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ABSTRACT This paper presents the control modelling and synthesis using a coupled multivariable
under-actuated nonlinear adaptive U-model approach for an unmanned marine robotic platform. A nonlinear
marine robotics model based on the dynamic equation using the Newtonian method and derivation with
respect to the kinematics equations and rigid-body mass matrixes are explained. This nonlinear marine
robotics model represents the underwater thruster dynamics, marine robotics dynamics and kinematics
related to the earth-fixed frame. Coupled multivariable nonlinear adaptive control synthesis using a U-model
approach for the Remotely Operated Vehicle (ROV) and Unmanned Surface Vessel (USV) represent an
unmanned marine robotics application. A comparison is presented for the proposed nonlinear control
approach between the U-model control approach with nonlinear Fuzzy Logic Control and Sliding Mode
Control for the ROV and USV platforms. The results show minimum mean square error values and tracking
performance between the plant or system model with the proposed method. Lastly, robustness and stability
analysis for the proposed U-Model nonlinear control approach are presented by implementing an adaptive
learning rate value.

INDEX TERMS Adaptive control, nonlinear, ROV, underactuated, unmanned marine robotics, USV.

I. INTRODUCTION
The robotics platform has become popular in many applica-
tions that involve land, sea and space. It can be fitted with
various equipment, sensors and transducers for specific tasks.
Unmanned marine robotics can be used efficiently to under-
stand ocean characteristics and water environment issues and
to protect the natural resources from these effects. Based
on the current advancements in telecommunications technol-
ogy, embedded controllers, open source systems and other
related technology, robotic platforms can be deployed and
controlled anywhere in the world, including harsh marine and
water environments without human intervention. Unmanned
marine robotics can be divided into two categories, namely
unmanned surface vessels (USV) and unmanned underwater
vehicles (UUV). UUV can be divided into two categories
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such as remotely operated using an umbilical cord or a
remotely operated vehicle (ROV) and the second is with-
out an umbilical cord or an autonomous underwater vehicle
(AUV). USVs are operated on the surface of the water similar
to a moving ship or vessel. However, a UUV is operated
underwater. An ROV has an umbilical cord or a power and
data cable extending from the surface to the vehicle. Thus,
the vehicle can be controlled remotely from the surface while
an AUV is operated autonomously. An ROV can perform
with online data and for a longer duration underwater with
heavy equipment due to the unlimited power supply from the
surface with a limited coverage area while an AUV can cover
a wide underwater area without any supervision and with a
reduced operating crew. An AUV platform can manoeuvre
freely underwater using underwater thrusters or by using
a buoyancy engine mechanism that works by decreasing
or increasing the buoyancy force. This functions intermit-
tently much like an underwater glider for better coverage.
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During the early development phase, these unmanned robotic
platforms are made to achieve a specific operational task, but
now such platforms can be used to performmultiple tasks and
satisfy various objectives. With different designs and shapes,
unmanned marine robotic platforms are highly nonlinear,
underactuated with a limited control actuator, highly cou-
pled in motion and vulnerable to external disturbances. The
underactuated system needs to overcome the nonlinearity of
the dynamics plus any disturbances and uncertainties arising
from the marine environment [1]–[6]. The descriptive details
of the unmanned marine robotic classes can be seen in Fig. 1.

FIGURE 1. Unmanned marine robotic platforms [7]–[10].

Most of the platforms are multiple-input multiple out-
put (MIMO) due to the installation of multiple sensors and
transducers onboard. Unfortunately, there is no such precise
approach for nonlinear control and modelling frameworks in
the presence of external disturbances. In significant cases,
the control framework outline strategies for nonlinear control
systems vary from one framework to another. A few method-
ologies are described for nonlinear control framework plans
in the literature which attempt to represent nonlinear control
systems.

The underactuated trajectory control problem of an AUV
in the presence of environmental disturbances was proposed
by [11]. This scheme implemented the barrier Lyapunov
function for control law combined with a backstepping algo-
rithm, and a radial basis function neural network (RBFNN)
with dynamic surface control for solving the effects of
external disturbances. The proposed method was compared
with the quadratic Lyapunov function and produced bet-
ter tracking results via simulation. Another underactuated
trajectory control approach for an AUV under perturba-
tions was achieved using adaptive sliding mode control [12].
The sliding mode adaptive control was compared to the
generalised super-twisting algorithm (GSTA) sliding mode
via experiment using a Leonard ROV. The adaptive slid-
ing mode method converged onto the desired input better
than the GSTA approach with a reduced root-mean-square
error value. Another control approach for the ROV platform
used a double-loop sliding mode control for improvement
of chatter reduction and to lower the root mean square error
value [13]. Those authors introduced a novel switching term

to replace the conventional switching term for sliding mode
control. Several other works employed the sliding mode con-
trol approach for an AUV such as in [14], [15]. A recent
sliding mode control approach for improved stability and
convergence speed in the presence of chattering effect using
time delay estimation and control is implemented in real-time
for similar applications [16], [17]. An adaptive fuzzy sliding
mode controller was proposed to estimate the nonlinearity
of MIMO underwater vehicles in [18]. This method was the
combination of two different nonlinear controllers aimed to
counter the dynamics, chatter effect from the sliding mode
control and from external disturbances. The fuzzy logic con-
trol approximates the coupled dynamics of the AUV. How-
ever, this method needs to be integrated with the sliding mode
controller for stability analysis and the systematic control
design method. The controller design was more complex and
has a higher computational demand. The fuzzy logic control
could reduce the chatter effect caused by the discontinuity
of the sliding mode control system excited by unmodelled
dynamics. In [19], a trajectory 3-D tracking control system
was addressed for an AUV with a prescribed performance
under model uncertainties and external disturbances. Con-
trol tracking with a specified performance converged to the
desired values with minimal error. However, only specified
performances are presented for torpedo-like MIMO vehicles
and unicycle-like MIMO vehicles.

However, for USV applications the controller design can
be challenging due to the need for rapid changing speed and
manoeuvres. The nonlinearity effect will be severe during
high speed manoeuvres thus the controller performance will
be reduced or even fail. This is because the body of the USV
platform is in direct contact with the water surface that influ-
ences the hydrodynamic flow. In [20] another combination
of different controllers or a hybrid approach was employed
for underactuated USV speed and heading control. A port-
Controlled Hamiltonian controller and a back-stepping con-
trol method were combined for fast dynamic response and
minimum controller energy usage. However, the USV model
neglected drag and disturbance uncertainties. A new control
law approach of trajectory tracking of the USV with dis-
turbance parameters was proposed by [21]. The controller
implemented dynamic surface control and active disturbance
rejection control. The stability was proven through the Lya-
punov function and the controller performance was compared
via simulation with the slidingmode control. Another method
of an underactuated and coupled system was by using an
adaptive path following control for the USV. Adaptive neural
networks (NN) including an active surface with minimal
learning parameters was implemented to overcome parameter
uncertainties and nonlinear disturbances [22]. RBFNN was
embedded with the controller for rejection of uncertainties
and nonlinear function approximation. These works demon-
strated a smaller computational demand during the control
synthesis process. However, this work naturally could not
attend to every detail of the control design. Another USV
control approach in [23] introduced an integral line of sight
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for an extensive path following task. A modelling framework
was established by considering the kinematic and dynamic
disturbances to formulate a control law. Using a complex
modelling approach, the control law was defined based on
the control objectives and to sustain the stability conditions.
A multi-loop adaptive control approach, with estimated dis-
turbance rejection for similar applications, is presented and
analysed by [24].

It is desirable to have a control structure that is capa-
ble of overcoming external disturbances without involving a
complex mathematical and modelling approach. A reference-
based model approach such an internal model control (IMC)
structure can be implanted for a control strategy without any
predefined precise mathematical modelling plus it includes
a disturbance rejection capability. In [25], an IMC control
structure was implemented for the rotors of a nonlinear
MIMO vertical take-off and landing unmanned aerial vehicle
(UAV). The relationship of the derivatives of the output and
the changes in the tracking error were defined for the inverse
implementation of the dynamic model. Then a flatness prop-
erty was created for which all the system states and inputs
could be determined from the outputs without any integration.
The control system converged to the desired values with good
system stability.

Other work was done by [26] using two degrees of free-
dom IMC-PID with logarithmic approximations for the load
frequency controller of a power system. The inverse com-
ponent made use of a low pass filter to reject any load
disturbances. The control structure required another feedback
controller to counteract the effects of befuddling or mis-
matching. The results showed good performance in terms of
error analysis, settling time and disturbance rejection. Based
on the literature, a variety of approaches are available when
designing a nonlinear controller for an unmanned marine
robotics platform, especially for the underactuated model
and these approaches can be highly robust against external
disturbances. It is difficult to design a controller that is suit-
able for all varieties of unmanned marine robotics due to
the different operating requirements such as slow speed for
the AUV platform and nominal to high speed for a USV
in the presence of external disturbances.

The existing controller for unmanned marine robotic appli-
cation mostly implemented decoupled technique for faster
modelling and computation process. The approach is suitable
for fully actuated system and some modification and assump-
tion must be made for underactuated unmanned marine
robotics platform. This paper implements a nonlinear cou-
pled and multivariable adaptive control synthesis using the
U-model for nonlinear unmanned marine robotic applica-
tions. Recently, U-model control technique has been imple-
mented for SISO and MIMO in different process control
engineering [27]–[29] and nonlinear dynamic plant [30].
Then implemented in robotic manipulator system by [31]
and implemented for depth control of underwater glider
platform [32]. Due to the nonlinearity of the platforms, the
U-model control approach is further improved by applying

a neural network algorithm for capturing nonlinearity in the
system. This method also proven in term of improving the
convergence speed. This control synthesis method uses only
single-layer neural networks with an RBF activation function
that has been implemented by [33]–[36]. This paper presents
U-model based adaptive control approach for multivariable
underactuated systems. The proposed approach is designed
to be robust in rejecting external disturbance under payload
variations for unmanned marine robotics applications using a
simplified model and controller architecture.

This paper is organized as follows. Section II pro-
vides the nonlinear U-model modelling and control
approach. Section III presents the convergence and robustness
analysis of the proposed work. Section IV simulation param-
eters and controller comparison with Fuzzy Logic Control
and Sliding Mode Control. Section V present the unmanned
marine robotics modelling while section VI presents the
result and discussions and conclusion of this work in
section VII.

II. NONLINEAR U-MODEL MODELLING & CONTROL
A. NONLINEAR INTERNAL MODEL CONTROL APPROACH
An Internal Model Control (IMC) is selected as a nonlinear
modelling control framework. Fig. 2 shows an IMC control
structure. IMC approach is a popular choice in process control
applications and effective with linear plants [25].

FIGURE 2. General IMC structure.

The IMC control structure consists of a reference
input R(t), a linear or nonlinear system Gs, a model of Gs
or GM , the controller as the inverse of GM in the presence of
unknown external disturbance D(t) and output of the nonlin-
ear system Y(t). The output Y (t) is compared with the model
output YM (t) to calculate the error E(t). The closed loop
system of the IMC control scheme can be expressed by [37]:

Y (t) =
(R (t)− D (t))GM−1Gs
1+ (Gs− GM )GM−1

+ D (t) (1)

Rearranging Eq. (1), we get,

Y (t) =
GsYM−1R (t)+ (1− YM−1YM )D(t)

1+ (Gs− YM )YM−1
(2)

Eq. (2) shows that according to IMC scheme, if the system
can be truly modelled and the model can be inverted, it is pos-
sible reject the disturbances and output tracking is achieved.
Therefore, the IMC tracking problem transforms to identi-
fying a true model and its inverse. Recently, U-model has
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been used for certain process control, robotics and other non-
linear SISO and MIMO applications. Therefore, this paper
focuses on MIMO U-model based methodology for under-
water marine applications.

B. COUPLED UNDERACTUATED MIMO NONLINEAR
ADAPTIVE U-MODEL CONTROL SYNTHESIS APPROACH
The representation of a nonlinear equation using a Non-
linear AutoRegressive Moving Average with eXogenous
input (NARMAX) is desirable due to the expansion of the
nonlinear functions. It can be portrayed to a wide class of
nonlinear frameworks [38]. NARMAX is a nonlinear func-
tion that consists of lagged output, input and prediction errors.
The equation can be expressed as:

y (t) = f (y (t − 1) . . . y (t-n) u (t − 1)

. . . (t-n)+ d (t − 1) . . . d (t-n)), (3)

The U-model can be obtained by expanding the NARMAX
as in (3) as a polynomial of the control variable, u(t − 1) as
follows:

y (t) =
N∑
j=0

βj (t) uj (t − 1)+ d (t) (4)

where N is the degree of model input u(t − 1), βj(t) is a
function of past inputs and outputs u(t − 1), . . . , u(t − n),
y(t−1), . . . , y(t−n) and errors d(t−1), . . . , d(t−n). βj are
matrices and updated online using the gradient descent algo-
rithm. In this work, the normalised least mean square (nLMS)
approach is used for updating the parameters. The SISO
U-model can be extended for a n-input ×r-output multivari-
able system as a function of the control variable, U (t − 1)
as:

Ym (t) = G(U (t − 1)) =
N∑
j=0

BjU j (t − 1)

Ym (t) = B (t)U (t − 1) (5)

Ym(t) is an r×1 output vector, andU (t−1) is the n×1 control
input vector. Bj = [B0,B1, . . . ,BN ] are system parameters
and function of past inputs and outputs. N is the degree of
the multivariable polynomial U j(t − 1) is the vector with jth

power of the ith control inputs, Ui (t − 1) as,

U j (t − 1) = [U j
1(t − 1)U j

2(t − 1) . . .U j
n(t − 1)]T (6)

A coupled MIMO nonlinear U-model control structure for
n-inputs and r-outputs is shown in Fig. 3.
Thus, the formulation of the coupled underactuated n-input×
r-output MIMO nonlinear U-model can be described as
Eq. (7-11):

Y (t) =
[
Y1 (t) ,Y2, (t) , . . .Yr (t)

]T (7)

U (t) =
[
U1 (t) ,U2, (t) , . . .Un (t)

]T (8)

R (t) =
[
R1 (t) ,R2, (t) , . . .Rr (t)

]T (9)

YM (t) =
[
YM1 (t) ,YM2, (t) , . . .YMr (t)

]T (10)

FIGURE 3. Coupled MIMO nonlinear U-model based IMC Structure.

E (t) =
[
E1 (t) ,E2, (t) , . . .Er (t)

]T (11)

As an example of MIMO underactuated coupled U-model, a
2-input and 3-output U-model is demonstrated in Eq. (12).Y1Y2
Y3

=
B011 B111 B211 B311 B021 B121 B221 B321
B012 B112 B212 B312 B022 B122 B222 B322
B013 B113 B213 B313 B023 B123 B223 B323



×



1
U1
U2
1

U3
1
1
U2
U2
2

U3
2


(12)

All the inputs and outputs are coupled through the param-
eters, Bjrn. The subscripts j, r and n, represent the jth power
of control signal, r th output, and nth control input. Most of
the marine robotic applications implement decoupling tech-
niques to reduce difficulties during the modelling process.
The shortcoming of this process is that it tends to reduce
the efficiency of designing an excellent nonlinear controller.
This novel coupled underactuated modelling approach can
overcome the nonlinearity due to the dynamic interaction
between the parameters and the disturbances.

The identification accuracy depends on the estimates of the
system parameters, Bj. The parameters are recursively iden-
tified using nLMS algorithm. To enhance the identification,
a nonlinear approximation using the Radial basis function
(RBF) [39]–[41] approach is incorporated with U-model in
order to capture the actual dynamics of the unknown nonlin-
earities in the ROV model. RBF has been reported to capture
nonlinear dynamics with a single layer [36]. Integration of the
U-model with an RBF nonlinear approximator will enhance
the nonlinear modelling process such as in the previous work
of the current authors [35]. The RBF is used to identify the
only first element,B0ij, in theU-model as in given by Eq. (13).

B0ij = W (t) φ (t) (13)

The activation function can be expressed as in (14).

φ (t) = exp

(
−
‖u(t − 1)− ci‖2

β2

)
, for i = 1, 2, . . . , n

(14)
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where n is the number of hidden layer neurons, ci is the centre
of the ith hidden layer (c1, c2, c3..cn)node and β is the width
of the activation function. Hence, the RBF weightsW (t) and
the U-model parameters Bj(t) (j = 1, 2,N ) are updated using
nLMS as in Eq. (15) and Eq. (16).

W (t + 1) = W (t)+ µ (t)E(t)φ (t)T (15)

Bj (t + 1) = Bj (t)+ µ (t)E(t)U j (t − 1)
T

(16)

The establishment of control law depends on development
of the inverse of U-model. Since the U-model is a polyno-
mial equation of the control signal U (t − 1), the control
law can be synthesised using any polynomial root solving
approach. The controller outputU (t−1) is obtained using the
Newton-Raphson algorithm root solving method. Selecting
the previous control signal as the initial value for the next time
instant using Newton-Raphson is given by Eq. (17) [42]:

Ui+1 (t − 1) = Ui (t − 1)− G′ (Ui (t − 1))−1

× (G(Ui (t − 1)− x (t)), (17)

where i is the iteration index, x(t) is the input to the controller
or the feedback error, Ui(t − 1) is the output of the con-
troller andG′ is the Jacobianmatrix with differential elements
between all the outputs and the inputs [36]. µ (t) is the nLMS
learning rate and has impact on convergence and robustness
of the overall algorithm discussed in the next section.

III. CONVERGENCE AND ROBUSTNESS ANALYSIS
A. CONVERGENCE AND ROBUSTNESS ANALYSIS FOR
AN UNDERACTUATED MIMO NONLINEAR
ADAPTIVE U-MODEL
The IMC structure guarantees tracking in the presence of
disturbance subject to the stability of overall feedback control
loop. This requires the actual system to be stable at first place.
For a stable system, overall closed loop stability is guaranteed
if the model is a good stable approximation of the system
and the inverse controller is also stable. Since, in U-model
based IMC, the model is a polynomial in control variable of
finite order and the inverse controller is the solution of the
polynomial, both model and controller are stable. Therefore,
the only condition for overall stability is to have the U-model
convergence to the stable system [43]. The adaptive U-model
implements recursive update procedure for weights update
as in Eqs. (15) and (16) within a proper adaptation gain or
learning rate value. This value should be in optimum range in
order to converged to the desired value. It should neither too
large and too small which would lead the system unstable and
slowing the convergence process. Trial-and-error approach
can be a common practice for learning rate value selection.
Starting with smaller value of learning rate, that normally
result in slower convergence speeds especially for multivari-
able systems with many weights mat effected amount of
computation time. It is desirable to have an optimal learning
rate with faster convergence speeds and keeping the algo-
rithm stable. In this section, the selecting method of learning
rate in order to guarantee robust tracking in the presence of

noise and modelling uncertainties and to guarantee a faster
convergence speed are discussed as in [44], [45]. Robustness
and the stability of the control system can be defined as an
ability to overcome external disturbances. A minor change
of the external disturbance will lead to smaller changes in the
estimation error. Robustness can be achieved if the ratio of an
estimation error energy (EE ) to the disturbance energy (DE )
are upper bounded by positive constant as below:

EE
DE
≤ 1 (18)

Introducing a disturbance noise signal arising due to mod-
elling error and noise D(t). Based on Eq. (16), defining the
optimal parameters of the actual system as B̀(t), the param-
eters can be estimated as B̃ (t). Based on the IMC approach
the modelling error can be defined as:

E(t) = Y (t)− YM (t) (19)

where the actual output is:

Y (t) = B̀(t)U (t − 1)+ D(t) (20)

And the model output is

Ym (t) = B̃ (t)U (t − 1) (21)

Therefore, Eq. (19) becomes

E (t) = B̀(t)U (t − 1)+ D(t)− B̃(t)U (t − 1) (22)

E (t) = [B̀ (t)− B̃ (t)]U (t − 1)+ D (t) (23)

where B̀ (t) − B̃ (t) is the difference between the optimal
parameter and its estimated values and can be represented
as the parameter error, B̄ (t). The modelling errors can be
defined as the a priori error, Ea (t) and a posteriori error,
Ep (t), before and after the update as:

Ea (t) = B̄ (t)U (t − 1) (24)

Ep (t) = B̄ (t + 1)U (t − 1) (25)

These modelling errors can be rearranged as:

Ea (t) = (B̀ (t)− B̃ (t))U (t − 1) (26)

Ea (t) = B̀ (t)U (t − 1)− B̃ (t)U (t − 1) (27)

Ea (t) = B̀ (t)U (t − 1)− YM (t) (28)

Combining the parameter update Eq. (16) and the a posteriori
error in Eq. (25), we get,

Ep (t) = [B̄(t)− µ (t)E(t)U (t − 1)T ]U (t − 1) (29)

Ep (t)= B̄(t)U (t−1)−µ (t)E(t)U (t−1)TU (t−1) (30)

Ep (t) = Ea (t)− µ (t)E(t)||U (t − 1) ||2 (31)

The parameter error, B̄ (t) also satisfies the update Eq. (16)
as:

B̄(t + 1) = B̄(t)− µ(t)E(t)U (t − 1)T (32)

In order to ensure the robustness of the system, the estima-
tion error energy must be upper bounded by the disturbance
energy or noise. The representation of the bounded energy can
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be described as the estimation energy of the error-disturbance
energy. It is desirable to obtain the estimation energy of the
error upper bounded by disturbance energy in nature and in
a practical system. Another parameter that needs to have an
optimum value is the learning rate that guarantees the system
to converge and robustness in tracking. The disturbance error
can be defined as:

D̃(t) = E (t)− Ea(t) (33)

E (t) = D̃(t)+ Ea(t) (34)

Now considering the error quantities, energy bound in
Eq. (18), we evaluate energy for parameter error update
Eq. (27) as:∥∥B̄ (t + 1)

∥∥2
=
(
B̄ (t)− µ (t)E (t)U (t − 1)

)2
=
∥∥B̄ (t)∥∥2 − 2µ (t) B̄ (t)

(
D̃ (t)+ Ea (t)

)
U (t − 1)

+µ (t)2 ‖U (t − 1)‖2 (D̃(t)+ Ea(t))
2

(35)

Using the error value in Eq. (34), we get∥∥B̄ (t+1)∥∥2 = ∥∥B̄ (t)∥∥2−2µ (t)Ea (t)2−2µ (t)Ea (t) D̃ (t)
+µ (t)2 ‖U (t − 1)‖2 Ea (t)2

+ 2µ (t)2 ‖U (t − 1)‖2 Ea (t) D̃ (t)

+µ (t)2 ‖U (t − 1)‖2 D̃ (t)
2

(36)

Rearranging the terms:∥∥B̄ (t + 1)
∥∥2 + 2µ (t)Ea (t)2 − µ (t)2 ‖U (t − 1)‖2 Ea (t)2

=
∥∥B̄ (t)∥∥2 − 2µ (t)Ea (t) D̃ (t)

+ 2µ (t)2 ‖U (t − 1)‖2 Ea (t) D̃ (t)

+µ (t)2 ‖U (t − 1)‖2 D̃ (t)
2

(37)

To simplify the equation, a new parameter ή(t) is intro-
duced as in Eq. (38):

ή(t) =
1

||U (t − 1)||2
(38)

Therefore, Eq. (37) becomes,∥∥B̄ (t + 1)
∥∥2 + 2µ (t)Ea (t)2 − µ (t)2(t)

Ea (t)2

=
∥∥B̄ (t + 1)

∥∥2 − 2µ (t)Ea (t) D̃ (t)

+ 2
µ (t)2

(t)
Ea (t) D̃ (t)+

µ (t)2

(t)
D̃ (t)

2
(39)

If we set ή(t) = µ(t), we can simplify the Eq. (38) as,∥∥B̄ (t + 1)
∥∥2 + 2µ (t)Ea (t)2 − µ (t)Ea (t)2

=
∥∥B̄ (t)∥∥2 − 2µ (t)Ea (t) D̃ (t)+ 2µ (t)Ea (t) D̃ (t)

+µ (t) D̃ (t)
2

or,∥∥B̄ (t+1)∥∥2+µ (t)Ea (t)2=∥∥B̄ (t)∥∥2+µ (t) D̃ (t)2 (40)

It can be concluded that the left-hand side of the equation
represents the estimation energy of error while the right-hand
side of the equation represents the disturbance energy for
ή(t) = µ(t). Since, the Eq. (39) is a result of setting ή(t) =
µ(t), we can three different conditions based on the value of
learning rate, as:∥∥B̄ (t + 1)

∥∥2 + µ (t)Ea (t)2∥∥B̄ (t)∥∥2 + µ (t) D̃ (t)2

= 1 for 0 < µ(t) < ή(t)
≥ 1 for µ(t) = ή(t)
≤ 1 for µ(t) > ή(t)

(41)

The first two conditions represent µ(t) ≤ ή(t), thus com-
putation from the signals {B̄(t),

√
ή(t)Ep(t)} to the signals

{B̄(t + 1),
√
ή(t)Ea(t)} is a lossless mapping. Regardless of

what the noise energies impart and regardless of how far the
parameter value varies from the ideal value the `B(t) will be
constantly less than or equal to the sum of the energies of the
noise component, i.e.∥∥B̄ (t + 1)

∥∥2 + µ (t)Ea (t)2 ≤ ∥∥B̄ (t)∥∥2 + µ (t) D̃ (t)2
Hence, keeping µ(t) ≤ ή(t), over the interval 0 < t < N ,
ascertains that,∥∥B̄N∥∥2 + N∑

t=0

µ (t)Ea (t)2≤
∥∥B̄0∥∥2+ N∑

t=0

µ (t) D̃ (t)
2

(42)

This ensures the tracking robustness of the U-Model under
the influence of disturbance and noisy perturbations, resulting
in an overall stability of the IMC loop. This can be extended
to find a bound on the learning rate that guarantees Eq. (41).
To achieve a bound on the learning rate, consider Eq. (26),

which can be represented in the feedback structure as an
alternative form. The a priorierror, Ea (t), and the a posteri-
orierror, Ep (t) can be related by Equation (21) and expanded
as follows:

Ep (t) = Ea (t)−
µ (t)
ή (t)

E (t) (43)

Ep (t) ή (t) = Ea (t) ή (t)− µ (t)E (t) (44)

µ (t)E (t) = ή (t) (Ep (t)− Ea (t)) (45)

Therefore, the nLMS recursive parameter error update in
Eq. (27) could be written as:

B̄ (t + 1) = B̄(t)+ ή(t)U (t − 1)T
(
Ea(t)− Ep(t)

)
(46)

The energy of Eq. (45) can be calculated as:∥∥B̄ (t + 1)
∥∥2

=
∥∥B̄ (t)∥∥2
− 2ή(t)B̄ (t)U (t − 1)

(
Ea(t)−Ep(t)

)
+ ή(t)2 ‖U (t−1)‖

2 (
Ea(t)−Ep(t)

)2 (47)∥∥B̄ (t + 1)
∥∥2

=
∥∥B̄ (t)∥∥2
− 2ή(t)Ea(t)

(
Ea(t)− Ep(t)

)
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+ ή(t)2
1
(t)
Ea(t)2 − 2ή(t)2

1
(t)

)Ea(t)Ep(t)

+
(t)2

(t)
Ep(t)2 (48)∥∥B̄ (t + 1)

∥∥2
=
∥∥B̄ (t)∥∥2 − 2(t)Ea(t)2

+ 2ή(t)Ea(t)Ep(t)+ (t)Eaή(t)
2

− 2ή(t)Ea(t)Ep(t)+ ή(t)Ep(t)2 (49)∥∥B̄ (t + 1)
∥∥2 = ∥∥B̄ (t)∥∥2 − ή(t)Ea(t)2 + ή(t)Ep(t)2 (50)∥∥B̄ (t + 1)

∥∥2 + ή(t)Ea(t)2
=
∥∥B̄ (t)∥∥2 + ή(t)Ep(t)2 (51)∥∥B̄ (t + 1)

∥∥2 + ή(t)Ea(t)2∥∥B̄ (t)∥∥2 + ή(t)Ep(t)2
= 1 (52)

The expression in Eq. (51)) holds valid for all possible
values of the learning rate. Eq. (51) implies that there is a
lossless mapping S̄i̇, from the signals {B̃(t),

√
ή(t)Ep(t)} to

the signals {B̃(t + 1),
√
ή(t)Ea(t)} as in [43], [44].

In order find an optimum bound on the learning rate,
the lossless mapping can be utilized along with small gain
theorem. Considering the system and U-model outputs in
Eqs. (20) and (21) and applying the mean-value theorem for
at point ρ between B̀(t)U (t − 1) and B̃(t)U (t − 1) during
updating process gives:

B̀(t)U (t − 1)− B̃(t)U (t − 1) = Ẏm(ρ)Ea(t) (53)

where, Ẏm(ρ) represents the derivative of the model output,
Ym (t) at any point, ρ along the segment connecting B̀(t)U (t−
1) and B̃(t)U (t − 1).

By combining Eq. (23) and Eq. (52),

Ep (t) = Ea (t)−
µ (t)
(t)

(
(B̀ (t)− B̃ (t))U (t − 1)+ D (t)

)
(54)

Ep (t) = Ea (t)−
µ (t)
(t)

(
Ẏm(ρ)Ea(t)+ D (t)

)
(55)

Ep (t) =
(
1−

µ (t)
(t)

Ẏm(ρ)
)
Ea (t)+ D (t) (56)

Rearranging Eq. (55) and multiplying by
√
ή(t) to organise

the feedback structure results in:

−

√
ή(t)Ep (t) =

µ (t)√
ή(t)

D (t)−
(
1−

µ (t)
ή (t)

Ẏm(ρ)
)

×

√
ή(t)Ea (t) (57)

Eq. (56) shows the mapping of the weighted disturbances,√
ή(t)D (t), to the resulting estimation error,

√
ή(t)Ea (t). The

relationship can be visualised in a feedback structure shown
in Fig. 4 [43], [44].

Now that we have established the lossless mapping into a
feedback structure, the stability of the feedback structure can

FIGURE 4. Lossless mapping with a feedforward and feedback structure.

be studied using small gain theorem. This allows us to utilize
the adaptive learning rate established for the convergence
and robustness of RBF neural networks in [36]. The weight
update algorithm is mapped into a similar feedback structure
and its stability and robustness is investigated using small
gain theorem. Hence, a bound on the learning for U-model
adaptation can be expressed as:

0 < µ (t) Ẏm(t) < 2ή(t)

Hence, the bound on the learning rate is,

µ (t) <
2

Ẏm(t) ‖U (t − 1)‖2
(58)

The bound in Eq. (57) on the learning rate will ensure
robustness and faster convergence. This will also guarantee
that the overall U-model based IMC structure will remain
stable.

IV. SIMULATION SETUP FOR RESULTS
AND COMPARISONS
In this section, we present the unmanned marine robotics
models used in the simulations along with the detail for
benchmarking and comparison with the proposed controller.
Fuzzy Logic Control (FLC) and SlidingModeControl (SMC)
approach was selected for benchmarking with the proposed
method. Both methods are widely implemented in the UMV
modelling and control application.

A. UNMANNED MARINE ROBOTICS MODELLING
1) NONLINEAR ROV MODEL
The standard notation of the Society of Naval Architects
& Marine Engineers (SNAME) used for marine vehicles is
shown in Table 1.
Using the Newtonian approach, the motion of a rigid
body with respect to the body-fixed reference at the origin
in Fig.5 is given by the following set of equations [46]:

Mmass[v̇1+v2×v1+v̇2×rG+v2×(v2×rG)]= τ1 (59)

I v̇2+v2×(Iv2)+Mmass×rG×(v1+v̇2×v1)= τ2 (60)

where rG = [xG yG zG]T is the location of the centre of
gravity, τ1 ∈ Ř3 and τ2 ∈ Ř3 are the external force and
moment vector; v1 = [u v w]T ∈ Ř3 is the linear velocity
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TABLE 1. Notation and variables for marine vehicles [46], [47].

vector and v1 = [p q r]T is the angular velocity vector.
Mmass ∈ Ř3x3 is the UUV mass matrix:

Mmass =

m 0 0
0 m 0
0 0 m

 = mI3×3 (61)

I3×3 is the identity matrix and I ∈ Ř3×3. The rigid body
equation consisting of inertia forces and the coriolis and
centrifugal forces in matrix form can be expressed as:

MRBv̇+ CRB(v) = τ (62)

where MRB ∈ Ř6×6 is the mass-inertia matrix, CRB (v) is the
coriolis and centrifugal matrix, τ = [τ1 τ2]T ∈ Ř6×6 is a
vector of external forces and moments and v = [v1 v2]T ∈
Ř6×6 is the linear and angular velocity vector. The open loop
nonlinear UUV dynamic equation can be expressed by:

Mv̇+ C(v)v+ D(v)v+ Gf (η2) = τ = τA + τH (63)

where MV = MRB + MA, CV = CRB + CA, D(v) is the
damping matrix due to the surrounding fluid and Gf (η2) is
the gravitational and buoyancy matrix.

2) NONLINEAR USV MODEL
The USV nonlinear model is derived from similar principles
as the nonlinear UUV except for the propulsion forces and
moment equations. A USV is exposed to the wind, waves and
current disturbances. The dynamic equation can be expressed
by:

Mv̇+ C(v)v+ D(v)v+ Gf (η2) = w+ τ + go (64)

where w is related to the wave disturbance, τ represents
propulsion forces and moment, and go the restoring forces
related to the ballast system. A detailed explanation of
the modelling derivation of a USV is discussed in [47].

FIGURE 5. USV motion dynamics.

Fig. 5 shows the USV body-fixed reference at the origin that
can be implemented in the UUV platform.

B. FUZZY LOGIC CONTROL SYNTHESIS APPROACH
The FLC design has three main components for the controller
design, namely fuzzification, inference rules and defuzzifi-
cation operations. Fuzzification involves defining the con-
trolled inputs, normal system error, e and change of error,
ė ranging from 0 to 1. Next, the inference rules will define the
membership functions involving activation functions, such as
triangular and trapezoidal with linguistic variables defined
as: Negative Big (NB), Negative Medium (NM), Negative
Small (NS), Zero (Z), Positive Small (PS), Positive Medium
(PM) and Positive Big (PB). Then, these linguistic values are
transformed to a numerical value of the control variable as the
output of the FLC control synthesis.

C. SLIDING MODE CONTROL SYNTHESIS APPROACH
The SMC introduces a sliding surface in terms of error by
defining, e = y − yd and the surface error by s = ė + γ e
where γ is the bandwidth (γ > 0). The Lyapunov function
can be represented as:

V (s(t)) =
1
2
sTMs (65)

Time derivative yields:

V (s(t)) =
1
2
sTMṡ (66)

The control law can be defined as:

ū = ueq + usw (67)

where ueq is related to the nonlinear dynamics and keeps
the state of the system on the sliding surface, while usw is
the switching control to force the system to slide on the
sliding surface. Depending on the reaching law for sliding
mode control applications, it will ensure the systemwill reach
equilibrium. For example, the constant reaching law is as
follows:

ṡ = −Fsgn(s) (68)
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where F is the tuning parameter and sgn(s) is a function
defined by:

sgn(s) =


1, s > 0
0, s = 0
−1, s < 0

(69)

The tracking and stability are achieved by V̇ ≤ 0 thus
V ≤ 0 and therefore s is bounded. The application of
Barbalat’s lemma must comply s → 0 and thus e → 0
as t → ∞. The shortcoming of this method is excessive
discontinuous switching across s = 0 or chattering. However,
a boundary layer around the s surface with thickness ∀ > 0
can be implemented to reduce the chattering effect. While the
platform dynamics remain inside this boundary layer then no
switching is made. When the platform dynamics are outside
the boundary layer then the switching is carried out by:

sat
( s
∀

)
=

sgn
( s
∀

)
, for

∣∣∣( s
∀

)∣∣∣ ≥ 1( s
∀

)
, for

∣∣∣( s
∀

)∣∣∣ < 1
(70)

D. SIMULATION PARAMETERS
Coupled MIMO nonlinear, fuzzy logic and sliding mode
adaptive modelling and control effort synthesis is carried out
using the UUV and USV platforms to analyse the control
performance. Simulation were performed usingMATLABTM

Simulink.
The UUV is based on a ROV platform consisting of four

thrusters. Thruster 1 and 2 will control the x-axis (surge and
sway) and the y-axis dynamics while thruster 3 and 4 are
for the z-axis or heave as in Fig. 1. The matrices of the
ROV platform are implemented based on the development
presented in [46]. The ROV parameter matrices are given
in Table 2.

Simulation of the control system for the USV platform
is based on one thruster and one rudder system. The yaw
angle (rudder) and surge force (underwater thruster) are the
control inputs [48]. The yaw angle can be represented as the
rudder position and the surge forces as the underwater thruster
response model. They are coupled based on Equation (18).
The mathematical model for a USV moving in a horizontal
plane can be described as [22]:

ẋ = u cos (ψ)− v sin (ψ) (71)

ẏ = u sin (ψ)− v cos (ψ) (72)

ψ̇ = r (73)

u̇ =
m22

m11
vr − fu (u)+

1
m11

τu + Du (74)

v̇ = −
m11

m22
ur − fv (v)+ Dv (75)

ṙ =
(m11 − m22)

m33
uv− fr (r)+

1
m33

τr + Dr (76)

where x, y and ψ are the surge, sway and yaw angle as in
Table 1. Parameter τu and τr represent the control inputs
related with surge forces and yaw moment while Du,Dv and

TABLE 2. ROV parameter values.

Dr are the external disturbances. Parameters fu, fv and fr are
the high order dynamic effect of the nonlinear functions. The
Nomoto model can be implemented to represent the heading
control for a single actuation thruster system. The Nomoto
model [47] is obtained by eliminating the sway velocity v
from the Davidson and Schiff model [49] into a second-order
approximation:

r
δ
(s) =

K(1+T3s)
(1+T1s)(1+T2s)

(77)

While the first order approximation is obtained by letting
T = T1 + T2 − T3, which yields:

r
δ
(s) =

K
s (1+ Ts)

(78)

The linear approximation can be achieved by setting the
desired yaw angle ψ̇d = 0, sin (ψ) ≈ 0, cos (ψ) ≈ 1 and
u� v based on [48] yields:

x =
u
s

(79)

y =
Ku

s2 (1+ Ts)
δ (80)

An open loop underwater thruster model was developed
by [50] and is implemented in the simulation process. The
open loop transfer function of the underwater thruster system
can be expressed by:

G (s) =
−28.77s+ 16.28

s2 + 45.09s+ 16.33
(81)

Hence the reference input for the underwater thruster sys-
tem is the reference speed u of the USV platform while the
yaw angle ψ is the reference input for the first input.
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1) SLIDING MODE CONTROL
In order to satisfy reaching the conditions of sliding mode
control it is required that sṡ ≤ 0. The sliding mode controller
output and parameters for the ROV and USV platforms are
expressed in Table 3 and Table 4.

TABLE 3. Sliding Moe Control Parameter for The ROV.

TABLE 4. Sliding mode control parameter for The USV.

2) FUZZY LOGIC CONTROL
The FLC inference operation was implemented using 49 rules
(or If-Then) statements. The implication-aggregation compo-
sitional rule of inference and the weighted average method
were used in the deffuzzier process based on the Sugeno
inference method. The rule table has the same output mem-
bership in a diagonal direction or Toeplitz structure, as shown
in Table 5 and was implemented for the ROV and USV
platforms.

TABLE 5. Controlled Inputs e & ė for The FLC control synthesis.

3) COUPLED UNDERACTUATED MIMO U-MODEL
The coupled MIMOU-Model control synthesis for both plat-
forms was carried out as shown in Figure 4. The reference
inputs for the ROV platform are the thruster allocation for the
x-axis, y-axis and z-axis underwater movements. R1(t) as the
x-axis,R2(t) – y-axis andR3(t) for z-axis. The simulation exe-
cutes the 3D underwater manoeuvring with pre-defined input
waypoint co-ordinates from (0, 0, 0), (5,5,1) and (10,10,2).
For the USV platform, the simulation executes 2D surface
movement by setting the reference input 1 - R1(t), ψ (yaw
angle) and continuously changing course every 30 seconds

(5◦, 10◦, 15◦, 20◦, 25◦, 30◦, 25◦ and 20◦) while changing
the surge speed u from 0.2 m/s, 0.4 m/s and 0.8 m/s for
reference input 2 - R2(t). The sway speed v is assumed at
0.01 m/s as an external dynamic disturbance. These changing
dynamics will influence the performance and stability of the
control system to ensure a good tracking capability. The same
control synthesis is implemented for the FLC and SMC for
comparisonwith the coupled underactuatedMIMOU-Model.
The 3rd order system of the MIMO U-model with 5 neurons
for the RBF neural networks with centres spaced at [0, 2.5, 5,
7.5, 10] radians for the ROV platform and [0, 0.5, 1, 1.5, 2]
for the USV platform. The initial values for these neurons are
equal parameter in Equation (16) is equal to 0.1 [0.1 0.1 0.1]
and the learning rate value is equal to 0.3 for both the ROV
and USV platforms.

V. RESULT AND DISCUSSIONS
A. ROV PLATFORM SIMULATION RESULTS
Based on the parameters above, a comparison between the
U-Model, FLC and SMC control approach was carried out
simultaneously using the MATLAB Simulink platform for
the ROV and the results can be seen in Fig. 6 and Fig. 7.
The comparison is made in terms of tracking the reference
input, and the Mean Square Error (MSE) to evaluate the
performance of the control synthesis. Fig. 6 (a-c) show that
all the outputs converged to the desired reference inputs.

In x-direction and y-direction, the coupled U-model con-
verged with better performance. In z-direction coupled
SMC approach converged with better performance. This
is because SMC used different control parameters for x,
y, and z directions compared with U-Model and FLC
approach. We observed a faster response, efficient conver-
gence and smaller MSE using the proposed methodology.
However, a slightly higher overshoot was observed with the
proposed approach on some occasions. The overshoot may
be reduced at the cost of slower response and higher MSE.
In z-direction the vehicle needs to overcome the buoyancy
force in upward direction thus effecting the control perfor-
mances. However, U-Model and FLC approach can be further
improved by tuning the control parameter to overcome the
buoyancy force in z-direction. The detail comparison of these
controller performances is present in the MSE analysis in x,
y, and z directions in Fig. 6 (d-f). Coupled U-Model approach
converged to smaller value in xand y directions while SMC
scheme converged to smaller value in z-direction.

Fig. 7 shows the underwater 3D ROV movement based on
the x, y, and z – directions reference values in all the controller
approach.

Table 6 shows all the final steady state square error
values according to the different time frames for the x,
y, and z underwater manoeuvring directions with the cou-
pled U-Model controller exhibiting the lowest error results
except in z-direction due to higher damping cause by buoy-
ancy force effect. This can be overcome by changing the
learning rate value into appropriate value to overcome this
effect.
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FIGURE 6. Comparison of control tracking and MSE analysis for the ROV platform.

FIGURE 7. ROV Underwater trajectory comparison of controllers in x-y-z
plane.

B. USV PLATFORM SIMULATION RESULTS
A comparison between the U-Model, FLC and SMC control
approaches was carried out simultaneously using the MAT-
LAB Simulink platform for the USV platform. The results
are presented in Fig. 8.

According to the simulation results, all the control schemes
converged to the desired reference input. The reference input
was arranged to change its rudder angle every 30 seconds
of manoeuvring. All the control approaches converged to the

TABLE 6. Convergence of mean square error values for each controller on
The ROV platform.

desired value with different control effort performances. The
performances could be differentiated by the tracking capabil-
ity by controller effort with respect to the reference input. The
coupled U-Model controller had the lowest final MSE value.
The number of samples and the sampling rate for the MSE
computation were 24,000 and 100 Hz, respectively. It can be
seen in Fig. 8(a) and Fig. 8(c) that the U-Model converges
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FIGURE 8. Comparison of control tracking and MSE analysis for the USV platform.

TABLE 7. Convergence of mean square error values for each controller in
each rudder deflection the USV platform.

faster and has a smaller final value of the mean square error
in the first 150 seconds of simulation compared to the FLC
and the SMC except during 150 seconds to 210 seconds time
frame. However, U-Model has the final minimumMSE value
and can be summarised as given in Table 7 below.

Based on Table 7, the U-Model control synthesis has the
minimum convergence square error values for all the different
yaw angles during rudder deflection compared to the FLC
and SMC approaches. The coupled underactuated U-Model
converged faster for each rudder deflection time frame, thus
giving the best performance in terms of tracking and final
convergence values. The following results (Fig. 8(b) and
Fig. 8(d)) will explain the second reference input – surge
speed u that changed from 0.2 m/s, 0.4 m/s and 0.8 m/s during
the simulation while Fig. 9 shows the reference trajectory

FIGURE 9. Trajectory comparison with different controller approaches for
the USV platform in the x-y plane.

for the USV platform. U-model follows the actual position
closely compare with FLC and SMC approaches. The same
performance of the controllers was observed. FLC had a
slightly better MSE value and faster convergence time. How-
ever, it had more significant square error values compared to
the U-Model and SMC for each change in surge speed.

It was observed that for each change in surge speed,
an overshoot occurred for the FLC approach. Tuning can
be undertaken for all 49 rule-based statements. However,
it is a time-consuming process. From Table 8, the U-Model
exhibited the lowest square error values compared to the FLC
and SMC approaches for all voltage input time frames.

From Table 8, the U-Model control synthesis had a min-
imum of convergence mean square error values during the
speed changes of the UMV platform. The FLC converged
with higher speed and better MSE values. However, over-
shoot occurred during these transition periods. The coupled
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FIGURE 10. Adaptive learning rate variation for the ROV platform in x , y , and z-directions.

FIGURE 11. Adaptive learning rate variation for the USV platform.

TABLE 8. Convergence of mean square error values for each controller
for each surge speed on The USV platform.

U-Model approach implemented the same initial learning
rate, parameters andweight values for both the ROV andUSV
platforms without any tuning. Both learning rate values were
fixed at 0.3 for the ROV and USV platforms.

C. RESULTS FOR CONVERGENCE AND
ROBOUSTNESS ANALYSIS
The coupled U-Model approach can be further improved by
the selection of a proper learning rate for better controller
tracking, stability, and robustness. Using the same approach
as the coupled U-Model, an adaptive learning rate value
can be achieved by an updating mechanism using the 0 <

µ(t)Ym(ρ) < 2ή(t) criteria instead of a fixed learning value.
An adaptive learning rate value bounded by 2ή(t) value to
ensure convergence and stability of ROV and USV platforms
are presented in Fig. 10 and Fig. 11.

Based on the stability and robustness of the converged
system for the ROV and USV platforms, it required that the
optimal learning rate value fulfils the 0 < µ (t) ˙YM(t) <
2ή(t) boundary condition. By selecting or adjusting a proper
learning rate value, the feedback control structure will be sta-
ble and ensure the convergence process. In order to improve

the convergence speed and stability, an adaptive learning rate
is applied which is a value updated on each iteration by
selecting a maximum boundary of the learning rate value to
90 % of the 2ή(t) value. This will ensure the stability and
robustness of the feedback system. The proper value of the
learning rate not only provides stability and robustness of the
nonlinear system but also improves the convergence speed
process and produces a smaller MSE value. The coupled
U-Model adaptive learning rate approach can be useful for
an unknown nonlinear system to reduce the time duration
of the tuning process. Most of the control synthesis requires
to be tuned appropriately at an early stage for the system
to converge on to the desired reference value. The adaptive
learning rate approach not only ensures a faster convergence
time but also ensures the learning process of the model is in
the stable region. The results for the proposed approach are
promising for real-time implementation, where the computa-
tional complexity is of major concern. The U-model based
approach provides a simple control law synthesis that can be
compared to more accurate but complex techniques such as
the multi-loop adaptive control approach [24].

VI. CONCLUSION
The findings of the simulations demonstrate that adap-
tive coupled underactuated multivariable nonlinear control
strategies can be implemented for the UMV platform with
parameter uncertainties. The coupledU-Model approach only
requires a suitable initial condition range from 0 to 1 for all
the parameters, weights, and appropriate learning rate values

VOLUME 8, 2020 1863



N. A. A. Hussain et al.: Underactuated Coupled Nonlinear Adaptive Control Synthesis Using U-Model

for better stability and convergence speed. The U-model IMC
incorporated with the forward propagation of RBF neural net-
works approach includes adaptive and learning capabilities
to reduce the error between the model and the multivariable
nonlinear UMV system for better control synthesis to sustain
the stability of the system. RBF neural networks capable to
approximates the nonlinearity as universal approximator with
only one-layer network for faster computation. U-Model IMC
provides a good solution in control inverse formulation due to
nonlinear modelling approach is a polynomial equation thus
the inverse equation exists and feasible to compute. U-Model
IMC scheme provides better control performance and dis-
turbance rejection capability as demonstrate in USV plat-
form simulation by introducing external sway speed towards
the platform. This nonlinear control approach can minimise
the time duration of the controller design by implementing
an adaptive learning rate method for the unknown control
system. This nonlinear controller will be implemented in
the real-time experiment using open source Robot Operating
System (ROS) architecture on GIRONA 500 UUV platform
at Girona Underwater Vision and Robotics for future work.
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