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ABSTRACT Emotion information from speech can effectively help robots understand speaker’s intentions in
natural human-robot interaction. The human auditory system can easily track temporal dynamics of emotion
by perceiving the intensity and fundamental frequency of speech, and focus on the salient emotion regions.
Therefore, speech emotion recognition combined with the auditory mechanism and attention mechanism
may be an effective way. Some previous studies used auditory-based static features to identify emotion while
ignoring the emotion dynamics. Some other studies used attention models to capture the salient regions of
emotion while ignoring cognitive continuity. To fully utilize the auditory and attention mechanism, we first
investigate temporal modulation cues from auditory front-ends and then propose a joint deep learning model
that combines 3D convolutions and attention-based sliding recurrent neural networks (ASRNNs) for emotion
recognition. Our experiments on the IEMOCAP and MSP-IMPROV datasets indicate that the proposed
method can be effectively used to recognize the emotions of speech from temporal modulation cues. The
subjective evaluation shows that the attention patterns of the attention model are basically consistent with
human behaviors in recognizing the emotions.

INDEX TERMS Auditory front-ends, 3D convolutions, joint spectral-temporal representations, attention-
based sliding recurrent networks, speech emotion recognition.

I. INTRODUCTION
Speech is the most natural way for communication between
humans and robots. The key point of effective communica-
tion is to make robots or virtual agents understand speakers’
true intentions. However, only using the linguistic informa-
tion is by no means sufficient enough for understanding of
intentions. The vocal emotion information as a kind of non-
linguistic information can significantly help robots or virtual
agents to understand speakers’ true intentions. Therefore,
speech emotion recognition (SER) is the research hotspot in
natural human-robot interaction (HRI). Nevertheless, effec-
tive SER is still a very challenging problem, partly due to
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the cultural differences, various expression types, context,
ambient noise, etc.

In most of the past SER, low-level descriptors (LLDs)
were extracted from speech and were used to classify dif-
ferent emotion states by means of the conventional machine
learning methods such as hidden Markov models (HMM),
Gaussianmixturemodel (GMM), and support vectormachine
(SVM) [1]. However, it is still difficult to find the salient
feature set fromLLDs to recognize distinct emotions, because
of the aforementioned challenging factors. The human audi-
tory system can easily perceive the intensity and fundamental
frequency of speech, and can track temporal dynamics of
emotion from the perceived information and focus on the
salient emotion regions. Therefore, speech emotion recog-
nition combined with the auditory mechanism of auditory
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front-ends and attention mechanism of auditory back-ends
may be an effective way.

In auditory front-ends, temporal modulation cues are
obtained using auditory filtering of speech signal and mod-
ulation filtering of temporal amplitude envelope. These cues
contain rich spectral-temporal information to perceive the
variations of intensity, duration and pitch of speech [2]
and have been widely used in sound-texture perception [3],
speaker-individuality perception [4], speech recognition [5],
and emotion recognition [6], [7]. Most studies extracted the
modulation spectral features (MSFs) from temporal mod-
ulation cues by calculating the spectral centroid, flatness,
skewness, kurtosis, and other statistical features. Wu et al. [6]
showed that the MSFs perform better than the traditional
acoustic features such as Mel frequency cepstral coefficient
(MFCC) and perceptual linear predictive (PLP) coefficient
for SER. Zhu et al. [7], [8] further confirmed that the MSFs
contribute to the perception of vocal emotion. However,
the MSFs are only calculated in each modulation channel and
produce time-averaged static features in those studies. Since
emotion in speech is often communicated by varying tempo-
ral dynamics in the signal, the temporal dynamics are very
important factors in emotion recognition. The MSFs cannot
reflect the real emotion in speech since it lost the important
temporal cues. For these reasons, we should extract the joint
spectral-temporal features from temporal modulation cues to
accurately describe emotion dynamics.

Recent convolutional neural networks (CNNs) show pow-
erful abilities of feature learning and have been used for
acoustic modeling and feature extraction for SER. As human
auditory system responds to joint spectral-temporal patterns
in the speech signal rather than temporal-only or spectral-
only patterns [9]. Inspired by auditory signal processing,
in our previous study [10], we proposed an end-to-end SER
system using 3D CNNs to learn a joint spectral-temporal
feature from temporal modulation cues containing acoustic
frequency components, modulation frequency components,
and temporal features. The modulation frequency compo-
nents consist of six filters spaced on a logarithm scale from
2 to 64 Hz. Such modulation frequency components include
the local information about variations of intensity and dura-
tion. However, it did not take into account of obtaining the
periodicity information about F0 from the modulation fre-
quency band. The frequency band between about 50 and
500Hz is related to the periodicity information about F0,
which has been shown to be important for speech percep-
tion [11]. To obtain both the local features and periodicity
information, in this study, we improve the 3D convolution
model by increasing the modulation filters and reducing the
convolutional kernel size.

To capture the variations of local features and period-
icity information from the feature sequence, we need to
extract utterance-level features for classifying emotional
speeches through time series modeling. Long short-term
memory recurrent neural networks (LSTM-RNNs) have pow-
erful abilities of time series modeling to handle temporal

dynamic information. LSTM can effectively capture the long-
range time dependencies for sequence classification. How-
ever, it cannot avoid the slow training speed caused by
backpropagation-through-time (BPTT) in long sequences.
To reduce the training cost, in [10], the time sequence is
divided into non-overlapping subsequences in extraction of
segment-level features. These discontinuous segment-level
features cannot fully reflect the dynamic changes of real
emotions. From a cognitive point of view, people can obtain
important information by scanning the temporal sequence
continuously and transmit it for higher-level processing.
In addition, people have superior abilities in paying attention
to the emotional regions meanwhile ignoring the emotion-
less regions. Most of studies did not take into account of
the human mechanism how to focus on the emotional seg-
ments while ignoring the emotionless segments. An utter-
ance consists of a number of voiced and unvoiced segments.
The voiced segments can express emotion more than the
unvoiced ones. It is unknown what kind of acoustic features
attract human to pay more attention on the salient emo-
tional regions. Therefore, we will investigate the relation of
the acoustic features and human attention mechanism, and
propose a sliding recurrent method to realize the attention
mechanism. In the temporal attention method, the continu-
ous segment-level internal representations are extracted by a
sliding window, and are used to capture the salient emotional
regions.

To fully utilize the human auditory mechanism and atten-
tion mechanism, in this study, we begin with the investiga-
tion of temporal modulation cues from auditory front-ends
and then find out a method to capture the salient emotional
regions. Based on the achievements, we propose a joint deep
learning model that combines 3D convolutions and attention-
based sliding recurrent neural networks (ASRNNs) as the
back-ends of the SER system. To show the benefit of the pro-
posed model, we evaluate it on the IEMOCAP [12] andMSP-
IMPROV [13] datasets by comparing various models with the
proposed model. Our results show that the proposed model
can achieve better results compared with traditional model
on both datasets. We also conduct the subjective evaluation to
investigate the relevance between the attention patterns of the
temporal attention model and human attention in perceiving
emotional speech.

The main contributions of this work are summarized as
follows:

1) Inspired by the auditory signal processing and
temporal attention mechanism, we propose a speech emo-
tion recognition system that combines auditory perception-
based front-end and attention-based back-end. In this system,
the front-end is used to generate temporal modulation cues,
and the attention-based back-end is used to identify the emo-
tional states in natural speech.

2) We propose a 3D convolution model to obtain both
the local features and periodicity information of emotional
speech by a joint spectral-temporal feature learning from the
temporal modulation cues.
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FIGURE 1. Speech emotion recognition system with auditory front-ends.

3) We propose an ASRNN to continuously scan the tem-
poral sequence and focus on the emotional region. In this
neural network, the continuous segment-level internal repre-
sentations are extracted by a sliding window and focus on the
salient emotion regions using a temporal attention model.

The rest of the paper is organized as follows. In Section 2,
we introduce the auditory front-ends to produce temporal
modulation cues. Section 3 details the 3D convolutions to
learn a joint spectral-temporal feature representation from
those cues and ASRNNs to focus on the salient emotion
regions. In Section 4, we also investigate the impacts of exper-
iments on different situations. We discuss the implications
of this study in Section 5. Finally, we draw conclusions in
Section 6.

II. PROPOSED AUDITORY FRONT-ENDS OF EMOTION
RECOGNITION SYSTEM
A. OVERVIEW OF EMOTION RECOGNITION SYSTEM
An overview of the proposed SER system is illustrated
in Fig. 1. The auditory front-ends of this system are used
to functionally simulate the signal processing in the auditory
system from the cochlea through the thalamus, as depicted in
the left part of Fig. 1.

The auditory front-ends are composed of three parts: audi-
tory filterbank, temporal envelope extraction and modulation
filterbank. The auditory filterbank is responsible to decom-
pose speech signals into acoustic frequency components as a
function of the acoustic frequency analyzer in the cochlea.
In this study, we use Gammachirp filterbank [14] as the
auditory filterbank because this filter is adequate for repro-
ducing psychophysically estimated human auditory filters
over a wide range of center frequencies and levels [15], [16].
Furthermore, temporal envelope extraction from the acoustic
frequency components is used to effectively simulate the
mechanical-to-neural signal transduction in the inner hair
cells (IHCs).

Modern psychophysical models of temporal modulation
processing suggest that the temporal envelope is processed
by joint spectral-temporal modulations [17]. The spectral-
temporal modulation contains the 3D modulated spectrum

with dynamic peaks, which relates directly to speech per-
ception [9]. Hence, the modulation filterbank is introduced
to generate 3D spectral-temporal representations from the
temporal envelope.

The back-ends of this system are depicted in the right part
of Fig. 1. 3D convolutions are firstly used to extract joint
frame-level features including not only variations information
of intensity and duration but also the periodicity information.
Further, ASRNNs are used to focus on the salient emotional
regions by extracting segment-level features in a sliding win-
dow manner and utterance-level features with a temporal
attention model.

B. FRONT-END SIGNAL PROCESSING
In the auditory front-end, the emotional speech signal y (t) is
first filtered by a bank of Gammachirp auditory filters. The
output of the nth channel signal is given by

sg (n, t) = gc (n, t) ∗ y (t) , 1 ≤ n ≤ N , (1)

where gc (n, t) is the impulse response of the nth channel, t
is the sample number in the time domain, N is the number of
channels in the auditory filterbank, and ∗ denotes the convo-
lution. The center frequencies of these filters are proportional
to their bandwidths, which in turn are characterized by the
equivalent rectangular bandwidth (ERBN) [18]:

ERBN (fn) =
fn
Qear
+ Bmin, (2)

where fn is the center frequency of the nth filter, Qear is
an asymptotic filter quality at large frequencies, Bmin is
minimum bandwidth at low frequencies. Filter quality is a
measure of its center frequency divided by the bandwidth.
The most widely accepted is provided by [19] in which Qear
and Bmin are 9.26449 and 24.7, respectively. This impulse
response of Gammachirp filter is the product of the Gamma
distribution and sinusoidal tone.

gc (n, t) = Ata1−1 exp
(
−2πwf ERBN (fn) t

)
× cos (2π fnt + c1ln(t)+ ϕ), (3)
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where Ata1−1exp(−2πwf ERBN (fn)t) is the amplitude term
represented by the Gamma distribution, A, a1 and wf are the
amplitude, filter order, and bandwidth of the filter, respec-
tively. The c1ln (t) term is the monotonic frequency mod-
ulation term, ϕ is the original phase, and ERBN (fn) is a
bandwidth of the auditory filter in fn. The chirping properties
of the Gammachirp filter are largely determined by those of
its ‘‘passive’’ asymmetric filter at all levels and have been
shown to fit those of auditory nerve fibers well [14].

The envelope is extracted using the Hilbert transform to
calculate the instantaneous amplitude se (n, t) of the nth
channel signal. The se (n, t) is computed from sg (n, t) as
the magnitude of the complex analytic signal ŝg (n, t) =
sg (n, t)+jH{sg (n, t)}, where H{·} denotes the Hilbert trans-
form. Hence,

se (n, t) =
∣∣ŝg (n, t)∣∣ = √s2g (n, t)+H2

{
sg (n, t)

}
. (4)

Furthermore, the mth modulation filter in the nth channel
signal is used to obtain the spectral-temporal modulation
signal sm (n,m, t) .

sm (n,m, t) = mf (m, t) ∗ se (n, t), 1 ≤ m ≤ M , (5)

where mf (m, t) is the impulse response of the modulation
filterbank and M is the number of channels in the modulation
filterbank.

This type of signal generates a frequency-domain-specific
time-domain signal for each sub-channel and many sub-
channels comprise the 3D spectral-temporal representation.
Due to the high time-resolution of the spectral-temporal rep-
resentations, a reduction in the number of samples for the
time domain has to be carried out. The reduction in the time-
resolution is simply carried out by downsampling spectral-
temporal representations with an 800-Hz rate. This operation
reduces the sequence length by a factor of 20.

C. MODULATION SPECTRAL REPRESENTATIONS
Figure 2 shows the different emotion examples of the
modulation spectral representation with 32 acoustic chan-
nels and nine modulation channels from the IEMOCAP
dataset. Each utterance comes from the same speaker, named
Ses01F_impro05_F009 (Angry), Ses01F_impro03_F001
(Happiness), Ses01F_impro04_F000 (Neutral emotion), and
Ses01F_impro02_F005 (Sadness), respectively. The y-axis
and x-axis of these representations are acoustic and modu-
lation channels, respectively. Both channels are spaced on a
logarithm-scale frequency. Modulated signals with standard
deviation are projected into the modulation and acoustic fre-
quency space. Panels (a) to (d) in Fig. 2 show the modulation
spectral representations of anger, happiness, neutral emotion
and sadness, respectively. As slow modulation frequency,
particularly below 16 Hz (modulation channel equals to 4),
can extract local information about variations of intensity,
duration, attack, decay, and segmental cues of speech [20].
From these panels, we can find that the different emotion
has different low frequency modulation information, suggest-
ing they could be discriminated from each other. In [10],

FIGURE 2. Different emotion examples of the modulation spectral
representation with 32 acoustic channels and nine modulation channels
from the IEMOCAP dataset.

we therefore used six modulation filters to extract low fre-
quency information (below 64 Hz) for emotion recognition.

Although fast modulation frequency is less important than
slow modulation frequency, it still contains the periodicity
information to reflect emotional changes. Figure 2 also shows
that the periodicity information is retained between the sev-
enth and ninth modulation channels. In addition, for the same
fast modulation frequency, it shows that the acoustic fre-
quency of anger and happiness is higher than that of sadness
and neutral emotion. For this reason, we use nine modulation
filters with upper limit of modulation frequency (512 Hz)
instead of six filters to obtain periodicity information for
emotion recognition.

III. METHODS
As illustrated in the right a of Fig. 1, the proposed back-
ends of the SER system are composed of two components:
3D convolutional model and attention-based sliding recurrent
networks.

A. 3D CONVOLUTIONAL MODEL
Since deep convolutional model keeps the spectral-temporal
translation invariance for speech signal processing, it is
often used to extract high-level features for speech emotion
recognition. Most studies used CNNs to extract 2D fea-
ture representations from speech spectrograms [21], [22] or
Mel-scaled filterbank representation [23], [24]. Recently
some studies proposed 3D convolution models to better cap-
ture the spectral-temporal relationship of the feature repre-
sentations for emotion recognition. Chen et al. [25] proposed
attention-based CRNN from a 3D feature representation by
computing the log Mel-spectrogram with deltas and delta-
deltas for emotion recognition. Kim et al. proposed deep
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TABLE 1. 3D convolutional neural networks architecture.

3D CNNs for spectral-temporal feature learning by divid-
ing the speech signal into several sub-segments and these
sub-segments contain 2D feature maps with 256 points log-
spectrogram for every 20 ms [26]. In this study, the temporal
modulation cues from the auditory front-ends contain 3D
spectral-temporal representation. The back-ends of the SER
system are responsible for extracting high-level features from
the 3D representation. CNNs have superior feature extrac-
tion power inspired from biological neural networks and
can extract high-level local feature representations using the
spectral-temporal receptive field of the neuron. Therefore,
we use 3D CNNs to learn a joint spectral-temporal feature
from the 3D representation for obtaining local features and
periodicity information.

The architecture of 3D CNNs is described in Table 1.
The first convolutional layer (Conv1) is used to extract 3D
features that are composed of acoustic frequency, modulation
frequency, and time sequences. These features are fed into the
next two convolutional layers (Conv2 and Conv3) to model
high-level feature representations for time series. The data
format of the input and output data is designed as ‘‘D×H×
W’’, where D, H, and W are the data in the acoustic channels
(depth), modulation channels (height), and time sequence
(width), respectively. In this study, the input size is set as
32 × 9 × 6000 and the size of the kernels is 2 × 2 × 4.
To reduce computational complexity, the stride for Conv1 is
set to 1 × 1 × 2, and that for the other convolutional layers
is set to 1 × 1 × 1. Each convolutional layer includes batch
normalization and rectified linear unit (ReLU) operations.
Batch normalization is used to accelerate training of deep
network [27]. The first pooling layer (Pool1) before conv2 has
a kernel size of 2 × 2 × 1 and stride of 2 × 2 × 1 with
max-pooling operation. The second pooling layer (Pool2)
has a kernel size of 2 × 2 × 2 and stride of 2 × 2 × 2.
This means that spectral-temporal pooling is executed on
Pool2. The third pooling layer (Pool3) has a kernel size
of 2 × 1 × 2 and stride 2 × 1 × 2. This means that the
acoustic frequency channel and temporal pooling is executed
while the modulation frequency channel remains on Pool3.
The max-pooling operations in each pooling layer is used to
extract robust features against background noise, especially
for the waveform signals. These three pooling layers reduce
the output size of the time sequence by a factor of 20 on the
temporal length. This means that the 3D convolution only

FIGURE 3. Attention-based sliding recurrent networks.

learns the frame-level features in 22.5ms for each point. The
feature maps of the three convolution layers are 20, 32, and
64, respectively. Finally, we obtain the output of Pool3 with
the shape of 750 × 4 × 2 × 64 after transposing the axis of
the tensor then reshape it to 2D shapes of 750× 512.

B. ATTENTION-BASED SLIDING RECURRENT NEURAL
NETWORKS
Part of the attention system of the brain is involved in the
control of thoughts, emotions, and behavior. In human audi-
tory system, selective auditory attention tracks the temporal
dynamics of emotion by continuous scanning and encoding
of the speech signals [28]. Inspired by the selective auditory
attention in auditory system, we propose an ASRNN model
to seize the emotional parts from temporal dynamics infor-
mation in speech. Among them, a sliding window is used
to extract the continuous segment-level emotional features
containing temporal dynamics information. Then, a temporal
attention model is used to capture the important information
related to emotion in each utterance.

1) SLIDING RECURRENT NEURAL NETWORKS
The sliding recurrent neural networks (SRNNs) are used to
continuously extract the intermediate segment-level represen-
tations for short-term sequence depicted in Fig. 3. The input
of the SRNNs is T× D, where T represents the total length of
the time sequence andD represents the feature vector size. xk
is the input to the LSTM block of kth sliding input sequence
with Z time frames.

xk = {x(k,1), . . . , x(k,Z )}, x(k,t) ∈ RD, 1 ≤ t ≤ Z (6)
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Each xk is fed frame-by-frame into the LSTM units. The
formulation of LSTM with peephole connections can be
described by the following equations:

i(k,t) = σ (Wixx(k,t) +Wihh(k,t−1) +Wicc(k,t−1) + bi) (7)

f(k,t) = σ (Wfxx(k,t) +Wfhh(k,t−1) +Wfcc(k,t−1) + bf ) (8)

c̃(k,t) = tanh(Wcxx(k,t) +Wchh(k,t−1) + bc) (9)

c(k,t) = f(k,t) � c(k,t−1) + i(k,t) � c̃(k,t) (10)

o(k,t) = σ (Woxx(k,t) +Wohh(k,t−1) +Wocc(k,t) + bo) (11)

h(k,t) = o(k,t) � tanh
(
c(k,t)

)
, (12)

where i(k,t), f(k,t), o(k,t), c(k,t), and h(k,t) are the input gate,
forget gate, output gate, cell state, and output of the LSTM
block, respectively, at the current time step t. The weight
matrices Wi∗,Wf ∗, and Wo∗ transform xk and hidden state
h(k,t−1), respectively, to cell update c̃(k,t) and three gates
i(k,t), f(k,t), and o(k,t). Finally, bi, bf , bo are the additive biases
of the input gate, forget gate, and output gate, respectively.
The set of activation functions consists of the logistic sigmoid
function σ (·), element-wise multiplication�, and hyperbolic
tangent function tanh(·).
Specifically, we use a bidirectional LSTM (BLSTM) net-

work in this study, where the sequence of received signals
is once fed in the forward direction into one LSTM cell,
and once fed in backwards into another LSTM cell. The
forward LSTM reads the time sequence in its original order
and generates a hidden state fh(k,t) = {fh(k,1), . . . , fh(k,Z )}
at each time step. Similarly, the backward LSTM reads the
time sequence in its reverse order and generates a sequence of
hidden states bh(k,t) = {bh(k,Z ), . . . , bh(k,1)}. The last state
of the forward and backward LSTM cells carry information
of the entire source sequence. We concatenate the last state of
the forward and backward LSTM cells to produce the hk of k
sequence.

hk = [fh(k,Z ), bh(k,1)] (13)

Each hidden state hk contains information of each sliding
window sequence. The hidden states of the recurrent layer
along the different frames of the window are used to compute
the extracted features. The output of this layer for each sliding
window is the cell state vector of the last time frame in each
sliding window. After processing in each sliding window,
we shift S time frames to compute the next sliding window
with the valid padding. The number of sliding window L is
calculated as

L = d(T− Z)/Se. (14)

The BLSTM has 512 hidden units for both directions in
each sliding window. Finally, we create a new sequence with
the shape of L ×1024 to put into the attention model. The
same parameters of the LSTM cell are used in each sliding
sequence, then a new context sequence h is produced.

h = {h1, . . . , hL}, hk ∈ R2D, 1 ≤ k ≤ L (15)

FIGURE 4. Attention weights.

2) TEMPORAL ATTENTION MODEL
Because there are many speech frames that are unrelated to
the expressed emotion, such as silence, the attention mecha-
nism is mainly used to focus only on the significant emotional
part of the speech signal. Recently, some studies proposed
attention models to adjust weights for each of the speech
frames depending on their importance based on LLDs using
a RNN [29], [30]. The silence regions can be addressed
using a voice activity detection (VAD) [31] or by null label
alignment [32]. Wang et al. [31] proposed an attention model
of learning utterance-level representations to improve clas-
sification after using a VAD to filter out silence frames and
mini-batch training in each utterance. Lee and Tashev [32]
extracted high-level representation of emotional states with
regard to its temporal dynamics using the BLSTM approach,
in which they assume that different frames should have dif-
ferent labels and the label sequence should be alternating
between the utterance-level label and a newly introduced
NULL state. Neumann andVu [33] proposed an attentive con-
volutional neural network (ACNN) to test the emotional dis-
crimination of different feature set. In addition, self-attention
based deep model [34], [35] demonstrated the effectiveness
to improve the performances for SER. Unlike these studies,
we apply a temporal attention model to the sliding window
sequence instead of applying one based on LLDs.

Sequence h is fed into feedforward neural networks
then concatenated with sinit , as depicted in Fig.4. Subse-
quently, a ReLU is used to produce non-linear transforma-
tions R(sinit, hk ).

R (sinit , hk) = UkReLU (sinit +Wkhk + bk), (16)

where Wk ,Uk are the trainable parameter matrices, bk is the
bias vector, and sinit is the initial hidden state of the sliding
recurrent sequence. We use the non-linear function of the
ReLU due to its good convergence performance. For each hk ,
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the αk can be computed as follows:

αk =
exp

(
R(sinit,hk )

)∑L
l=1 exp

(
R(sinit,hl)

) . (17)

We then obtain the attention weights αk of each sliding
sequence from the attention model. The output of the atten-
tion layer, attention_sum, is the weighted sum of h.

attention_sum =
∑L

k=1
αkhk . (18)

The weighted sum of sequence h is fed into a unidirec-
tional LSTM cell to obtain a hidden vector hs. The features
concatenated by h and hs are fed into feedforward neural
networks. Subsequently, we use a ReLU as the activation
function, which brings the non-linearity into the networks.
Finally, we use the softmax to produce the emotion state
distribution. To avoid overfitting when training our networks,
we use a dropout rate of 0.5 before feed forward layers during
training.

IV. EXPERIMENT RESULTS
A. EXPERIMENTAL DATASET AND EVALUATION METRICS
We conduct speaker-independent experiments using the
IEMOCAP and MSP-IMPROV datasets. Both datasets are
composed of multimodal interactions of dyadic sessions and
labeled by three annotators for emotions such as happy, sad,
angry, excited, and neutral, along with dimensional labels
such as valence and arousal. In this study, we only use four
emotional categories for both datasets: Happy, Sad, Angry,
and Neutral.

The IEMOCAP dataset consists of five sessions, where
each session contains scripted and improvised utterances
from two speakers (one male and one female). For this
study, we include excitement utterances with happiness ones.
We take 5,531 utterances (1636 happy, 1084 sad, 1103 angry,
1708 neutral) for all sessions. The mean length of all the turns
is 4.55 s (max.: 34.14 s, min.: 0.58 s).

The MSP-IMPROV dataset consists of six sessions in the
same manner (12 unique speakers). Each session includes
all the speaking turns of the improvisation and the natural
interaction based on the 20 target sentences in the improvised
scene. The final dataset contains a total of 7798 utterances
(2644 happy, 885 sad, 792 angry, 3477 neutral). The mean
length of all the turns is 4.09 s (max.: 31.09 s, min.: 0.41 s).

Since the input length for a CNN has to be equal for all
samples, we set the maximal length to 7.5 s (mean duration
plus standard deviation). Longer turns are cut at 7.5 s, and
shorter ones are padded with zeros. The class distribution is
unbalanced in both datasets, especially for MSP-IMPROV
dataset, the number of utterances belonging to happy/neutral
class more than three times that of angry/sad. Unweighted
accuracy (UA) is the average classification accuracy for each
emotion. It is a better measurement if the class distribution is
not balanced. Hence, we use UA as the performance metric
of the proposed framework to avoid being biased to the larger
classes.

TABLE 2. Accuracy comparison of static features on IEMOCAP and
MSP-IMPROV dataset (%).

B. EMOTION RECOGNITION SYSTEM WITH STATIC
FEATURES
Firstly, we investigate the conventional emotion recognition
system with static features which are computed using fixed
statistical functions to the hand-crafted LLDs. We extract
MFCC, emobase2010, IS09 [36], and IS13 ComParE [37]
features using the Munich open Speech and Music Interpre-
tation by Large Space Extraction (openSMILE) toolkit [38].
All features are first normalized by specific z-normalization.
Secondly, to investigate the effectiveness of static modulation
features on emotion recognition, we also extract the MSFs
by calculating the spectral centroid, spread, skewness, and
kurtosis from the modulation spectral representation. For
each feature set, we train a linear SVM model to recognize
the speech emotion using LibSVM [39] and Weka toolk-
its [40]. All results are presented by leave-one-session-out
cross-validation. Table 2 shows the accuracy comparison of
static features on IEMOCAP and MSP-IMPROV datasets.
The best result is 54.9 percent for IEMOCAP using the
original static features with 1,582 dimensions whereas the
best result is 43.2 percent for MSP-IMPROV using the static
modulation features with 160 dimensions. The results also
show that MFCC features achieve the worst results, which
may be due to the minimum number of MFCC features
(only 39 dimensions features). Similar to the results from [6],
the MSFs perform better thanMFCC for emotion recognition
on both datasets. Emotion information from speech changes
dynamically over time, but the static features do not contain
temporal dynamics information which plays a key role in the
emotion recognition process.

C. SETUP OF AUDITORY-BASED DEEP LEARNING MODELS
In the front-end signal processing, we first resample the
speech signal with a sampling frequency of 16000 Hz and
apply a pre-emphasis filter to compensate for the effect of
sound source. We subsequently use normalization to remove
the difference of the speakers by mapping the signal values
to mean 0 and the standard derivation to 1 in each utterance.
The sound-pressure level is set to 60 dB, which approximates
to a normal voice. Furthermore, we introduce the compres-
sive Gammachirp filterbank with 32 filters to provide the
compressive characteristics. The frequency of Gammachirp
filterbank distributed on the ERBN scales is between 0.1 and
8 kHz. The modulation filterbank is also used to control the
envelopes of octave bands from 2 to 512 Hz, consisting of
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nine filters (one low-pass filter and eight band-pass filters).
The low-pass filter is a 2nd order Butterworth infinite impulse
response (IIR) filter with a cut-off frequency of 2 Hz. The cut-
off frequencies of the band-pass filters are equally spaced on
a logarithm scale from 2 to 512 Hz.

In the back-ends of the SER system, a joint deep learn-
ing model combined 3D convolution and ASRNN is used.
To train the model with a speaker-independent property,
we use leave-one-session-out cross-validation. In each exper-
iment, four sessions are used for training the deep model and
one session is divided into two sub-sessions depending on the
gender in both datasets. For all random weight initializations,
we choose L2 regularization. The parameters are learned in an
end-to-end manner, meaning that all parameters of the model
are optimized simultaneously using the Adam optimization
methodwith a learning rate of 1e-4 tominimize cross-entropy
loss. The batch size is 10, and maximum epoch is 30 with
early-stopping. The process stops if the UA does not improve
for 8 consecutive epochs.

D. IMPACTS OF SLIDING WINDOW AND SHIFT LENGTHS
SRNNs are used to obtain continuous internal representa-
tions while maintaining good computational efficiency. The
continuous internal representations can be extracted using a
sliding window. At the same time, computational efficiency
can be improved by segmenting a feature sequence into
multi sub-sequence. However, choosing different lengths of
window and shift will affect the recognition accuracy and
computational efficiency of emotional recognition system.

To reach higher recognition accuracy and computational
efficiency, we investigate the effect of the sliding window and
shift lengths using IEMOCAP dataset. First, the entire fea-
ture sequence is divided into multi-subsequences in a sliding
manner. The length of each subsequence is much shorter than
the original sequence, and the model can be trained rapidly
using BPTT. Then, we run the proposed system five times and
obtain the average accuracy in the case of different sliding
window and shift lengths. We consider the different sliding
window lengths of 10, 20, 30, 40, 50, and 100, which mean
the duration of the sequence from 200 to 2000 ms. We also
consider the shift lengths of 5, 10, and 20, which mean that
it will produce 150, 75, and 38 sliding subsequences in the
same padding manner for the duration of the convolutional
sequence with 750 × 512. When the sliding window length
is 100 with a shift length of 10, the training time of the
ASRNN architecture is close to that of the entire sequence
fed into the recurrent networks. Hence, we do not consider a
longer sliding window that will take longer time in training
the model. One session in the dataset is chosen for testing and
others for training. We find that the computational efficiency
will be improved with the shortening of window length and
the lengthening of shift. But in this case, the recognition
accuracy will decrease due to the inability to extract more
emotional features. In addition, because only the feature of
the last time frame in each sliding window is retained, when
the window length is too long, not only the computational

TABLE 3. Accuracy comparison with different sliding-widows and shift
lengths in ASRNN architecture on IEMOCAP and MSP-IMPROV dataset
(%).

TABLE 4. Confusion matrix (%) of ASRNN with an average accuracy
of 62.6% on the IEMOCAP dataset.

TABLE 5. Confusion matrix (%) of ASRNN with an average accuracy
of 55.7% on the MSP-IMPROV dataset.

efficiency will be reduced, but also the recognition accuracy
will be reduced. The results obtained for each method are
shown in Fig.5. Recognition accuracy is closer when the shift
length is 5 or 10, but it became worse when the shift length
is 20. This figure also shows that the ASRNN architecture
resulted in better accuracy when the sliding window length is
20 or 40. Therefore, we only consider sliding window lengths
of 20 and 40 and shift lengths of 5 and 10.

E. RESULTS WITH ASRNNS ARCHITECTURE
Table 3 shows the recognition results using different lengths
and shift of the sliding window with the ASRNNs archi-
tecture for both datasets. One can see that the ASRNNs
architecture with the sliding window length of 20 and shift
length of 10 performed better than the others, whose recogni-
tion accuracy is 62.6% for IEMOCAP and 55.7% for MSP-
IMPROV. The results are much better than those obtained
using the traditional parameters shown in Table 2. According
to the results, the window length of 20 frames (about 400ms)
is suitable for expressing segment-level emotions, while the
shift length of 10 is better for classification than that with
the shift length of 5. Comparing with the best results of
traditional recognition system in Table 2, the proposed system
achieved+7.7 and+12.5% absolute accuracy improvements
on IEMOCAP andMSP-IMPROV, respectively. These results
indicate that the proposed system with temporal dynamics
information is better to recognize emotional states than the
conventional system with static features.
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FIGURE 5. The impact of sliding window and shift length on recognition
accuracy.

Table 4 and 5 show the confusion matrix of the best results
for the IEMOCAP and MSP-IMPROV datasets, respectively.
In general, the class distributions of the confusion matrix
for different session are basically similar. One can see that
happiness is easily confused with neutral emotion and vice
versa. Anger is more easily misclassified as happiness than
happiness being misclassified as anger. Unlike the study [41],
the proposed system reduces the confusion between anger
and happiness categories to a major extent, especially in
MSP-IMPROV. Sadness is easily confused with neutral emo-
tion in IEMOCAP, while it is easily confused with happiness
in MSP-IMPROV. The confusion in the proposed method
mainly happen between the neutral one and the others. This
implies that emotion recognition based on auditory front-ends
is basically consistent with people’s recognition of emotion.
In terms of the databases, the overall performance on IEMO-
CAP is better than MSP-IMPROV. The reason for this seems
to be that the MSP-IMPROV dataset is highly imbalanced.

F. IMPACTS OF MODULATION CHANNEL, SLIDING
WINDOW AND ATTENTION MODEL
In order to evaluate the effects of modulation channel number,
sliding window and attention model on the SER system,
we design a number of comparative experiments in different
situations.

First, we evaluate the effects of the nine modulation fil-
terbank in obtaining local features and periodicity informa-
tion by comparing it to the one with six modulation filters
(ASRNN-6MFB). ASRNN-6MFB is set as the same layers
as the ASRNN, but different inputs shape of 32 × 6 × 6000
result in different kernel and stride. Compare to ASRNN,
the difference is that the kernel and stride are 2×1×2 instead
of 2 × 2 × 2 in Pool2. In addition, the convolutional maps
are 40 instead of 64 to keep similar features in each frame.
Finally, the output shape is 4 × 3 × 750 in pool3. Then this
layer is reshaped to 2D shapes of 750× 480.
Second, an attention-based recurrent neural network

(ARNN) is designed to evaluate whether the sliding win-
dow can obtain more temporal dynamics information or not.
ARNN is a special case of an ASRNN. That is, when the
sliding window length of an ASRNN is equal to the length of
the entire convolution sequence and the shift length is equal

TABLE 6. Accuracy comparison (%) between RNN architectures on the
IEMOCAP and MSP-IMPROV dataset.

to 0, it becomes an ARNN. Hence, the attention model is used
on the entire time sequence.

Third, SRNNs with max and mean pooling are designed to
evaluate whether the attention model can seize the emotional
regions. A SRNN has the same sliding window and shift
lengths as the ASRNN. There are two types of pooling used
in a SRNN: maximum and average, denoted as SRNN-Max-
pooling and SRNN-Mean-pooling, respectively. These mod-
els mentioned above use the same convolutional networks
with the input shape of 32× 9× 6000.

Table 6 shows the comparison of results on different
types of SRNNs with attention and non-attention models and
one ARNN. Compared with ASRNN-6MFB, the ASRNN
achieves the same improvements of +0.9% on both datasets.
This means that the proposed system with nine channels
may extract more information from speech than ASRNN-
6MFB. Compared with the ARNN, the ASRNN achieves
+1.3% and +0.5% absolute improvements on the IEMO-
CAP and MSP-IMPROV datasets, respectively. This means
that the segment-based attention model is better than frame-
based attention model. Compared with SRNN-Max-pooling
and SRNN-Mean-pooling, the ASRNN achieves +0.9% and
+1.5% absolute improvements on the IEMOCAP and MSP-
IMPROV datasets, respectively. This means that the attention
model is better than max- and mean-pooling.

G. LISTENING TEST FOR TEMPORAL ATTENTION
Recently, Kell et al. [42] demonstrated that a deep neural
network made human-like error patterns. If our attention
model reflects human mechanism, its result should be similar
to human behaviors when they recognize speech emotion.
For this reason, a listening testing is designed to evaluate the
similarity of the behaviors between the proposed attention
model and human. Thirty sentences from IEMOCAP dataset
are used for the listening tests. Each sentence with a duration
between 4.5 to 7.5 s is presented to at least 25 listeners
(14 female and 11 male with ages ranging from 20 to 28)
in random orders. The listeners are asked to concentrate on
listening to each utterance and choose the two locations that
best show the emotions of the utterance.

Figure 6 illustrates an example of comparisons between
the attention model and human temporal attention. The top
panel shows the waveform of an emotional sentence, and the
upper middle panel shows the spectrogram of the sentence.
The lower middle panel shows the attention weights (αi)
that are calculated based on auditory front-ends and deep
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FIGURE 6. Analysis and comparison of attention model and human
selective attention for test example. Top panel: raw waveform
(Ses01F_impro04_F033.wav from IEMOCAP dataset); upper middle panel:
spectrogram; lower middle panel: attention weight (αi ) over sliding
window time sequence; bottom panel: histogram shows attention
numbers for subjective judgments, and dashed line shows
moving-average with 2 data points.

frameworks. The bottom panel shows a histogram that is
the point numbers of attention position given by subjective
judgements, and a dashed line that is the moving-average
on two neighbor data points. One can see that the curve
of the attention weights is similar to that of the subjec-
tive judgment. Pearson’s correlation coefficient is used to
quantitatively measure the similarity between the attention
model and human temporal attention. The correlation coef-
ficient is P = 0.552 (ρ< 0.001) between the attention
weights and histogram in this particular utterance. If we
calculate the correlation between the moving average values
and the attention weights, the correlation coefficient becomes
P = 0.715 (ρ < 0.001). This indicates that there is a
strong correlation between human temporal attention and
the attention model. This implies that the proposed attention
model can reflect human selective attention to a large extent.

V. DISCUSSION
Taking into account, that the human auditory system has a
very strong ability to perceive the intensity and fundamen-
tal frequency of speech, furthermore, it can track temporal
dynamics of emotion from the perceived information and
focus on the salient emotion regions, therefore, we propose a
SER system by combining auditory mechanism and attention
mechanism of human auditory system.

The auditory front-ends of the SER system are used to
produce temporal modulation cues, which contain local fea-
tures and periodicity information of emotional speech. Dur-
ing the process of temporal modulation cues extraction,

TABLE 7. Accuracy comparison of proposed system and other systems on
IEMOCAP and MSP-IMPROV dataset (%).

an additional correlation in neighboring channels will be
introduced because of the partially overlapped frequency.
Traditional methods use discrete cosine transform to de-
correlate the temporal modulation features in the acoustic and
modulation frequency domains. Since CNNs can successfully
de-correlate the features in neighboring channels, we directly
use 3D CNNs to learn a joint spectral-temporal feature from
temporal modulation cues. Furthermore, temporal dynamic
information is obtained by continuously scanning the tempo-
ral sequence and then is transmitted to higher-level process-
ing center. To focus on the emotional regions while ignore
the emotionless regions, an attention model is used to extract
utterance-level features.

To show the benefit of the proposed model, we compare
our results with the studies [41], [43], [44] on both datasets as
presented in Table 7. In [43], the authors used Mel filterbank
features as the input to CNNs and showed that CNNs with
these features can produce competitive results to the popular
feature sets. In [41], the authors used Log-Mel filterbank
features as the input to autoencoder and used attentive CNN
for representation learning. In [44], the authors used raw
speech as input to parallel convolution layer and showed
that CNN-LSTM can capture multi-temporal dependencies.
Compared to these studies, we are achieving the better result
of 62.6% and 55.7% respectively on both datasets using
3D convolutions and ASRNNs from temporal modulation
cues. This indicates that the auditory front-ends can provide
spectral-temporal representations, and deep frameworks can
effectively extract emotional information from such represen-
tation for emotion recognition.

In addition, four representative studies with reported
results on IEMOCAP are selected as comparisons. In [45],
the authors used static features of LLDs for representation
learning, and deep belief network for emotion recognition.
In [46], the authors used FFT bins with autoencoder for rep-
resentation learning, and used RNN to identify the emotion
states. In [47], the authors used attention-based BLSTMmod-
els on LLDs for emotion recognition. Additionally, compared
with our previous study [10], we are able to obtain faster
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training speed with SRNNs, and this system can better iden-
tify happiness and anger. This may be benefited by the
9-channel modulation filterbanks that contain fundamental
frequency information, which is important for emotions.
In contrast, our study exceeded the accuracy compared to the
leading studies.

Other studies used attention models to identify emotions
on IEMOCAP databases, but the experimental conditions are
different. For example, [25], [29], [30] did not merge happy
and excited into one class, while [33] just reported weighted
accuracy. Unlike these frame-based attention models, we use
a sliding window based attentionmodel to focus on the salient
emotion regions. The results of experiments showed that
this model can effectively obtain the emotional information.
The subjective evaluation shows that the attention patterns
of the attention model are basically consistent with human
behaviors in recognizing emotions.

VI. CONCLUSION
We proposed a SER system using 3D convolutions and
attention-based sliding recurrent neural network based on
auditory front-ends. As the human auditory system is pow-
erful in spectral-temporal signal analysis and processing,
an auditory model, which mimics the function of the human
auditory system, is used as a front-end to extract spectral-
temporal features in the SER system. Additionally, compared
with modulation spectral features, these 3D features contain
temporal dynamics characteristics and can avoid the modula-
tion correlation problem.

Considering that local features and periodicity informa-
tion can better express emotions, we used 3D convolutions
to extract frame-level features from nine modulation filters.
We then used recurrent networks to obtain temporal dynamics
information in each utterance. We also used an attention
model to focus on the emotionally salient parts of a speech
signal. Therefore, we propose a joint deep learning model
that combines 3D convolutions and attention-based sliding
recurrent neural networks. To the best of our knowledge, this
is the first study on speech emotion recognition combining
auditory and cognitivemechanisms. Our experiments demon-
strated that the proposed system can obtain spectral-temporal
representations and exhibit better recognition accuracy com-
pared to that of state-of-the-art SER systems on both datasets.

In summary, an auditory model as a front-end can extract
rich spectral-temporal information, and the proposed sys-
tem can effectively extract high-level features for emotion
recognition. This system is possibly applied to other audio-
event perception and recognition. For future work, we plan
to conduct an experiment using categorical and dimensional
speech emotional datasets to analyze noise-robust emotion
recognition. In addition, inspired from the study [48] using
a filterbank layer in DNN to learning the filterbank features,
we plan to design the auditory and modulation filterbank
layers to produce 3D spectral-temporal representations for
emotion recognition.
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