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ABSTRACT Mobile computing adds computing, storage, processing and other functions in wireless
network ends to provide customized and differentiated services, so that it can be widely applied in the
fields of internet of things, video, medical treatment, retail and so on. Recently, power spatio-temporal
big data (PSTBD) technology of smart grid based on mobile computing has experienced explosive growth.
This paper emphasizes the specific requirements, technologies, applications, and challenges of the current
PSTBD for mobile computing in smart grid. Based on current development status of PSTBD companies in
representative countries in the world, we introduce PSTBD technology based on the characteristics of mobile
computing based smart grid, and conduct a comprehensive investigation and analysis of relevant articles in
this field. After comparing the differences between the traditional and the PSTBD based platform in the
aspects of important features, platform goal, and platform architecture, we describe the key technologies
and algorithms of the current PSTBD in detail. Then, based on the requirements of each link and field of the
power grid, the typical application of PSTBD technology in various aspects of smart grid application based
on mobile computing is discussed. Finally, the development direction and challenges of PSTBD are given.
Through data analysis and technical discussion, it hopes to provide technical support and decision support
for relevant practitioners in the PSTBD field.

INDEX TERMS Mobile computing, data processing, smart grids, spatio-temporal big data.

I. INTRODUCTION
Power spatio-temporal big data based on mobile computing
refers to ‘‘power+mobile equipment+big data’’, which
collects and processes multi-source, heterogeneous,
multi-dimensional and multi-form spatio-temporal big data
in various links from generation, transmission, transforma-
tion, distribution, power consumption to dispatching power
production and power service. The characteristics of Power
Spatio-Temporal Big Data (PSTBD) meet the ‘‘5V3E’’
characteristics [4]–[6], as shown in Fig.1. In addition to ‘‘3E’’
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which is energy, exchange, and empathy, the ‘‘5V’’ is as
follows.

Volume: Conventional power dispatching system includes
hundreds of thousands of data collection points; the number
of power distribution data centers often reaches tens of mil-
lions; data volume is often above TB and PB.

Velocity: Decision support requires analysis of large
amounts of data in a fraction of a second; real-time processing
requires continuous real-time data generation.

Variety: Data types are structured, semi-structured,
and unstructured data, including real-time data, histori-
cal data, text data, multimedia data, time-series data and
so on.
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FIGURE 1. Power patio-temporal big data features.

Value: Electric power enterprises realize business trend
analysis, prediction and decision support, through a series of
means such as data mining.

Veracity: Due to the generation technologies, acquisition
means and various forms, there are a large number of inferior
data in power data.

Recently, PSTBD technologies for mobile computing are
used in many engineering applications [7]–[9], involving user
behavior analysis, demand response analysis, equipment risk
analysis, system risk assessment, energy efficiency analysis,
decision support, and other fields.

For example, C3 energy power grid is a large data analysis
of time and space. It mainly serves the smart grids owners,
operators and users on the supply side, such as utility com-
panies, dispatching agencies, transmission and distribution
companies. It can be used to reduce costs, predict and respond
to system failures, and grasp the energy consumption of users
in power grid operation. BG&E uses two application modules
of the C3 energy analysis engine platform to integrate its
internal 12 data source systems and data from 2 million
smart meters in its service area. A total of 10 TB cloud
image data, integrated analysis of 35 million pieces of data,
about 8 GB/220 million pieces of data per day. Con Edison’s
distribution network fault risk assessment system was piloted
at the New York Power Supply Company to provide fault risk
assessments for feeders and equipment (cables, distribution
transformers, etc.) to guide outages, improve facility mainte-
nance efficiency, and improve distribution network reliability.
PSE&G also uses advanced analysis of real-time sensors
to track various operational metrics. The application of the
analysis helps the company identify and remediate problems
before they occur, saving millions of dollars in avoiding
equipment failures.

Tokyo Electric Power andGeneral Electric Company of the
United States recently announced that to improve the power

generation efficiency of thermal power plants, a system that
uses the ‘‘Internet of Things (IOT)’’ will be jointly devel-
oped. The Fujitsu Thermal Power Plant of Tokyo Electric
Power will introduce the industrial Internet of Things tech-
nology of General Electric Company of the United States.
The two organizations will collect and analyze big data such
as the operation of power generation equipment, and finally
develop the corresponding system. NEC, Mitsubishi Electric
IFS cloud computing service, which is a cloud computing
service that manages and analyzes the data such as the oper-
ating status and energy consumption of equipment collected
by factory automation control equipment in the manufac-
turing plant. Omron’s sensing technology is combined with
Oracle’s information visualization software in Japan to pro-
vide services from the NSSOL cloud computing environment
‘‘Absonne’’. The power consumption is measured by various
sensors located in factories, warehouses, office buildings, etc.
Then, the visualization of the relationship between equipment
operation status and power consumption is realized by com-
bining the production scale and power consumption data in
the production management system.

The French energy company owns Europe’s largest elec-
tricity production system, mainly for transmission, distribu-
tion, gas supply and engineering consultancy, with stable
markets in Italy and UK. At the same time, France Power
actively expands its international business and participates in
power projects in Asia, Africa, and America through wholly-
owned or joint ventures. As a leading power infrastructure
service provider in theworld, the French Electric Power Com-
pany attaches great importance to the role of big data in enter-
prise operation analysis and management. By establishing
professional institutions, improving data base and enhancing
analysis ability, it constantly excavates the value of data assets
to provide effective decision support for enterprise strategic
transformation and service upgrading.

China’s National Development and Reform Commission
and the National Energy Administration issued the Guid-
ing Opinions of the State Council on Actively Promoting
the ‘‘Internet+Action’’, one of which is to promote the
deep integration of energy and information and communi-
cation infrastructure. In 2017, the Energy Bureau issued the
‘‘13th Five-Year Plan for Energy Development’’, empha-
sizing more emphasis on system optimization and actively
building a large grid intelligent monitoring system. During
the ‘‘Thirteenth Five-Year Plan’’ period, it should actively
promote the deep integration of new technologies in the
fields of energy, information and big data, promote the effi-
cient integration and intelligent regulation of grid informa-
tion physics systems, and promote the construction of intel-
ligent monitoring systems for large power grids. In 2018,
it has formed a comprehensive and controllable big data
and large grid intelligent monitoring system comprehensive
solution, technical system and (international) standard spec-
ifications, environmental awareness, special communication,
intelligent cloud, intelligent analysis, intelligent service, etc.
in the intelligent monitoring of large power grids. It has
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FIGURE 2. The number of articles published during 2001 and 2019.

broken through a number of key technologies and laid the
foundation for building a giant energy intelligent manage-
ment system that is information-driven, active defense, and
precise control. Promote the construction of major engi-
neering demonstration projects for large-scale intelligent
monitoring robots based on big data and artificial intelligence
technologies.

This paper also attempts to make a preliminary analysis
and summary of the development opportunities and techni-
cal challenges of PSTBD Technologie from different per-
spectives. The rest of this paper is organized as follows.
Section 2 investigates relevant articles and analysis the state
of the power spatio-temporal big data technology research.
After describes the PSTBD platform architecture associ-
ated with mobile edge computing in Section 3, algorithms
for PSTBD have been reviewed in Section 4. The state of
applications PSTBD technology are provided in Section 5.
Section 6 finalizes the paper with challenges and the research
directions of PSTBD technology.

II. RELEVANT ARTICLES ANALYSIS
In order to investigate the existing research in mobile com-
puting based power spatio-temporal big data, an article anal-
ysis was conducted on 1 September 2019 using the well-
established and acknowledged databases, Web of Science
(WoS). The query for WoS is as follows:

R1: TS=(power spatio temporal data and mobile comput-
ing); R2: TS=(power space time data andmobile computing);
R3: TS=(space time data and mobile computing and power
network); R4: TS=(space time data and mobile computing
and power system); R5: TS=(space time data and mobile
computing and power grid); R6: TS=(space time data and
mobile computing and smart grid).

The final query is R= (R6 OR R5 OR R4 OR R3 OR
R2 OR R1). The number of articles reached 58 from 2001 to
2019 in the query results. Fig.2 depicts the number of arti-
cles published about mobile computing based power spatio-
temporal big data technology in these twenty years. We can
see the number of publications has grown rapidly in the last
five years.

We can see that the engineering electrical electronic is the
largest group among all research directions, from the Fig.3(a).
It can be seen from Fig.3(b) that the number of articles in
USA, SOUTH KOREA, and PEOPLES R CHINA is 16, 9,
and 8 respectively. It means the number of paper proposed by
these three countries exceeds the sum of other countries.

FIGURE 3. The analysis of the articles in WoS.

TABLE 1. The number of articles from different research organizations.

TABLE 2. Top 5 journals in the number of publication.

Research institutions in this field have published the most
papers for PCSHE, UNIVERSITY OF WATERLOO, and
YONSEIUNIVERSITY.All of these organizations published
three articles, as shown in Table 1.

From Table 2, among the top 5 most popular journals in
this field, SENSORS has published three papers. Although
not a traditional journal, it is an interdisciplinary field, which
makes this journal a natural outlet for mobile computing
based PSTBD technologies.

We also extend analysis on the retrieval of Engineering
Village library, and the final query is as follows: (((((mobile
computing) WN KY) AND ((power system or smart grid
or power grid or power network) WN KY)) AND ((space
or spatio) WN KY)) AND ((time or temporal) WN KY)).
375 related papers were retrieved, and their types were shown
in Fig.4(a). Unlike papers retrieved in WoS, most of the
papers retrieved by IEEE are conference papers, 192 con-
ference papers and 54 proceeding papers. According to the
search results, the United States is still the country that pub-
lishes the most papers in this field, as shown in Fig.4(b).
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FIGURE 4. The analysis of the articles in query results.

TABLE 3. Top 20 directions in the number of publication.

From the perspective of controlled vocabulary, these papers
mainly come from the fields of mobile computing, commu-
nication, and data processing, as shown in Table 3.

III. POWER SPATIO-TEMPORAL BIG DATA PLATFORM
In view of the wide-area space-time measurement informa-
tion and on-line security control of large power grid, the key
is to quickly identify the dominant link and its state vari-
ables from the large spatial-temporal data according to the
specific disturbance scenarios, and then to effectively assess
the stability situation and calculate the prevention and control
strategy for specific problems in real time. So it is necessary
to study the PSTBD Technologies for mobile computing in
smart grids, such as analysis, extraction, cleaning and so on.

A. BIG DATA ANALYSIS BASED ON MOBILE COMPUTING
The most important part of big data analysis is data mining
algorithms, which can display the characteristics of data more
scientifically and intuitively based on different data types and
formats. For online security prevention and control of large
power grids, data mining and machine learning methods are
used to study the spatiotemporal correlation characteristics
of large-scale measurement information of large power grids
and efficient data mining algorithms.

Predictive analysis is the most common application of
big data analysis. At present, the prediction problems in the
power grid are often developed for a certain local electric
quantity trajectory information. The analysis and utilization
of the spatio-temporal correlation characteristics of the wide-
area measurement trajectory information of the power grid is
seriously insufficient, and it is difficult to grasp the overall
movement behavior and change trend of the power grid.
The research focuses on the prediction method of wide-
area spatio-temporal big data. By establishing a scientific
model, the spatio-temporal relationship and change law of the
power grid are mined from the big data, so as to predict the
future running trajectory and weak links of the power grid
through the model, which is effective for the future stable
situation of the power grid. Predict and adaptive prevention
gains valuable time. It also helps to identify the main factors
and prevention and control points (such as cutting machine
or load shedding) in grid operation, and provides targets
for reflection virtual modeling and adaptive defense control
based on wide-area spatio-temporal information.

In addition, in order to improve the timeliness of online
preprocessing, data mining and predictive analysis of big
data running on the grid, it is necessary to study real-time
big data analysis and management techniques, specifically
related to mobile computing. And key technologies such as
graph calculation and memory calculation are also crucially
important for mobile computing based smart grids.

B. PLATFORM GOAL
Under the traditional security control mode of power systems,
relying on the ‘‘modeling + simulation’’ model, the level of
intelligence is not high, and it is restricted by parameters
and models. The depth of mining wide-area measurement
information is insufficient, and timeliness is difficult to guar-
antee. The above four aspects of research will provide basic
theoretical support for the online intelligent security defense
of a large grid based on a smart grid dispatching technical
support system.

Themain goal of establishing an information-driven model
based on big data technology is to meet the efficient analysis
and processing of large-scale spatio-temporal sequence data
of large power grids, and to dynamically track the evolu-
tion of space-time sequences of power grids. At the same
time, it combines the theory of machine learning and com-
plex network to quantitatively evaluate the multi-dimensional
spatiotemporal dynamic behavior of large power grids and
adaptive wide-area coordinated control.

As shown in Fig.5, the two are combined to complement
each other, which can further deepen the relationship between
spatio-temporal sequence information and mobile computing
characteristics of the smart grid.

C. PLATFORM ARCHITECTURE
Based on the wide-area space-time sequence data of the
power grid, a data analysis platform centered on Spark is
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FIGURE 5. Platform construction purpose.

FIGURE 6. Mobile computing based big data platform.

constructed, as shown in Fig.6, which mainly includes the
following levels.

The platform aims to build an information-driven grid
information-physical coupling system, extract key features
of the dominant grid operating state from complex informa-
tion networks, and utilize information-physical interactions
through computation, communication, and control technolo-
gies. And feedback, improves the intelligent real-time per-
ception of the power grid and wide-area coordinated control
capabilities to ensure the safe and stable operation of the
power grid [10].

Application Layer: The application layer is an abstrac-
tion layer of communication methods designed for

communication between processes and processes of the entire
Internet computer network. Data application layer addition or
improvement techniques includes data mining, etc., through
online analysis, intelligent processing, and machine learning
to achieve application goals.

Presentation Layer: Graphical display of calculation
results, allowing dispatchers to visually identify the real-time
operating status of the grid. In order to facilitate the front-end
display, the analysis results of historical and real-time data
are respectively written into different databases.

Data processing layer: The data processing layer is the core
part of the platform. The computing and query framework
mainly uses Spark Core and four components running on it:
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MLlib, Spark SQL, Spark Streaming, GraphX. The comput-
ing framework adopts a unified programming model, which
fully exploits the advantages of Spark. The Redis in-memory
database acts as a data buffer pool to ease database load. The
algorithm library is used to store commonly used high per-
formance parallel algorithms, and the knowledge inventory is
stored in the cognitive model obtained by machine learning
training.

Data storage layer: In order to meet the functions of
high-quality acquisition and integration of grid time-space
sequence information, high-speed indexing, and storage of
streaming data, automatic error detection, etc., the platform
usesHadoop distributed file system (HDFS) as the underlying
distributed storage. The system, combined with a variety
of NoSQL databases, provides powerful underlying support
for large-scale mass data storage. As a distributed memory
file system, Alluxio can store multiple user data in shared
memory, avoiding a large number of disk I/O operations and
improving data processing efficiency.

Power Grid layer: The grid can use the business insights
obtained from the data processing layer for grid abnormal
event monitoring and real-time decisionmaking to control the
physical layer of the grid in real time.

IV. ALGORITHMS FOR PSTBD
PSTBD based on mobile computing has its own characteris-
tics and needs corresponding algorithms to solve the prob-
lems in the application. These algorithms mainly include:
real-time control technology, temporal-GIS technology, data
presentation technology, transmission and storage technol-
ogy, parallel analysis technology, and other mobile comput-
ing related technologies.

A. REAL-TIME CONTROL TECHNOLOGY
With the deepening of the interconnection degree of the
power grid and the increasingly complicated operation mode
at present, the real-time analysis and control of the grid
state become more and more critical [11]. Wide area mea-
surement system (WAMS) uses synchronous phase angle
measurement technology to realize real-time and high-speed
acquisition of synchronous phase angle and main data of
power network by gradually laying out synchronous phase
angle measurement unit (PMU) of key measuring points in
the whole network. PMU can ensure the synchronization of
the whole network data through the global positioning system
(GPS) [12]. Timing information and data are stored and sent
to the main station at the same time. Therefore, the scheduler
in WAMS can monitor the dynamic process of the power grid
in real-time. Wide area measurement system coverage has
also theoretically realized considerable real-time monitoring
of the whole network, making real-time stability analysis and
control of the power grid possible [13]. In practical engineer-
ing applications, due to uncertainties, stray components may
appear in the WAMS system, which affects the accuracy of
identification results of low-frequency oscillation. In order to
improve the accuracy of the results, it is generally necessary

to pre-process the read data. Then, the order estimation of
the identification model, Prony analysis and comprehensive
analysis are carried out. The amplitude, frequency and damp-
ing ratio of power oscillation are obtained, and then the small
disturbance stability of power system based onWAMS online
data is obtained [14].

Recently, most of the latest systems in this aspect
adopt (GPS) synchronous clock technology to conduct sta-
ble analysis and control of PMU phase difference data
according to hyperplane clustering method based on big data
analysis. [15].

B. TEMPORAL-GIS TECHNOLOGY
The development of the power system makes the power grid
increasingly dense, the power equipment increasingly com-
plex, the load and building information constantly changing,
the requirement for high electricity quality increasing, and
other problems are becoming more prominent. Therefore,
power system planning, operation, and business departments
must collect, store, analyze, and quickly process their large
and complex information including graphics, maps, and data.
In order to realize the rational planning of transmission net-
work construction and distribution network transformation,
it is necessary to improve the quality of electric energy and
power supply reliability [16].

The GIS (geographic information system) is an integrated
information management system for the electric power pro-
duction process [17]. It connects power equipment, substa-
tions, transmission and distribution networks, power units
and power companies. The unified system provides infor-
mation on natural equipment such as power equipment,
grid operation, power technology, production management,
electricity market, mountain rivers, topographic town roads,
and meteorological, hydrological, geological, and resource
sources. Through GIS, you can query related data, pictures,
charts, maps, management information, etc.

The temporal geographic information system quickly
reflects the historical changes of the power grid topology
through time playback, and compares and analyzes the dif-
ferences between the two historical nodes in different peri-
ods [18]. The emergence of temporal geographic information
systems will play an important role in grid operation manage-
ment and planning prediction, andwill enhance the functional
positioning of grid equipment and topological network data
as ‘‘digital’’ in grid information systems.

Spatial objects have three basic properties: spatial prop-
erties, topic properties, and time properties. Traditional
geographic information systems only focus on spatial and
topic attributes when dealing with spatial objects. Therefore,
the traditional geographic information system can only pro-
cess the current state of the data or a snapshot of a certain
historical state, can not record the dynamic changes of the
data with time, and can not perform time series analysis
and time processing [19]. Changes in geographic objects are
closely related to time. In order to track and record these
changes, it is necessary to introduce time information into
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the GIS, which is the main problem to be solved in the
temporal GIS.

The tense grid data in the GIS uses the temporal and
multi-level version of the ground state correction model to
support the full lifecycle management of the grid model,
meeting the historical evolution of the recorded grid model
and the planning and design application requirements [20].
The performance requirements for fast access to historical
data are in the form of monthly baseline and engineering
delta. That is, on the 1st of each month, the current state of the
grid resources is stored as a full snapshot, as the baseline for
the month; then the variable data generated by each project
is incrementally stored, so that the horizontal query of the
section and the vertical query of the device history can be
realized.

C. DATA PRESENTATION TECHNOLOGY
Data presentation technology refers to a technology that
uses graphical means to effectively and clearly express and
exchange information. Since the massive data sets formed
by various systems in the smart grids contain various mul-
tivariate data, time-varying data, and high-precision high-
resolution data, even a common data set can reach the order
of TB. Therefore, facing massive smart grids big data, how
to quickly and effectively extract useful information from
users, how to present them to users through a limited screen
in an intuitive and easy to understand way is a key technical
difficulty in smart grid big data applications. Smart grid
big data presentation technology can significantly improve
the visibility and intuitiveness of power data, which helps
managers to understand the operating status of the power
system more intuitively, clearly and accurately.

Visual representation of spatiotemporal data can be divided
into static visualization and dynamic visualization. The static
visualization of spatio-temporal data is generally based on
superimposing elements that can describe time changes on
a two-dimensional map, and then describes the temporal
and spatial attribute data and the variation characteristics in
the spatial range [21]. Dynamic visualization can display
spatiotemporal data by various means such as dynamic map
and 3D GIS [22]. The spatio-temporal data is presented in
a dynamically changing map or three-dimensional scene,
which can visually and vividly represent the changing process
of various spatial information. The development of 3D GIS
enables spatio-temporal data to be presented in 3D geospatial.
The spatial object based on spatiotemporal data intuitively
expresses the motion process of spatial scale in the three-
dimensional world, and solves the key problem that the planar
map is difficult to express the motion trajectory of objects
with different spatial elevations. A dynamic map is an elec-
tronic map that can reflect the changing process of spatio-
temporal information centrally and intuitively. Its production
and development is an important basis for visualizing time
and space data [23]. The development of data visualiza-
tion technology makes dynamic data rendering more and
more powerful. EChart and D3 visual frameworks have also

been used for reference in the field of spatio-temporal data
representation [24].

Visualization technology is widely used in smart grids to
monitor and control the operation of the grid in real time,
which can effectively improve the automation level of the
power system [25]. Spatial information flow display technol-
ogy is usually embodied in the fusion of grid parameters and
existing GIS, such as three-dimensional display technology
and virtual reality technology. Historical flow display tech-
nology is often applied to grid historical data management
and display. It can realize real-time monitoring data of power
production site or forecasting function of data trends such as
power grid planning and load forecasting data. It can be seen
that this technology has great application value.

D. TRANSMISSION AND STORAGE TECHNOLOGY
With the development of computer technology, the stor-
age and management mode of spatio-temporal data is con-
stantly changing and updating. At each stage, it is affected
by the current status of computer hardware and software,
the characteristics of data scale and the actual application
requirements [26]. The spatio-temporal data storage and
management model has evolved from a traditional central-
ized file storage/space database to a distributed file system
management represented by Hadoop HDF, and then to a
distributed NoSQL non-relational database.

The amount of data generated by the power grid system
during normal operation is extremely large. In order to facil-
itate the monitoring and management of the staff, it is nec-
essary to store the data, which utilizes big data transmission
and storage technology. The trend of contemporary big data
is the storage of massive data and the existence of data for
more and more things. By combing the key technologies of
big data processing, the types of existing storage technologies
and databases in the context of big data are summarized.
In addition, in the context of the big data era, the research
of grid big data and big data related technologies provide
effective support for the modernization and information of
grid work.

In terms of data storage, smart grids generally adopt
distributed file systems to access power big data, such as
Hadoop’s HDFS storage system. However, these systems
can only be used to store data but cannot meet the real-
time requirements of the field. In order to meet real-time
requirements, big data management and processing technolo-
gies need to focus on complex structure, semi-structured and
unstructured data. Sadiq et al. mainly solved several key
problems of big data storage, representation, processing, reli-
ability and effective transmission [27]. Cai et al. Developed
a reliable distributed file system (DFS), energy-optimized
storage, compute integration into storage, big data duplica-
tion and efficient low-cost big data storage technology [28].
And it can break through distributed non-relational big data
management and processing technology, data fusion technol-
ogy [29], data organization technology [30], [31], research
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big data modeling technology [32]; breakthrough big data
index, backup and other technologies [33].

E. PARALLEL ANALYSIS TECHNOLOGY
Compared with traditional algorithms, data-driven big data
analysis enables us to analyze the interrelationships and inter-
actions of all elements in the system, which is regarded as
the correlation of high-dimensional parameter representa-
tion [34]–[36].

Smart grid operation has independent resources and
decentralized control functions. Aggregating distributed data
sources into centralized mining sites is a systematic pro-
hibition due to potential transmission costs and privacy
issues [37]. Although model-based mining can be performed
at each distributed site, the decoupling process of the con-
nection source is closely related to the simplification and
assumptions. As a result, the results are often almost unsatis-
factory and lead to biased views and decisions.

Load forecasting issues involve intelligent ML solutions
related to the generation of large numbers of data sources,
making them ideal for MapReduce deployments. The pro-
posed framework can minimize data movement, thereby
reducing the occurrence of network contention, which will
ultimately improve the efficiency of the cloud system. The
two main mechanisms that must be explicitly considered are:
• Data location-aware scheduling algorithm;
• Application-specific resource allocation mechanism.
In particular, tasks that require a common data set are

dispatched to computers (computing nodes) that are very
close to these data sets. Formost data processing applications,
storage capacity (such as disk and storage) is more important
than computing power (ie, CPU).

In order to make the MapReduce parallel programming
model easier to use, there are a variety of big data processing
advanced query languages, such as Facebook’s Hive [38],
Yahoo’s Pig [39], song Sawzall [40] and so on. These high-
level query languages parse the query into a series of MapRe-
duce jobs through a parser and execute them in parallel on a
distributed file system. Compared with the basic MapReduce
system, the high-level query language is more suitable for
users to perform parallel processing of large-scale data [41].

F. EFFICIENT CALCULATION TECHNOLOGY
The key issues that need to be solved in efficient time-space
big data calculation include how to use efficient data in the
database; how to use the heterogeneous computing resources
in the system to coordinate computing; how to realize the
graphical customization of tools. Temporal efficient data for
the IO, the data-model, combined with node traffic inter-
face developed a data communication module, the details
of the mask data distributed storage, the new class pack-
age, provides operator interface similar data goal adaptive
platform with local data to hide data details. Through data
multi-copy parallel read and write, calculation, transmission
and data read and write overlap, data read-ahead and other
technologies to achieve rapid read and write response data

in a distributed environment [42]–[44]. Hidden internal hard-
ware, data and parallel implementation details, according to
parallel, master-slave parallel, pipeline parallel, work pool
parallel and divide and conquer parallelism and other paral-
lel programming modes provide five different programming
templates, developers On the basis of the inherent multi-
level concurrency of the mining algorithm, the appropriate
programming template is selected to realize the fast paral-
lelization of the processing algorithm. According to a certain
functional granularity, the software is divided into a series
of geographical space-time big data tools. The tools are
loosely coupled, can independently complete each operation,
and can also complete a complex remote sensing processing
and calculation through loose integration. The tool devel-
oper implements the interface predetermined by the tool,
and stores the metadata of the tool into the database of the
integrated platform. The integration platform automatically
generates the interface and the control of the tool by obtaining
the meta information of the tool. Strictly define the input,
parameters, and output format of the tool so that the tools
can be correlated with each other through the output and
input, and the integration of the data stream constitutes a
processing pipeline. In the specific implementation of the
tool customization, the user constructs the tool flow graph-
ically, and automatically generates the tool flow script in the
background. The integrated platform automatically invokes
the corresponding tool according to the script and the data
information provided by the database.

G. DATA FUSION TECHNOLOGY
In the future, smart grids require multiple links such as
power generation, transmission, substation, power distribu-
tion, power consumption, and dispatching to achieve com-
prehensive information collection, smooth transmission, and
efficient processing, and support the high integration of
power flow, information flow, and business flow. For the
efficient management of high-frequency, real-time, multi-
source and heterogeneous allocation of large-scale data, there
is currently no accurate definition of the integrated infor-
mation model, metadata specification and unified conversion
format for heterogeneous data [45]. It is impossible to allocate
electricity big data. For efficient integration and integration,
In order to provide smart grid intensive resource allocation,
some researchers can expand multi-source heterogeneous
data fusion technology [46]–[48].

Power big data is characterized by massive multi-source
heterogeneity and industry-specific data access, so it is nec-
essary to study scalable, efficient and reliable power big
data management technology. The technical mapping of
REST architecture-style Web Service as a CIS interface will
greatly improve performance and efficiency, opening up a
new dimension for power system information integration.
path. Faced with the reality of increased grid infrastructure
and local distribution, how to efficiently manage these infras-
tructures and process heterogeneous data and reduce grid
costs will be a huge challenge.
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H. MOBILE COMPUTING TECHNOLOGY
Real-time computing: the extensive application of mobile
computing in the power Internet of things makes the real-time
computing of large-scale power sensors and mobile device
data become the key of the system [38]. At present, the real-
time processing technology of spatio-temporal big data is
mainly applied in the fields of smart city, smart transportation
and smart, and medical treatment. In the process of power
system information processing, there is a strong response
decision and a short time delay, which canmeet the sensor ter-
minal real-time input. On the other hand, the data and instruc-
tions collected by the power sensor terminal must reach the
mobile processing terminal in real-time and make corre-
sponding decisions. The real-time information loss caused by
decision information is also immeasurable, so the real-time
calculation of spatio-temporal big data of power is particu-
larly important.

Batch computing: batch computing in the power Internet
of things refers to batch processing of static massive spatio-
temporal data of power. In other words, data should be put in
place before the calculation, and data should be mined and
the business model should be verified. Apache Hadoop was
originally used as a platform for analyzing spatio-temporal
data for smart grids. In this model, large power spatio-
temporal data sets can be divided intomany small data sets for
processing on the corresponding microdata units. A simple
example is the analysis of the minimum reading of static
data from all smart meters obtained using a map-reduce job
in a map task. However, since map-reduce is designed for
conventional batch processing, it is not suitable for frequent
reprocessing of large dynamic data sets and cannot be used
for real-time sensor data and stream data processing. Apache
Spark is another generic clustered computing platform that
provides flexibility, scalability, and speed to meet the chal-
lenges of large data in a smart grid. In addition to the usual
batch processing, Apache spark is also capable of performing
iteration and flow processing. Olston et al. [39] implemented
the operation of processing Amazon data set using batch
processing technology.

Flow computing: the value of power data decreases over
time, so it is required to process new data or events as soon
as they occur. Power network big data stream computing
technology can mask the underlying details of data stream
processing, with high-performance computing capability,
time-efficient data stream online analysis capability, correla-
tion analysis capability integrating multiple data sources, and
resource management and deployment capability supporting
flow processing. EALSOA(Extensible Advanced Large Scale
Online Analytics) is an open source platform for mining big
data streams. The platform can accomplish various tasks of
data mining based on the distributed time-flow algorithm and
provide developers with the secondary development of the
original algorithm. At present, the amount of data obtained
by the power grid increases exponentially, which makes the
interactive processing information of the data server of power
distribution scheduling management more and more. A large

amount of real-time monitoring information is stored cen-
trally before processing, which is easy to cause large pro-
cessing delay or even message accumulation, which affects
the scheduling processing efficiency. Research on relevant
technologies of power big data distribution computing, mem-
ory computing, and flow computing is of great significance
to break through the bottleneck of big data storage and
computing in distribution network monitoring. Researchers
have conceptualized and abstracted this setup in the flow
model [51]. In this model, data runs at high speed, one
instance at a time, and the algorithm must process it under
very strict spatial and temporal constraints. Streaming algo-
rithms can use probabilistic data structures to provide quick
approximation answers.

V. STATE OF THE APPLICATIONS
The applications of power big data cover all aspects of
power industry such as transmission, transmission, transfor-
mation, distribution, use, and regulation, as shown in Fig.7
in real-time energy management, power generation con-
trol center, transmission operation, state estimation, network
physical system, network security defense, strategies, end-
user real-time power demand, real-time price forecasting and
other areas have very strong achievability. With the further
advancement of smart grid construction, big data technology
will play an increasingly important role in the smart grid. The
following is a brief description of the application prospects
of big data in smart grids through several typical application
cases.

A. INTELLIGENT POWER DATA ANALYSIS
The bidirectional flow of power information in smart grid
provides the possibility for power production and power oper-
ation to actively participate in the management and service
of each link of power system. Diamantoulakis et al. [52]
proposed to obtain information from spatio-temporal data of
power, so as to facilitate management to make transaction
decisions on smart grid. This method can improve the design
of predictive ML algorithm by extracting load-carrying mode
algorithm from large-scale data sets (k-means, ANN, etc.),
compress data into low memory requirements, design scal-
able real-time performance and develop distributed comput-
ing architecture. Cao et al. [53] proposes a household power
forecasting method based on deep load, which provides a
good reference for household energy management system. In
order to support real-time energy management, the authors
in [54] intelligently process large amounts of power data in
an efficient way. In the aspects of energy resources, load
forecasting, disaster recovery, efficient data management,
and analysis frameworks are critical to grid-optimized opera-
tions [55]–[57]. Public utilities use a variety of disaster recov-
ery technologies to enhance customer engagement in power
grid management [58], [59]. Through the big data obtained
from smart meters and household equipment, public utilities
can easily obtain real-time consumption information. It can
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FIGURE 7. The applications of power spatio-temporal big data based on mobile computing.

also develop appropriate Incentive measures and operational
strategies to better utilize power resources [60].

Spatio-temporal big data analysis can dynamically classify
consumer behavior and power grid characteristics to help util-
ity companies make better operational decisions [61], [62].
Chelmis et al. [63] developed a method of clustering cus-
tomers using time series data to identify suitable customers.
Yu et al. [64] using the big data for distribution power grid
operation and planning, the importance of high-granularity
load forecasting and customer consumer behavior modeling
were determined. Disaster recovery in smart cities using big
data has evolved in [65].

B. GRID RELIABILITY AND STABILITY
Data collected from social media are of great help for relia-
bility prediction of power systems. For example, twitter data
can be used to identify and locate specific blackout cases
and regions [66]. Chen et al. [67] listed the importance of
geographic information systems, global positioning system
and meteorological data in power failure processing. The
paper [68] USES more reliable voltage stability detection
data than previous methods, which can be well used for
power networkmonitoring. The data collected by the terminal
device can also be used for stability prediction and real-time
detection [69]. The big data method proposed in [70], [71] is
helpful to improve the reliability and stability of power grid.
In the article [72], an event detection application is devel-
oped by using the collected big data. Power spatio-temporal
data mining can manage power transmission and monitor
the motor. For example, [73] proposes a way to identify
anomalies in power networks, which effectively utilizes data
collected by intelligent devices.

C. WIDE AREA CONTROL
Based on the ‘‘stratification, zoning, local control’’ sys-
tem scheme, a multi-level wide-area intelligent protection

and control system is constructed. A time synchronization
method based on Coordinated Universal Time and syn-
chronous phasor measurement technology is proposed to
achieve accurate time synchronization and real-time inter-
action between stations in the region. The proposed pro-
tection method combining wide-area current differential
protection and comprehensive direction protection, wide-
area adaptive standby power automatic switching technol-
ogy and intelligent collective station protection, realizes
fault intelligent judgment, system decision and self-healing
control of multi-terminal and multi-component of regional
power grid. The successful application of the two regional
power grids in Duyun and Liupanshui in Guizhou Province
proves the practicability and reliability of the developed
system [74].

The power system stabilizer can not only solve the system
oscillation problem, but also collect data to establish the
linear model [75] and other optimal models [76]. In order
to solve the problem of local optimization of a single model
and improve the stability effect, the data acquisition and
controller [77], [78] with higher accuracy can be designed to
form a reliable closed loop of the whole power system.

D. STATE ESTIMATION
Any decision in the power system control, depends on the
actual state of the system in real-time. The state of the power
system is difficult to obtain, but the state variable can be
predicted by using the method based on data estimation, and
these predicted values can be obtained periodically [79], [80].
The accuracy and robustness of execution in the power real-
time control process are very important, and some progress
has been made in recent years. Although it is possible to
develop reliable software for large power systems, the state
estimation of power systems is still a problem of great con-
cern to researchers [81]–[83].
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The concept of modern power systems is subject to deregu-
lated power market conditions and the impact of the opening
of non-electric power companies. As a result, some funda-
mental business changes have been achieved through the new
regulatory framework. These new developments have partic-
ularly affected the distribution network in which distributed
power plants are beginning to frantically install, as well as
ongoing demands for service quality and operational effi-
ciency.

E. MONITOR SYSTEM
Spatio-temporal data visualization can be applied in many
places, one of the important directions is advanced visual-
ization. After the visualization of the smart grid, the overall
evaluation level can be improved. If we want very accurate
grid connection information and power system operation
status to be obtained in real time, one of the methods is
to apply visualization technology and then analyze. In gen-
eral, there are multiple techniques for grid visualization,
such as three-dimensional, two-dimensional, and single-line
diagrams. However, there are also problems, because the
number of variables is increasing and there are dependen-
cies between variables, so advanced visualization technology
must be used to realize the visualization of big data of power
grid. By combining real-time monitoring, parallel coordi-
nates and scatter plots, and the Andrew curve, the problem
of increasing the number of variables and their dependencies
will be solved. High-dimensional data visualization usually
commercial tools such as real-time dynamic monitoring sys-
tem [84]. Real-time dynamic detection systems have many
visual options to choose from, including voltage amplitude
diagrams, voltage Angle contour maps, dashboards for situa-
tional awareness, oscillation pattern diagrams, and frequency
diagrams [85].

F. PARAMETER ESTIMATION
The key of power system control, operation and planning is
power system state estimation and power system parameters.
Evaluation is widely used in applications, such as flexible
control design for network or physical attacks and trial sys-
tem monitoring and operational resource planning [86], [87].
State estimation requires a large amount of data, and the
smart grid framework is just right to provide it. Because
large amounts of data generated by various smart devices and
sensors can be captured using grids, the system will become
transparent, enabling more accurate and perfect state esti-
mation. However, due to the introduction of a large number
of active nodes, the system will be affected by the power
system optimization problem into nonlinear, mixed integer
and non-convex [88]. At the same time, the power quality
and reliability of power system can be improved by using
prediction tools and real-time monitoring to optimize the use
of resources [89]. Spatio-temporal big data can optimize the
parameter estimation, take corrective measures for emergen-
cies and analyze late emergencies. For example, the applica-
tion of many mixed voltage regulation resources on feeders

(such as solid-state transformers, voltage regulators, static
synchronous compensators, on-load tap switches, intelligent
inverters) is a trend of voltage/reactive regulation [90]–[93].

G. APPLIED TO NETWORK PHYSICAL SYSTEMS
Any physical and network vulnerability will have a signif-
icant impact on the smart grid, an important infrastructure.
In the event of a natural disaster or system failure, traditional
power personnel can perform emergency analysis of the grid
to provide flexibility [94]. However, most of the existing
power systems are not memory networks and are intention-
ally targeted at a large number of important components
of the energy system. Cascading failures of the system can
result from this structural attack. Therefore, it is necessary
to achieve tight network-physical coupling, which can make
the power network resistant to such physical and network
attacks [95], [96]. Once big data is timely analyzed and iden-
tified such malicious attacks, the possibility of large losses
can be greatly reduced [97].

H. NETWORK SECURITY DEFENSE
In the aspect of security, technology has been proposed
for exploring network security defense strategies based on
power system emergency sequencing systems [98]. Although
there are cybersecurity defense standards, these methods are
based primarily on expert opinions rather than systematic
risk studies. ARCADES proposes a method based on graph-
based network physical security model to identify improved
network security defense strategy. The model is evaluated by
the resistance distance metric and then prioritized according
to the system’s emergency analysis. This paper also proposes
a technology to identify the most critical network security
mechanisms to protect the grid. Planning and Operations:
This paper focuses on two applications of grid security. For
planning, a systematic approach was developed to verify the
effectiveness of security policies and operations, prioritizing
security mechanisms for auditing and monitoring.

I. LOAD FORECASTING
Load forecasting (LF) plays an important role in the planning
and operation of power systems [99]. Future smart grids
will leverage LF and dynamic pricing-based technologies
for effective demand-side management (DSM). In this paper,
a comprehensive comparative study of LF and dynamic pric-
ing schemes in smart grid environments is conducted. Real-
time pricing (RTP), time of use (ToU), and critical peak
pricing (CPP) are discussed in detail. The two main cat-
egories of LF: computational models based on mathemat-
ics and artificial intelligence are described in subcategories.
The mathematical models for effective DSM are discussed,
including automatic recursion, moving average, automatic
recursive moving average, automatic recursive integral mov-
ing average, exponential smoothing, iterative reweighting
mean square, multiple regression, etc.

Electricity demand forecasting is extremely important for
energy suppliers and other participants in power generation,
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transmission, distribution, and marketing. Accurate power
load forecasting models are critical to the operation and plan-
ning of utility companies [100]. Load forecasting is extremely
important for energy suppliers and other participants in power
generation, transmission, distribution and marketing. This
paper describes the power demand forecasting technology.
Various types of methods and models are included in the
literature. Load forecasting can be roughly divided into three
categories: short-term forecasting, which is usually one hour
to one week, and media forecasts are usually from one week
to one year, and long-term predictions are more than one
year. Based on the various types of research presented in
these papers, load forecasting techniques can be divided into
three broad categories: traditional forecasting techniques,
improved traditional techniques, and soft computing tech-
niques.

J. DEMAND RESPONSE
Considering the two difficulties in prediction, article [101]
proposed a data-driven load reduction predictionmethod. The
first problem is that the data is very sparse. Each customer
receives only a few load reduction requests per year. There-
fore, the k-nearest neighbor method that requires relatively
small amounts of data is mainly used in our proposedmethod.
The second difficulty is that each customer’s characteris-
tics are so different that a single forecasting method cannot
cover all customers. Forecasting methods that provide sig-
nificant predictive performance to a customer may provide
poor performance to other customers. Therefore, the pro-
posed prediction method uses a weighted integration model
to apply different models to different customers. The forecast
is based entirely on the history of power consumption data
and demand response events, without any additional internal
information from each customer. The actual data obtained
from the demand response service provider verified that the
proposed framework is suitable for predicting the load reduc-
tion for each customer. The amount of load reduction in
the demand response is neither predetermined nor reliable,
as evidenced by the text-especially in the liberalized energy
market. In this case, a virtual power generation company con-
sisting of many demand-responsive customers cannot pro-
vide a stable energy reduction. Therefore, the prediction of
demand response should be carefully considered, because the
amount of load reduction for each demand response customer
is predicted based on past data.

The optimization of demand response will be based on
the prediction of each customer’s response. If the DRSP
can know the future load reduction for each customer,
the Demand Response Service Provider (DRSP) can select
participating customers in the demand response event to
avoid wasting resources and avoiding penalties. In addition,
the prediction method can be applied to other energy appli-
cations, such as distributed energy sources, as they are likely
to also feature small amounts of data and different charac-
teristics of each resource. The proposed method can be used

as one of several prediction blocks in an energy optimization
system [102].

K. ENERGY MANAGEMENT
Energy system is what we have learned that one of the tech-
nology innovation and its important and complicated enough,
the optimization of the improvement is the energy manage-
ment, with the development of the industry, this way to gather
more valued gaze, despite the current optimization on energy
production and distribution with advanced technology and
years of experience, but still can’t meet the needs of today.

Hourly electricity price is usually used to adjust the hourly
load level of a given user to improve the utility of the user.
In practice, the utility of the user is not only determined by
the hourly electricity price, but also affected by other factors,
such as the lowest energy consumption level, the highest or
lowest load level within the hour, etc. In [104], the model
is proposed to maximize the utility of users, and a simple
linear programming method is realized through a two-way
communication device between power supply and users.

Due to the need to process huge data, the development of
smart grid requires a series of big data analysis, management
and monitoring technologies. The article [105] investigated
HPC processing and focused on improving cost-effectiveness
and security in the context of spatio-temporal data. They not
only give a detailed explanation of the commonly used tech-
nical methods, but also focus on the prediction of electricity
consumption, that is, the data of power supply use by smart
electricity meter.

Researchers in the energy field has produced amazing
results and accumulated a large amount of data.
Zhang et al. [106] made an in-depth study of intelligent
energy management, and their work is as follows: firstly,
the source and characteristics of energy big data were thor-
oughly discussed, and the process model of managing intel-
ligent energy driven by big data was proposed. The second
step is to evaluate the big data analysis of intelligent energy
management. The third step is to analyze the industry devel-
opment of big data-driven intelligent energy management.
Step four considers the current smart energy challenges,
such as collection, governance, data integration, security, and
privacy.

L. ANALYZING USER BEHAVIOR
In the power market, smart electricity meters, mobile devices,
and sensors can acquire a large amount of data, and can
analyze electricity consumption and other behaviors through
load data mining. This paper [107] proposes a dynamic clus-
tering method to analyze the consumption behavior of elec-
tricity consumption based on the consumption behavior and
level of electricity customers in adjacent time periods. The
specific operation of thismethod is to firstly use the clustering
method to reduce the data, and then use Markov model to
simulate the consumption dynamics. The key steps include
obtaining the state transition probability matrix based on the
power load data fitting curve. Finally, based on the behavior

VOLUME 7, 2019 174623



Y. Ma et al.: Review of PSTBD Technologies for Mobile Computing in Smart Grid

dynamics of typical users, real-time search algorithm and
density estimation clustering technology are used to divide
and conquer large-scale spatio-temporal data. Numerical
experiments show that the model is efficient.

Based on the massive data generated by the intelligent
community, researchers [108] studied the residential electric-
ity behavior analysis model. Combining mobile computing
and K-means algorithm, this model extracts multiple power
features and calculates the feature weights by entropy weight
method to complete the user classification tasks. Different
from the previous methods, this algorithm is the first appli-
cation in the field of residential users in the power industry.
In the next step, the results of the user classification model
will be studied to study the demand side response for different
user groups.

M. CONTROL CENTER DISTRIBUTION
In recent years, the penetration of advanced sensor systems
(such as voltage sensors, etc.) in power distribution sys-
tems has increased significantly [109]. The amount of data
obtained by these sensors is also explosive, and new power
big data technology is needed to explore the value of these
complex data sets.

The future Intelligent Power System Control Center [110]
presents the vision for next generation monitoring, analysis,
and control functions. The article begins with a review of
current control center technologies and then introduces the
next-generation visual functions. The vision of the intelli-
gent control center is expected to become an important part
of the future intelligent transmission network. Future work
will focus on expanding the smart grid monitoring modeling
framework, [111] considering monitoring installation meth-
ods and cost constraints to get the best point for smart grid
monitoring and reliability.

N. REAL-TIME PRICING
Real-time pricing method on the design of main power
is based on demand response as the basis, take the large
data of time and space technology, effective analysis of
electricity and water load on the real-time electricity price
changes before and after the implementation of the overall
situation, residents and stand in the electric power com-
pany and industrial users of dimension analysis, compare
the peak valley price and fixed price mechanism, from the
power grid operation, peak peel, profit maximization and
so on many Angle of the emphasis on real-time electricity
price advantage. At present, smart devices can provide users
with convenient data collection infrastructure. Others like
Samadi et al. [107] have proposed a smart power terminal that
allows several users to share the same energy. Each smart ter-
minal is connected not only to the power grid, but also to the
communication infrastructure, forming mobile edge nodes. It
can also focus on the interaction between smart terminals and
suppliers, exchanging information such as users’ electricity
bills and real-time prices.

VI. CHALLENGES AND RESEARCH DIRECTIONS
Spatio-temporal big data is a rapidly developing research
field in academia and industry in recent years, including
intelligent transportation, intelligent city, intelligent medi-
cal treatment and intelligent recommendation. However, the
application of spatio-temporal big data technology in the
power system based onmobile computing is still in its infancy
and still faces many technical problems.

1) integration and storage of multi-source spatio-temporal
data. The data format of the power system is highly heteroge-
neous, and there is an information barrier for data sharing,
which makes it more difficult for multi-source power big
data to be applied across systems and platforms. Therefore,
it is necessary to generate standardized metadata and data
normalization methods to solve the problem of heterogeneity
in the multi-source integration process of power big data. The
power industry basically uses centralized database to store
data, which brings the problems of small storage capacity,
difficult expansion and low loading efficiency, and cannot
be applied to the mobile computing environment. Therefore,
it is very important to study the lightweight data storage
technology suitable for moving edge computing.

2) real-time data processing technology. In the power sys-
tem based on mobile computing, real-time detection and
analysis can be carried out on the equipment based on the
historical operation of the equipment. In case of equipment
deterioration, operation and maintenance personnel can be
timely reminded of possible problems of the equipment and
maintenance of the equipment in advance, so as to reduce
the risk of sudden shutdown and economic loss. Especially in
emergency applications, such as fault detection and transient
oscillation detection, the response time requirements are up to
the millisecond level. At present, the fast computing service
of the cloud system is delayed by network congestion, and the
research on real-time processing technology based on mobile
computing will be the key to solve this problem.

3) reduction of power big data. Due to the large terminal
resources consumed by mobile computing, the efficiency is
low and insufficient. And the operation of the power system
has remarkable parallelism, monitoring information, the tra-
ditional reduction method of non parallel due to its single
mode of processing, the processing data set must be one-
time into memory, the memory bottleneck problems caused
by the reduction efficiency is low, does not apply to solve
based on mobile computing power, the spatio-temporal data
pretreatment needs to be introduced to adapt to the parallel
processing method.

4) spatio-temporal data visualization technology. With the
online access processing of real-time dynamic data such as
power sensor networks, internet of things and social net-
works, the analysis based onmobile computing will become a
typical feature of power multimode spatio-temporal data pro-
cessing. However, the current analysis is mainly descriptive
and diagnostic, while the future will be more based on spatio-
temporal historical data, predictive and forward-looking real-
time analysis, to predict the development trend and provide a
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basis for decision-making. For example, how to effectively
discover and express correlations or trends between multiple
sources of data is a huge challenge. Other challenges include
visualization algorithms, information extraction and render-
ing, and image synthesis techniques.

5) data privacy and security. In the power of mobile
computing scenario, a new wireless network as the core
of the mobile computing support technology promote the
development of various new applications, however, the open-
ness of the wireless network transmission medium resource
limitation, mobile terminal and mobile network topology
rapidly changing sex to power mobile computing to bring
greater security risks. The growing use of smart meters for
household energy consumption, for example, has created a
growing amount of personal information. Because data is
Shared between different entities, a private data leak can be a
disaster and cause cascading problems. Security and privacy
protection is more prominent, and have gradually become an
important bottleneck restricting the development of mobile
computing in the emerging scene, and become an important
challenge in this field.

VII. CONCLUSION
With the vigorous development of mobile communication
technology, it has brought unprecedented opportunities to
various applications in the mobile computing environment.
In this context, the study of power spatio-temporal big
data (PSTBD) based on mobile computing has become a
promising development direction of smart grid.

In general, this paper conducts research based on relevant
literature, analyzes the research status of PSTBD technology,
and introduces the PSTBD platform architecture related to
mobile computing. We focus on PSTBD algorithms analysis
including big data modeling, anomaly detection, power GIS
temporalization, spatio-temporal big data, efficient calcu-
lation, heterogeneous multi-data source data fusion, data
processing, related to PSTBD technologies. In addition,
we investigate the application of PSTBD in real-time energy
management, transmission operation, state estimation, net-
work physical system, network security defense, real-time
price forecasting and so on. At the same time, the future
research challenges and research directions are presented.
This review can be used as the basis for future research
on spatio-temporal big data of power based on mobile
computing.
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