
SPECIAL SECTION ON SECURITY AND PRIVACY IN EMERGING
DECENTRALIZED COMMUNICATION ENVIRONMENTS

Received December 6, 2019, accepted December 16, 2019, date of publication December 20, 2019,
date of current version January 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2019.2961169

Efficient Verifiable Key-Aggregate Keyword
Searchable Encryption for Data Sharing
in Outsourcing Storage
XUQI WANG 1, XIANGGUO CHENG 1, AND YU XIE 2
1College of Computer Science and Technology, Qingdao University, Qingdao 266071, China
2Department of Computer Science, Tongji University, Shanghai 201804, China

Corresponding author: Xiangguo Cheng (15964252399@163.com)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61572267 and Grant 61303197,
and in part by the Shandong Provincial Natural Science Foundation under Grant ZR2016FQ02.

ABSTRACT In a secure data sharing system, users can selectively retrieve encrypted files by performing
keyword search over the ciphertext of data. Most of the existing searchable encryption schemes can provide
security protection for both data owner and users. Nevertheless, three pivotal issues need to be addressed.
Firstly, the cloud might return a wrong result or incomplete result for some reasons, e.g., saving the
computing resources. Secondly, users need to store massive keys to generate trapdoors and decrypt the
ciphertext of data, which brings great challenges to users’ key management. Thirdly, when users perform
keyword search over a large number of files, they need to generate and submit massive trapdoors, which
is unrealistic. Proceeding from these points, in this paper, we propose an efficient verifiable key-aggregate
keyword searchable encryption (EVKAKSE) scheme. In this scheme, the data owner distributes only one
aggregate key to users for keyword search, decryption and verification, who can use the aggregate key to
generate a single trapdoor for keyword search over shared files. Generally, we define the requirements of
the scheme, analyze the threat models and give a valid construction. Furthermore, our security analysis and
experimental evaluation demonstrate that the scheme is efficient and secure.

INDEX TERMS Searchable encryption, cloud storage, trapdoor privacy, security.

I. INTRODUCTION
With the increasing storage demand of enterprises and indi-
viduals, cloud storage has been widely used in recent years.
Enterprises usually store business data through commercial
outsourcing storage systems (such as Dropbox and Syncany)
and share it with employees, while individuals use social
applications (e.g., Facebook and Twitter) to share personal
videos and photos with family and friends.

The security issues caused by cloud storage such as
inadvertent data leaks cannot be overlooked. A common
approach is that the data owner upload encrypted files to the
cloud, and only authorized users can retrieve and decrypt
these files using decryption keys. However, encrypted data
makes it challenging for users to search. Searchable encryp-
tion(SE) [1] is a common solution in which the data owner
is required to encrypt potential keywords and upload the
ciphertexts of keywords to the cloud together with encrypted

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaochun Cheng .

data. The majority of existing searchable symmetric encryp-
tion (SSE) schemes [6], [7], [12], [13] and public key
encryption with keyword search (PEKS) schemes [14]–[16]
can ensure the privacy and confidentiality when performing
keyword search. Besides, attribute based encryption (ABE)
schemes [17]–[19] are applied to achieve fine-grained access
control aware keyword search. Nevertheless, the data owner
needs to distribute a large number of keys linearly related
to the number of files to users who need to store these
keys accordingly, which will increase the difficulty of key
management when the number of keys is large. Additionally,
when users perform keyword search over the shared files,
they also need to submit the massive trapdoors to the cloud.
Some recent work [20]–[22] focuses onmulti-user searchable
encryption (MUSE) which mainly solves the access control
of users for files, whereas how to reduce the number of
shared keys and trapdoors is still not considered. Note that
Liu et al. [23] seems to solve the problems of key redundancy
and efficiency, but how to control which user can access
which file is not considered. Therefore, in the premise of

11732 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-6593-1429
https://orcid.org/0000-0002-1228-4894
https://orcid.org/0000-0002-0928-3823
https://orcid.org/0000-0003-0371-9646

X. Wang et al.: EVKAKSE for Data Sharing in Outsourcing Storage

controlling the user’s access to the file, the storage overhead,
computational overhead of users and communication costs
are supposed to be considered.

In addition, the commercial cloud [25] may perform
keyword search over partial shared files instead of the whole
for saving computing resources, and then return the corre-
sponding results. Furthermore, malicious clouds may directly
return wrong results, so it is necessary to add authentication
mechanism in SE scheme.

Recently, many key-aggregate searchable encryption
schemes [4], [5], [26], [30] have been proposed. Although
these schemes solve the key redundancy for keyword search,
the number of decryption keys is still linear with the number
of shared files. However, their actual operation is not efficient
enough, and the cloud need to bear a large computational
overhead especially in the establishment phase. Besides,
there are also numerous key-aggregate searchable encryption
schemes that lack effective verification mechanisms. Only
honest clouds are considered in those schemes, and semi-
honest (even untrustworthy) clouds are not discussed in their
threat model.

In this paper, we propose an efficient verifiable key-
aggregate keyword searchable encryption (EVKAKSE).
In this scheme, the data owner does not need to generate a
large number of keys, but only generate an aggregate key
containing file access privileges for users, and the aggregate
key should be stored by users for keyword search, decryption
and verification. Users only need to generate an aggregate
trapdoor to perform keyword search over all privileged files.
We address some of the security issues that exist in the key-
aggregate schemes. In fact, our goal is to settle how the
data owner delegates the access right of the files to the user
through an aggregate key in a secure and low-cost case. The
contribution summarized as follows:
• We give a concrete construction of key-aggregate
searchable encryption named EVKAKSE. In the con-
struction, we design an algorithm that the data owner
only needs to generate a single aggregate key for key-
word search, decryption and verification.

• The EVKAKSE scheme greatly reduces computational
overhead of cloud server and data owner, which is more
efficient than the most of existing searchable encryption
with aggregate key.

• We address eavesdropping problem which is an internal
attack, and we prefer to term it trapdoor attack, i.e., a
malicious user can infer the aggregate key through the
trapdoor submitted by valid users.

• We present the corresponding security definitions and
prove their security. And we conduct related perfor-
mance evaluation which confirms that the EVKAKSE
scheme is efficient and practical.

II. RELATED WORK
A. MULTI-USER SEARCHABLE ENCRYPTION
In recent years, many multi-user searchable encryption
schemes including SSE [8]–[10] and PEKS [15], [16] have

been proposed. The data owner always wants to share their
files with a group of authorized users who can perform key-
word search over the shared files. In MUSE schemes [11],
[20]–[22], [24], different keys are always used for different
files during both search and decryption for confidentiality
considerations. Generally, users always store massive keys
and the key management is difficult. The target of MUSE
is how to control the user’s access right for files. Specifi-
cally, an authorized user cannot access a file out of scope of
privileges.

B. VERIFIABLE SEARCHABLE ENCRYPTION
Chai and Gong [25] presented a threat model, in which a
‘‘semi-honest but curious’’ server satisfies: (1) the server does
not modify the stored ciphertexts of data; (2) the cloud may
try to learn some information from the uploaded encrypted
files and the keyword ciphertexts as well as the trapdoors sub-
mitted by users; (3) the cloud may perform keyword search
over partial shared files for saving computing resources or
other reasons and return the corresponding results.

Some verifiable keyword search over plaintext schemes
[31], [32] have been proposed, but those scheme are weak
in this threat model. To ensure the privacy of keyword,
the access control of the verification is necessary [33].

C. KEY-AGGREGATE METHOD
The key-aggregate searchable encryption scheme is mainly
constructed by the technology of broadcast encryption [28].
To solve the key redundancy in a data sharing sys-
tem, Chu et al. [2] used broadcast encryption proposed
by Boneh et al. [3] to construct a key-aggregate encryp-
tion (KAE) scheme, in which a user can use a single key
to access files with his/her shared privileges, but it does
not support the keyword search. Cui et al. [4] presented a
key-aggregate searchable encryption (KASE) scheme based
on KAE. Afterwards, Li et al. [5] proposed a similar con-
struction (VSEAK) in which the data owner generates a
aggregate key to users for both search and verification.
However, Zhou et al. [26] pointed a eavesdropping problem
which is an internal attack, a malicious user can calculate
other valid users’ aggregate keys by their submitted trapdoors
and proposed a viable scheme based on Kiayias’s scheme
[29]. In fact, Zhou’s scheme focuses on the application of
searchable encryption with aggregate key under the industrial
Internet of things (IIoT) [27]. And Shu et al. [30] used the
crowdsourcing structure to construct the a new key-aggregate
searchable encryption scheme. The idea of our study is
mainly inspired by the key-aggregate method.

III. SYSTEM MODEL AND SECURITY DEFINITIONS
A. SYSTEM MODEL
As shown in Figure.1, The EVKAKSE system model
involves four different entities: the data owner, the user,
the aid server and the cloud server. For ease of understanding,
we use an example to describe the system. Suppose that Alice

VOLUME 8, 2020 11733

X. Wang et al.: EVKAKSE for Data Sharing in Outsourcing Storage

FIGURE 1. System model.

(data owner) encrypts six files and uploads these encrypted
files and related information to the cloud server. After that,
Alice sends an aggregate key for file 1,4,5 to Bob (user)
securely and submits the secure index of six files to the aid
server through secure channel. Bob may perform keyword
search with the aggregate key and generate the aggregate
trapdoor Tr of a keyword w, then submits the Tr to cloud
server. When the cloud server receives the Tr of Bob, it will
request some parameters from the aid server. After confirm-
ing Bob’s shared file set S, the aid server generates |S| param-
eters pub1, pub4, pub5 and sends them to the cloud. The cloud
runs the algorithm for the ciphertexts of the encrypted files
1,4,5 with the Tr and the received pub1, pub4, pub5 to detect
whether the file contains the keyword. If a file contains the
keyword, the cloud will send the encrypted files and related
parameter to Bob. Subsequently, Bob uses his aggregate key
and received parameters to decrypt the received ciphertexts
of data and verify the integrity of data.

Note that we can set the data owner’s private server as an
aid server. It always returns the correct parameters to clouds
and will never offer some sensitive information to clouds
or users.

The cloud server uses the Setup algorithm to generate
public parameters to set up the scheme. The data owner uses
the KeyGen algorithm to produce the public/master-secret
key pair. The secure index of each file is generated by the
data owner using the BuildIndex algorithm. And the data
owner uses the Encrypt algorithm to generate a 1i and
symmetric key, encrypt keywords and files. While the data
owner uses the TagGen algorithm to generate verification
information. If the data owner shares a group of selected
files with a user, he/she can use his/her master-secret key
and secure index to generate an aggregate key by the Extract
algorithm and the aggregate key will be securely distributed
to the user. A valid user performs keyword search, he/she
will use his/her aggregate key and a keyword w to produce
an aggregate trapdoor by the Trapdoor algorithm and the
trapdoor will be submitted to the cloud server. Receiving
the submitted trapdoor, the cloud server will request some

parameters from the aid server by the Adjust algorithm and
perform keyword search according to the shared file set of
the user by theTest algorithm. After receiving encrypted files
and related parameters, the user will use Decrypt algorithm
to decrypt the ciphertexts of data. Finally, the user can use
Verify algorithm to verify data integrity.

Formally, the general framework of our scheme is com-
posed of eleven algorithms (Setup, KeyGen, BuildIn-
dex, Encrypt, TagGen, Extract, Trapdoor, Adjust, Test,
Decrypt, Verify).
1) Setup(k): With the input of a security parameter k ,

the cloud server executes this algorithm to generate the
system parameters.

2) KeyGen: The data owner uses this algorithm to gener-
ate his public/mater-secret key pair (pk,msk).

3) BuildIndex: The data owner uses this algorithm to
produce secure index reqindex for all shared files. And
the reqindex should be stored in aid server securely.

4) Encrypt(pk, reqindex , i): The data owner uses this algo-
rithm to generate a symmetric encryption key and
encrypt the ith file with this key. Then the data owner
encrypts keywords of the ith file with the pk and the
reqindex . After that, the data owner produces a 1i.
Finally, the algorithm outputs the 1i, encrypted files
and ciphertexts of keywords.

5) TagGen(W ,Fw): W denotes the keyword set and Fw
denotes the file set containing same keyword. The data
owner uses this algorithm to generate the verification
tags for all uploaded files. And these tags should be
publicly stored in the aid server.

6) Extract(msk, reqindex , S): The data owner uses this
algorithm to generate an aggregate searchable encryp-
tion key for the users with the access right of a selected
files set S. It takes as input the master-secret key msk ,
the secure index reqindex and the set S, outputs the
aggregate key Kagg. Eventually, the aggregate key will
be securely distributed to the user.

7) Trapdoor(Kagg,w): The user uses this algorithm to
produce a single trapdoor Tr with his/her aggregate key
Kagg and a specified keyword w. After that, the Tr is
submitted to the cloud server.

8) Adjust(i, S, reqindex): The aid server uses this algo-
rithm to generate |S| parameters {pubi|i ∈ S} for all
certain files in set S. After that, the aid server sends
these parameters to the cloud server.

9) Test(Tr, i, S, pubi,1i): Receiving the submitted Tr and
pubi, the cloud server uses this deterministic algorithm
to find that if the files in set S contain the keyword w
which derived from the Tr . If a encrypted file contains
the w, the cloud will send this encrypted file C and a
related parameter cpubi to the user.

10) Decrypt(i, cpubi ,C): Receiving the returned C and
cpubi from the cloud, the user uses this algorithm to
compute the symmetric key. Then the algorithm uses
the symmetric key to decrypt the encrypted file and
obtain primitive file F .

11734 VOLUME 8, 2020

X. Wang et al.: EVKAKSE for Data Sharing in Outsourcing Storage

11) Verify(w,Fi): Fi denotes the ith primitive file F . The
user uses this algorithm to verify the integrity of
retrieved files by comparing the computing result to the
tags stored in the aid server. If there is a tagw that equals
the computing result, we can say that the received data
is complete.

B. THREAT MODELS
According to the behaviors of the cloud and users, the security
threats in this system can be categorized into three models:

1) SEMI-HONEST BUT CURIOUS CLOUD SERVER
Assume that the public cloud is ‘‘semi-honest but curious’’
(‘‘honest but curious’’), it will execute the algorithm to
complete the whole (or a fraction of) query task submit-
ted by the user and return the corresponding results. How-
ever, the cloud may try to learn some information from the
uploaded encrypted files and the keyword ciphertexts as well
as the trapdoors submitted by users.

2) MALICIOUS CLOUD SERVER
The cloud server can arbitrarily deviate from the prescribed
protocol, and attempt to learn sensitive information as much
as it can. Worse still, it may intentionally return wrong files
to the user. If the malicious cloud colludes with the malicious
user, it will attempt to decrypt the unauthorized files or spec-
ulate the keywords contained in the files. Obviously, if an
algorithm is secure under the ‘‘malicious’’ model, it is still
secure under the ‘‘honest but curious’’ model.

3) TRAPDOOR ATTACK
It is an internal attack. Assume that a malicious user eaves-
drops a trapdoor submitted from a valid user. The malicious
user may try to calculate the aggregate key of the valid user
from the trapdoor.

C. DESIGN GOALS
The EVKAKSE scheme should satisfy five requirements as
follows.
• Keyword search. This scheme should enable users to
generate desired trapdoors for any given keyword to
perform keyword search over encrypted files. And the
cloud always returns the correct result by running Test
algorithm.

• Efficiency. Each algorithm of the scheme should be effi-
cient. In particular, the data owner and users do not have
to bear significant computing and storage overhead.

• Compactness. It requires that the size of the aggregate
key should be independent of the maximum of files.

• Access Authorization. This scheme can generate an
aggregate key for a valid user, which contains the key-
word search right for shared files. It means that the
data owner can delegate keyword search right to a user
through an aggregate key.

• Verification. This requirement is central to detect if the
cloud has malicious fraud behavior. Users can verify the

integrity of received files. Note that this process needs
the aid server to provide the correct verification tags
generated by the data owner.

D. SECURITY DEFINITIONS
As introduced in Section I, a well-designed EVKAKSE
scheme should satisfy three security requirements. We refor-
mulate their definitions as follows.
Definition 1 (Correctness): Given some search task for

the keyword w ∈ W of some files, a secure key-
aggregate searchable encryption scheme is correct if
(g, h,B,H0,H1, Enc,Dec) ← Setup(k), (pk,msk) ←
KeyGen, reqindex ← BuildIndex, (C,1i, cw) ←

Encrypt(pk, reqindex , i), tagw ← TagGen(W ,Fw) and
Kagg ← Extract(msk, reqindex , S) such that, for any valid
trapdoors submitted by an authorized user (Tr, S) ←
Trapdoor(Kagg,w), the cloud will request adjust param-
eters from the aid server {pubi|i ∈ S} ← Adjust(S)
and perform keyword search over certain encrypted files
cpubi ← Test(Tr, i, S, reqindex , pubi,1i). After receiving the
encrypted files returned from the cloud, the user will correctly
decrypt ciphertext of data F ← Decrypt(i, cpubi ,C) and
successfully verify the integrity of data ture← Verify(w,Fi).
Definition 2 (Privacy): For users, given some search task

for keywords w ∈ W of some files, a secure key-aggregate
searchable encryption scheme satisfy privacy if the keyword
w and aggregate key Kagg cannot be calculated from Tr
with published information. And the cloud cannot decrypt
the encrypted files even in collusion with the unauthorized
malicious user.
Definition 3 (Search Control): A valid user cannot per-

form keyword search for unauthorized files successfully with
the known aggregate key, and the Test algorithm will always
return false.

IV. PRELIMINARIES
In this section, we review the cryptology concepts and com-
plexity assumption used in this paper.

A. BILINEAR MAP
Let G and G1 be two multiplicative cyclic group of prime
order p and g be a generator of G. A bilinear map e is a map
e : G × G → G1 with the following properties:
• Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have
e(ua, vb) = e(u, v)ab;

• Non-degeneracy: e(g, g) 6= 1;
• Computability: There is an efficient algorithm to com-
pute e(u, v) for any u, v ∈ G;

B. TRUNCATED DECISIONAL Q-AUGMENTED BILINEAR
DIFFIE-HELLMAN EXPONENT ASSUMPTION
The truncated decisional q-augmented bilinear Diffie-
Hellman exponent assumption [34] has been used to design
broadcast encryption scheme [35] and the scheme has been
proved IND-CCA2 security under standard model.

VOLUME 8, 2020 11735

X. Wang et al.: EVKAKSE for Data Sharing in Outsourcing Storage

Given a group G of prime order q, randomly choose two
generators g, g′ ∈ G and a random α ∈R Zq. Given a tuple
Tu = (g′, g′q+2, g, g1, · · · , gq) and Z ∈ G, where we use

gi, g′i donate g
(ai), g′(a

i), the truncated decisional q-ABDHE
problem is to decide whether Z equals to e(g′, gq+1) or to a
random element of G1.

C. DECISIONAL BILINEAR DIFFIE-HELLMAN
ASSUMPTION
Given a group G of prime order q, choose a generator g ∈
G and a, b, c ∈ Zq randomly. Given a tuple (ga, gb, gc) and
Z ∈ G1, the decisional BDH problem is to decide whether Z
equals to e(g, g)abc or a random element of G1.

V. THE PROPOSED SCHEME
For convenience, we summarize some common notations
throughout the paper shown in Table.1.

TABLE 1. Some frequently used symbols.

Inspired by [4], [26] and [36] schemes, we propose a
concrete EVKAKSE scheme. It is described as follows.

1) Setup(k): given the security parameter k , the cloud
server executes operations as follows:
• Generate a bilinear map group system B =

(p,G,G1, e (·, ·)), where G is a cyclic multiplica-
tive group of prime order p, while |p| ≤ k and we
set the maximum number of files as nwhile n = p.

• Randomly choose generators g, h ∈ G
• Select two one-way hash functionsH0 : {0, 1}∗→
Zp and H1 : {0, 1}∗→ G.

• Select a symmetric encryption algorithm Enc
and a corresponding symmetric decryption
algorithm Dec.

Finally, Output the system parameters params =
(g, h,B,H0,H1, Enc,Dec).

2) KeyGen: the data owner randomly chooses α ∈R Zp,
let v = gα , outputs:

pk = v,msk = α

The pk is the public key and themsk is themaster-secret
key.

3) BuildIndex: the data owner chooses n different ran-
doms Ii ∈R Zp for each file to generate secure index
i ∈ {1, 2, . . . , n}:

reqindex = (I1, I2, · · · , In)

The data owner is supposed to send the reqindex to the
aid server securely.

4) Encrypt(pk, reqindex , i): the data owner generates the
symmetric key and uses this key to encrypt ith file by
the symmetric encryption algorithm Enc. Then the data
owner encrypts the keywords in this file. This algorithm
takes as input the file set index i ∈ {1, 2, . . . , n}, the pk
and the reqindex , computes that:
• randomly chooses a τ ∈R Zp for the ith file.
• generates the symmetric encryption key ks which
is an element in G1:

ks =
e (g, h)τ

e (g, g)τ

• encrypts the file as:

C = Enc(F, ks)

• generates 1i = (c0, c1) for τ by computing:

c0 = vτ , c1 = g−τ Ii

• generates ciphertext cw for a keyword w as:

cw =
e (g, h)τ

e (g, g)τH0(w)

Note that the 1i and cw should be stored in
cloud server. For saving the computational overhead,
the e (g, h) and e (g, g) should be pre-computed.

5) TagGen(W ,Fw): The data owner uses this algorithm
to generate verification tag for each w ∈ W :

tagw = (
∏
i∈Fw

H1(Fi))H0(w)

Note that the tagw should be stored in aid server.
6) Extract(msk, reqindex , S): the data owner generates the

aggregate searchable encryption key for a selected set
S of the universe of files. This algorithm takes as input
master-secret keys msk , the reqindex , the set S and
outputs the aggregate key Kagg = (kagg,0, kagg,1) by
computing:

kagg,0 = g−1/(α−
∏
i∈S Ii),

kagg,1 = h1/(α−
∏
i∈S Ii)

Note that if
∏

i∈S Ii = α, the Extract algorithm aborts.
The data owner sends Kagg to the authorized user and
delegates keyword search right of the file set S to
the user.

7) Trapdoor(Kagg,w): the user generates only one
trapdoor Tr of keyword w and performs keyword

11736 VOLUME 8, 2020

X. Wang et al.: EVKAKSE for Data Sharing in Outsourcing Storage

search for shared files associated with Kagg by this
algorithm as:

Tr = kagg,0H(w)kagg,1

Then, the user sends (Tr, S) to the cloud server.
8) Adjust(i, S, reqindex): this algorithm takes as input the

selected set S and generates the certain parameters for
keyword search by the aid server. And this process
includes two steps:
• Step 1: the cloud server requests adjust parameters
{pubi|i ∈ S} from the aid server according to the
set S of users.

• Step 2: the aid server returns adjust parameters
{pubi|i ∈ S} to the cloud server.

The aid server computes pubi with reqindex :

pubi =
∏

j∈S,j 6=i

Ij

9) Test(Tr, i, S, pubi,1i): the cloud server uses this algo-
rithm to perform keyword search over the ith file in the
set S. This algorithm takes as input the trapdoor Tr ,
the reqindex , the 1i = (c0, c1) relevant to its secret
parameter τ , and verifies the equation:

cw
?
= e

(
c0c

pubi
1 ,Tr

)
If the equation holds, let cpubi = c0c

pubi
1 and the cloud

will send C and cpubi to the user.
10) Decrypt(i, cpubi ,C): the user uses this algorithm to

decrypt the files retrieved from the cloud. The user
obtains the symmetric key ks by computing:

ks = e(cpubi , kagg,0kagg,1)

And the user can decrypt the ciphertext of ith file with
ks:

F = Dec(C, ks)

11) Verify(w,Fi,F t): the user uses this algorithm to verify
the integrity of received files. The algorithm takes as
input the keyword w and primitive files and computes:

tag′w = (
∏
i∈F t

H1(Fi))H0(w)

The algorithm needs to find that if there is a tagw =
tag′w existing in the aid server, and output true or false
according to the result.

If the file set S only contains one file, it is a practical public
key encryption with keyword search scheme.

VI. THE SPECIAL CASE
Sometimes, an online and honest aid server setting is difficult
to deploy, so we modify the proposed scheme and present a
special case.

As shown in Figure.2, when a new user (Bob) joins in this
system, the data owner (Alice) will generate an aggregate
key and send it to the user. Meanwhile, the data owner will

FIGURE 2. Special system model.

generate all related parameters of the user at once and upload
them to the cloud server.

To remove the aid server, we modify theExtract algorithm
and remove the Adjust algorithm. Notice that verification
tags are still generated by TegGen algorithm, but those tags
should be stored in the cloud server. The other algorithms are
the same as before.

Extract(msk, reqindex , S): the data owner generates the
aggregate searchable encryption key for a selected set S of the
universe of files. This algorithm takes as input master-secret
keysmsk , the reqindex , the set S and outputs the aggregate key
Kagg = (kagg,0, kagg,1) by computing:

kagg,0 = g−1/(α−
∏
i∈S Ii),

kagg,1 = h1/(α−
∏
i∈S Ii)

Note that if
∏

i∈S Ii = α, the Extract algorithm aborts. Next,
the data owner generates the related parameters pubi for each
i ∈ S by computing:

pub =
∏
j∈S

Ij

(pub only needs to be computed once for each user.)

pubi =
pub
Ii

The data owner sends Kagg to the authorized user and
uploads all related parameters {pubi|i ∈ S} to the cloud
server.

When the cloud server receives a trapdoor submitted from
a user, it will perform keyword search with the stored param-
eters directly instead of requesting related parameters from
an aid server.

Considering of the security, the set S should contain at least
three files.

VII. CORRECTNESS AND SECURITY ANALYSIS
In this section, we give strictly proofs on the correctness
of our scheme, and analyze its security according to the
definitions modeled in section III-D.

VOLUME 8, 2020 11737

X. Wang et al.: EVKAKSE for Data Sharing in Outsourcing Storage

A. CORRECTNESS
Informally, the correctness means that:
1) The Test algorithm performs keyword search correctly

with submitted (Tr, S) and returns the correct result for
users.

2) Users can decrypt the ciphertexts of the downloaded
files correctly with his/her own aggregate key.

3) Users can use the decrypted information to verify
whether the cloud is fraudulent.

Theorem 1: The proposed construction is correct.
Proof: The correctness of both the keyword search

function and verification function is equivalent to which of
the scheme. The user uses Trapdoor algorithm to generate
the correct trapdoor Tr , and submits (Tr, S) to the cloud. After
that, the cloud server usesTest algorithm to perform keyword
search. This process is as follows:

e
(
cpubi ,Tr

)
= e

(
c0c

∏
j∈S,j6=i Ij

1 ,Tr
)

= e
(
vτg−τ

∏
i∈S Ii , kagg,0H(w)kagg,1

)
= e

(
vτg−τ

∏
i∈S Ii ,

(
hg−H(w)

)1/(α−∏i∈S Ii)
)

=

e
(
gατg−τ

∏
i∈S Ii , h1/(α−

∏
i∈S Ii)

)
e
(
gατg−τ

∏
i∈S Ii , gH(w)/(α−

∏
i∈S Ii)

)
=

e
(
gτ(α−

∏
i∈S Ii), h1/(α−

∏
i∈S Ii)

)
e
(
gτ(α−

∏
i∈S Ii), gH(w)/(α−

∏
i∈S Ii)

)
=

e (gτ , h)

e
(
gτ , gH(w)

)
=

e (g, h)τ

e (g, g)τH(w)
= cw

The user can perform a keyword search successful with
his/her own aggregate key.

To get the symmetric key for decryption, the user uses
his/her aggregate key and received parameter cpubi to compute
ks for the ith file. We can see that:

e
(
cpubi , kagg,0kagg,1

)
= e

(
c0c

∏
j∈S,j 6=i Ij

1 , kagg,0kagg,1

)
= e

(
vτg−τ

∏
i∈S Ii , (hg)−1/(α−

∏
i∈S Ii)

)
=

e
(
gατg−τ

∏
i∈S Ii , h1/(α−

∏
i∈S Ii)

)
e
(
gατg−τ

∏
i∈S Ii , g1/(α−

∏
i∈S Ii)

)
=

e (gτ , h)
e (gτ , g)

=
e (g, h)τ

e (g, g)τ

= ks

After getting the ks, the user can decrypt ciphertext C and
obtain the decrypted file by computing:

F = Dec(C, ks)

Finally, for verification, the user computes that:

tag′w = (
∏
i∈F t

H1(Fi))H0(w)

If the set of received files F t is equal to the actual set of files
Fw.We can deduce that tag′w = tagw, Thuswhether the cloud
perform keyword search operations completely is known.

As shown above, the EVKAKSE scheme is correct. �

B. PRIVACY
In this section, we prove that the cloud server may learn
something from the submitted trapdoor and the published
information, but it will not affect the privacy of the user and
data owner. Kiayias et al. [29] and Zhou et al. [26] presented
the trapdoor attack problem detailed, and we analyze the
security issue of trapdoor based on above work.
Theorem 2: The cloud server is unable to determine a

keyword from any published information.
Proof: The cloud server may obtain some information

from submitted trapdoor or public parameters stored in cloud
according to Definition 2. Theorem 2 can be deduced from
the following lemmas: �
Lemma 1: The cloud server cannot determine the keyword

from submitted trapdoor.
Proof: Assume a valid user who has access to a

file set S submits Tr for the keyword w search, while
Tr = kH (w)

agg,0kagg,1 is an element in group G. We can see that

Tr =
(
hg−H(w)

)1/(α−∏i∈S Ii), while h is an element in group
G generated from g. Let gλ = h, while λ ∈R Zp. Then
Tr = g(λ−H (w))/(α−

∏
i∈S Ii). Note that the attacker cannot

calculate g1/(α−
∏
i∈S Ii) from the public parameters without the

master-secret keys. Even the cloud server has Kagg, he can-
not know the keyword contained in the Tr because of dis-
crete logarithm problem. Actually, this result is ensured by
the assumption of the intractability of truncated decisional
q-ABDHE problem. �
Lemma 2: The cloud server cannot determine the keyword

from the ciphertext of keyword and the related published
information.

Proof: The cw is a random element in group G1. If the
cloud server determines the keyword w from keyword cipher-
texts cw = e (g, h)τ /e (g, g)τH(w) that it needs to solve dis-
crete logarithm problem. Obviously, there is no polynomial
time algorithm can solve this problem. �
Lemma 3: The cloud server cannot calculate the symmet-

ric key from any published information.
Proof: From the conclusions of lemma 1 and

lemma 2, the cloud server cannot calculate gτ or τ from
vτ . So, there is no way to use gτ to generate ks =
e(g, h)τ /e(g, g)τ . If the cloud want to calculate ks in terms
of cw = e (g, h)τ /e (g, g)τH(w), it needs to know τ and the

11738 VOLUME 8, 2020

X. Wang et al.: EVKAKSE for Data Sharing in Outsourcing Storage

keyword w. The cloud cannot calculate ks from published
information in this case. �
Theorem 3: Ideally, an insider attacker cannot obtain

a valid user’s aggregate key from the trapdoor by
eavesdropping.

Proof: Known by Lemma 1, it is difficult to calculate the
keyword and aggregate key from a single trapdoor. However,
when the attacker gets a bunch of trapdoors from a single
user, the situation will be different. Suppose there is an insider
attacker who continuously eavesdrops on the trapdoors sub-
mitted by a valid users.

Assume the attacker obtains Tr0 = kH (w0)
agg,0 kagg,1 and

Tr1 = kH (w1)
agg,0 kagg,1 from a valid user, he/she can easily

compute Trα =
Tr0
Tr1
= kH (w0)−H (w1)

agg,0 .
If the valid user’s set of keywords is F1 (w0,w1 ∈ F1) and

the insider attacker’s set of keywords is F2, and F1 ⊆ F2.
Let t = |F2|, the attacker need to calculate two exact values

1
H (w0)−H (w1)

and H (w0) to get kagg,0 = T 1/(H (w0)−H (w1))
α and

kagg,1 =
Tr0

k
H (w0)
agg,0

. The probability of successful attack is 1
t2
.

When t is large enough, the probability can be negligible.
Notice that if F1 * F2, the probability of successful attack
depends on whether the discrete logarithm problem can be
solved. �

C. SEARCH CONTROL
A valid user may try to access files which is authorized or
unauthorized. Informally, we need assume that if there are
malicious users even collude with the cloud server, it will
have a no-neglected impact on aggregate key security and
search control.
Theorem 4: A valid user cannot perform a keyword search

for an unauthorized file with his/her aggregate key.
Proof: Assume that a user Bob performs a keyword w

search for a file set S ′ of Amy with his aggregate key Kagg,
while the file set of Bob is S, and S 6= S ′. Bob submits
(Tr, S ′) to the cloud server and the cloud uses Test algorithm
to perform keyword search for each file in the file set S ′.
We should consider two scenarios. In the first case, the cloud
colludes with Bob and requests the parameters for S ′ from the
aid server by Adjust algorithm, and computes as follows:

e
(
c0c

∏
j∈S′,j 6=i Ij

1 ,Tr
)
=

e
(
g
τ
(
α−

∏
j∈S′ Ij

)
, h

1/
(
α−

∏
j∈S Ij

))
e
(
g
τ
(
α−

∏
j∈S′ Ij

)
, g

H(w)/
(
α−

∏
j∈S Ij

))
Note that (α −

∏
i∈S Ii) is not equal to (α −

∏
i∈S ′ Ii), and

(α −
∏

i∈S ′ Ii) cannot be canceled out of the equation.
In the second case, the the cloud requests the parameters

for S of Bob from the aid server by Adjust algorithm, and
computes as follows:

e
(
c0c

∏
j∈S Ij

1 ,Tr
)
=

e
(
g
τ
(
α−Ii

∏
j∈S Ij

)
, h

1/
(
α−

∏
j∈S Ij

))
e
(
g
τ
(
α−Ii

∏
j∈S Ij

)
, g

H(w)/
(
α−

∏
j∈S Ij

))

And this algorithm still cannot get a certain value that is equal
to the cw. The Test algorithm will not return anything for Bob
regardless of whether w is valid. �
Theorem 5: Even in collusion with the cloud, a malicious

user cannot perform keyword search and decryption for unau-
thorized files successfully.

Proof: To perform keyword search for an unauthorized
file i successfully, the malicious user needs to submit a valid
trapdoor of a keyword with his/her aggregate key. And the
cloud needs to compute an element c′1 = gτ Ij ∈ G from
c1 = gτ Ii . Note that j is an arbitrary file in shared file set
of the malicious user. Without the Ii, Ij ∈ reqindex , the cloud
cannot help malicious user to perform keyword search for
an unauthorized file. Similarly, the cloud cannot generate the
correct cpubi and help malicious user to decrypt unauthorized
files either. �

VIII. EFFICIENCY ANALYSIS AND PERFORMANCE
EVALUATION
In this section, We compare the computational overhead of
EVKAKSE scheme with other similar schemes in detail and
conduct experimental simulations.

A. EXPERIMENTAL ANALYSIS
Before the analysis and simulations, we define some symbols
frequently used in this section which are shown in Table.2.

We provide the experimental simulation evaluation of
the proposed scheme. The scheme is simulated on Ubuntu
18.04 LTS with 2.20GHz Intel i5-5200U and 4GB memory
by using the latest GMP library and PBC library. We choose
the Type-A pairing to complete a concrete algorithm just like
KASE scheme [4] implemented.

Our scheme is compared with KASE scheme, VSEAK
scheme [5] and Fc-MKA-KSE scheme [26] through main
nine different algorithms in computation complexity. The
results show as Table.3.

VSEAK considers the verification function based on
KASE, which makes searchable encryption with aggregate
method more comprehensive. Fc-MKA-KSE addresses the
trapdoor attack from malicious users which has not been dis-
cussed before. According to Table.3, the data owner executes

TABLE 2. Notions.

VOLUME 8, 2020 11739

X. Wang et al.: EVKAKSE for Data Sharing in Outsourcing Storage

TABLE 3. Computation complexity with similar schemes.

KeyGen algorithm, and the execution time of KeyGen algo-
rithm is linear with the maximum number of files. Therefore,
when the maximum number of files is large, the computa-
tional overhead will be considerable, i.e., the data owner has
to bear considerable computational overhead which is not
what we expect.

To add verification function and decryption function,
as well as address the trapdoor attack without adding extra
computational overhead, we use a new method to construct
system and make the algorithm execution more efficient.
In our scheme, the Setup algorithm and Test algorithm
are completed in the cloud server, the KeyGen algorithm,
BuildIndex algorithm, TagGen algorithm, Encrypt algo-
rithm andExtract algorithm are completed by the data owner,
theTrapdoor algorithm,Decrypt algorithm andVerify algo-
rithm are completed by users. And the Adjust algorithm is
completed by the cloud and the aid server. We compare our
scheme with VSEAK scheme through a simulation exper-
iment to reflect the efficiency advantage of our scheme.
To simplify the representation, we combine theKeyGen algo-
rithm with BuildIndex algorithm and useKeyGen algorithm
to represent. Actually, when the number of files is the same,
the TagGen algorithm has the same computational overhead
as the Verify algorithm. So, we will use the time cost of the
Verify algorithm to represent the time cost of the TagGen
algorithm. As shown in Figure.3,

we can see that:
1) The time cost of the Setup algorithm in our scheme

is a constant, i.e., 0.012s, but in the VSEAK scheme
the time cost is linear with the maximum number of
files. When the number of files grows up to 10000, it is
restricted that the Setup algorithm in VSEAK needs
1641.043s.

2) The time cost of the KeyGen algorithm in our scheme
is linear with the maximum number of files but it is
reasonable. The KeyGen algorithm only needs 0.271s
to complete when maximum number of files grows up
to 10000.

3) In the Encrypt algorithm, the time cost of our scheme
is similar to that of theVSEAK scheme.When the num-
ber of keywords grows up to 10000 (we also assume
that the number of files is 10000), the Encrypt algo-
rithm needs 156.221s to complete, which is acceptable.

4) The time cost of the Extract algorithm in our scheme
is linear with the number of selected files. When the

number of shared files grows up to 10000, the Extract
algorithm only needs 0.013s to complete, and the
Extract algorithm in VSEAK needs 48.336s to
complete. The Figure.3(d) shows that the Extract
algorithm of our scheme is more efficient.

5) The time cost of the Trapdoor algorithm in our
scheme is a constant, independent of the number of
files searched. When the number of files the user
searches grows up to 10000, the Trapdoor algorithm
only needs 0.05s to complete. Considering the security,
the extra computational overhead is necessary com-
pared with VSEAK. But the Trapdoor algorithm in
our scheme is more efficient than that in Fc-MKA-KSE
scheme.

6) The time cost of the Adjust algorithm in our scheme is
linear with the number of shared file set S. When the
number of shared files grows up to 10000, the Adjust
algorithm only needs 0.004s to complete. We simpli-
fied the Adjust algorithm of VSEAK, but it still needs
0.321s to complete in the same case. Obviously, our
algorithm is more efficient.

7) In the Test algorithm, the time cost of our scheme
is similar to that of the VSEAK scheme. When the
number of keyword ciphertexts grows up to 10000,
the Test algorithm needs 89.751s to complete in cloud
server. Notice that the cloud server performance can
affect actual computational overhead, whichmeans that
the Test algorithm will perform better in the commer-
cial public cloud.

8) The time cost of the Decrypt algorithm in our scheme
is linear with the number of retrieved files set F t .
When the number of retrieved files grows up to
10000, the Decrypt algorithm needs 43.168s to com-
plete. However, the Retrieve algorithm (similar to the
Decrypt algorithm) in VSEAK needs 2760.413s to
complete. In this part of the simulation, we assume
that S = F t . If |S| < |F t|, the time cost of the
Decrypt algorithm in VSEAKwill be reduced, but still
not efficient enough.

9) The time cost of the Verify algorithm in our
scheme is linear with the number of retrieved
files set F t . When the number of retrieved files
grows up to 10000, the Verify algorithm only
needs 0.281s to complete which is extremely
efficient.

11740 VOLUME 8, 2020

X. Wang et al.: EVKAKSE for Data Sharing in Outsourcing Storage

FIGURE 3. Time cost comparison.

In order to eliminate the difference in the time cost of hash
functions on files of different sizes, we stipulate that the time
cost of hash functions in this simulation is negligible.

Compared with VSEAK, the simulation results show that
EVKAKSE provides a new aggregate key searchable encryp-
tion method with decryption and verification. Moreover, this
scheme reduces the computing overhead of cloud server and
data owner, and also addresses trapdoor attack. Additionally,
EVKAKSE has obvious advantages when the number of files
is large. During the system setup phase, the cloud server does
not require a lot of computation to generate a large number of
parameters.

IX. CONCLUSION
In this paper, we design an efficient verifiable scheme for data
sharing via the public cloud. Andwe address a decryption key
redundancy problem that exists inmost searchable encryption
scheme with aggregate key. Theoretical analysis and exper-
imental evaluation indicate that the proposed scheme gives
better consideration to both security and efficiency. In this
scheme, the cloud server does not need to set a maximum
number of files during the setup phase. We also address
the trapdoor attack without extra computational overhead.
The evaluation of the performance demonstrates the con-
struction’s efficiency. However, the security of aid server
determines the security of EVKAKSE in a way. Our future
work is to adjust the algorithm to cancel the design of the aid
server without compromising security.

REFERENCES
[1] D. X. Song, D. Wagner, and A. Perrig, ‘‘Practical techniques for searches

on encrypted data,’’ in Proc. IEEE Symp. Secur. Privacy (S P), Nov. 2002,
pp. 44–55.

[2] C.-K. Chu, S. S. M. Chow, W.-G. Tzeng, J. Zhou, and R. H. Deng,
‘‘Key-aggregate cryptosystem for scalable data sharing in cloud stor-
age,’’ IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 2, pp. 468–477,
Feb. 2014.

[3] D. Boneh, C. Gentry, and B.Waters, ‘‘Collusion resistant broadcast encryp-
tion with short ciphertexts and private keys,’’ in Proc. CRYPTO, 2005,
pp. 258–275.

[4] B. Cui, Z. Liu, and L. Wang, ‘‘Key-aggregate searchable encryp-
tion (KASE) for group data sharing via cloud storage,’’ IEEE Trans.
Comput., vol. 65, no. 8, pp. 2374–2385, Aug. 2016.

[5] T. Li et al., ‘‘Verifiable searchable encryption with aggregate keys for
data sharing in outsourcing storage,’’ in Proc. Australas. Conf. Inf. Secur.
Privacy. Cham, Switzerland: Springer, 2016, pp. 153–169.

[6] E.-J. Goh, ‘‘Secure Indexes,’’ IACR, New Delhi, India,
Tech. Rep. 2003/216, 2003, pp. 1–19.

[7] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, ‘‘Searchable symmet-
ric encryption: Improved definitions and efficient constructions,’’ in Proc.
13th ACM Conf. Comput. Commun. Secur. New York, NY, USA: ACM,
2006, pp. 79–88.

[8] M. Bellare, A. Boldyreva, and A. O’Neill, ‘‘Deterministic and efficiently
searchable encryption,’’ in Proc. Annu. Int. Cryptol. Conf. New York, NY,
USA: Springer-Verlag, 2006, pp. 535–552.

[9] S. Kamara, C. Papamanthou, and T. Roeder, ‘‘Dynamic searchable sym-
metric encryption,’’ in Proc. ACM Conf. Comput. Commun. Secur. (CCS),
2012, pp. 965–976.

[10] X. Ge, J. Yu, H. Zhang, C. Hu, Z. Li, Z. Qin, and R. Hao, ‘‘Towards achiev-
ing keyword search over dynamic encrypted cloud data with symmetric-
key based verification,’’ IEEE Trans. Depend. Sec. Comput., to be pub-
lished.

[11] N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, ‘‘Privacy-preserving multi-
keyword ranked search over encrypted cloud data,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 1, pp. 222–233, Jan. 2014.

[12] X. Jiang, X. Ge, J. Yu, F. Kong, X. Cheng, and R. Hao, ‘‘An efficient
symmetric searchable encryption scheme for cloud storage,’’ J. Internet
Serv. Inf. Secur., vol. 7, no. 2, pp. 1–18, 2017.

[13] X. Ge, J. Yu, C. Hu, H. Zhang, and R. Hao, ‘‘Enabling efficient verifiable
fuzzy keyword search over encrypted data in cloud computing,’’ IEEE
Access, vol. 6, pp. 45725–45739, 2018.

[14] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano, ‘‘Public
key encryption with keyword search,’’ in Proc. EUROCRYPT, 2004,
pp. 506–522.

[15] Y. H. Hwang and P. J. Lee, ‘‘Public key encryption with conjunctive
keyword search and its extension to a multi-user system,’’ in Proc.
Int. Conf. Pairing-Based Cryptogr. Berlin, Germany: Springer, 2007,
pp. 2–22.

[16] J. Li et al., ‘‘Fuzzy keyword search over encrypted data in cloud comput-
ing,’’ in Proc. IEEE INFOCOM, 2010, pp. 1–5.

VOLUME 8, 2020 11741

X. Wang et al.: EVKAKSE for Data Sharing in Outsourcing Storage

[17] R. Meng, Y. Zhou, J. Ning, K. Liang, J. Han, and W. Susilo, ‘‘An efficient
key-policy attribute-based searchable encryption in prime-order groups,’’
in Proc. Int. Conf. Provable Secur. Cham, Switzerland: Springer, 2017,
pp. 39–56.

[18] K. Liang and W. Susilo, ‘‘Searchable attribute-based mechanism with
efficient data sharing for secure cloud storage,’’ IEEE Trans. Inf. Forensics
Security, vol. 10, no. 9, pp. 1981–1992, Sep. 2015.

[19] J. K. Liu, M. H. Au,W. Susilo, K. Liang, R. Lu, and B. Srinivasan, ‘‘Secure
sharing and searching for real-time video data in mobile cloud,’’ IEEE
Netw., vol. 29, no. 2, pp. 46–50, Mar. 2015.

[20] Z. Liu, Z. Wang, X. Cheng, C. Jia, and K. Yuan, ‘‘Multi-user search-
able encryption with coarser-grained access control in hybrid cloud,’’
in Proc. 4th Int. Conf. Emerging Intell. Data Web Technol., Sep. 2013,
pp. 249–255.

[21] J. Li et al., ‘‘Efficient keyword search over encrypted datawith fine-grained
access control in hybrid cloud,’’ inProc. Int. Conf. Netw. Syst. Secur.Berlin,
Germany: Springer, 2012, pp. 490–502.

[22] F. Zhao, T. Nishide, and K. Sakurai, ‘‘Multi-user keyword search scheme
for secure data sharingwith fine-grained access control,’’ inProc. Int. Conf.
Inf. Secur. Cryptol. Berlin, Germany: Springer, 2011, pp. 406–418.

[23] X. Liu, G. Yang, Y. Mu, and R. Deng, ‘‘Multi-user verifiable searchable
symmetric encryption for cloud storage,’’ IEEE Trans. Dependable Secure
Comput., to be published.

[24] X. Liu, Y. Zhang, B. Wang, and J. Yan, ‘‘Mona: Secure multi-owner data
sharing for dynamic groups in the cloud,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 24, no. 6, pp. 1182–1191, Jun. 2013.

[25] Q. Chai and G. Gong, ‘‘Verifiable symmetric searchable encryption for
semi-honest-but-curious cloud servers,’’ in Proc. IEEE Int. Conf. Com-
mun. (ICC), Jun. 2012, pp. 917–922.

[26] R. Zhou, X. Zhang, X. Du, X. Wang, G. Yang, and M. Guizani, ‘‘File-
centric multi-key aggregate keyword searchable encryption for industrial
Internet of Things,’’ IEEE Trans. Ind. Inf., vol. 14, no. 8, pp. 3648–3658,
Aug. 2018.

[27] D. He, M. Ma, S. Zeadally, N. Kumar, and K. Liang, ‘‘Certificateless
public key authenticated encryption with keyword search for industrial
Internet of Things,’’ IEEE Trans. Ind. Inf., vol. 14, no. 8, pp. 3618–3627,
Aug. 2018.

[28] A. Fiat and M. Naor, ‘‘Broadcast encryption,’’ in Proc. Crypto, in LNCS,
vol. 773. New York, NY, USA: Springer-Verlag, 1993, pp. 480–491.

[29] A. Kiayias et al., ‘‘Efficient encrypted keyword search for multi-user data
sharing,’’ in Proc. Eur. Symp. Res. Comput. Secur. Cham, Switzerland:
Springer, 2016, pp. 173–195.

[30] J. Shu, X. Jia, K. Yang, and H. Wang, ‘‘Privacy-preserving task recom-
mendation services for crowdsourcing,’’ IEEE Trans. Serv. Comput., to be
published.

[31] S. Benabbas, R. Gennaro, and Y. Vahlis, ‘‘Verifiable delegation of com-
putation over large datasets,’’ in Proc. CRYPTO, in LNCS, vol. 6841,
P. Rogaway, Ed. Heidelberg, Germany: Springer, 2011, pp. 111–131.

[32] D. Fiore and R. Gennaro, ‘‘Publicly verifiable delegation of large polyno-
mials and matrix computations, with applications,’’ in Proc. ACM Conf.
Comput. Commun. Secur. (CCS), 2012, pp. 501–512.

[33] W. Sun, B. Wang, N. Cao, M. Li, W. Lou, Y. T. Hou, and H. Li, ‘‘Verifi-
able privacy-preserving multi-keyword text search in the cloud supporting
similarity-based ranking,’’ IEEE Trans. Parallel Distrib. Syst., vol. 25,
no. 11, pp. 3025–3035, Nov. 2014.

[34] C. Gentry, ‘‘Practical identity-based encryption without random oracles,’’
in Proc. Annu. Int. Conf. Theory Appl. Cryptograph. Techn. Berlin,
Germany: Springer, May 2006, pp. 445–464.

[35] Y. Yang, ‘‘Broadcast encryption based non-interactive key distribution in
MANETs,’’ J. Comput. Syst. Sci., vol. 80, no. 3, pp. 533–545, May 2014.

[36] Y. Yang, M. Ma, and B. Lin, ‘‘Proxy re-encryption conjunctive keyword
search against keyword guessing attack,’’ in Proc. Comput., Commun. IT
Appl. Conf. (ComComAp), Hong Kong, Apr. 2013, pp. 125–130.

XUQI WANG received the B.E. degree in infor-
mation security from Qingdao University, Qing-
dao, China, in 2017, where he is currently pursuing
the master’s degree with the College of Computer
Science and Technology. His research interests
include cloud computing security and broadcast
encryption.

XIANGGUO CHENG received the B.S. degree
in mathematics science from Jilin University,
in 1992, the M.S. degree in applied mathe-
matics science from Tongji University, in 1998,
and the Ph.D. degree with the State Key Lab-
oratory of Integrated Services Network, Xidian
University, in 2006. He is currently a Profes-
sor with the College of Computer Science and
Technology, Qingdao University. His research
interests include computer security, public key

cryptosystems, and their applications.

YU XIE received the B.E. degree from the College
of Computer Science and Technology, Qingdao
University, Qingdao, Shandong, China, in 2017.
He is currently pursuing the Ph.D. degree with
the Department of Computer Science and Tech-
nology, Tongji University, Shanghai. His cur-
rent research interests include credit card fraud
detection, machine learning, deep learning, big
data, ensemble learning, and natural language
processing.

11742 VOLUME 8, 2020

	INTRODUCTION
	RELATED WORK
	MULTI-USER SEARCHABLE ENCRYPTION
	VERIFIABLE SEARCHABLE ENCRYPTION
	KEY-AGGREGATE METHOD

	SYSTEM MODEL AND SECURITY DEFINITIONS
	SYSTEM MODEL
	THREAT MODELS
	SEMI-HONEST BUT CURIOUS CLOUD SERVER
	MALICIOUS CLOUD SERVER
	TRAPDOOR ATTACK

	DESIGN GOALS
	SECURITY DEFINITIONS

	PRELIMINARIES
	BILINEAR MAP
	TRUNCATED DECISIONAL Q-AUGMENTED BILINEAR DIFFIE-HELLMAN EXPONENT ASSUMPTION
	DECISIONAL BILINEAR DIFFIE-HELLMAN ASSUMPTION

	THE PROPOSED SCHEME
	THE SPECIAL CASE
	CORRECTNESS AND SECURITY ANALYSIS
	CORRECTNESS
	PRIVACY
	SEARCH CONTROL

	EFFICIENCY ANALYSIS AND PERFORMANCE EVALUATION
	EXPERIMENTAL ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	XUQI WANG
	XIANGGUO CHENG
	YU XIE

