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ABSTRACT Source Camera Identification (SCI) has been playing an important role in the security field
for decades. With the development of Deep Learning, the performance of SCI has been noteworthily
improved. However, most of the proposed methods are forensic only for a single camera identification
category, e.g., the camera model identification. For exploiting the coupling between different camera
categories, we present a new coding method. That is, we apply the multi-task training method to regress
the categories, namely, to classify brands, models and devices synchronously in a single network. Different
from the common multi-task method, we obtain the multi-class classification result by just one single
label classification. To be specific, we classify the categories in a progressive way that the parent category
classification result will be used in the child category classification (a detailed explanation will be given
later in the main context). Also, by appropriately increasing the redundancy of the coding method for
classifying new camera categories, the training time can be greatly reduced. To better extract camera
attributes, we propose an adaptive filter. Additionally, we propose an auxiliary classifier that only focuses on
the camera model re-classification, due to the low performance of the main classifier on certain models.
Lastly, the extensive experiments show that our methods have a better performance than other existing
methods.

INDEX TERMS Source camera identification, deep learning,multi-task training, camera categories coupling
coding, adaptive filter, auxiliary classifier.

I. INTRODUCTION
With the rapid development of multimedia technology, digital
images have gained growing popularity on the idea express-
ing. In many scenarios, digital images are playing more
important roles [1], [2]. For example, they can be treated
as evidences in criminal investigations. However, as the
image editing applications are speedily evolving, modifying
digital images is no longer the job that needs professional
skills [3]–[6]. That can cause a series of problems. Like
the example we mentioned before, it may affect justice and
the law enforcement. In order to ensure the credibility of
the image, source identification on digital images become
necessary. Many forensics algorithms have been proposed to
identify the source of digital image [7], [8]. The essence of
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camera forensics is to detect the camera attribute difference.
As shown in Fig.1, there are multiple steps in the processing
between a real image to a digital image. For each step of
the imaging processing, there are corresponding traditional
methods proposed to classify the images [9], [10].

In the past few years, SCI performance has been greatly
improved. By the powerful learning capability, CNN (Con-
volutional Neural Network) can automatically learn the dif-
ferences among different cameras [11], [12]. The network
performance highly depends on the number of images in
the training set. Increasing the number of training images
will improve the accuracy but the training time will also be
increased. Limited by storage capacity of hardware devices,
original images taken by the camera are difficult to be directly
used as the input of CNN, which will generate excessive
parameters. Therefore, the existing method based on deep
learning divides the images into fixed-size blocks [13].
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FIGURE 1. Image processing pipeline.

SCI includes the identifications on the brand, model
and device. Although the proposed camera forensics meth-
ods improve significantly, there are still issues need to be
resolved. Firstly, most of the existing methods only focus on
a single category, such as the camera model. Although the
camera brand can be identified with high accuracy, there are
still room for the model and device classification accuracy to
be improved. For the SCI, all existing methods did not put
the correlation among the three categories into consideration.
Then, the classification network need to be retrained for
classifying the new categories, even if there are only few
catregories. Also, the performance will be greatly affected
by the image contents while extracting the identification
attributes of the camera. Therefore, it is necessary to pre-
process the images. Tuama et al. [14] use a high-pass filter
and a wavelet-based denoising filter to remove the image
contents. However, using a fixed high-pass filter may remove
the original camera attributes as well.

In our work, we propose the category coupling multi-
task training method based on the adaptive filter. In order
to make full use of the correlation between camera cate-
gories of brands, models and devices, we adopt a progressive
method to classify the three categories. We start with the
classification on camera brands and categorize images into
different visual subspaces (brands). The model classification
is done separately in each corresponding brand subspace.
Meanwhile, we expect that the classification on subclasses
can in turn improve the classification accuracy of the parent
class. In this way, we consider to use the single label to
realize the multi-class classification, which called as SLMC .
Besides, we set redundancy coding to improve the scalability
of the network before training, which can reduce the network
training time for new categories. For a better image attribute
information extracting, we use the residual learning to extract
image contents with multi-layer convolution. By concate-
nating the output of each layer of the convolution kernel,
1×1 convolution kernel is used to selectively extract the low-
frequency or high-frequency contents relevant to SCI. For the
local neighborhood differences of the camera lens, we train
an additional position classifier as an auxiliary classifier to
reclassify some camera categories.

II. RELATED WORKS
In general, a digital camera consists of two major sub-
systems, the hardware and software [15]. The most common

forensics methods contains hardware part are based on
the optical aberration [9] and the Sensor Pattern Noise
(SPN) [16], [17]. Similarity, the software part involve JPEG
compression [10] and color interpolation [18]. The light alters
dramatically in real environment, so it is improper to use
illuminance as a SCI feature. However, the illuminance is
consistent in the same image. Riess et al. [19] used illu-
minance as the feature of image forgery detection. As we
know, cameras from different manufacturers have differences
in lens distortion parameters, such that the interpolation map
for specific camera lens distortion can be considered as fixed.
Therefore, Hwang et al. [20] used interpolation based lens
distortion parameters as a feature to classify the model of
camera.

The difference of sensor SPN makes it becoming the
most widely studied camera forensics method and the dis-
tortion introduced by SPN is very helpful for camera model
classification. SPN includes fixed pattern noise and Pattern
Responding Non-Uniform noise (PRNU). The PRNU is gen-
erated by the non-uniformity of the hardware sensitivity to
different illuminance intensity. Lucas et al. [21] obtained
camera fingerprints by extracting the average residuals in
amounts of images. Through the decomposition and com-
bination of image color channels, Li et al. [22] obtained
relatively complete PRNU, they propose the DPRNUmethod
to verify the integrity of camera images. By calculating the
relationship between neighboring pixels of different color
channels, Choi et al. [23] proposed a method based on color
interpolation to capture camera categories. Most cameras use
JPEG compression to store the final image.

For different cameras, the size of the image is differ-
ent, so the quality of the image produced by different
cameras is also quite different. Choi classified images by
JPEG compression for the first time. Similar to Riess,
Mahdian et al. [24] used JPEG compression to detect forgery
of images. Farah Ahmed et al. [25] proposed a comparative
analysis of SCI between deep learning and traditional meth-
ods (PRNU). Camera forgerymethods include SeamCarving,
Fingerprint Copying, and Adaptive PRNU Denoising, etc.

Sameer et al. [26] proposed a method based on deep
learning to detect camera forgery. Bondi et al. [27] pro-
posed the method which combines CNN and SVM classi-
fier. It uses CNN to extract features, and then uses SVM
classifier for identification. At the same time, with the
popularity of mobile phones, mobile device-based source
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FIGURE 2. The architecture of the proposed network for SCI. Where ×i denotes the repeat times and Classifiers can be
found in Fig. 3.

camera forensics [28]–[30] are becoming more and more
extensive.

No matter what been used is a deep learning method
or a traditional method, the camera attribute extraction
is affected by image contents and various noises. There-
fore, Tuama et al. [14] proposed to pre-process the input
image by extracting the high-frequency texture using a
low-pass filter, and then classifying the high-frequency
image. Bayar et al. [11] proposed a robust CNN-based cam-
era model identification. By using the constrained con-
volution layer, camera model identification is robust to
re-compression.

III. PROPOSED METHODS
In this section, we first describe the proposed network archi-
tectures. We analyze network from the perspective of residual
learning and use a new coding method which is different
from other methods. Noteworthy, our coding method is easily
transferred to other similar tasks. Inwhat follows, we describe
our method with details.

A. OVERALL STRUCTURE
As shown in Fig.2, we use the method of residual learn-
ing [13], [31] to extract the image contents. Firstly, we use
one convolution layer to extract the image features and then
use the multi-layer convolution to extract the contents of the
image. Next, the output of the multi-layer convolution kernel
is concatenated to extract the contents that have the same
dimension with image features through the 1×1 convolution
kernel. CNN can determinewhat needs to be removed in order
to maximize the preserve information which is related to the
classification attributes. The identification method removes
the contents that disturbs the classification, and preserve
camera attributes as much as possible. However, the residual
learning network disrupts the correlation between original
camera image neighborhoods. Therefore, we use a series of
convolution layers to extract the relevant information of the

FIGURE 3. Proposed camera attributes classifier.

FIGURE 4. Recursive method to extract camera features.

image neighborhoods separately, and then concatenate the
two parts of information together as the final output feature.

This paper uses the SLMC method to classify the camera
categories. Different from the previous classification method,
when extracting image features, we want to extract enough
common features that can simultaneously classify camera
brands, models, and devices. As shown in Fig.4, we use recur-
sive method to extract camera features. The sub-classifier
can affect the parent-classifier to drop some features that
are invalid for sub-classification. Finally, we extract enough
common features to classify the three categories.

Based on this extracting process, we propose a new coding
method. As shown in Table 1, the existing deep learning
methods classify brands, models, and devices with output
categories of 14, 27, and 74, respectively. All methods do
not consider the correlation among the three categories of a
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TABLE 1. Comparison of bit number in proposed coding (PC) method and
original coding (OC) method.

TABLE 2. Coding method for Sony_DSC .

single camera. The multi-classification method will impact
the classification performance of the network. The more
output categories, the more significant impact there will be.
The performance of binary-classifier is usually better than the
multi-classifier. In order to improve the classification perfor-
mance for models and devices, we choose to classify mod-
els (devices) respectively under the same brands (models),
which transforms the unconstrained multi-classification into
the constrained binary or trinary-classification. As shown
in Table 1, the encoding length of our coding method is

N = bl +max(ml[i])+max(dl[j]), (1)

where i = 0, 1, . . . , bl − 1 and j = 0, 1, . . . ,ml − 1. N is the
encoding length, bl denotes the number of brands, ml and dl
are the number of models and devices under the same parent-
class, respectively.

We first select some images (Sony_DSC) as the pre-
training data set. The encoding method is shown in Table 2.
Since all camera devices are of the same brand, there is no
need to classify the brands.We use six-bits to represent output
categories. For example, the ideal result of the Sony_DSC −
H50_0 camera model classifier output is 110000, and the
camera devices classifier output is 110100, which is classified
in a progressive way. We denote the category of the devices
or models which is less than the binary bits (e.g., the number
of devices of Sony_DSC−W170 is less than 3) as the coding
redundancy. For example, there are no devices encoded as
101001.

Coding redundancy will impact network performance.
However, experiments show that such impact on performance
can be neglected (cannot be neglected when setting too many
coding redundancy), and the coding between different classes
does not affect each other. That is, when we classify the
devices, the binary bits of the brand and model will not be
set. The details will be given in experiment section.

The process is given in Algorithm 1. Where Classify
denotes softmax cross entropy function. Conv3 and Conv1
represent the 3× 3 convolution and 1× 1 convolution oper-
ation. However, this approach does not increase coupling

Algorithm 1 Training Algorithm for Proposed Network
Input: x: image(64 × 64); Label: Ground truth label;

B_label: Brand index ([1,. . .,1,0,. . .,0,0,. . .,0]);
M_label: Model index ([0,. . .,0,1,. . .,1,0,. . .,0]);
D_label: Device index ( [0,. . .,0,0,. . .,0,1,. . .,1])

Output: loss Cost_b, Cost_m, Cost_d
1: extract image features: Fea = Conv3(x)
2: extract image contents C: C1,C2,C3 = Conv3(Fea); C =
Conv1(Concat([C1,C2,C3]))

3: obtain the attributes of camera: Att = Fea - C;
Conv1,Conv2,Conv3 = Conv(Att)

4: compute brand label: Label1 = abs(FC(Conv1))
5: compute model label: Label2 = abs( FC(Conv2) -

Label1)
6: compute device label: Label3= abs(FC(Conv3) - Label2

- Label1)
7: Cost_b = Classify((Label1), Label & B_label)
8: Cost_m = Classify((Label2), Label &M_label)
9: Cost_d = Classify((Label3), Label & D_label)

TABLE 3. The network divides the three categories to different numerical
spaces to eliminate categories coupling. [a,b] denotes the arbitrary range
of values which are obtained from FC(Conv1). k and n (where 0 << k <<
n) represent the order of magnitude.

among different camera categories. For example, we assume
that the label of given images is 110100, and the camera
brand (1-bit), model (2-bits), device (3-bits) are encoded as
100000, 010000, and 000100, respectively. Ideally, the output
by the device classifier is consistent with the label (actually
110100). However, models may divide different camera cate-
gories into different numerical spaces and indirectly eliminate
the coupling between categories. Then coding method degen-
erates into a separate classification. As shown in Table 3,
the division of the numerical spaces make the parent class
(brand, model) having no effect on the loss of the subclass
(model, device). That is, the parent bit (arbitrary value that
range in [a, b]) in the subclass has no effect on the sub-
class classifier after the softmax function. So we propose the
method of correlation loss.

B. LOSS FUNCTION
SLMC is a progressive method when classify the camera
attributes. Themodel classificationworks under the condition
that the brand classification is accurate. Likewise, device
classifier can be better trained whereas the camera brands
and model classification are accurately classified. As shown
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FIGURE 5. Improved framework for classification methods.

in Table 1, the camera brands occupy most of binary bits,
which results in the lowest accuracy on the camera brand
classification when network randomly initializes the weights.
As described in the previous section, this training method is
pathological. Therefore, in order to prevent the cameras clas-
sification from falling into local minimum points and solve
the problem of pathological, when classifying the camera
models or devices, we can replace the formula in Algorithm 1
with the following formula

Label1 = 1× Softmax(FC(Conv_1)) (2)

Label2 = 2× Softmax(FC(Conv_2)) (3)

Label3 = 3× Softmax(FC(Conv_3)) (4)

where Label1, Lael2−Label1 and Label3−label2 can repre-
sent the output logits of the network for camera brand, model
and device. However, this method just solves the problem of
dividing numerical spaces, sub-classes do not improve the
classification accuracy of the parent class. We further modify
the loss function, as shown in Fig.5. Cost_b, Cost_m and
Cost_d are defined in Algorithm 2.Cost1 andCost2 are used
to assist the information sharing among the three categories,
which are defined as the following

Cost1 = L1(Label2[: bl],Label1[: bl]) (5)

Cost2 = L1(Label3[: (bl + ml)],Label2[: (bl + ml)]) (6)

where Label has three bits been set to 1. L1 stands for L1
norm [32]. bl and ml denote the binary bits of brand and
model. Therefore, for the devices classification, they classify
the camera brands and models as well. However, this method
has the same loss on the three categories of cameras implying
that additional weight settings and progressive training are
still necessary.

Cost = α × Cost_b+ β × Cost_m+ θ × Cost_d

+µ× Cost1+ ν × Cost2 (7)

We recommend to set the above parameters to 0.5, 0.4, 0.1,
0.1 and 0.1, respectively.

C. CODING REDUNDANCY
For the proposed methods, the number of final outputs
obtained by the network is fixed. Accordingly, the model

Algorithm 2 Improved Algorithm for Classification
Input: Label: Ground truth label; B_label: Brand index

([1,. . .,1,0,. . .,0,0,. . .,0]); M_label: Model index
([1,. . .,1,1,. . .,1,0,. . .,0]); D_label: Device index (
[1,. . .,1,1,. . .,1,1,. . .,1])

Output: loss Cost_b, Cost_m, Cost_d
1: compute brand label: Label1 = Softmax(FC(Conv1))
2: compute model label: Label2 = 2·Softmax(FC(Conv2))
3: compute device label: Label3 = 3·Softmax(FC(Conv3))
4: Classify2(logits,label) = −Sum(label×log(logits))
5: Cost_b = Classify2((Label1), Label & B_label)
6: Cost_m = Classify2((Label2), Label &M_label)
7: Cost_d = Classify2((Label3), Label & D_label)

TABLE 4. The proposed redundant coding. Which can reduce the training
time of the network for new camera categories.

needs to be retrained for classifying the new data. In order
to improve the scalability of the network, it is appropriate to
set redundancy for network classification before the training.
Extended classifier has impacts on the model performance,
but it increases the ability of network retraining.

As shown in Table 4, we give the number of binary bits
of our proposed methods and existing classification methods.
When new data needs to be classified, the trained model can
be used as a pre-training model, which can greatly reduce the
training time. We define the representation of redundancy as

Red = (Cb × Cm × Cd − OCd )/(Cb + Cm + Cd ) (8)

where Cb, Cm, Cd represent the number of category binary
bits in the corresponding classifier. We denote OCd as the
amount of devices in training set. Redundancy can sim-
ply measure the efficiency of the coding. Simultaneously,
high value of redundancy will affect the performance of
the classification network. The higher the value of redun-
dancy, the greater the impact on the classification network
performance.

D. AUXILIARY CLASSIFIER
The proposed methods work well for most models, but for
some models, e.g., the D70 and the D70s, the classification
performance is not as good as what is expected. Therefore,
we propose an auxiliary classifier to improve the classi-
fication performance of the main classifier. However, this
classification method requires a separate classifier for each
camera model, namely, the requirement on memory will be
higher. Therefore, we only use the classifier as an auxiliary
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FIGURE 6. Proposed camera attributes auxiliary classifier.

classifier to re-classify camera categories which are difficult
to be classified by the main classifier.

As shown in Fig.6, the same position of different pictures
(for the same camera model) divide into the same class,
i.e., the classification based on the lens position. Too many
patches in the same image will reduce the accuracy of the
Position Classifier (PC). In our experiment, we choose the
patch size to be 48. Considering the difference on camera
category sizes, we only use the top left corner of the image
for classification. The selected area is

input = img[patch_size× Cline, patch_size× CCol] (9)

Both Cline and CCol are set to 14, which means that
images are divided into 196 categories. By the large coupling
between neighbor pixels and the limitation of training data,
the classification performance of the PC is poor. The cou-
pling between adjacent categories can be reduced by setting
stride appropriately when dividing patches. We take the value
of stride to 30 and retrain the network for the comparing
experiments. Fortunately, despite the bad classification per-
formance of the PC, the extracted position information still
contributes to the Binary Classifier (BC).

For any camera category, we first train the PC. The net-
work can better extract the camera attribute information when
the PC gradually improves the classification accuracy. It is
worth noting that the neighborhood classification method
can extract attribute information of any local position of the
camera. However, when the image from the same camera
passes the same post-processingmethod (different processing
methods for different camera categories), the location-based
classifier may ignore the global information. Therefore, with
the multi-location classifier, we set additional networks to
extract global information from different camera models. We
fix the network parameters of PC when we train the BC. The
input of the BC is the concatenate of three network outputs.
More details are given in Algorithm 3.

IV. EXPERIMENT
A. DATASETS
In our experiments, all data comes from the publicly available
Dresden database [33]. We select all 74 categories to evaluate
the network performance. Same as the experimental settings

Algorithm 3 Training Algorithm for Auxiliary Classifier
Input: x1: blocks (48× 48×3) from D70; Label_1 = [1,0];

x2: blocks (48 × 48×3) from D70s; Label_2 = [0,1];
PClabel1: position label for x1; PClabel2: position label
for x2; Input: x1 or x2

Output: classify images from D70 and D70s
1: train position classifier 1: Fea_1 = CALB1(x1);

min[loss(PC(Fea_1),PClabel1)];
2: train position classifier 2: Fea_1 = CALB2(x2);

min[loss(PC(Fea_2),PClabel2)];
3: global feature extract: Fea_3 = CALB3(Input);
4: train binary classifier: Fea_1 = CALB1(Input); Fea_2
= CALB2(Input); Fea = Concat[Fea_1, Fea_2, Fea_3];
min[loss(BC(Fea),Label)]

TABLE 5. Pre-training network analysis of redundant coding.

of [13], we divide the dataset into training and testing sets
randomly, where 70% of the data is chosen for training and
the rest 30% is for the testing data. Network performance is
evaluated by calculating the average accuracy of all image
blocks from the testing set.

B. PRE-TRIANING
We first pre-train the network with images from Sony_DSC .
The pre-training is used to test the effect of redundant coding
on classification performance. For saving the training time,
we crop the image before training. All input images are
clipped to 48× 48 blocks with the non-overlapping method.
Considering the limit of hardware storage capacity, we set the
batch to 96.

We use the Extended-Classifier to encode the camera cate-
gories. As shown in Table 5, when we train the network with
Sony_DSC , the device coding bits will generate redundancy,
but it has small effect (<0.0001) on the device classification
performance. Therefore, the new encoding method can be
well applied to classify camera categories.

C. EVALUATION ON FINAL DATASET
Now, we train the network with 74 devices from 14 brands.
Same as the experiment settings above, we first crop the
original image to 48 × 48 blocks. If the size of image is
2500× 2000 (may be 2560× 1920 and other shapes), which
means that every image contains an average of 2,000 blocks.
It takes too much time to use all the blocks as the training
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TABLE 6. Confusion matrix for 27 camera models using the proposed method. Results are obtained by average all camera accuracy in the same model.

set. So we randomly extract 60000 images from training set
to train the network and re-produce the training set using
the same way every epoch. We reset the learning rate to
0.001 and change it with the training process. The final results
are shown in Table 7. We implement the proposed network
structure by using Tensorflow R©. All experiments are trained
with NVIDIA GTX 1080Ti GPUs. When testing the camera
models, we classify all devices under the same model into the
same class.

Table 10 shows the confusion matrix of brands. Table 6
shows the confusion matrix of models. Table 11 shows sev-
eral device classification accuracy of the data set used in
the experiment. Camera models can be classified by model
classifier and device classifier. Table 7 shows that the perfor-
mance of the model classifier is better than the device clas-
sifier using our proposed method. Meanwhile, our method
performs better than the existingmethods nomatter themodel
classifier and the device classifier.

FIGURE 7. Accuracy of training process of auxiliary classifier (PC+BC).

As shown in Table 6, the proposed classifier has low
classification performance for the Nikon D70 and the Nikon
D70s. This phenomenon is not only presented in our
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TABLE 7. Camera identification accuracy compared with the previous
methods. Where W /OCouple+ Adap stands for without couple coding
and adaptive filter and W /OCouple stands for without couple coding.
Two ablation experiments just train for camera models.

TABLE 8. Ablation study of position classifier (PC) and global feature
extract (GFE) in auxiliary classifier.

proposed method. Therefore, a reasonable explanation is that
two camera models have high similarity. We classify all
devices belonging to the same camera model into same
categories. The blocks corresponding to the same position
in different images are classified into the same class. Each
image is divided into 196 blocks, namely, 196 categories.
In order to better train the BC, we need to extract enough
camera attributes. The classification performance of the PC
is positively correlated with the features (position attributes)
extracted by the classifier. During the training, limited size
of data and neighborhood similarity make the classification
performance of the network greatly reduced. Over-fitting
occurs when there are too many training times. At the same
time, the attribute information extracted by the PC may not
always be helpful to BC, although it can effectively distin-
guish different positions of the images.

As shown in Algorithm 3, we use the alternating training
method to gradually train the entire network. We choose
to change the network every five epochs. Our final results
are shown in Table 8. Comparing with the original results,
the effect of PC is not obvious. BC classification performance
is subject to the performance of PC classification, whereas PC
classification performance is bad (about 0.1, random guess
accuracy is 1/196). However, we believe that with the size
of training data set growing, the performance of the PC will
gradually improve. In order to show the impact of PC on
BC, we removed the global information extraction network
and used the location information extracted by PC to classify
BC. As shown in Fig.7, each alternation includes 5 epochs
(for BC training). We provide 45 epoch results, and fur-
ther training cannot get further improvement in the network
performance.

V. THE SCALABILITY
In this section, we test the scalability of the proposed
method. The selected categories are shown in the Table.9.

TABLE 9. The camera categories used to detect the performance of
network scalability.

FIGURE 8. The accuracy curve to show the efficiency of the network
scalability.

TABLE 10. Confusion matrix for 14 camera brands using the proposed
method. Results are obtained by average all camera accuracy in the same
brand.

Samsung_NV15_2, Nikon_D70 and Agfa_Sensor505-
x_0 are adopted to detect the network scalability for camera
device, model and brand. We train the network under the
same coding methods and length as the experiment settings
of the paper. The samples of black fonts in the Table.9 are
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TABLE 11. Classification accuracy of several devices.

used to pre-train the network. After several iterations, we load
the pre-trained network to train all samples in Table.9 The
accuracy curve is shown in Fig.8. From where we can see,
the retrained process need fewer iterations to obtain the higher
accuracy, which can greatly reduce the training time for new
camera categories. Every 100 iterations take about 52 seconds
when the batch size is set to 96.

VI. CONCLUSION
In this paper, we propose a new deep learning approach for
solving the problem of category coupling and image attribute
extracting. To accomplish such goal, image contents are
extracted by the multiple convolution kernel. By subtracting
the image contents from the original images, the images can
be better classified.We adopt coupling codingmethod to train
the network and the multi-classification problem is decom-
posed into a number of binary or tri-classification problems.
Meanwhile, redundant coding can improve the scalability of
the network. Pre-training experiments show that redundant
coding has small effect on the classification performance. For
several models which are difficult to classify, we proposed
the auxiliary classifier and we believe that it can be better
trained by appropriate setting crop position. We evaluate the
effectiveness of our proposed methods by using the Dresden
database. The final experiment shows that our method is
superior to the existing methods.
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