorous testing and clinical studies
before any statements can be made regarding safety and
accuracy [46].

5) NON-INSULIN THERAPY
While not generally suitable for T1DM, non-insulin oral
antihyperglycemic agents are common in treating T2DM.
In fact, the first-line pharmaceutical therapy for T2DM is
a non-insulin antihyperglycemic called metformin, which
reduces hepatic glucose production (i.e., in the liver) and
is often highly effective at reducing HbA1c and associ-
ated cardiovascular risks, without raising significant concerns
of hypoglycemia [30]. According to ADA guidelines,
metformin is frequently prescribed as part of a dual or
triple pharmaceutical regimen (combination therapy) when
metformin alone does not provide sufficient reductions in
HbA1c – used in this case as a primary indicator of
glycemic control. These additional treatments may be oral
agents such as sulfonylureas (increases insulin secretion),
DPP-4 inhibitors (increases glucose dependent insulin secre-
tion and decreases glucose dependent glucagon secretion),
and Thiazolidinediones (increases insulin sensitivity), but
may also include subcutaneous injections of insulin or
GLP-1 receptor agonists, which act on multiple levels [30].

Considering the underlying lifestyle factors (e.g., seden-
tary behavior, obesity, and diets that are high in fats and
sugars [47]) that are known to promote the development of
T2DM, prevention and treatment through lifestyle modifica-
tion is a significant area of study [47]–[49]. Intensive lifestyle
modifications have been shown to improve HbA1c, and are
believed to be associated with reduced microcardiovascular
and macrocardiovascular complications as well as lower rates
of diabetes related mortality in T2DM. Similarly, there is
evidence to support the benefits of nutritional balance in
T1DM; however, the direct evidence for reduction of diabetes
related ailments (beyond general health and fitness) asso-
ciated with physical activity and obesity are much better
supported for T2DM. In fact, due to the increased glycemic
variability of individuals with T1DM, the ADA recommends
physicians take care in prescribing specific exercises and

durations for individuals when using physical activity as a
means of glycemic control [49].

While these non-insulin therapies are often effective at
slowing the progression of T2DM, in some cases leading
to remission of the disorder, most individuals with T2DM
will often require insulin therapy at later stages of treatment,
even with careful adherence to therapy guidelines and healthy
lifestyle choices [30].

6) MULTIPLE DAILY INSULIN INJECTIONS
Recalling that severe insulin deficiency is the hallmark of
T1DM related β-cell destruction, it is not surprising that
primary treatment for T1DM is insulin therapy [30]. Themost
common method of insulin therapy consists of the regular
periodic injection of basal (baseline) insulin multiple times
a day – known as multiple daily insulin injections (MDI)–
supported by additional insulin doses (boluses) and oral
glucose or glucagon as needed to maintain normoglycemic
conditions (e.g., at meal times). While several different prac-
tical guidelines exist for calculating the required basal and
bolus insulin doses, dosage is always described in terms of
units of insulin or units/day (based onweight as units/kg/day).

Recent pharmaceutical advances have produced a variety
of injectable insulins that may be categorized as either
synthetic human insulin or modified insulin analogs. Refer-
ring to Table 4 [30], [50], variations in these insulin formu-
lations have led to markedly different properties, and so it
is common to classify insulins according to their concentra-
tion in units/mL (e.g., an insulin specified as U-# contains
# units/mL), the time it takes for the insulin to begin reducing
blood glucose levels (onset time), the time it takes for the
insulin action to reach its peak effectiveness (peak time), and
the length of time that the formulation will remain effective
after injection (duration) [50]. When prescribing or taking
insulin, each of these factors comes into play and (in an MDI
scheme) make some forms better suited as basal insulin and
others as mealtime boluses [30]. Thus, even within insulin
therapy, there is now an array of options that allow for person-
alization and situational evaluation of treatments.

Note, the use of insulin is not limited to T1DM, and there
are, of course, many factors affecting the selection, efficacy,
and safety of different insulin formulations and treatment
regimens. In addition to single insulin formulations, some
injections are developed as a mix of rapid acting (i.e., quick
onset and peak times with short duration) and long acting
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(i.e., delayed onset time, low or no peak, and long duration)
insulins to provide both basal and bolus action from a single
injection, thereby reducing the number of injections required
per day [30], [50].

In some cases, an analog of the pancreatic β-cell hormone
amylin may be used to augment insulin therapy [30].
However, addition of such agents may increase treatment
costs significantly. Further, in certain cases, it may be bene-
ficial to perform pancreas or islet transplantation, in place of
insulin therapy.

7) CONTINUOUS SUBCUTANEOUS INSULIN INFUSION
Initially developed over 40 years ago [51], continuous subcu-
taneous insulin infusion (CSII) systems are portable pump
therapy devices that are generally constructed as a combi-
nation of an onboard insulin reservoir, an electromechan-
ical infusion pump, and an infusion apparatus (tubing and
cannula) [51], [52]. According to various studies, these
systems can be operated using synthetic human insulin or
rapid-acting insulin analogs (RAIA), with RAIA providing
superior performance to synthetic human insulin [52]. Inmost
cases, CSII uses the same basal dosage as MDI, with the
basal insulin dosage applied more consistently over the day
in CSII [52].

While pragmatic evidence supporting substantial improve-
ments to patient outcomes achieved by switch from MDI to
CSII is minimal or frequently contradicted [30], [52], there is
evidence that switching to CSII is beneficial for diabetics with
poor glycemic control under MDI [52], and CSII is beginning
to see adoption as a recommended first-line therapy for some
type 1 populations (e.g., adolescents) [30], [52]. However,
when CSII is used in conjunction with rtCGM for sensor
augmented pump therapy, the benefits are more pronounced.
Connected systems of monitoring and treatment devices,
like SAP, provide therapeutic opportunities that cannot be
obtained using MDI, such as overnight glycemic regulation.
As an extension of this concept, the ability to continuously
monitor and control insulin concentrations (whether by CSII
or other novel future technology) is paramount to the develop-
ment of closed-loop insulin therapies. Like SAP, closed-loop
therapy systems are designed to utilize the features of contin-
uous infusion that cannot bematched byMDI, with or without
CGM, to achieve tighter glycemic control than is possible by
any current treatment.

As with all therapy devices, CSII must be appropriately
used and maintained, as device performance depends on
proper operation (e.g., timely replacement of consumables)
to avoid failure modes such as clogged or impeded infu-
sion pathways, which can lead to insulin deficiency and
hyperglycemia [52].

C. MODELING FOR ANALYSIS AND
CONTROL OF DIABETES
Building on nearly 2 centuries of research and modeling
studies focused on the pancreatic endocrine system, the recent
worldwide interest in diabetes has instigated a surge in the

development of glucoregulatory models and simulation plat-
forms, primarily aimed at T1DM [53]–[57] and, to a lesser
extent, T2DM [54], [56], [57]. In fact, according to several
reviews [53], [57], there are well over 100 different math-
ematical models describing, reproducing, and/or predicting
various aspects of the blood glucose regulatory dynamics
from cellular mechanisms and neurological signaling to
long-term outcomes, disease progression, and risks of
complications [57]. The mathematical descriptions used in
these dynamic models are diverse and include ordinary,
partial, and stochastic differential equations, which often
include time-delays, and are frequently treated with a degree
ofmodularity – as newmodelsmay be established as compos-
ites of subsystems from multiple predecessors [57].

Among these models, some, such as the mechanistic
models that describe the Ca2+ and K+ ion channel medi-
ated release of insulin from pancreatic β-cells, have solid
footing in the first principles of electrochemistry and physics.
However, the inclusion off such models tends to add unwar-
ranted complexity as the pathophysiological and etiolog-
ical relevance of these states are not well-understood, while
producing negligible variations in the observable input-output
behaviors that are presently more relevant to healthcare
outcomes. Thus, in the development and analysis of systems
for the closed-loop treatment of diabetes, models are gener-
ally categorized according to their level of detail and may be
considered as either (i) reduced complexity control-oriented
models – for controller synthesis methods [53], or (ii) high-
fidelity models for analysis and validation [55], [56]. In either
case, these models attempt to replicate the glucoregulatory
dynamics of diabetic patients. However, while the former is
concerned with representing accurate input-output relation-
ships, in the latter category it is also important that models are
structured such that variables and parameters maintain phys-
iological significance and produce physiologically viable
results at internal states. Thus, models of this second kind,
can provide additional insights into substance and organ inter-
actions, and have become known as virtual patient models
– as they are generally used as simulated analogs of real
patients.

While early models of virtual patients utilized nominal or
average parameter values, obtained from population studies,
their more recent use in developing closed-loop therapy
systems has led to a need for individualized model behav-
iors that closely match the severity and mode of dysfunc-
tion in specific patients. Accordingly, while some parameters
may still be estimated by nominal values from population
data [58], others have been identified from measurements on
specific patients. For several models, this method has been
used to generate arrays of virtual patients – called cohorts –
that can be used to represent the inter-patient-variability that
may exist within a particular pathophysiology.When used for
internal model type control schemes, the ability or inability to
identify these individualized parameters from readily avail-
able data frequently dictates whether a simulation model is
useful for real-time control. The availability of such data
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may also dictate the environments in which it is possible
to implement certain control schemes. This is of particular
concern when adaptation/tuning or online identification is
required, as some diagnostic tools may only be accessible,
or practical, in a clinical setting.

While many physiological models have been studied,
several, such as the Bergman minimal model [59], [60],
UVa/Padova simulator [61], and Cambridge model [62]
represent the overwhelming majority of simulation studies
using virtual patients.

1) MINIMAL GLUCOREGULATORY MODELS
While any glucoregulatory or subsystem model that depicts
the essential dynamics while using the fewest possible states
may be considered minimal [56], [63], the Bergman minimal
model (BMM) is by-far the most well-known and frequently
adapted. Despite simplifications and neglected dynamics,
the parameters and variables in minimal models must both
convey clear physiological significance and be readily identi-
fied from measurable clinical data [63]. Notice, this requisite
simplicity and identifiability are often shared with the kinds
of models that are sought in controller synthesis. Hence,
in addition to its primary analytical purpose, the BMM
has also been adapted for use in the implementation of
closed-loop blood glucose control strategies.

To understand the importance of this model, it is inter-
esting to consider its origin. Initially developed as a means
to quantify the insulin sensitivity of individual patients [59],
the BMM was the result of early experiments to iden-
tify the structure of blood glucose-insulin interactions by
obtaining frequent measurements of both plasma glucose
and plasma insulin concentrations through the duration of a
1 hour intravenous glucose tolerance test (IVGTT) applied
following a single bolus injection of glucose. Blood samples
were taken first before injection, to obtain basal levels, and
following injection at specific intervals (i.e., rapidly at first
but reducing in frequency over the hour). The results of these
blood tests were fitted by nonlinear least squares to various
pre-established nonlinear ODE model candidates, which
were evaluated according to the number and physiological
meaning of model parameters, as well as the accuracy of
the parameter estimates and each model’s overall goodness-
of-fit. Two of 7 possible models (one linear, the other
nonlinear) passed this initial testing, both of which included
insulin-dependent glucose utilization - 3 of the models were
insulin-independent and were rejected for their poor predic-
tion of the glucose kinetics. Ultimately, the nonlinear model
was found to reproduce known physiological responses
with higher fidelity. Thus, the BMM was selected as the
3-compartment nonlinear system of ODEs with 5 parameters
shown schematically in Fig. 4 [59]. Notice, this model has
1 glucose compartment and 2 insulin compartments (one
plasma compartment and one remote compartment).

Since the time of this original model, many adaptations
have been made to account for additional dynamics, such as
the connection of a second glucose compartment, the addition

FIGURE 4. Original Bergman minimal model of blood glucose/insulin
dynamics.

of glucagon feedback, and the replacement of IVGTT by
oral glucose tolerance testing (OGTT) to obtain a more
physiological measure of insulin sensitivity [64]. However,
even with these augmentations, the BMM must be further
adjusted to be useful for closed-loop control. For example,
one prevalent control-oriented model intended for T1DM
control that utilizes the BMM is detailed in ref. [65]. This
model augments the original BMM with insulin-dependent
glucose dynamics, renal glucose clearance, meal absorption,
external insulin infusion and subcutaneous transport, circa-
dian variations, and an adjusted hepatic balance.

While many of the equations in this model are linear
first-order ODEs (e.g., all of the insulin and the meal absorp-
tion dynamics), there are several nonlinearities including
circadian variations in insulin sensitivity in the interstitial
glucose compartment and hard nonlinearities in the endoge-
nous blood glucose production dynamics. Further, any effects
caused by glucagon or physical activity have been excluded.
Note, the original model also includes intravenous routes for
insulin and glucose, which have been omitted above.

Due to its questionable accuracy and remaining complexity,
the BMM is not always the first choice for model-based
closed-loop control. However, it is frequently adapted for
this purpose, and has provided an important clinical tool
for establishing an individual’s level of β-cell function
through the insulin sensitivity index [60], [64], [66]. Like the
BMM, other models used in controller design for closed-loop
insulin therapy generally trade physiological complexity for
model structure, identifiable parameters, and appropriate
input-output behaviors – typically by linearization. This
trade-off with traditional physiological models is – at least
partially – responsible for the increasing role of data-driven
models for personalized control of diabetes [67].

2) UVa/PADOVA MODELS AND SIMULATIONS
Since the time of the BMM, several detailed models have
been developed, or modified, to analyze the glucoregulatory
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behavior of diabetic patients. However, to date, there is only
one family of models that has been approved by the United
States Food andDrugAdministration (FDA) as a replacement
for pre-clinical trials in the validation of a closed-loop control
design. These are the so-called UVa/Padova models [68]
developed primarily between collaborators at the University
of Virginia in the USA and the University of Padova in Italy.

In contrast to the simplicity of minimal models,
the UVa/Padova model is a complex and hierarchically
organized model that integrates high and low-level details
into submodels of organ systems and metabolic pathways,
to obtain a comprehensive, physiological simulation of
human patients [69]. This model, sometimes referred to as
a maximal model due to its maximal level of detail [56],
contains over 30 parameters [58] that must be identified
to match a specific patient and is generally too complex
to produce desirable controllers without simplification.
Conversely, this complex model can accurately reproduce
many aspects of the glucoregulatory dynamics of healthy
and diabetic individuals, which has led to the development
of individualized patient simulation models known as in
silico subjects. Using high quality clinical data, researchers
have developed a large collection of patient models repre-
senting numerous individuals from each of various demo-
graphics, enabling studies on the entire population as well as
particular cohorts of interest [61], [68], [69]. Such detailed
high-fidelity modeling is the foundation for an emerging
symbiotic relationship, wherein simulations are not only
useful for analyzing the effects of treatments on known
(patho)physiology, but also for testing hypotheses regarding
the (patho)physiology itself and models thereof [56].

Presently, a distributed version of the UVa/Padova
type 1 diabetes metabolic simulator (T1DMS) for use
in MATLAB/Simulink can be obtained by academic and
commercial entities through The Epsilon Group [70]. In addi-
tion to its early capabilities, the current version of the
UVa/Padova simulator includes dynamic models of the
bi-hormonal (i.e., insulin and glucagon) glucoregulatory
dynamics, an improved patient cohort, and updated depic-
tion of regulatory feedback during hypoglycemia [61], [70].
As of 2018, researchers from UVa/Padova have announced
further updates to their simulation platform that introduce,
among various other extensions and improvements, a set
of time-varying patient models to account for diurnal vari-
ations in patient dynamics associated with overnight rise
in blood glucose (i.e., the dawn phenomena) and patterns
of varying insulin sensitivity at morning, afternoon, and
evening meals [71]. While the previous updates [61] are
FDA approved, approval for the more recent time-varying
simulator [71] is still pending at the time of writing this
article.

The development of the UVa/Padova model is well
documented, and interested readers are referred to the
relevant literature for extensive details on the underlying
model, in silico population, recent updates, and applica-
tion to the validation of control algorithms. Note, despite

its complexity, several closed-loop control algorithms have
been designed using reduced order approximations of these
models [55], [72], [73].

3) CAMBRIDGE (HOVORKA) MODELS
Similar to the UVa/Padovamodel, the Cambridge model [62],
[74], [75] has frequently been used for in silico valida-
tion studies of closed-loop insulin systems and has its
own MATLAB/Simulink based simulation environment and
cohort of 18 clinically validated virtual subjects [55], [62].
However, unlike the UVa/Padova simulator, results from this
software are not FDA approved substitutes for pre-clinical
trials. While this may lead to several additional steps prior to
clinical studies, the Cambridge model has significantly fewer
mathematical states and parameters than the UVa/Padova
model [58], while maintaining physiological significance
and modeling diurnal variations, which has allowed some
researchers to modify and adapt it more readily for their
specific needs [76].

Despite its complexity, the Cambridge model is frequently
used in internal model or model predictive control
schemes [53], [74] and has been the basis for several clinically
tested investigatory closed-loop devices [75].

4) ALTERNATIVE AND DATA-DRIVEN MODELS
In addition to the more analytical and physiologically guided
virtual patient models, numerous simplified control-oriented
models have been proposed that attempt to leverage various
modeling paradigms. Of particular interest, the use of linear
parameter varying (LPV) type models [77] has been shown
to provide a simplified means to accurately reproduce the
complex time-varying and nonlinear dynamics of maximal
diabetes models. Using appropriate techniques, reduction of
maximal models to LPV models may provide a superior
model-based and control-oriented approach to blood glucose
controller synthesis.

Noting that even the best physiological blood-glucose
models are, at present, phenomenological and difficult to
individualize for optimal real-time control, many researchers
have instead adopted data-drivenmodeling paradigms such as
autoregressive exogenous (ARX) and autoregressive moving
average exogenous (ARMAX) models. Provided with a
predefined model structure, these techniques utilize online
system identification to obtain and, potentially, update
models to achieve a best approximation of the input-output
behaviors of the glucose-insulin system based on a given
performance index [67]. Like LPV models, it is unlikely that
data-driven models will maintain any detailed physiological
information about a given patient, but instead provide a useful
foundation for implementing established controller synthesis
approaches.

5) MODELS OF THERAPEUTIC AGENTS AND CGM SENSORS
Following previous discussions on sensors and treatment
approaches, it is natural that these components will contribute
dynamics to the overall system. Models for CGM sensor
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accuracy [78] and insulin formulations and kinetics [79], [80]
have been developed by various investigators. These models
enable simulations that provide a complete picture of blood
glucose control under specific therapy strategies and allow
the investigation of closed-loop systems while taking sensor
and actuator performance limitations into account.

D. AUTOMATED THERAPY FOR DIABETES
Attempts to develop fully closed-loop insulin delivery
systems date back more than 50 years [81], and many
companies and academic researchers have contributed signif-
icantly in these developments [82]. While early work focused
on sugar and insulin infusion by intravenous methods,
the success of these systems along with the development
of both CSII pumps and CGM sensors has shifted the
modern focus toward minimally invasive therapies applied
via subcutaneous routes [83].Within the last 5 years, there has
been – and continues to be – rapid progress toward
the commercialization of fully automated insulin therapy
systems [84], [85], frequently referred to as artificial β-cell,
artificial pancreas (AP), or automated insulin delivery (AID)
systems. The primary goal of these automated therapy devices
is to alleviate the burden and risks associated with multiple
daily injections from T1DM patients and caregivers by
reducing diabetes treatment to a combination of proper
lifestyle modifications (perhaps even less stringent ones once
on AP therapy) and device maintenance (to ensure proper AP
function and patient safety). Although most current work is
focused on T1DM, there are parallel efforts to investigate the
use of these systems for specific cases such as insulin depen-
dent T2DM [86], [87], T1DM during pregnancy [88], [89]
(but not yet GDM as far as we are aware), and blood glucose
regulation for patients in intensive care units (ICUs) [90].

1) CHALLENGES TO AUTOMATIC CONTROL
While the virtual patient models discussed previously can
reproduce many aspects of normal and diabetic blood glucose
regulation, there remain several challenges that prevent these
models from fully predicting the dynamics of real patients
in real-time and limit the accuracy of designs for real-world
control performance. The most notable among these chal-
lenges are the blood glucose disturbances caused by meals
and exercise and the intrapersonal variations – particularly in
insulin sensitivity and glucose production – that may occur
within a single patient over their course of treatment.

While many meal absorption and gastric emptying models
have been proposed to describe how meal contents – gener-
ally carbohydrates – act as sources of exogenous glucose [91],
the timing, duration, and nutritional content of meals and
snacks are generally unknown for patients in an uncontrolled,
or free living, environment. As a substitute for such detailed
information, many current algorithms resort to manual meal
announcement strategies, through which patients or care-
givers can provide nutrition and schedule information to the
controller regarding an upcoming meal. However, even with
meal announcement and approximate nutritional content,

there may still be unpredicted digestive variations. Thus,
some schemes – with or without meal announcement –
implement meal detection algorithms that identify when
a meal has occurred and may also estimate carbohydrate
content [91]–[95]. At the current time, very few controllers
can provide tight glycemic control when subjected to unan-
nounced meals as it generally takes around 70 min after
administration for peak insulin action to occur [95]. This
delay in insulin action can provide a window for hyper-
glycemia to occur following even a well identified meal and
may result in either hyperglycemia or hypoglycemia if meal
properties are estimated incorrectly.

Like meals, periods of physical activity are known to
disturb the nominal behavior of the blood glucose regulatory
system. However, while meals primarily act by regulating
exogenous glucose, physical activity can simultaneously
affect numerous aspects of a closed-loop therapy system
including physiological requirements [96]–[98], internal
bio-mechanical pressure differentials [98], and CGM accu-
racy [98]. In fact, it is well known that different types,
intensities, and durations of physical activity may provoke
contrasting physiological responses (e.g., light aerobic exer-
cise can cause hypoglycemia and brief stints of intense
combined aerobic-anaerobic exercise can cause prolonged
hyperglycemia [85], [96]). Thus, it is not only important
to detect physical activity, but also to obtain enough data
to classify – and perhaps continuously reclassify, track, or
predict – the kinds of activity or exercises a patient performs.
Further complicating this problem, certain kinds of physical
activity can increase the rate of insulin absorption from the
subcutaneous compartment to the blood stream [96], [98]
and the corresponding increase in insulin action can cause
hypoglycemia without any infusion of additional insulin.
As noted previously, insulin does not act immediately and
will not reach peak effectiveness for about an hour; thus,
even if insulin has been regulated correctly for the current
level of physical activity, variations in physical activity can
change the internal utilization of the existing insulin dosage
and affect hypoglycemic excursions that cannot be corrected
by a single-hormone insulin therapy system [96]. To coun-
teract these effects, many researchers are considering more
advanced control systems that may utilize dual-hormone
(i.e., glucagon and insulin) infusion sets [98], [99] or multiple
sensors and algorithms to detect and characterize physical
activity [92], [96], [100]. Despite these promising develop-
ments, there are currently no accurate models for simula-
tions of exercise in diabetics [92], [97], and physical activity
remains a difficult challenge for fully automated free-living
diabetes therapy.

Additionally, the effects of many other environmental
factors and lifestyle behaviors on localized and body-wide
dynamics including glucose production, insulin secretion,
and insulin sensitivity are still poorly understood. For
example, recent studies have suggested that insulin sensi-
tivity decreases significantly in both healthy [101] and
diabetic individuals [102], [103] with reduced duration and
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quality of sleep. Further, the effects of circadian phasing,
misalignment, and behaviors (i.e., timing of meals as hours
after waking up) were recently shown to produce 15-20%
changes in insulin sensitivity and β-cell function in healthy
adults [104]. To the authors’ knowledge, similar results
have yet to be reported in diabetics with T1DM or T2DM.
Combined with other influential factors (e.g., sensor and
physiological interference from outside substances, user
error in attachment and maintenance, and electromechanical
faults [105]), any model or controller that has been individ-
ualized for a specific patient will almost certainly be subject
to significant time-varying uncertainty, depending on patient
behaviors and operating environment.

While these challenges apply to most diabetics, the exten-
sion of AP systems to T2DM may benefit from updated
models that include compartments and inputs reflecting the
action of noninsulin medications such as metformin, sulfony-
lureas, and GLP-1 agonists or additional hormones such
as amylin (e.g., by the amylin analog pramlintide), which
could also benefit T1DM patients and researchers [106].
Considering the apparent importance of glucagon for avoid-
ance of hypoglycemia during exercise and the potential
benefits of amylin for meal-time blood glucose regula-
tion, it is not surprising that there has been recent interest
in the development of closed-loop insulin-glucagon-amylin
therapy [107], [108]. However, to the authors’ knowledge,
such complex hormone and combination therapy models are
not yet common in closed-loop diabetes therapy devices but
may provide significant avenues for system augmentation and
a more physiological replication of β-cell function as the
relevant technologies mature.

2) PROPORTIONAL-INTEGRAL-DERIVATIVE
CONTROL METHODS
Proportional-Integral-Derivative (PID) control is one of the
most versatile and commonly applied methods of control for
both linear and nonlinear systems and has been likened to the
physiological behavior of the pancreatic β-cells [109], [110].
Numerous variations on PID control have been studied in
simulations of T1DM [111], [112] and clinical trials. Most
of the recent clinical studies using PID for closed-loop
insulin delivery are related to the development of the
PID-based external physiological insulin delivery (ePID)
strategy [1], [110] including the introduction [1], [113] and
refinement [114] of insulin-feedback (IFB) to a form near
the one currently implemented in the commercially avail-
able Medtronic 670G hybrid closed-loop (HCL) therapy
system [115]. In addition to the PID-based closed-loop
control of basal insulin, these systems provide feedforward
control action by meal-time boluses in response to manu-
ally entered announced carbohydrate loads [115]. Systems
that implement this kind of manual, feedforward control are
considered hybrid rather than fully closed-loop.

Another recent algorithm, known as the safety auxiliary
feedback element (SAFE) has been developed that imple-
ments a two-step approach to augment therapy controllers

with safety constraints in order to decouple the problems of
achieving nominal control performance and abiding system
limitations [107]. This auxiliary algorithm runs in a rapidly
sampled (i.e., much faster than the 1 sample/min in the current
core control algorithms) outer-loop that uses sliding mode
reference conditioning to shape the desired insulin infusion
profile to avoid violating safety constraints without affecting
the nominal performance of the main control scheme. The
SAFE algorithm can be used with a variety of controllers
and constraints of known, constant relative degree, and has
been used to enhance the meal-time performance of standard
PID [107] and modified ePID algorithms [117].

In addition to these single-hormone systems, PID has also
been implemented in several dual-hormone (i.e., glucagon
and insulin) systems where it has been used as the control
algorithm for glucagon micro-bolusing (in conjunction with
a separate insulin control algorithm) as well as the control of
both insulin and glucagon [118].

3) MODEL PREDICTIVE CONTROL METHODS
For many, model predictive control (MPC) has become the
standard formulation for insulin delivery algorithms because
of its intuitive treatment of constraints and ease of modi-
fication. Like the many implementations of PID variants,
numerous MPC algorithms have been reported that attempt
to leverage new or existing MPC techniques to improve
the compatibility of these algorithms with the require-
ments and constraints of diabetes treatment [82]. Among the
more recent developments in artificial pancreas systems are
the extended [119], multiple model [82], [94], [120], run-
to-run tuning [82], [121], zone [122], [123] and periodic-
zone [124], event-triggered [125], and velocity-weighted
& velocity-penalized [126] MPC algorithms. Each method
of MPC attempts to overcome one or more of the chal-
lenges discussed previously including practical/safety restric-
tions [127], inter-patient variability, intra-patient variability,
and unannounced disturbances such as meals or exercise.
Some of these methods have already become quite successful
and provide important guides for researchers and engineers
seeking to refine diabetes control strategies.

a: SAFETY CONSIDERATIONS
Among the first challenges overcome by AP algorithms were
the restrictions imposed by limitations on insulin infusion.
In principle there are limitations on both (i) the rate of
insulin infusion, for instance due to saturations in pump
displacement and the inability to remove insulin from the
bloodstream once injected, and (ii) the amount of insulin in
a patient’s bloodstream at any given time. Notice, however,
that while these problems are analogous to issues present
in other industries, and general tools like anti-windup are
readily available, the management of insulin is safety crit-
ical and MPC provides a means to design control systems
that not only acknowledge these limitations but anticipate
and avoid them while providing optimal control action.
In fact, even predictive infusion shut-off systems [128],
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which temporarily halt basal insulin therapy when continued
treatment is predicted to cause hypoglycemia, without any
further feedback capabilities have been shown to drastically
improve system safety by decreasing the risk of overnight
hypoglycemia. However, the effectiveness of these simple
predictive shut-off algorithms can be diminished if the patient
already has significant insulin in their subcutaneous or
plasma compartments. This point is of particular concern
when insulin is infused according to feedback control laws,
which may frequently exceed basal rates. Thus, many recent
systems use insulin action curves to implement estimates of
the patient’s ‘‘insulin-on-board’’ (IOB) [129] to account for
delayed insulin effects as part of their predictive algorithm
and apply infusion rate limits to avoid dangerously aggressive
profiles when glucose concentrations are low.

Similar to IOB estimates, another recent and promising
MPC algorithm uses a more accurate estimate of the patient’s
plasma insulin concentration (PIC) to perform online adapta-
tion of dosage constraints for individual patients. Thismethod
has performed well in tests on the UVa/Padova simulator
without using any meal announcement but has not yet gone
to clinical trials [130].

While IOB and PIC estimates can be useful for mini-
mizing unnecessary control actions, the zone MPC approach
attempts to resolve this issue by replacing the usual desired
blood glucose set-point with a larger region, or zone,
of acceptable concentrations [123]. Thus, the objective of
the controller is better aligned with the normal physiolog-
ical regulation of blood glucose to the euglycemic range,
rather than a single specific concentration, and control
action is only applied inside this range if the predictive
algorithm anticipates an excursion. When no excursion is
predicted, the basal infusion rate is maintained, greatly
reducing unwanted blood glucose variations and the risk of
insulin induced hypoglycemia. Variations of the zone MPC
approach include periodic zone-MPC control [124], which
accounts for diurnal variations in activity and reduced hyper-
glycemic risks overnight, and zone MPC with adaptive cost
functions [126], [131].

Considering the non-negative nature of blood glucose/
insulin concentrations and infusion rates, the performance
limitations of the diabetes control problem, without glucagon,
has been likened to recent results regarding fundamental
trade-offs limiting the achievable response in linear posi-
tive systems [132]. Despite nonlinearities in the UVa/Padova
simulator, this approachmay provide ameans to obtain (in the
ideal numerical case) the control signal that would give a near
ideal combination of safety and performance, which has been
suggested as a potential benchmarking tool for simulation
studies on AP systems. One recent MPC variant [126] seeks
to achieve this ideal response by applying (i) a ‘‘velocity-
weighted’’ optimization wherein the cost of blood glucose
deviations is a function of the rate of change of the measured
blood glucose and (ii) a ‘‘velocity-penalization’’ term in the
cost function that penalizes actions that would allow blood
glucose to increase (i.e., have a positive rate of change) when

blood glucose is tending toward hyperglycemia. In combi-
nation, the velocity-weighting and velocity-penalty MPC
scheme acts aggressively against disturbances by switching
on the velocity-penalty at the first signs of impending hyper-
glycemia, as evidenced by elevated blood glucose levels
(above some threshold) with a positive rate of change, while
avoiding hypoglycemia due to over corrections by effec-
tively tapering the control action as the blood glucose rate of
change decreases. Notice, this combined action is reminiscent
of a nonlinear PD control with predictive capabilities and
appears to provide some benefits of bothMPC and PD control
strategies.

b: MODEL INDIVIDUALIZATION
Recalling that every patient affected by type 1 diabetes may
respond to treatment differently, there is no single model
or set of model parameters that can capture every patient’s
physiology with acceptable accuracy. One method to elim-
inate the uncertainty (and conservatism) associated with
the presence of such inter-patient variability is to generate
patient specific models prior to system deployment or during
an initial training period. To this end, research into indi-
vidualization of models [133]–[136] has been an active
subject for many years, and remains an open problem in
diabetes control. Despite this, individualized models alone
may not be sufficient to account for the intra-patient vari-
ations discussed previously, and adaptive control schemes
may provide a more robust answer to both kinds of
variability.

c: ADAPTIVE CONTROL
Unlike the model individualization techniques discussed
previously, adaptive online identification techniques can be
used to overcome both inter-patient and intra-patient vari-
ability. Clinical uses of online model identification withMPC
date back to the transformative Advanced Insulin Infusion
using a Control Loop (ADICOL) trials of 2004 [74], where
model parameters were updated at every control interval
using Bayesian methods over a predetermined learning
window. Other implementations of adaptive control in MPC
include the run-to-run tuning methods in [121], the cost
function updating schemes in [126], [131], and several of the
adaptive schemes discussed in [137].

Furthermore, generalized predictive control (GPC) algo-
rithms [122], [138] have been used successfully in both
clinical and simulation studies. Like MPC, GPC strategies
utilize an internal model to predict future states and deter-
mine the next immediate optimal control signal. However,
in GPC, a simplified model is used for prediction, and this
model is updated (i.e., adapted) at every control interval to
minimize the difference between the predicted and actual
responses. Recent implementations of GPC in diabetes
are reported in [137], [139] using recursive time-series
models and in [130] using recursive predictor-based subspace
identification.

VOLUME 8, 2020 23979



M. J. Khodaei et al.: PCLC Systems: Review of a Modern Frontier in Automation

4) THE CONTROL TO RANGE METHOD
Similar to the two-step approach taken by the SAFE
algorithm [107], the control-to-range (CTR) method was
proposed as a modular two-element strategy consisting of
(i) a range correction module (RCM) that operates at a
longer (e.g., 1-15 minutes) sampling interval to maintain
blood glucose within a specified target range and (ii) a safety
supervisor module (SSM) that operates at a much higher
sampling rate to predict and prevent dangerous hypoglycemic
excursions [140], [141]. Although this concept may be
applied without regard for the control method used, the CTR
strategy has developed around the use of MPC-based RCM
algorithms [141].

5) FUZZY-LOGIC CONTROL METHODS
While PID and MPC have historically dominated the field of
diabetes control, more recently, fuzzy logic controllers [138],
[142]–[144] have been quite successful in generating AP
systems that closely mimic expert clinical decision making
in the face of complex environmental factors and incomplete
information.

Among the most prominent fuzzy AP systems used in
clinical trials is the MD-Logic system [142], [145], which
includes information on the patient’s clinical physiology and
therapy guidelines obtained from a set of training data to
provide fully automated individualized care (without meal
announcement) using a combination of control to range
and control to target (standard set-point control) methodolo-
gies. Treatment decisions are made using past, present, and
projected future data (based on trends), forced to abide safety
constraints similar to those discussed previously, and applied
according to a variable basal infusion plus bolus strategy.

Alternatively, another clinically tested fully closed-loop
fuzzy-logic controller (without meal announcement) known
as the dose safety controller (DSC) [143] eliminates the basal
insulin infusion entirely and instead applies a micro-bolus
strategy based on quantized sets of blood glucose level, rate
(i.e., first time derivative of blood glucose), and acceleration
(i.e., second time derivative of blood glucose). To individu-
alize treatment, each patient is given an initial ‘‘personaliza-
tion factor’’ (PF), which scales the dosage associated with
each level-rate-accelerate combination, and the PF is adjusted
to provide more or less aggressive treatment depending on
the occurrence of hypoglycemic events. More information on
recent updates to the DSC is available online at [146].

6) RUN-TO-RUN CONTROL
Apart from the more well-known PID, MPC, and fuzzy-logic
controllers, a somewhat unique class of industrial process
control techniques known as run-to-run algorithms [147]
have been used for a variety of tasks in diabetes care. Run-
to-run methods utilize a measurement-based algorithm to
improve the effectiveness of a controller between distinct
iterations of a repeated process. For diabetes, this processmay
be the 24-hour/3-meal cycle [147]–[149], in which case the

control law is updated before the start of each day to account
for some intrapatient variability and improve the rejection
of blood glucose disturbances due to meals. Alternatively,
similar run-to-run methods have been used to adjust basal
insulin infusion rates in simulated trials [150] and to improve
the accuracy of CGM measurements based on week-to-week
recalibration [151].

7) ALTERNATIVE CONTROL METHODS
While clinical studies have been dominated by PID, MPC,
and Fuzzy-Logic controllers (with several using CTR),
a variety of additional paradigms have been studied in
academic simulations. These methods include artificial intel-
ligence methods [152], H∞ control [55], linear parameter
varying (LPV) control [77], and sliding mode control [153].
However, recent clinical studies implementing these tech-
niques are sparse, if available at all.

E. OUTLOOK FOR AUTOMATED DIABETES TREATMENT
The insulin-based treatment of type 1 diabetes is currently
in the midst of an international transformation from manual
to automated care. While more complete evidence of the
benefits and burdens of closed-loop therapy will become
available as these systems are adopted, themomentum behind
this transition is bolstered by the significant well-known
improvements in safety and accuracy of closed-loop control
over sensor augmented pump (SAP) therapy and manual
multiple daily insulin injection (MDI) approaches during
overnight blood glucose regulation. Furthermore, both hybrid
closed-loop (e.g., requiring meal announcement) and fully
closed-loop treatments have demonstrated promising addi-
tional improvements in more general simulated and clinical
scenarios including ambulatory and free-living conditions.

FIGURE 5. Clinical AP trials from 2004-2016 grouped according to
controller type.

Since the initiation of modern closed-loop insulin
therapy clinical trials with the 2004 ADICOL studies [74],
there have been over 100 publications concerning new
clinical trials. A collection of available data regarding
recent (2004-2016) clinical trials obtained from several
studies [85], [105] is shown in Fig. 5. This data was
cross-referenced against the AP clinical trial publication
database [154] and shows a trend toward the use of MPC
in clinical studies. Among the attractive features of MPC is
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its predictive adherence to complicated constraints, which
cannot be offered by PID control or controllers that imple-
ment reference conditioning such as the SAFE algorithm.

Despite interest in MPC, the first and only commercially
available hybrid closed-loop system to-date (MiniMed 670G
by Medtronic), released in 2016, uses a PID controller with
insulin feedback (IFB) [155], [156]. While recent studies
regarding the effectiveness and patient reception of this
device are promising [155], [157], many patients expected
the device to have a higher degree of autonomy and found
the system difficult to wear. However, as a larger variety of
commercial systems and fully automated AP systems become
available over the next few years [158], patients will be
able to select between systems to find one that best meets
their needs and expectations. With the widespread adoption
of these technologies will come new safety concerns and
hazards [159] associated with the unfavorable conditions that
may be encountered during continued, long-term, free-living
use. Early action to preemptively address these obstacles may
provide substantial benefits to patient safety, ergonomics, and
perception of closed-loop artificial pancreas systems. Such
actions might include adoption and development of standards
relevant to commercial artificial pancreas systems, such as
IEC 60601-1-10 [13], and familiarization with relevant FDA
guidance (e.g., [160], [161]) and regulatory considerations
arising from public discussions (e.g. [9]).

In addition to commercial systems, opensource solutions
to the treatment of type 1 diabetes, such as the open artifi-
cial pancreas system (OpenAPS) [162], have been gaining
popularity in recent years. These systems are not regu-
lated by the FDA and must be designed and constructed
by diabetic patients themselves. While there is a growing
repository of source code and community feedback for inter-
ested patients, and the results of the higher-end patient-driven
studies [163], [164] are impressive, the safety and perfor-
mance of opensource medical systems raise serious concerns.
Implemented across a broad and inconsistent scale, these
systems are vulnerable to algorithmic, communication, and
electromechanical errors, which may arise when devices are
combined and used in amanner inconsistent with their design.
While some projects, such as OpenAPS provide a thorough
reference guide and code that incorporates safety limitations,
the essence of opensource implies that there is inevitably
little preventing the end-user from tampering with these
constraints and accidentally creating dangerous devices. This
becomes an issue of further concern when considering the
potential for proliferation of improper designs and the esti-
mated 1/3 of OpenAPS users who are children operating
systems designed by their parents [165] (however this may
not be representative of the larger opensource community).
The availability of simple and reliable AP systems may help
to significantly reduce the number of patients who choose
to develop their own AP systems, and in fact the desire
for such systems to come-to-market appears to underlie the
goals of OpenAPS. Even with the availability of name-brand,
FDA certified HCL and fully closed-loop systems, curiosity

surrounding their operation – as well as the desire to replicate
and improve it – will undoubtedly drive continued interest in
opensource solutions.

Finally, it is important to keep in mind that poor glycemic
control is a consequence of type 1 diabetes and not the under-
lying cause. As medical practice and technology progress,
the artificial pancreas may be able to grow beyond insulin
infusion and implement more comprehensive and physiolog-
ically appropriate therapies. Steps in this direction include
the ongoing work to facilitate bi- and tri-hormonal systems
augmented with glucagon and amylin. Furthermore, there
may be benefits to the investigation of closed-loop therapies
that are capable of affecting both glucose/insulin concentra-
tions and insulin action (i.e., insulin sensitivity) – perhaps
through combination therapy with non-insulin treatments –
to provide personalized treatment options for the large and
diverse population of diabetics with forms of diabetes other
than T1DM. Of course, economic viability, education for
clinicians and new users of AP devices, and research into
a cure for diabetes may ultimately affect the impact and
longevity of automated AP technology.

IV. AUTOMATED ANESTHESIA
The word anesthesia means the loss of sensation and can
be defined as the lack of response to and recall of noxious
stimuli. The first application of anesthesia was performed by
CrawfordWilliamson Lang in 1842 using inhaled ether [166].
In clinical settings, anesthesia is induced by the adminis-
tration of anesthetic drugs into a patient’s body to achieve
localized or general anesthetic effects. In the latter case,
the term ‘‘general anesthesia’’ refers to a lack of movement
across the whole body while also maintaining an uncon-
scious state. In general anesthesia, patients may be given
two types of anesthetic drugs: (i) inhaled anesthetics (gases
or vapor drugs) and (ii) intravenous anesthetics (injection
drugs). A concise comparison between these two methods is
described well by Nascu:

‘‘Intravenous medications are given directly into a vein
and are commonly used to induce anesthesia, as induction
is usually smoother and more rapid than that associated
with most of the inhalational agents. Intravenous anesthetics
administered as repeated bolus doses or by continuous infu-
sion may also be used for maintenance of anesthesia, either
alone or in combination with inhalational agents. An advan-
tage of inhaled anesthetics is that measuring the difference
between inhaled and exhaled concentrations allows an accu-
rate estimation of plasma or brain drug uptake· · · ’’ [167].

Generally, intravenous anesthesia drugs can be catego-
rized into three different classes based on their physiolog-
ical effects: (i) hypnotic drugs, (ii) analgesic drugs, and
(iii) neuromuscular blocking (NMB) drugs. The first kind
of anesthetic, called hypnotics, are used to numb the brain,
keeping the patient unconscious during surgery. Propofol is
currently the most common type of intravenous hypnotic
drug due to its fast redistribution and metabolism inside
the body, its lack of accumulation in tissues [167], and its
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lower chance of negative side effects compared to other
hypnotic drugs [168]. The second class of anesthetics, called
analgesics, attenuate the sensation of pain. Currently, opioid
analgesics (e.g. remifentanil) are the most common type of
analgesic drug. Finally, the third class of anesthetics, known
as NMB drugs, interrupt the transmission of nerve impulses
in the neuromuscular junction and cause paralysis of the
affected skeletal muscles [166]. NMB can be used to facil-
itate the processes of endotracheal intubation and mechan-
ical ventilation [169], [170]. As shown in Fig. 6, each of
the 3 classes of drugs used in anesthesia contribute, respec-
tively, to achieving the 3 main targets of general anesthesia:
(i) hypnosis, or loss of consciousness (due to hypnotic drugs),
(ii) analgesia, or loss of sensitivity to pain (due to analgesic
drugs), and (iii) immobility (due to NMB drugs).

FIGURE 6. The three functional components of clinical anesthesia:
hypnosis, analgesia and immobility.

General anesthesia is performed in 3 phases: (i) induction,
(ii) maintenance, and (iii) emergence. Induction is most crit-
ical phase in anesthesia because all the three types of drugs –
hypnotic, analgesic, and NMB – have to be administered at
high enough doses to induce all 3 main aspects of anesthesia
and allow the anesthesiologist to insert an endotracheal tube
for mechanical ventilation to help the anesthetized patient
breathe (i.e., endotracheal intubation).

Maintenance follows the induction phase. In this phase,
the anesthesiologist balances anesthesia with the use of anes-
thetics agents, manages the infusion of intravenous fluids,
and regulates the administration of different drugs tomaintain
hemodynamic stability (i.e., stable blood flow), normal func-
tion of body organs, and adequate depth of hypnosis [171].

Emergence is the last stage of anesthesia and occurs at the
end of surgery when the patient is removed from anesthesia
and brought back to normal conditions as drug administration

is tapered off. The goal of emergence is the full reversal of
neuromuscular blockade and the smooth return of sponta-
neous ventilation and reflexes while maintaining the stability
of hemodynamics and other physiological functions. Thus,
the return of consciousness can occur in a safe and comfort-
able environment [171].

A. MONITORING
To achieve satisfactory anesthesia, the amount and timing
of drug infusions must be estimated in each phase during
surgery. Several clinical indicators and physiological param-
eters effect the anesthesiologist’s estimation. Clinical indica-
tors such as heart rate, blood pressure, lacrimation, sweating,
and papillary dilatation are monitored during surgery and
provide anesthesiologists valuable information about the
anesthetic adequacy [172]. However, physiological monitors
(i.e., electromyography (EMG), electrocardiography (ECG),
blood pressure (BP), electroencephalography (EEG), and
oxyhemoglobin saturation (SpO2)), and quantified indexes
such as bispectral index (BIS), entropy, auditory evoked
potential (AEP) and surgical stress index (SSI) can provide
anesthesiologists more accurate information about a patient’s
status [173]. The monitors and quantified indexes corre-
sponding to several important clinical signs and physiological
parameters are shown in Table 5 for reference.

Analyzing the electroencephalogram (EEG) is one of the
most common approaches for precise evaluation of anesthetic
delivery. EEG signals depict the electrical activity in the
cerebral cortex and the characteristics of the EEG waveforms
(i.e., frequency and amplitude) vary by the type of drug that
has been used and the amount of its dosage [174]. There are
a number of signal monitoring devices such as the Bispec-
tral Index (BIS) monitor, Narcotrend monitor, Cerebral state
monitor (CSM), and AEP monitor [175] that measure and
quantify the EEG in order to derive a surrogate measurement
of anesthetic adequacy [176], [177].

Bispectral index (BIS) is the most notable index and is
closely related to the level of consciousness [178]. Measure-
ments of the BIS provide anesthesiologists important infor-
mation during anesthesia, and clinical trials have shown its
potential to increase the patient safety. [179], [180]. The BIS
index is scaled between 0 and 100, where a value of 100 repre-
sents the fully conscious state and value of zero depicts an
isoelectric EEG.With increasing concentrations of anesthetic
drugs, the BIS index decreases [181]. Fig. 7 shows the patient
state for ranges of BIS indices along with the corresponding
effects on memory of surgical events. Acceptable BIS scores
for general anesthesia range from 40-60 [178].

Despite its wide-spread use, recent experimental results
have shown that the BIS index is not reliable when
patients have been infused with NMB drugs. In one pivotal
study [183], fully awake subjects were shown to achieve
BIS scores below 50 (i.e., corresponding with BIS during
general anesthesia) when dosed with NMB drugs alone.
Furthermore, additional research has suggested that BIS
values should be interpreted with caution when patients are
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TABLE 5. Monitors and indices for clinical signs and physiological parameters (adapted from [173]).

FIGURE 7. Patient states corresponding to BIS indices (adapted
from [181], [182].

children [184], elderly [185], have known neurological disor-
ders, or are taking psychoactive medications [186]. Beyond
BIS, it has been noted that, ‘‘the use of DoA monitors
remains a major controversy in anesthesiology. Indeed, many
factors, such as age, race, gender, low core body temperature,
acid-base imbalances, low blood glucose, drugs administered
to the patient (e.g. neuromuscular blocking agents), and brain
ischaemia, have a significant effect on raw EEG data. Addi-
tionally, DoA monitors are limited by their calibration range
and inter-patient variability in dose response curves...’’ [186].

These limitations and interactions can degrade the perfor-
mance of manual infusion systems and will no-doubt impose
challenges to high-quality closed-loop control of anesthesia.
Recently, patient state index (PSI) algorithm-based devices
have been considered as alternatives to BIS monitors for
their high sensitivity to variations in sedation/hypnosis and
uniform response to various anesthetic agents [186], [187].
Although the PSI devices have some advantages to clas-
sical EEG monitors, including reduced sensitivity to noise,
the PSI index is more sensitive to inter-patient variability than
BIS [188] and may be affected by EMG signals [186], [189].
In general, there remains a need for studies investigating
the effects of drug combinations and EMG signals on
sedation indices. For more detailed information on current
challenges and limitations of monitoring during anesthesia,
readers are referred to the extensive coverage in the literature
(e.g., [186]).

B. MODELING
An accurate infusion of anesthesia drugs and continuous
monitoring of brain states during each phase can help
decrease the frequency and severity of dosage errors,
improve the efficiency of anesthesia, and reduce surgical
costs. As mentioned in Section IV-A, the BIS index is the
most common monitoring metric available for displaying a
patient’s anesthesia level. However, to fully utilize the BIS
and other measures for optimal drug dosing, a mathematical
model is needed that represents all aspects of anesthesia
including the effective physiological parameters and various
dynamics (i.e., corresponding to the hypnotic, analgesic,
and paralytic states). Various such models exist and can be
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categorized as single-input single-output (SISO), multi-input
single-output (MISO), or multi-input multi-output (MIMO)
models. In what follows, anesthesia models from each of
these three classes will be briefly discussed.

1) SISO MODEL
The pharmacokinetic/pharmacodynamic (PK/PD) model is
a compartmental model that illustrates both the drug distri-
bution in the human body and its effect on certain physi-
ological systems. For anesthesia, the pharmacokinetics are
represented by a linear compartmental model that defines the
concentration of the administered drug in different parts of
human body, while the pharmacodynamics are represented
by a static nonlinear function (i.e., Hill curve) relating the
resulting drug concentration to the measured effect (e.g., BIS
index) [174], [190].

The current PK/PD model is a SISO model with
either hypnotic drugs (e.g., propofol) or analgesic drugs
(e.g., remifentanil) as the input and either patient conscious-
ness or degree of pain as the output. Such SISO models are
used mainly in anesthesia modeling by control engineers and
clinicians. As shown in Fig. 8, the PK/PD model of anes-
thesia is a compartmental model with three main compart-
ments and one effect-site compartment where V1 describes
the central compartment including arterial blood, brain, and
liver volumes; V2 denotes the fast peripheral compartment,
which has fast dynamics and contains the well perfused body
tissues such as muscles and viscera; V3 represents the slow
peripheral dynamics, which include the dynamics of poorly
perfused body tissues like fat and bone; and the effect-site
compartment is used to account for the time lag between drug
concentration in blood plasma and its effect [191].

FIGURE 8. Compartmental model of the patient, where PK denotes the
pharmacokinetic model and PD denotes the pharmacodynamic model
(adapted from [192]).

a: PHARMACOKINETIC MODEL
A pharmacokinetic model of a drug is a mathematical expres-
sion relating the concentration Cp(t) (mg/ml) of the drug in
the blood plasma to the infusion rate of the drug into the
central compartment I(t) (mg/min) [178]. Pharmacokinetic
compartmental models are derived by establishing balance

equations for the amount of drug (xi in mg) distributed in each
compartment. Accordingly, the governing equations for the
PK model in Fig. 8 are given by

ẋ1 =
I (t)
V1
− k12x1 − k13x1 − k10x1 + k21x2 + k31x3 (5)

ẋ1 = k12x1 − k21x2 (6)

ẋ1 = k13x1 − k31x3 (7)

where the constants kij (min−1) indicate the transfer rate of the
drug from the i-th compartment to the j-th compartment; the
constant k10 is the rate at which the drug is metabolized; and
V1 is the volume of the first compartment. These equations
can be written in state space asẋ1ẋ2

ẋ3

 =
− (k12 + k13 + k10) k21 k31

k12 −k21 0
k13 0 −k31


×

x1x2
x3

+
1/V1

0
0

 I (t) (8)

Cp =
[
1 0 0

]x1x2
x3

 (9)

Then, the transfer function for the PK model from infusion
rate I (t) to concentration Cp(t) = x1(t) is

PK (s) =
Cp(s)
I (s)

=
1
V1

(s+ k21) (s+ k31)
(s+ p1) (s+ p2) (s+ p3)

(10)

where every pi is a function of the constants kij as given by
the conditions
p1 + p2 + p3 = k10 + k12 + k13 + k21 + k31
p1p2+p1p3 + p2p3=(k10 + k12) (k21k31)+ k13k21
p1p2p3 = k10k21k31

(11)

The parameters kij are different for each person and can be
calculated as [191]
k10
k12
k21
k31
k13

 =


1
V1

0 0 0 0

0
1
V1

1
V2

0 0

0 0 0
1
V3

1
V1


T Cl1Cl2

Cl3

 (12)

where Vi and Cli denote, respectively, the volume and clear-
ance rate (i.e., the rate at which the drug is cleared from
the body or removed from the central compartment) of the
i-th compartment. For propofol, the clearance rate and
volume parameters can be obtained asCl1Cl2

Cl3

=
0.04560

0

0.0264
0
0

−0.0681
0
0

0
−0.024

0



×


weight
height
lbm
age

+
−2.2712.562

0.836

 (13)
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V1V2
V3

=
 0
−0.391

0

 [age]+

 4.27
39.623
238

 (14)

It should be noted that although the above expressions are
the most commonly used relations for calculating the values
of Vi and Cli, there are alternative, generally more complex,
relations used to calculate these parameters for the infusion
of propofol, such as those developed by [193].

For the infusion of remifentanil, the PK parameters can be
calculated as [194], [195]Cl1Cl2

Cl3

 =
 −0.01620.0301
−0.00113

0.0191
0
0

[age
lbm

]
+

 2.197
3.254
0.1212


(15)V1V2

V3

 =
−0.0201−0.0811

0

0.072
0.108
0

[age
lbm

]
+

2.0437.124
5.42

 (16)

Note, in (14)-(16), the patient’s height, weight, and age are
given in units of cm, kg, and years, respectively. Furthermore,
the lean body mass (lbm) is calculated differently for male
and female patients and can be obtained as [196][
lbmm
lbmf

]
=

[
m 0
0 f

] [
1.1 −128
1.07 −148

] weight(
weight
height

)2

 (17)

where m and f are set equal to one and zero, respectively, for
male patients and vice versa for female patients.

b: PHARMACODYNAMIC MODEL
Pharmacodynamic models are used to describe the relation-
ship between the concentration of a drug and its effect on
the body. As shown in Fig. 8, the general PD model has
two parts. The first part is a compartment called the effect-
site, introduced by [197], that represents the lag between
drug concentration and its effect. In the case of anesthesia,
since the effect site compartment is small in comparison
with the central compartment, its effect is assumed to be
negligible [198]. In steady-state, the concentration of the
effect-site can be related to the plasma concentration by

Ċe = ẋe = k1ex1 − ke0xe (18)

where ke0 and k1e are constants and xe is the amount of the
drug in the effect compartment. The rate at which drugs enter
and exit this compartment is assumed to be constant and equal
to ke0 (e.g., k1e = ke0 = 0.456 for propofol) [191]. For the
infusion of remifentanil, ke0 can be calculated as

ke0 = 0.595− 0.007 (age− 40) (19)

Consequently, (19) is often used as

Ċe = ke0
(
Cp − Ce

)
(20)

where Ce is the concentration within the effect-site compart-
ment. Thus, for propofol, the effect site works like a
low-pass filter that relates the plasma propofol concentration

(i.e., in the blood) to the effect-site propofol concentration.
The transfer function describing the relation from the plasma
concentration to the effect-site concentration is given by

Ce(s)
Cp(s)

=
ke0

s+ ke0
(21)

The second part of the PD model, shown as the ‘‘nonlinear
drug/effect relation’’ in Fig. 8, is often comprised of a sigmoid
Hill equation

E = E0 − Emax
Cγe

Cγe + EC
γ

50

(22)

where E0 indicates the baseline value (obtained from the
awake state without propofol), which is typically set to 100;
Emax is the maximum effect achievable by the drug infusion;
EC50 denotes the drug concentration at half maximal effect,
which represents the patient’s sensitivity to the drug and
should be measured experimentally; and γ determines slope
of the sigmoid curve (i.e., the receptiveness of the patient
to the drug) [199]. In (22), the value of the effect E is
obtained in terms of the BIS scale. In Table 6, the values of
these parameters are shown for a cohort of 12 representative
patients. These values are among the most frequently used for
designing and simulating anesthesia control systems. Addi-
tional data sets are available in [166].

Although the aforementioned models are used quite
frequently, they are in need of some refinements. Among
other issues, the most critical weaknesses of the models
presented thus far include a lack of standard parameters
for other kinds of hypnotic drugs, important neglected
factors such as cardiac output and mode of drug adminis-
tration (e.g., bolus or infusion), and unmodeled drug inter-
actions [174]. It is also worth noting that the commonly
used values in Table 2 are not representative for a variety
of important demographics. In fact, in the case of infants
and adolescents, different PK/PD models are required, which
have been described completely in [200]–[203].

It should be noted that the SISO models discussed
above incorporate the infusion of hypnotic and analgesic
drugs but do not consider neuromuscular blocking drugs
because neuromuscular blockade has no effective interac-
tions with anesthetic drugs and opioids. In some studies,
separate (different) SISO models are used to represent the
dynamics of NMB [204], [205]. Furthermore, a different
PK/PD model structure, comprised of one central compart-
ment (representing both blood and organs heavily supplied
with blood), one peripheral compartment (representing the
parts of the body with a lower blood flow), and the effect
compartment (representing the PD model) is presented in the
literature [206], [207]. Alternatively, a second order linear
dynamic model is presented for NMB in [208].

2) MISO MODEL
While the SISO model in Section IV-B.1 can be used sepa-
rately for both hypnotic and analgesic drugs, it is not capable
of fully representing the combined administration and effects
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TABLE 6. Hill equation characteristic variables for propofol (adapted from [199]).

of these drugs. As a work around, some studies have used
parallel SISO models of each drug to obtain a simple
MISO model. In this arrangement, the WAVCNS index used
by the NeuroSense NS-701 (NeuroWave Systems, Cleve-
land Heights, USA) monitor appears to be a more suitable
measurement index than BIS for measuring the anesthesia
level because it is obtained through a linear time-invariant
relation that does not cause an additional delay in the
closed-loop system [209], [210]. The interaction of propofol
and remifentanil is described in [211] as

E
(
vp, vr

)
=

(
vp + vr + αvpvr

)γ(
vp + vr + αvpvr

)γ
+ 1

(23)

where νp = (cpe)/(EC
p
50), νr = (cre)/(EC

r
50), and the param-

eter α (identified from clinical data by [211]) determines the
degree of interaction between propofol and remifentanil. This
interaction is clasified as synergistic if α > 0; additive if
α = 0; and antagonistic if α < 0. The parameters ECp

50 and
ECr

50 are the propofol and remifentanil concentrations at half
maximal effect.

As an alternative to using the PK/PD models of propofol
and remifentanil in parallel, a newMISOWeinermodel called
the parameter parsimonious model (PPM) has recently been
introduced by [212]. In this model, the effect-site concen-
trations of propofol and remifentanil (i.e., cpe and cre, respec-
tively) due to their infusion rates (i.e., up and ur , respectively)
are given in the Lapalce domain as

Cp
e (s) =

k1k2k3α3

(k1α + s) (k2α + s) (k3α + s)
up (s) (24)

Cr
e (s) =

l1l2l3η3

(l1η + s) (l2η + s) (l3η + s)
ur (s) (25)

where α and η are dependent on patient parameters and do
not have any physiological meaning. The parameters ki and lj
are dimensionless constants that were obtained from clinical
data by [213] as k1 = 10, k2 = 9, k3 = 1, l1 = 3, l2 = 2, and
l3 = 1. The corresponding BIS value z(t) is approximated
by [212] as

z (t) =
97.7

1+ U(t)γ
(26)

where

U (t) = µ
Cp
e

ECp
50

+
Cr
e

ECr
50

(27)

In these equations, the parameters µ and γ do not have
any physiological meaning and are dependent on each patient.
This model can be expressed in state space as [214]

ẋ (t) = Ax (t)+ Bu (t) (28)[
Cp
e (t)

Cr
e (t)

]
=

[
0
0

0
0

1
0

0
0

0
0

0
1

]
x (t) (29)

U (t) = Cx (t) (30)

where

A =
[
Ap 0
0 Ar

]
, B =

[
Bp 0
0 Br

]
(31)

Ap =

−k1α 0 0
k2α −k2α 0
0 k3α −k3α

 ,
Ar =

−l1η 0 0
l2η −l2η 0
0 l3η −l3η

 (32)

Bp =

k1α0
0

 , Br =

l1η0
0

 (33)

C =
[
0 0

µ

ECp
50

0 0
1

ECr
50

]
(34)

The common values for α, γ , µ and η are identified
by [215] and are given in Table 7.
Although the PPM model is not entirely physiological,

it is better suited to model-based control than the general
PK/PDmodel because it has fewer parameters that need to be
identified [214]. However, both the PK/PD and PPM models
have been used in many controller design studies. Some
important factors for choosing between these models include
the availability of measurement devices, the type of desired
control structure, the types of drugs being administered, and
the costs associated with the overall design and implementa-
tion. In the following sections, some recent studies that utilize
these models will be discussed.
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TABLE 7. Common PPM parameter values (adapted from [214]).

3) MIMO MODEL
While the previous models have a single measurable output
(e.g., BIS or WAVCNS), there are several other variables that
can be considered as additional system outputs. Two MIMO
models have been reported prevalently in the literature, both
of which take the dosage of hypnotic and analgesic drugs
as inputs but differ in the quantities used as outputs. When
considering MIMO systems with m inputs and n outputs,
we can definem×n transfer functions that describe the effects
of each input on each output.

The first of these MIMO models [216], which is used less
frequently in the literature, includes some clinical metrics like
heart rate and blood pressure as system outputs. By assuming
the analgesic drugs have negligible effects on the BIS
value [217] and considering depth of hypnosis (DoH) and
blood pressure as the system outputs, this model is given by

xB = e−τBs
KB

TBs+ 1
UB (s) (35)

xP = e−τPs
KP

TPs+ 1
UP (s) (36)

yB = 100− fB (xB (t))+ dB (37)

yP = 100− fP (xP (t))+ dP (38)

where indexes B and P denote hypnotic and analgesic drugs,
respectively; τB and τP are initial time delays; KB and KP are
defined as drug sensitivities; TB and TP are time-constants
representing the response speed of the patient; fB and fP are
defined in [218] as nonlinear sensitivity functions; dB and dP
are external disturbances; UB(s) and UP(s) are the Laplace
transforms of drug infusion rates; xB and xP are the effect-site
concentrations of the anesthetic drugs; and yB and yP are the
DoH and mean blood pressure, respectively. According to
(27), this representation consists of four (i.e., 2× 2) different
transfer functions, which are reported in [216].

The second common MIMO model, depicted in Fig. 9,
defines the infusion rates of propofol (i.e., the hypnotic drug)
and remifentanil (i.e., the analgesic drug) as the inputs, and

FIGURE 9. MIMO Wiener model for the depth of anesthesia (adapted
from [219]).

the patient’s depth of hypnosis and degree of pain are used as
the system outputs. Thus, the depth of hypnosis and degree of
pain are interpreted fromBIS and state entropy (SE)measure-
ments, which consequently may be considered alternative
model outputs. The state-space of this model is similar to the
MISO model of (24)-(34); the main difference between these
models is the output matrix, which is described as [219]

y =
[
y1
y2

]
=


y01

1+
(

Cre
ECr50
+ ρ1

Cpe
ECp50

)γ1
y02

1+
(

Cre
ECr50
+ ρ2

Cpe
ECp50

)γ2

 (39)

where y1 denotes the BIS value; y2 denotes the SE value; y01
and y02 are equal to 97.7 and 91, respectively; and ρ1, ρ2, γ1
and γ2 are parameters that are estimated by clinicians.

C. AUTOMATION IN ANESTHESIA
In 2010, 48.3 million surgical operations were performed
in the U.S. [220]. Many of these surgeries require general
anesthesia, yet ensuring optimal and on-time infusion of anes-
thetic drugs remains an important challenge that is compli-
cated by the unique physiology of each patient and numerous
known and unknown environmental factors. Further compli-
cating this problem, patients’ anesthetic requirements are
known to change during surgery in both predictable and
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TABLE 8. Incidence of awareness during surgery (adapted from [222]).

unpredictable ways, and once administered, anesthetics
cannot be removed. Poor regulation of anesthetics, such
as too little hypnotic or too much analgesic, can result
in complications including anesthesia awareness (i.e., unin-
tended consciousness during surgery), pain during surgery,
prolonged emergence period, and increased risks of other
side effects [221]. As an example of the regularity of these
complications, Table 8 shows data collected on the incidence
of anesthesia awareness over the last half-century.

Although the statistics above show a near steady improve-
ment, there are still many faults occurring during anesthesia
administration which may be avoidable by the development
of an automated anesthesia system that improves the admin-
istration of anesthetics and mitigates the hazards of system
faults. In fact, besides a reduced risk of surgical complica-
tions, the use of an automatic control system may provide
significant additional benefits such as a reduction in the
cognitive workload of the anesthesiologist (who must be
present to supervise any automated system), a decreased
volume of drugs administered (which implies a faster and
better recovery time of the patient in the post-operative
phase), and a more robust performance with fewer over-
and under-dosing episodes and better rejection of surgical
disturbances. Of course, the main goal is increased safety and
comfort for the patient [223]. The advantages of automatic
anesthesia systems over manual anesthesia have recently
been validated by experimental results [224].

Any automated anesthesia system will likely include two
main phases: first, the desired depth of anesthesia (DoA)
(i.e. desired BIS index) must be reached, and second the
DoA needs to be maintained by the application of various
anesthetic drugs. During the first phase, the system should
calculate the sufficient drug dose and regulate its infusion
to move from the initial BIS value E0 of the patient during
the induction phase to a final desired BIS value. Note,
the determination of a desired DoAmeans setting final values
for all the three types of anesthesia (hypnotic, analgesic,
and neuromuscular blocking drugs). However, to date, most
closed-loop studies have been focused only on achieving the
depth of hypnosis (DoH), which is the most important type of
anesthesia, while the analgesic and neuromuscular blocking
drugs must still be infused manually by clinicians.

During the second phase, the system should infuse the
drugs continuously while monitoring the aforementioned
physiological parameters and clinical signs and also rejecting
disturbances that occur during the maintenance phase. The
main goal during this phase is to maintain the patients at
the final BIS value throughout the surgery until anesthesia
is stopped during the emergence phase.

Control applications in general anesthesia began receiving
attention several decades ago [225], [226] from both control
engineers and clinicians. Throughout this period, a variety
of methods have been proposed with varying degrees of
automation. As illustrated in Fig. 10, most systems can be
categorized as manual, open-loop feed-forward, or closed-
loop controllers based on the approach used to calculate the
drug infusion rates in general anesthesia.

Manual systems (i.e., without automation), shown in
Fig. 10a, are the current standard practice. In these systems,
an anesthesiologist first sets the final value of the DoA
or DoH and then monitors the anesthetic state of the
patient and regulates the drug dosages accordingly [227].
The success of this method is highly dependent on the
expertise of the individual anesthesiologist and is not reli-
able in some critical situations (e.g., irregular events during
surgery).

FIGURE 10. Schematic overview of drug dosage calculation and infusion
used in clinical anesthesia with (a) manual control, (b) open-loop
feedforward control, also known as TCI, and (c) closed-loop control
system (adapted from [227]).

In 2003, a large step toward achieving fully automated
anesthesia was takenwith the introduction of target controlled
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infusion (TCI) systems [228]. The Diprifusor system was
the earliest commercial TCI pump for propofol [229] and
since its introduction several other TCI systems have become
available from various manufacturers. In fact, developments
and modifications to TCI systems has made them a standard
among infusion systems for the administration of opioids,
propofol, and other anesthetics in clinical practice [229].
Considering our categorization, TCI systems operate as
open-loop feed-forward controllers, shown in Fig. 10b, which
rely on both an anesthesiologist to assess the patient’s state
and the output of a PK/PD model to estimate an exact drug
dosage and infusion time. In practice, the anesthesiologist
sets a target drug concentration, and the TCI system deter-
mines an infusion rate and sends this value to the infusion
pump. Although these systems are used in many countries
and have some advantages over manual anesthesia systems,
the success of TCI still depends heavily on the expertise
of the anesthesiologist and does not have its own means
of identifying the patient’s current needs when tuning the
infusion rate. Since TCI lacks real-time feedback, its perfor-
mance depends on the accuracy of the patient model and is
susceptible to disturbances caused by surgical stimulation and
hypnotic-opioid synergy (i.e., the combined effects of these
drugs) [227].

Closed-loop controllers are the most advanced of the
3 categories and consider the individual patient’s physio-
logical parameters in addition to the clinical metrics (used
by anesthesiologists in manual and TCI approaches) in
the process of calculating infusion rates. As mentioned in
Section IV-A, such physiological parameters may already
be available as the measured output of advanced monitors
that record and display values including the patient’s EMG,
EEG, ECG, and BIS. In this case, feedback control is used
instead of an anesthesiologist to frequently adjust the infu-
sion profile or target concentration in closed-loop controllers;
however, anesthesiologists are still needed to set the desired
DoA or DoH and supervise the patient’s state via clinical
metrics. The result is a reduction in the anesthesiologist’s
workload, potentially helping to avoid problems associated
with distractions and fatigue, as well as increased safety for
the patient due to continuous monitoring, the possibility of
lower administered drug dosages with a faster postoperative
recovery, and a reduction in the occurrence of drug-induced
side effects [230]. For these reasons, fully automated systems
may have the potential to one-day outperform manual infu-
sion dosing [231], [232].

Two different approaches for implementing closed-loop
controllers in anesthesia are shown in Fig. 11. The first,
in Fig. 11a, is based on a scheme that directly identifies the
anesthetic infusion rates and sends control signals directly
to the infusion pump (e.g. [233]). The second, in Fig. 11b,
continuously adjusts the target value for a downstream TCI
system, which in turn continuously sets the rate of the infu-
sion pump (e.g. [234], [235]). The second method can be
considered a special case of the first, and so the first (direct)
approach is less restrictive and may be preferable for control

FIGURE 11. Two commonly used closed-loop control architectures in
anesthesia drug delivery with (a) direct control of the infusion rate,
and (b) cascaded control of TCI system (adapted from [227]).

design as the TCI dynamics can be replacedwith any effective
algorithm.

Generally, automation in anesthesia consists of three
main components: a patient model, a measurement system
(i.e., sensors or monitors), and a controller. Each of these
components can have significant effects on the performance
of the other components and the overall system. For example,
as mathematical models become more accurate and include
more detail on variables and effective parameters, controllers
can be designed to provide higher quality drug infusion.
Furthermore, as measurement devices become more accu-
rate, individualized physiological model parameters can be
identified more accurately and controllers will have access
to a higher quality and quantity of relevant information via
feedback and observation - ultimately resulting in improved
drug infusion. Note, the quality of monitoring directly effects
the controller performance in implementation.

While Sections IV-A and IV-B have focused on modeling
and monitoring, controller design is among the largest
remaining challenges to automated anesthesia, and we
will now review several prominent strategies. Many scien-
tists and control engineers have explored various control
approaches such as PID, MPC, fuzzy-logic, adaptive, and
neural networks as well as hybridizations of these controllers
to design and produce automatic anesthesia infusion systems
for clinical use following the general structure in Fig. 12.
Some comprehensive reviews on controller designs can be
found in [174], [236]–[239].

FIGURE 12. Closed-loop control for drug administration in anesthesia
(taken from [178]) with permission.

While the majority of recent publications in the physiolog-
ical closed-loop control of anesthesia are related to the use
of intravenous anesthesia, several closed-loop studies have
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specifically considered the application of inhalational anes-
thesia [240]–[242]. One benefit of the inhalational approach
to anesthesia is that it may be considered safer than intra-
venous anesthesia because end tidal gas measurements are
available to monitor the drug concentration within the brain
and the vessel rich group (VRG) at steady state. However,
these sensors provide a poor approximation of the VRG
concentration during common dynamic situations such as
initial uptake and emergence [243]. Thus, some researchers
have developed mathematical models to represent these
dynamics (e.g., for purposes of concentration estimation)
with the aim of investigating, by simulation and clinical
studies, the closed-loop control of inhalational anesthesia
using model predictive control [244]–[246]. For detailed
information on modeling and closed-loop control of inhala-
tional anesthesia, interested readers are referred to the exten-
sive coverage in the literature (e.g., [247]).

1) CHALLENGES TO AUTOMATED ANESTHESIA
During the design and simulation phases of the controller
development, there are several important constraints that
must be taken into account. First, each drug has a maximum
effective dosage, which means higher doses will not have
any greater effect on the patient. Second, because the control
signal defines the infusion rate, it cannot have a negative value
(i.e., the drug cannot be extracted once infused) and must
further be within the operating range of available infusion
pumps. Third, excessive doses infused over a short time can
shock the human body and may harm organ systems [248];
this can be avoided by maintaining lower infusion rates. The
selection of proper drug infusion rates is determined as a
trade-off between the side-effects of rapid infusion and the
desire to reach the required BIS value within a certain time-
frame. In current surgical operations, the optimal time-frame
has been reported as around 15 minutes [167], while shorter
periods are frequently obtained in simulation studies found in
the literature (e.g., 4-8 minutes in [223]). Lastly, the designed
controller must work in the presence of both inter-patient and
intra-patient variability. Inter-patient variability means that
physiological parameters of individuals are different, because
different patients show different responses to the drugs, while
the intra-patient variability defines those changes that happen
in the physiological parameters of a patient through time. The
main problem with these phenomena in closed-loop control
of anesthesia or diabetes is that variation of these parameters
changes the dynamic of the system significantly and makes
it difficult to have a controller that has the same performance
for a broad range of patients.

In addition to these systematic constraints, different
sources of disturbances and noise – such as poor signal
quality and surgical stimulations – should be considered in
the systemmodeling and controller design activities. Of these
disturbances, surgical stimulations are among the most chal-
lenging to manage and are a subject of current investigations
by both clinicians and control engineers. As an example of
how these stimulations may arise, Fig. 13 shows a typical

FIGURE 13. A standard surgical stimulation profile (adapted from [179]).

timeline of the variations in BIS index, caused by surgical
stimulations, during the time-course of an archetypal surgical
procedure. In this figure, stimulus A shows the arousal due
to laryngoscopy/intubation; B represents surgical incision
followed by a period of no surgical stimulation (e.g., waiting
for laboratory results); C represents an abrupt stimulus after
a period of low level stimulation; D represents the onset of
continuous normal surgical stimulation; E, F, and G simulate
high amplitude short-term stimulations within the surgical
period; and H simulates the withdrawal of stimulation during
the closing period [179].

As discussed in Section IV-A, there is currently a need for
more accurate, reliable, and robust sensing techniques that
provide real-time monitoring of a patient’s depth of anes-
thesia (DoA) without reliance on demographic characteristics
or undesirable interference from EMG signals, NMB drugs,
or interactions with other substances (e.g., opioids affect AEP
measurements [249]). The present limitations to these sensing
technologies may represent a fundamental barrier to accu-
rate closed-loop control. Consider, for instance, the recent
results regarding NMB drugs and BIS [183], which have
a direct consequence on closed-loop control. According to
this study, an anesthetic PCLC device can – under the right
circumstances – achieve the desired BIS value without actu-
ally reaching the desired DoA (e.g., potentially resulting in
anesthesia awareness). Even in the case where DoA is gener-
ally well represented by the sensing paradigm, automated
anesthesia remains challenged by sensor noise, measurement
error, and sensing delays.

In the next sections, the most common controllers used
in closed-loop control of anesthesia will be discussed, and
the recent developments and remaining challenges to each
approach are presented.

2) PROPORTIONAL-INTEGRAL-DERIVATIVE CONTROL
Proportional-integral-derivative (PID) control is one of the
most used control approaches in industrial applications due to
its simplemathematics, well-known gain tuningmethods, and
broad capabilities. Several successful clinical and simulation
studies of automated anesthesia have been performed using
PID based controllers over the past two decades such as [228],
[250]–[255]. The simulated and experimental results of these
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studies have generally indicated that PID control may have
some utility in the closed-loop control of anesthesia. One of
the most common PID controllers used anesthesia is given by
the Laplace domain transfer function [223]

U (s)
E (s)

= kp

(
1+

1
sTi
+ Td s

)
1(

Tf s+ 1
)2 (40)

where U (s) and E(s) are, respectively, the Laplace domain
control and error signals; kp is the proportional gain; Ti is
the integral time-constant; Td is the derivative time-constant;
and Tf is the time-constant of a second-order filter used to
attenuate measurement noise.

In the relevant works, the proposed PID controllers have
been shown to track desired anesthesia levels (e.g., desired
BIS values); however, anesthetists and control engineers
agree that this simple PID algorithm suffers from major
deficiencies because it is not a robust and adaptive controller
and does not perform well in the presence of noise and
physiological variability. As a result of the inter-patient
variability simple PID gives poor disturbance rejection in
the closed-loop control of anesthesia, resulting in unwanted
oscillations in the BIS response, and can suffer from windup
of the integral control term during the induction phase.
Therefore, recent studies are trying to address these prob-
lems to achieve comparable performance to other more
advanced controllers. For instance, in [256] it is shown
that the low-pass filter, included in (40), reduces the sensi-
tivity of the derivative term to random changes. Further-
more, introducing zero reference weight for the proportional
and derivative control terms (i.e. no reference input for
proportional and derivative parts) results in better distur-
bance rejection and avoids unwanted oscillation in the BIS
response [257]. Other investigations have shown benefits
from applying a tracking time-constant as the geometric
mean of the integral and derivative time-constants of the PID
controller [258] and introducing reference shaping (i.e. the
desired BIS index is changed from a step input to a specialized
profile) [170] and integrator anti-windup [259] to prevent
integrator windup during the induction phase. Some alter-
native approaches that have also been shown to improve
the PID controller performance include using an event-based
control scheme, which decreases the variations of controller
signal and optimally cancels the noise and disturbances,
and using an inversion-based methodology, which increases
patient safety by reducing BIS overshoot and producing a
smoother drug infusion rate [260]. From the clinical point of
view, event-based control is similar to manual infusion and is
more transparent to anesthesiologists because they can easily
monitor the drug infusion profile [230].

Additional challenges to controller design stem from the
presence of nonlinearities (i.e., a Hill equation) in the anes-
thesia dynamics. One common approach to handle this
nonlinearity is to linearize (22) around the nominal oper-
ating point (e.g., a BIS value of 50) in the maintenance
phase [261], [262]. This linearization converts (22) into a

constant coefficient km given by

km = −
BIS0γ
4EC50

(41)

where BIS0 is the nominal operating point in the maintenance
phase. However, this approach is not feasible in the induction
phase because the lack of a well-defined nominal operating
point causes a large overshoot in the response due to the
integral term of the controller. Recently, a new approach has
been proposed, which is applicable to both induction and
maintenance phases. This approach uses a linearizing filter
in series with the inverse of the nonlinear part of the Hill
function [257], [263].

Since the structure of PID controllers is generally well-
defined, the selection or tuning of controller gains is very
important. This task is challenging in closed-loop control of
anesthesia, since the gains should be tuned according to the
physiological parameters of each patient [264], [265]. While
trial and error is common in tuning PID controllers [262],
optimization methods, such as genetic algorithms [258],
[266], [267] aimed at minimizing the integrated error, can
increase the performance significantly [259], [268]. Never-
theless, the physiological parameters of patients vary based
on age, weight, disease, and type of surgery being performed,
and presently the available patient data is limited and does not
adequately depict the physiological parameters of all patients.
Therefore, online identification of patient parameters can
be useful for improving the controller performance [269].
Additional studies have shown that the use of gain scheduling
techniques may also be beneficial. In this case, the gains
should be tuned different for different phases of surgery.
During the induction phase, the gains are tuned to follow the
set-point with a reasonable setting-time and low overshoot.
Then, during the maintenance phase, the gains should be
tuned for disturbance rejection. Therefore, when DoH or BIS
levels reach the target value and have stabilized around the
set-point for an adequate time interval (i.e., signaling the
end of induction phase) the controller parameters should be
switched to those tuned for the maintenance phase [223].

Another important point is that PID controllers are
frequently used in different configurations (e.g., PD or PI
only) for different dynamics. However, recent studies have
proved that all three parts are necessary in anesthesia control.
For example, in [270] the derivative part is eliminated to
prevent noise amplification, but the performance in the induc-
tion phase and disturbance rejection in maintenance phase
were less satisfactory for this PI controller than for the PID
case, which had a shorter settling-time and less undershoot in
the BIS response.

3) MODEL PREDICTIVE CONTROL
Model predictive control (MPC) is a robust and optimal
control technique used to handle systems with constraints
while optimizing the controller action and predicting system
outputs for robustness against noise and disturbances. The
applicability of MPC and related strategies (e.g., generalized
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predictive control (GPC)) to medical systems – especially
in closed-loop control of anesthesia – has been verified by
both simulation and clinical results [192], [271]–[273]. The
outstanding features of this controller have recently encour-
aged control engineers to further develop MPC controllers to
address the complex and nonlinear behavior of closed-loop
anesthesia control.

One caveat with standard MPC is the complexity of the
computations used to solve the online optimization problem,
which prevents its use in real-time anesthesia control. This
limitation can be overcome by using a multi-parametric
MPC (mp-MPC) technique, which reduces the complexity
of the computations by solving an offline optimization
problem on an analytical function instead of numerical
solutions [274], [275]. Further, to improve rejection of BIS
noise and surgical disturbances, MPC has been implemented
in combination with advanced state estimation techniques
such as Kalman filtering and moving horizon estimation
(MHE). Simulation results show that the MHE method
has better accuracy and reduced overshoot compared to
Kalman filtering [276], [277]. Likewise, studies have also
shown that the addition of event-based input and state
output correction features to MPC can increase its robustness
against noise and decrease the amount of anesthetic drugs
administered [278], [279].

Another strong point of MPC is its ability to handle
intrapatient and inter-patient variability through online esti-
mation of pharmacodynamic parameters [246], [280], esti-
mation of the slope of the linearized Hill equation at each
time-step [281], [282], and the use of offset-free and state
output correction strategies [278], [283].

Piecewise linear PK/PD models can be used to address the
problem of nonlinearities in the PD model, which represent
one of the main challenges in closed-loop control of anes-
thesia. This technique defines several linear parts in the hill
function to achieve a more accurate linear approximation of
this function [199], [283]. Likewise, multiplying the inverse
of the Hill function

Ce (t) = EC50

(
E0 − BIS (t)

Emax − E0 + BIS (t)

) 1
γ

(42)

into the input command and the feedback signal is a
common approach to cancel the nonlinear part of the anes-
thesia system [284]. Other techniques such as linear model
predictive control (LMPC) [285]. switching the control
strategy of mp-MPC to apply bolus treatments in critical
BIS indexes [277], extended prediction self-adapting control
(EPSAC) [199], and online identification of time delays [280]
can improve the performance of closed-loop anesthesia
as evidenced by reduced settling-times (i.e., obtaining a
faster response), decreased overshoot, and the elimination of
unwanted oscillations from the BIS response.

4) ADAPTIVE CONTROL
Adaptive controllers are frequently applied to systems with
variable or unknown parameters, and implement algorithms

that retune or restructure the effective controller during oper-
ation (i.e., online) [286], [287]. As mentioned, the PK/PD
model of anesthesia is subjected to large (possibly time
varying) uncertainties and its coefficients are different from
patient to patient. Thus, adaptive controllers show promise for
estimating parameters of the PK/PDmodel and improving the
regulation of anesthesia.

Adaptive controllers that adjust their control action by
directly changing controller gains (rather than an internal
model) are known as direct adaptive controllers. One such
method of direct adaptive control is to implement an adap-
tive proportional-integral-derivative control algorithm, which
allows adaptive control of anesthesia without directly using
the PK/PD model [288]. However, in practice, this controller
produced undesirable oscillations and its performance was
considered unacceptable. Some studies have also shown
improvements to the performance of these controllers by
considering the nonlinear uncertainties in the PK model and
designing nonlinear adaptive controllers [289]. Additionally,
neural networks have been used to improve the performance
of nonlinear adaptive controllers for dynamic systems with
complicated uncertainties [290]. In these controllers, states of
the physical system remain in nonnegative orthant of the state
space [291]. The effectiveness of this type of controller has
been investigated by using several experiments and clinical
evaluation [292].

As an alternative to direct adaptive control, indirect
adaptive control uses parameter updating laws to identify
unknown parameters in an internal reference model and
thereby retune the effective controller gains. Several methods
are used to obtain such control laws [235], [293], [294], and
studies have shown that variations between simulated and
real-world control performance can be attenuated by using a
minimally parameterized model with an online identification
strategy (e.g., an Extended Kalman Filter) to design adaptive
nonlinear controllers [213].

Other types of adaptive feedback controllers have also been
designed for anesthesia, including model reference adap-
tive controller (MRAC). However, MRAC controllers based
on standard models do not show significant improvements
in performance over non-adoptive techniques. Alternatively,
MRACs may also be implemented using fractional order
models [295], and the results of studies using frac-
tional order models have confirmed the effectiveness
and robustness of fractional order model reference adap-
tive control (FOMRAC), which can also compensate for
the time delays in the anesthesia system [296]. Simi-
larly, L1-adaptive methods can achieve faster adaptation
than MRAC [297] and have demonstrated good perfor-
mance and inter-patient robustness [298]. In addition,
system identification methods can reduce the order of
patient models while also improving performance over stan-
dard L1-adaptive control [299]. Furthermore, L1-adaptive
controllers can be used to ensure the safe switching between
human-in-the-loop and automated close-loop modes of
operation [300].
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5) FUZZY-LOGIC CONTROL
Since the compartmental models of anesthesia are not
exact representations of the human body and are subject
to variability in system parameters, closed-loop control of
anesthesia can benefit from fuzzy modeling and control.
In fact, fuzzy-logic has been applied successfully to all
three compartments of anesthesia (i.e., hypnosis [301]–[304],
analgesia [305]–[307] and immobility [308], [309]). Some
comprehensive reviews can be found in [173], [310].

The main benefit of using fuzzy-logic for anesthesia is its
ability to express patient models by clustering real patient
data without any knowledge of the underlying physiology.
Most fuzzy anesthesia systems use regular (i.e., type-1) fuzzy
sets, which have members that take crisp values in [0 1];
however, some systems use type-2 fuzzy sets where the
membership values of each element are in another fuzzy set
in [0 1] [311]. Finding the best membership function (MF)
for such fuzzy sets in [0 1] is one of the main prob-
lems with using fuzzy models. To this end, genetic and
neural network algorithms are commonly used to improve
performance and optimize the type-2 fuzzy sets’ parameters
(e.g., footprint of uncertainty (FOU), centroid, and scaling
factors) [312]–[315].

To develop fuzzy control laws, sets of rules are collected
according to the expert opinions of anesthesiologists
regarding the best corrective actions to take under sets of
circumstances. Then, these sets of rules are implemented
with an aim to create a closed-loop system that mimics their
expertise at manual infusion [316]. It should be mentioned
that even with these rules, fuzzy-logic controllers have
not demonstrated suitable performance without also being
combined with genetic and neural network algorithms. Using
these algorithms improves the fuzzy controller by allowing
adaptation in the presence of inter-patient and intrapatient
variability [317].

Frequently, fuzzy-logic controllers are changed to
so-called self-organized fuzzy-logic controllers that are
capable of adapting to changes in the system [318]. However,
these controllers are known to cause steady-state error when
used with bolus type therapy. To overcome this, simple
fuzzy-logic can be used during bolus treatment and the
controller can be switched to the self-organized fuzzy-
logic type once the system is operating near the desired
set-point [302]. As mentioned before, genetic algorithm can
then be used for optimizing the fuzzy-logic model [310].

The majority of the fuzzy-logic controllers are based on
the type-1 set which cannot handle model uncertainties,
and controllers that are based on type-1 sets suffer from
steady-state error in the fuzzy estimation of the desired
set-points. However, these problems can be handled by
changing to type-2 fuzzy sets [319]. Moreover, fuzzy neural
network controllers can be used to handle uncertainties
in anesthesia [320]–[323], but this approach has limited
effects on the type-1 fuzzy sets. So, type-2 fuzzy neural
network controllers are used to solve this problem [324].
Furthermore, controllers based on type-2 fuzzy-logic sets

can be improved by switching to a self-organized strategy,
resulting in self-organized type-2 fuzzy-logic controllers,
which can compensate for control uncertainties [2].
By adding genetic algorithms to find the best membership
function for the self-organized type-2 fuzzy-logic controller,
better results can be obtained in noisy (i.e., real) envi-
ronments at the cost of increased error in the noise-free
environment [311].

As mentioned, type-2 self-organizing fuzzy-logic contro-
llers are effective. However, signal noise and dynamic
uncertainties – such as changes in the PD and PK systems –
can degrade controller performance [325]. In most cases,
merging fuzzy-logic controllers with other control schemes
can ameliorate the final results. For instance, hybridization
of fuzzy-logic with MPC can help to predict the effects of
uncertainties in system [326], [327].

D. OUTLOOK FOR AUTOMATED ANESTHESIA
As mentioned previously, there are four different types of
controllers that are commonly used in the closed-loop control
of anesthesia: proportional-integral-derivative, model predic-
tive, adaptive, and fuzzy-logic controllers. Besides these
controllers, strategies such as observer-controllers [214],
robust and robust deadbeat controllers [221], [264], [328],
nonlinear H-infinity controllers [329], non-overshooting
tracking controller [330], sliding mode controll-
ers [331], [332], and other types of nonlinear controllers [333]
have been studied for use in anesthesia. Some of these
studies have employed performance metrics such as settling-
time, overshoot, undershoot, lowest observed BIS value
(BIS-NADIR), performance error (PE), median perfor-
mance error (MDPE), median absolute performance error
(MDAPE), total variation (TV), integrated absolute error
(IAE), and WOBBLE (an index of response variations over
time) to compare their results and controller effectiveness
to other control strategies in attempts to demonstrate advan-
tages over other schemes and find the most suitable class of
controllers for anesthesia [334]–[337].

From a control systems perspective, most of the controllers
discussed have shown adequate performance. Additionally,
some important studies recently have been done regarding
safety systems for closed-loop of anesthesia [338], [339].
However, due to the safety critical nature of anesthesia and
consequently restrictive laws, from the clinical point of view,
no controller has been completely acceptable for use in a
fully closed-loop anesthesia system yet. In fact, none of the
four controllers discussed are by themselves able to over-
come the complex problem of anesthesia due to the presence
of intra- and inter-patient variability, surgical disturbances,
and nonlinear dynamics. As recent papers indicate [326],
[327], [340], combinations of these controllers – optimized
to leverage their individual strengths – show promise for
improving the performance of closed-loop anesthesia and
achieving acceptable simulation results.

The development of automated anesthesia systems capable
of achieving broad international regulatory approval may
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benefit from improved physiological models designed to
include the interactions of more organ systems, physiological
parameters, and clinical signs for an appropriately diverse
cohort of subjects and surgical scenarios. If such a model
further included all three modes of anesthesia, simulation
results might provide a higher degree of confidence in the
safety and performance of control algorithms at an early
stage. Concurrently, it is also apparent that there is a need
for control relevant anesthesia models with reduced model
complexity while maintaining the ability to capture intra- and
inter-patient variability. The development of suchmodels will
require collaboration between clinicians, anesthesiologists,
mathematicians, and control engineers.

Furthermore, automated anesthesia would also benefit
from developments in clinical monitoring aimed at achieving
significant reductions in measurement noise and time-delays
as well as the realization of methods to quantify specific
aspects of anesthesia. To this end, quantification of the depth
of anesthesia may provide interesting opportunities to inves-
tigate the use of sensor fusion to develop reliable metrics
based on multimodal (and perhaps redundant) monitoring.
Since the nonlinear pharmacodynamics of anesthesia are
difficult to model, the development of methods to measure
the drug concentration in the effect compartment may also
help to remove the need for the corresponding nonlinear
model equations and introduce a new set-point to comple-
ment or replace BIS values. Again considering the short-
comings of current monitoring technologies, it appears that
fully autonomous (unsupervised) anesthesia should not be
employed, until a reliable real-time measure of DoA is
discovered. Under further consideration of the rapidly devel-
oping pharmacological and medical fields, the challenge
presented by possible as-of-yet unknown drug interactions
and patient variability (with respect to DoA metrics) may,
in general, provide sufficient cause to opt for moderated
levels of automation (LOA) in PCLC anesthesia devices
(i.e., always incorporating the anesthesiologist in a supervi-
sory role).

Moving forward, research into the optimal combination of
control strategies has the potential to introduce controllers
that are feasible for real-world use. Of course, any commer-
cial controller for anesthesia should be able to perform prop-
erly in the presence of infusion limitations (e.g., the amount,
rate, and frequency of drug infusion), intra- and inter-patient
variability, noise, disturbances, and nonlinearities, while also
meeting standards for safety and regulatory approval.

V. DISCUSSION AND FUTURE OF PHYSIOLOGICAL
CLOSED-LOOP CONTROL
Considering the historical and current investigations in
PCLCs, including the artificial pancreas and automated anes-
thesia, there are several common issues that must be handled
when implementing control on physiological systems. Chief
among these are the ever-present intra- and inter-patient vari-
ations that come with age, health, genetics, hormones, medi-
cations, physical activity, and a variety of other inherent and

environmental factors. The combination of this variability, its
many pathways, and the complex nature of physiology leads
to challenges in both controller design and system validation.
The presence of inter-patient variability, or differences in the
responses observed between different patients, introduces the
need for controller robustness and a large collection of high
quality clinical data for validation. However, even with a
large collection of data, there remains a question of patient
dynamics that are not represented by the data or have not yet
been encountered. Furthermore, the presence of intrapatient
variability, or changes to the responses observed within a
single patient, introduce time-varying dynamics which may
further introduce either parametric or structural uncertainties.
The overwhelming potential for plant-model mismatch has
led to a wide acceptance of adaptive techniques in PCLC
formulations, used in combination with robust or predictive
control strategies.

Another key issue in PCLC is the presence of strict
constraints on therapy, which often allow only positive
valued control actions (e.g., substances like propofol and
insulin-analogs cannot be removed once injected) and limit
both the rates and amplitudes of applied treatments and
estimated physiological states. Of course, one of the most
important methods in designing systems that combine these
requirements with adaptation and robustness are those based
on predictive control approaches. Then, the application of
prediction to physiological control places a significant burden
on the observers and estimators to provide reliable approxi-
mations of constrained physiological quantities. While there
are arguments for other control methodologies, predictive
control methods have been gaining momentum in PCLC and
are likely to continue as mathematical models of physiolog-
ical and pharmaceutical systems develop.

Changing our focus to a different portion of the feedback
loop, the ability to obtain accurate and on-time measure-
ments is of utmost importance for both safety and perfor-
mance. Thus, the development and availability of improved
sensing technologies will, in part, dictate the success of
PCLCs. Currently, direct access to many measurable phys-
iological states requires highly invasive approaches, which
often cannot be justified for long-term or ambulatory use.
Thus, less accurate, and possibly delayed, measurements are
being used as surrogates, for instance in diabetes, which may
impose significant performance limitations. While weighing
the risks of trade-offs in measurement quality vs. invasive-
ness provides a short-term solution in some fields, there is
an immediate need for improved and miniaturized measure-
ment techniques, perhaps by translation from other fields,
that provide rapid and accurate results without jeopardizing
patient comfort or health. If we consider the case of long-term
PCLC solutions, worn by patients for months or years or in
free-living conditions, other issues arise as well. For instance,
many electrochemical sensors limited lifespans. This case
is evident in the CGM systems used for artificial pancreas
systems, which last at most around 2 weeks prior to replace-
ment and may provide degraded performance at the early and
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late stages of use. Additional concerns with long-term use
include irritation or infections at attachment sites. Further,
the unrestricted environments presented by free-living condi-
tions may lead to cases of unforeseen sensor failures or errors,
similar to the effects of physical activity on subcutaneous
glucose measurements, wherein physiological redistribution
of glucose during exercise may bias subcutaneous measure-
ments. On the contrary, the FDA recently approved the first
fully implantable glucose sensor, which has a 90-day lifespan
and operates on fluorescent sensing technology [341]; new
technologies such as this may provide solutions to some of
the classical issues with GCM.

Finally, the potential for interactions between multiple
drugs or between drugs and sensing elements, as in the case
of Tylenol and some CGM systems, should be considered,
to the extent possible, in future investigations. As PCLCs
mature and data becomes available, it may be possible to
implement such interactions within the in-silico models used
for validation. Thesemodels have already vastly improved the
rate of controller development in the field of diabetes control
and been successful in many other areas as well [342]. The
addition of PK-PDmodels for multiple drugs and known drug
interactions within these models may help identify risks or
possible failure modes in ambulatory use.

Relaxing, slightly, the definition of physiological control
to include systems with a primary goal of achieving a target
drug concentration (rather than physiological effect), there
is additional growing interest in applying control theory to
regulate the concentration of pharmaceuticals within certain
organs/tissues in the human body [285], [343]. While dosage
control alone may reduce the effects of variability in pharma-
cokinetics and indirectly improve regulation of physiological
variables, it is also possible that such dosage control could
be incorporated as a target in future MIMO physiological
control systems. Of particular note in this adjacent field are
the recent success of feedback control using electrochemical-
aptamer-based (E-AB) sensors [344]) and the development
of long-acting bioresponsive pharmaceuticals [345], which
implement a form of analog closed-loop control whereby
tailored drugs remain inactive in the body until stimulated by
biological feedback conditions.

Modern interest in physiological and pharmaceutical
control have helped bring about the development of a new
field distinguished as mathematical pharmacology [346],
which focuses specifically on modeling the pharmacokinetic
and pharmacodynamic properties of substances. Future work
in this field is likely to provide direct support to advanced
automation in medical practice in the form of new and
refined pharmacological models as well as insights into the
classes of models [347] (and therefore control paradigms)
that are well matched to a given drug-dosage or physiological
control problem. Furthermore, the integration of mathemat-
ical pharmacology with systems physiology has the poten-
tial to entrust modeling and control design activities with
the respective experts in each area and alleviate the present
bottleneck wherein control design and validation is faced

with significant uncertainty in part due to the complexity of
physiological and pharmaceutical interactions.

Clearly, the development of mathematical models for
control design [348] and evaluation remain important areas
of research in physiological closed-loop control. Further,
while we have mentioned that some methods of control do
not require an explicit mathematical model, these methods
may be difficult to evaluate in a computational setting, and
considering the risks involved with physiological systems the
immediate future of such methods in PCLC – especially with
regard to regulatory approval – is unclear [9]. Of course,
the effectiveness of model-based control is itself subject
to the appropriateness of the model(s) used for controller
design [348], and a recent review [349] has shown that
many published methods fall short of completely demon-
strating their suitability to the proposed use (e.g., controller
design, closed-loop performance evaluation, hardware-in-
the-loop testing) in PCLC devices. This problem is exac-
erbated by the limited data available to many researchers
as well as the extraordinary range of potential disturbances,
interactions, and variability that affect physiological systems.
Ongoing work in the area of credibility assessment for
computational patient models [349], [350] and the recently
published V&V 40 standard for ‘‘assessing credibility of
computational modeling’’ for medical devices [351] from the
American Society of Mechanical Engineers (ASME) seek
to provide guidance for establishing model credibility based
on the specific context of use (COU), model influence in
decision making (e.g., selection of infusion rate), and conse-
quences of suboptimal decisions [349]. Within this frame-
work, researchers are able to qualify their modeling and
control results with appropriate rigor and can establish the
credibility of models and techniques as new areas of PCLC
emerge. This framework may also have significant value for
justifying comparisons between control and safety strategies.

With all of these ongoing efforts and the promise of
future developments, it seems that the broad introduction of
commercially available PCLCs is now imminent, and the
coming decades will likely see many breakthroughs in this
regard. Thus, pertinent discussions on appropriate regulatory
policy are underway [9], and similar conversations are being
held with regard to ethical implementation of automation
in medicine [352], [353]. The continuation of these discus-
sions and refinement of regulatory and ethical guidelines
is essential to the future of PCLCs, for establishing both
methods of safe practice and guidelines for design, and also
for well-informed selection and use of novel medical instru-
ments by hospitals and physicians.

VI. CONCLUSION
In the years to come, closed-loop medical devices, artifi-
cial intelligence, and networked medical instruments [354]
will begin to emerge along existing medical robotics [355],
[356]; and physiological closed-loop control systems will
become visible within the clinical, home-care, and ambu-
latory environments. Ultimately, it is possible that many of
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these devices will be linked to an electronic health network,
which could maintain critical patient data or even allow
physicians to monitor and adjust treatment goals remotely.
Furthermore, artificial intelligence and machine learning
methods will be the focus of future efforts in the closed-loop
control of medical devices. Such techniques havemany appli-
cations in EEG monitoring and MPC controllers that use
advanced optimization techniques to define the optimized
control action [357]–[361].

The integration of feedback control and artificial intel-
ligence in medical systems has the potential to improve
adherence to prescribed treatment regimens and protocols,
rapidly adapt to new or changing therapy strategies, provide
access to treatment in remote areas, optimize the utilization of
available resources in scenarios with supply limitations, and
increase the capacity of the individual clinician in disaster
response and humanitarian crises. The consistency of treat-
ment and availability of data that follows automation may be
a useful tool for evaluating the performance of certain clinical
practices, validating new treatment options, creating inno-
vative therapies, and enabling the wide-spread availability
of personalized medicine. These achievements, and others
yet to be conceived, will not be obtained without navigating
substantial challenges but appear within reach during the
21st century.
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