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ABSTRACT The high dimensionality of spectral datasets makes it difficult to select the optimal subset
of variables. This paper presents a new method for variable selection called the significant multivariate
competitive population analysis (SMCPA), Which combines ideas of significant multivariate correlation
(SMC) and model population analysis, and employs weighted bootstrap sampling (WBS) and exponential
decline function (EDF) competition methods. In this study, the values of SMC distributions are used as
an index for evaluating the importance of each wavelength. Then, based on the importance level of each
wavelength. SMCPA sequentially selects N subsets of spectral wavelengths by N Monte Carlo sampling
in an iterative and competitive procedure. In each sampling run, a fixed ratio of samples is used to build
a calibrated partial least-squares model, and then SMC is performed to obtain the score and threshold
values. Next, based on the significant multivariate correlation scores, the key variables are selected by two
steps: the compulsory selection of exponential decline function and the competitive selection of adaptive
weighted sampling. Finally, cross-validation(CV) is applied to select the optimal subset with the lowest root
mean square error. This method is tested on three NIR spectral datasets and compared against three high-
performance variable selection methods. The experimental results show that the proposed algorithm has
the highest efficiency and the best selection effect, and can usually locate the optimal combination of key
wavelength variables in a dataset. The evaluation result after PLS modeling is also the best.

INDEX TERMS Spectrochemical analysis, variable selection, the significant multivariate correlation,
weighted bootstrap sampling, model population analysis, monte Carlo sampling, analytical techniques,
partial least squares method.

I. INTRODUCTION
With the characteristics of simple, rapid, noninvasive, cost-
effective and no sample pretreatment, near infrared spec-
troscopy has been widely adopted as a popular analytical
tool for both qualitative and quantitative analysis in petro-
chemical, pharmaceutical, environmental, clinical, agricul-
tural, food and biomedical fields [1]. Modern near infrared
spectroscopy analysis involves the rapid acquisition of a
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large number of absorbance values for a selected spectral
range, and then uses the information contained in the spectral
curve to predict the chemical composition of the sample by
extracting the appropriate variables of interest [2]. However,
the typically present relatively weak, nonspecific, highly
overlapping and discontinuity of the near-infrared spectral
region it make it difficult to directly extract the informa-
tion related to the content of components in near-infrared
spectra of substances and provide reasonable spectral anal-
ysis [3], Moreover, the large number of spectral variables
in most datasets encountered in spectral chemometrics often
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complicates the prediction of a dependent variable, and the
analysis of those high-dimensional spectral data faces many
challenges,one of which is the so called non-deterministic
polynomial-time(NP)hard problem, i.e., relatively large num-
ber of variables compared to the number of samples. With
the large number of spectral variables, NIR spectra usu-
ally include some noise and interfering variables that render
the predictive property of interest unreliable, and modeling
of such datasets will has a high risk of over-fitting [4].
Therefore, it is very important to study the sensitive, fast
and accurate method of extracting relevant variables to pre-
dict the chemical composition of samples in chemometrics,
and to develop a dimension reduction method to address
those problems [5]. Projection methods such as partial least-
squares (PLS) [6] and principal component regression(PCR)
[7] have been widely used to address these high-dimensional
collinear data. By replacing the original variables with a few
latent variables or principal components of larger variance,
the impact of collinearity, band overlaps and redundant noise
irrelevant to the property of interest can be reduced [8].
However, researchers have found that variable selection can
further improve the prediction ability of PLS or PCR mod-
els, Variable selection improves the stability of the model
and improves model interpretability as well, even if multi-
collinearity exists in multivariate calibration [9]. Therefore,
variable selection techniques have play a key role in the anal-
ysis of high-dimensional spectral datasets [10], [11]. Liang
and colleagues confirmed the importance and necessity of
variable selection to obtain a subset of spectral information in
complex analysis systems [12], [13]. The purpose of variable
selection can be summarized as follows [14]: (1) improve the
model predictive ability; (2) provide faster and more cost-
effective predictors by reducing the curse of dimensionality;
(3) give a better understanding and interpretation of the
underlying process that generated the data.

In view of the benefits of variable selection, variable
selection methods based on different strategies have been
proposed in large of numbers. These include the classical
methods [15], [16]; the penalized methods [17], [18]; the
intelligent learning algorithms [19], [20]; variable sorting
strategies based on PLS model parameters [21]–[23] and
variable selection methods based on the model population
analysis (MPA)strategy [23]–[38] and so on. MPA as an open
ensemble learning framework, in which different blocks can
be filled and statistical tools to extract important information
from the models. The concept of MPA was first proposed by
Li et al. in the field of variable selection [39]. The key ele-
ments of MPA are random sampling and statistical analysis,
The core idea of MPA is to statistically analyze(i.e. statistical
test) the performance of a large population of sub-models
generated from random sampling and to extract interesting
information from outputs of the sub-models. An important
feature of MPA is that it considers the output of interest not as
a single value but a distribution [40], MPA is a very effective
strategy for developing variable selection methods. There
are many algorithms based on this framework, such as the

competitive adaptive reweighted sampling method (CARS)
[31], variable permutation population analysis(VPPA) [27],
iteratively optimizing variable space using weighted binary
matrix sampling for variable selection method(VISSA) [32],
variable combination population analysis(VCPA) [24], boot-
strapping soft shrinkage method (BOSS) [28], iteratively
variable subset optimization (IVSO) [35], least absolute
shrinkage and selection operator (SEPA-LASSO) [37], Fisher
optimal subspace shrinkage (FOSS) [29] and model adaptive
space shrinkage(MASS) [26] and so on.

In this study, we focus on developing more efficient vari-
able selection methods. First, SMCPA attaches great impor-
tance to the stability and reliability of proposedmethod. Some
newly suggested methods made the compared with several
existing methods employing simple quantitative ‘‘visual’’
comparison and slightly smaller RMSEP, and concluded
that the proposed method is better than others. However,
a statistical analysis, which indicates the unreliability of
the proposed methods, was not performed. It is necessary
to validate the reliability of the algorithm through statisti-
cal analysis or statistical testing [41], [42]. SMCPA com-
bines with the new criteria of variable importance (SMC),
statistical test(F-test) and some mathematical ideas(such as
MC-sampling, EDF and WBS, etc.), and Statistical meth-
ods to demonstrate the reliability of the proposed method
(SMCPA). Stability could be used as a metric to evaluate the
prediction performance of models, similar to Deng et al. [40].
SMCPA inherits the advantages of the MPA framework, sta-
tistically analyzing the interesting output of a large number of
sub-models and extracting useful information. The ensemble
strategy (MPA) is also a good method for addressing the
instability problem as it can obtain more accurate, stable and
robust prediction results by combining all the predictions
of multiple sub-models built from different subsets. Second,
SMCPA focused on multi-objective optimization, and the
global optimization of the algorithmmakes the variable selec-
tion method more meaningful [42], [44]. In the SMCPA algo-
rithm, the RMSECV, RMSEP, number of variables(nVRA),
number of latent variables(nLV), coefficient of determination
of cross-validation(Q2_cv), coefficient of determination of
test set(Q2_test), and computation time (T) are regarded as
the objective functions. With more than one objective func-
tion optimized simultaneously, and thus ensuring that the
PLS modeling the selected optimal subset of variables by
SMCPAwill have better prediction accuracy and simpler with
greater interpretability. Third, The SMCPA can eliminate the
negative impact of noise in the dataset,locate the informa-
tion variables quickly and reduce the possibility of noise
and irrelevant variables being selected as key variables. This
study also considers the problem of an absolute regression
coefficient as a key variable evaluation metric. Many of the
variable selection methods are developed with absRC as an
important variable’s evaluation criterion [43], such as CARS,
BOSS, IVOS and FOSS etc. However, absRC does not always
reflect the real information of a variable’s importance [34],
which will have a negative impact on the variable selection
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method. Therefore, we chooses SMC as the criterion of
variable importance. The key points in SMC are estimating
for each variable the correct sources of variability resulting
from the PLS regression (i.e., regression variance and resid-
ual variance), and using them for statistically determining a
variable’s importance with respect to the regression model,
and SMC discards the orthogonal variance decomposition to
prevent the influence of nonrelevant information contained
in datasets [42]. Therefore, the SMCPA can also address the
spectral datasets with noise. Fourth, the proposed variable
selectionmethods aremore to increase the computational cost
to obtain smaller prediction error (RMSEP) values, such as
VCPA, BOSS and VISSA algorithms, which all achieve bet-
ter prediction results by increasing computational cost [43].
This study balances the relationship between computational
cost and predictive ability, and considers the computation
time as an objective function. Fifth, SMCPA preserves the
synergy and combination effects among the variables and
gradually eliminates irrelevant variables through the shrink-
age strategy. Additionally, SMCPA always selects variables
that are better correlated with analyte contents or properties
of interest. Therefore, it is necessary to interpret the selected
variables associated with the functional group (CH, OH, SH,
and NH) of the analyte or property of interest. Therefore,
the SMCPA algorithm has strong interpretability and avoids
the blind selection of variables. Finally, although a large
number of variable selection methods have been developed
in NIR spectra over the last several decades, many problems
still need to be addressed and solved. Prediction accuracy,
model interpretability, and computational complexity are
three important pillars of any variable selection procedures.
It is a great challenge to develop a method that can strike
a good balance between the three pillars [42]. Our research
has a good balance of these three parts; SMCPA not only
has the best prediction accuracy and interpretability but also
the minimum computational cost. We evaluate an algorithm
from additional perspectives. The performance of SMCPA
was tested on three groups of NIR spectral datasets and three
high performing variable selection methods.

II. THEORY AND METHOD
A. NOTATION
The data matrix X is assumed to contain p variables in rows
and n samples in columns, and the vector y of size n × 1
denotes the measured property of interest. A superscript T
denotes the vector or matrix transpose. When establishing the
PLS model, both X and y are mean-centered.

In this study, we assume that the number of exponential
decline function (EDF) iterations and the number of Monte
Carlo sampling (MCS) runs is set to N. The ratio of samples
in each random MCS run is R. Using the above settings,
SMCPA can be divided into four steps in each iteration:
(1) A subset of variables is randomly established usingMonte
Carlo sampling with a fixed selection ratio. (2) The distribu-
tion of SMC values of the output of the sub-models is sta-
tistically analyzed(F-test) and its values ranked, then EDF is

used to force the elimination of uninformative or redundancy
variables. (3) Normalized SMC scores as the weights of each
wavelength, and theWBSmethod is used to further eliminate
the weaker weight variables. Variables with larger weights
have greater a probability of being retained, while variables
with weaker weights are less competitive, and populations
with variables are gradually eliminated. (4) The N variable
subsets were cross validated to evaluate the subset. The min-
imum RMSECV subset is selected as the optimal subset.

B. MONTE CARLO SAMPLING OF DATA SUBSETS
MCS is an important statistical tool for analyzing complex
(multivariate) problems [45]. It is a stochastic method based
on the use of random numbers and probability statistics. The
samples and variables are both randomly selected with a fixed
number, respectively. MCS is implemented both in sample
space and variable space of the calibration set to obtain sub-
datasets, In each sampling run, the selected sub-dataset from
the calibration set is considered as the training set, while the
remaining part is regarded as the test set. A large number
of PLS models are established on the sub-datasets generated
by many MCS runs. We obtain prediction errors through
model population analysis instead of depending on a single
model. Statistical analysis can be used to analyze each sub-
model output to evaluate the unknown parameters of interest
in each sub-dataset. The randomly sampled sub-datasets are
represented as (Xsub, ysub)i, where i = 1, 2, . . . ,N.

C. IMPORTANCE VARIABLE DETERMINATION METHODS
AND SIGNIFICANT MULTIVARIATE CORRELATION
The interpretation of variable importance carried out using
parameters calculated from the PLSmodel is referred to as the
popular filter methods [42], [43], [46], Variable Importance
in the Projection (VIP) [5], Selectivity Ratio (SR) [47] and
the PLS regression coefficients (RC). The Significant Multi-
variate Correlation (SMC) [48] methodology was introduced
and showed favorable results when compared with the above
important variable determination methods.

D. VARIABLE IMPORTANCE IN THE PROJECTION
In the VIP approach [49], the importance of the variables is
established using the projection information of the indepen-
dent variable X and the response y. The VIP score is used to
evaluate the importance of each variable in the PLS model.
For a PLS model with h latent variables, the VIP score of the
jth variable is calculated as follows:

P =

√√√√√p
∑h

k=1

[
SS (ck tk)

(
wjk
/
‖wk‖

)2]
∑h

k=1 SS (ct tt)
(1)

The average VIP is equal to 1, because the SS of all VIP val-
ues is equal to the number of variables in X. This means that
if all X-variables have the same contribution to the model,
they will have a VIP value equal to 1. VIP values larger
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than 1 point to the most important variables, and generally
VIP values below 0.5 are considered irrelevant variables.

E. SELECTIVITY RATIO
The s electivity ratio (SR) [47] takes the regression coeffi-
cient vector of PLS and calculates a target projection (TP)
by projecting the rows of X onto the normalized regression
coefficient vector and the load by projecting the columns of X
onto the score vector:

tTP = Xb
/
‖b‖ =

∧
y
/
‖b‖ (2)

pTP = XT tTP
/(

tTTPtTP
)

(3)

The explained and residual variance can be calculated from
the variable matrix X, TP scores, and the loads:

X = tTPpTTP + ETP (4)

Vi,exp =

∥∥∥tTPipTTPi∥∥∥2 , i = 1, 2, . . . , p (5)

Vi,res =
∥∥eTPi∥∥2 , i = 1, 2, . . . , p (6)

Equations (5) and (6) determine SR as the ratio of the
explained variance Vi,exp and the residual variance Vi,res for
each variable:

SRi = Vi,exp
/
Vi,res, i = 1, 2, . . . , p (7)

SRi > Fcrit = F(α,N − 2,N − 3) (8)

SR was applied to re-quantify the X-variance to improve
interpretation of variable importance by means of the target
rotation or the orthogonal filtering strategy. The purpose is to
allocate information proportional to the covariance between
X and y and simultaneously isolate orthogonal irrelevant
variation. A critical threshold value for determining variable
importance was suggested in Ref [47]. where in the SRi is
assessed against the F-distribution with n − 2 and n − 3
degrees of freedom. In this work,an F-test (95%) was selected
to select candidate targets.

F. REGRESSION COEFFICIENTS BETA
The interpretation of variable importance is through the vec-
tor of regression coefficient (RC), which is a single measure
of association between each variable and the response. The
variables with a small absolute value of this filter measure can
be eliminated. Also in this case thresholding may be based on
significance consideration from jackknifing or bootstrapping.
Those resampling techniques, such as jack-knife and boot-
strap, are often used to determine confidence intervals [22].
Various resampling techniques are available for PLS regres-
sion coefficients, but none offer a straightforward ranking of
variable importance in the model. Usually, the absolute value
of the regression coefficient is used as a guide, but this does
not always reflect the true importance of the variable, and is
affected by factors such as noise.

G. THE SIGNIFICANT MULTIVARIATE CORRELATION
The SMC is an important part of the variable selection
method. The key points in SMC are to estimate for each
variable the correct sources of variability resulting from the
PLS regression (i.e., regression variance and residual vari-
ance), and use them to statistically determine a variable’s
importance with respect to the regression model. For vari-
ance evaluation, SMC uses the PLS regression coefficient
vector, b, to define the covariance between the X-variable
and the response variable y in the combination of the vector

of predicted values,
∧
y, as a new latent score vector of the

PLS model in eq. (9) and the regression coefficient vector,
see eq. (9). However, dissimilar to the target projection
method, SMC discards the orthogonal variance decompo-
sition in eq. (3) in order to prevent the influence of non-
relevant information contained in X . Therefore, without this
rotation, the normalized regression coefficient vector will be
used as a load vector , psMC, and the reconstructed of X can
be represented in eq. (10) [50].

tsMC = XpsMC = X
b
‖b‖
=

∧
y

‖b‖
(9)

When predicted in the PLS model
∧
y = Xb;

X = tsMCpTsMC + EsMC =

(
∧
y bT

)
‖b‖2

+ EsMC (10)

Lacking the actual regression step(orthogonal variance
decomposition), SMC is not a complete basic rotation for
the explained variance ||tsmcpTsmc||

2(or regression variance)
in eq. (11) may not be orthogonal to the estimated residual
variance ||esmc||

2 in eq. (12). However, it reflects the relevant
variation in the predicted response projected back onto the
original X-variable space via the PLS regression vector.

Vi,reg =

∥∥∥tSMCp SMCTi ∥∥∥2 =
∥∥∥∥∥∥
∧
y bTi
‖bi‖2

∥∥∥∥∥∥
2

(11)

Vi,res =
∥∥eSMCi∥∥2 =

∥∥∥∥∥∥xi −
∧
y bTi
‖bi‖2

∥∥∥∥∥∥
2

(12)

The variables whose F-values exceed the critical threshold
of the F-test (determined by the selection of the signifi-
cance level) are considered to be important variables. Those
two variances(the explained variance and residual variance)
are obtained in the form of individual regression of each
X-variable to the common score vector, with the loadings
as the regression coefficients in eq.(10) for SMC. The anal-
ysis of variance test(ANOVA) is the most appropriate for
the regression significance. In the ANOVA ,the F-test is
carried out using the mean-squared error, which is the raw
sums of squares divided by the appropriate degrees of free-
dom. For the SMCi test values, we have an F distribution
of 1 numerator and n-2 denominator degrees of freedom is
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used. F(1-α, 1, n-2), where α is the chosen significance level.
In the experiments α is 0.01. The F-test is used to assess
variables that are statistically significant with respect to their
relationship to y. Fsmci exceeding the F-test critical threshold
value (as determined via the choice of significance level)
are considered important variables. Moreover, the variables
are ranked based on their respective F-values with a defined
significant threshold value. Eq. (13)–Eq. (17) [48].

Si,reg = Vi,reg
/
1 (13)

Si,res = Vi,res
/
(n− 2) (14)

Fsmci =
Si,reg
Si,res

(15)

Ftest_threshold = F (1− α, 1, n− 2) (16)

Fsmci > Ftest_threshold (17)

Note that the impact on the threshold value for the
SMC test is dependent on the actual rotation effect. Due to
the lack of the regression step, the variance decomposition
is biased in that the Si,res + Si,reg may not always equal the
sum of squares ||xi||2, and only psmc ≈ pTP the basic rotation
effects can be ignored. When the basic rotation effect is
negligible, the residual variance is orthogonal to the explained
variance, and the false positive rate associated with a non-
parametric distribution should be close to the theoretical
null value of 0.05. Otherwise, the rotation effect cannot be
neglected in the presence of a large irrelevant variation effect,
which is an uninformative variable in the NIR dataset [50].
As the first property of the basic sequence, the TP loading is
the rotation of the regression coefficients vector toward the
dominant eigenvector of XTX, which may be independent
of the response. For this reason, depending on the actual
magnitude of the rotation, PTP may be less proportional to
the covariance of the X-variables and the response variable y.
However, the rotation impact has been removed in SMC.
The potential false positive rate of SMC is lower than the
theoretical value.

In the Ref [48], it has been proven that SMC provides a
better subset of variables than VIP, SR, and abs RC, and has
the fewest false negative and false positive errors. Moreover,
the prediction performance of the PLS model is improved
by the reduced deviation of the variable selection method.
This reduces the possibility of mistaking irrelevant and noisy
information exclusive to important variables and reduces
the likelihood of treating important variables as irrelevant
or uninformative. Therefore, when using complex NIR data
variables, SMC can reduce the false positive rate and improve
the result of important variable selection. The basic concept
of SMC allows for the maximum use of the information
obtained in the basic sequence to identify important variables
in the PLS model. The SMC method best highlights the
minimum deviation and statistically significant variables in
the model.

Next, we compare the importance variables defined by
SMC, VIP, SR, and the abs RC using a beer spectral dataset.
Given that MCS is used in this study, a fixed ratio of spectral

FIGURE 1. Importance of variables is illustrated by SR, SMC, VIP, and the
abs RC of 80% samples randomly selected from a spectral dataset. The
red dotted lines in the SR, SMC and VIP diagrams represent the threshold
for selecting the importance of variables.

samples (i.e., randomly selected ratios of 80–90%)creates a
large number of subsets,produces calibrated PLSmodels, and
obtains each of variable SMC score, VIP score, SR score and
the abs RC. Thus, we conducted experiments with between
80% and 90% of the randomly selected samples, and repeated
each experiment 60 times. Finally, 80% and 90% of the sam-
pleswere selected for statistical averaging and then visualized
to show the feasibility of using SMC as an important variable
selection criterion.

In the above figures, there is not much change between the
graphs when 80% and 90% of samples are randomly selected.
The important variables defined by the VIP scores and the
abs RC also include a large number of irrelevant variables.
A large number of interference variables in the curve will
have a great impact on the variable selection algorithm, which
regards these variables as the importance variables and will
greatly increase the possibility of irrelevant and interference
variables being selected into key variables, whereas the distri-
bution of SMC or SR values of the output of the sub-models
is statistically analyzed, and those curves have fewer interfer-
ence variables. In fact, the important variable regions defined
by SR and SMC coincide with the yeast substrate chemical
properties in the beer dataset, and the 1150–1350 nm region
in the beer dataset corresponds to the first overtone of the
O-H stretch bond vibration and the second overtone of the
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FIGURE 2. Importance of variables is illustrated by SR, SMC, VIP, and the
abs RC of 90% samples randomly selected from a spectral dataset. The
red dotted lines in the SR, SMC and VIP diagrams represent the threshold
for selecting the importance of variables.

C-H stretch bond. This conformswith the chemical properties
of interest to be studied in the beer dataset. Improved inter-
pretability with simple models is one of the three purposes
of variable selection, so it is necessary to make an interpret
of selected variables associated with the functional group
(CH, OH, SH, NH, etc.) of the analyte or property of interest.
The SMC method can also ensure that variables with mini-
mum deviation and the statistical significance are highlighted
in the model. Through the above theoretical analysis and this
example proved that SMC is more suitable than VIP, SR and
Absolute RC as criteria for evaluating important variables in
this study. As mentioned above, we choose the distribution
value of SMC as the basis for evaluating the importance of
each variable.

SMC = [smc1, smc2, . . . , scmp]T is a P-dimensional SMC
score Vector, in which score values are greater than threshold.
The i-th element smci in the SMC score reflects the i-th wave-
length contribution to y. Here, we evaluate the importance of
each wavelength, i.e., rank the SMC scores, where higher-
ranked variables are more important. Normalized weights are
also defined for bootstrap sampling to compete for important
variables:

wi =
smci∑p
i=1 smci

, i = 1, 2, . . . , p (18)

Note that the weight of the eliminated wavelength is
forcibly changed to zero and the weight vector is always
p-dimensional.

H. EXPONENTIALLY DECREASING FUNCTION
In the proposed method, EDF is used to mimic the principle
of ‘‘natural selection’’ or survival of the fittest.’’ [28], [32]
EDF can be divided into two stages, First, many unimpor-
tant variables are quickly eliminated. In this initial stage,
the corresponding elimination ratio is relatively large, and
the elimination of irrelevant information is relatively strong.
This stage is called ‘‘Fast selection. In the second stage,
following this reduction in the number of uninformative
and unimportant variables, the elimination ratio of EDF
becomes smaller and approaches zero, thus preventing errors
in eliminating key variables. This second stage is called
‘‘Refined selection.’’

Let ri be the variable reserve rate of the first iteration,
and a and k be determined by the following two conditions:
(1) In the first iteration, all p wavelengths are used for mod-
eling, which means that all variables are preserved, i.e., the
variable retention ratio r1 = 1. (2) In the Nth iteration, only
two wavelengths are retained, which means that the variable
retention rate rN = 2/p. Mathematically, this process is for-
mulated as follows:

ri = ae−ki, i = 1, 2, . . . ,N (19)

a =
(p
2

) 1
N−1

(20)

k =
ln
(p/

2
)

N − 1
(21)

I. THE WEIGHTED BOOTSTRAP SAMPLING
The bootstrap method is a statistical technique for random
sampling with replacement [51]. It was introduced by B.
Efron in 1979 and was then successfully used in many
fields such as model evaluation. Recently, it has also been
used for wavelength selection [29]. Weighted bootstrap sam-
pling (WBS) is an improved version of bootstrap sampling
with different weights on sampling objects. It is should be
noted that the variables selected may not be unique, and
some variables may be selected repeatedly, while others
will not be selected at all. The weighted bootstrap sampling
(WBS) is an improved sampling technique for BSS that
also allows replacement during sampling. In this study, after
the wavelength variables have been reduced using EDF, the
WBS algorithm is applied to further eliminate weaker weight
variables, similar to the ‘‘survival of the fittest’’ principle.
Variables with larger weights have a greater probability of
being retained, whereas those weaker weight variables are
less competitive, and gradually eliminated in the pool of
variables.

J. GENERAL DESCRIPTION OF SMCPA
The SMCPA method chooses the optimal variable scheme.
Through Monte Carlo N times sampling, N subsets of
variables are selected iteratively. Finally, the subset with
the minimum RMSECV is selected as the optimal subset.
In each sampling run, SMCPA runs in four successive steps
including Monte Carlo model sampling. The distribution of

167200 VOLUME 7, 2019



Y. Wang et al.: Variable Selection Method of the Significance Multivariate Correlation Competitive Population Analysis

SMC values of the output of the sub-models is statistically
analyzed (F-test) and its values ranked, enforced wavelength
reduction by EDF, further competition wavelength reduc-
tion by WBS and RMSECV calculation for each subset.
The combination of EDF forced variables reduction and
WBS competitive variables reduction is a two-step proce-
dure for wavelength selection. The block diagram is as
follows:

K. MODEL VALIDATION
The predictive ability of the models is assessed by 5-fold
cross-validation and independent prediction set. Each dataset
was divided into a calibration set and prediction set using
the Kennard-Stone (KS) method, resulting the root mean
squared error of cross-validation(RMSECV),the root mean
squared error of prediction(RMSEP), the coefficient of deter-
mination of cross-validation(Q2_cv) and the coefficient of
determination of the test set (Q2_tets), The calibration set
was used for wavelength selection and building the model
while the prediction set was used for validating the calibration
model.

III. DATASETS AND SOFTWARE
We selected three public spectral datasets for our exper-
iments, namely the corn dataset, wheat dataset, and beer
dataset. The corn and wheat data sets are ideal spectral
data sets for acquisition. whereas the beer dataset consists
of 60 samples containing a rather large noisy part due to an
absorbance that is too strong, in a region dominated by the
water component. The proposed algorithm can obtain better
variable screening results for both relatively ideal public
spectral datasets and poor public spectral dataset with noise
interference, and the evaluation result after PLS modeling
was also the best.

A. WHEAT DATASET
This NIR dataset consists of 100 wheat samples in which
the protein value is considered as the property of interest y.
The spectrum was recorded from 1100–2500 nm with
701 spectral points at intervals of 2 nm. Because of the
‘large p, small n’ problem, the original spectrum is com-
pressed into a maximum of 200 points by an appropriate win-
dow size, as performed by Riccardo Leardi [52]. Setting the
window size to 4, this dataset decreased to 175 variables with
an average of every four original variables. The dataset was
divided into a calibration set of 80 samples and independent
test set 20 samples on the basis of the Kennard–Stone (KS)
method.

B. CORN DATASET
This dataset consists of 80 samples of corn measured by
three different NIR spectrometers. Each spectrum contains
700 spectral points at intervals of 2 nm within the range
1100–2498 nm. In the present study, the NIR spectra
of 80 corn samples measured by the m5 instrument were
considered as X and the moisture value was considered
as the property of interest y. In addition, the dataset was
divided into a calibration set (80% of the dataset, 60 × 700)
and an independent test set (20% of the dataset) on the
basis of the KS method. The corn dataset is available from
http://www.eigenvector.corn/data/corn/index.html.

C. BEER DATASET
This spectral dataset [53] was recorded with a 30-mm quartz
cell directly on the undiluted degassed beer, and collected at
intervals of 2 nm within the range 400–2250 nm. For this
study, the NIR region 1100–2250 nm (576 data points) was
chosen. The original extract concentration, which indicates
the substrate potential for the yeast to ferment into alcohol, is
considered as the property of interest. The dataset was divided
into a calibration set (40 samples) and the independent test set
(20 samples) on the basis of the Kennard–Stone (KS) method.
The independent test set was constituted by selecting every
third sample from the original dataset.

D. SOFTWARE AND SCRIPTS
All codes were written and performed in MATLAB(version
2016A,the MathWorks, Inc.) on a general-purpose Lenovo
computer with an intel i5 3.2GHz CPU and 4GB RAM, with
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FIGURE 3. (A) Original NIR spectra of wheat dataset (B) original NIR
spectra of corn dataset (C) original NIR spectra of beer dataset.

a Microsoft Windows 10 professional Version operating sys-
tem. TheMATLAB codes for BOSS are freely available from
http://www.mathworks.com/matlabcentral/fileexchange/
52770-boss. The MATLAB source code for VCPA is avail-
able for academic research from http://www.mathworks.com/
matlabcentral/fileexchange/authors/498750. The MATLAB
source code for CARS is available from http://code.google.
com/p/carspls/.

IV. RESULTS AND DISCUSSION
In this study, all data sets were divided into calibration sets
and independent test sets based on the Kennard-Stone (KS)
method. The KS method aims to cover multidimensional
space by maximizing the Euclidean distance between each
pair of selected samples. The calibration set was used for
variable selection and goodness of fit. and the independent
test set was used to validate the calibration model for pre-
dictions, and the PLS model based on NIPALS-PLS in our
paper. In addition, in order to evaluate the performance of
the SMCPA, we compared with the excellent methods CARS,
VCPA and BOSS methods. Through the reference [31] and
experiments, the parameters of CARS were set as follow: the
number of Monte Carlo sampling runs was set to 100, and in
each MC sampling run, a fixed ratio (e.g. 80%) of samples
was first randomly selected to establish a calibration model
and the Exponentially decreasing function runs were 100.
Through the reference [24] and experiments, the parameters
of VCPA were set as follows: the binary matrix sampling
runs were 1000,the Exponentially decreasing function runs
were 100,the number of the left variables was 14 and the
ratio of best models was 10%.Through the reference [28]
and experiments for the BOSS parameters, the Bootstrap
sampling (BSS) runs are 1000 and 1000 subsets were gen-
erated, the number of variables in the new subsets was about
0.632 times that of the previous subsets and the ratio of best
models was 10%. For all methods, the PLS maximum latent
variable is limited to 10 and the number of latent variables
was determined by a 5-fold cross-validation. Each data set
was mean-centered before modeling. Each method was exe-
cuted 50 times to obtain statistical results and to ensure a fair
comparison.

A. EFFECT OF NUMBER OF MC SAMPLING RUNS
To investigate the effects of the number of MCS runs and
the fixed selection ratio of samples on SMCPA performance,
we considered the following case: the monte carlo sampling
number was set to 50, 100, 200, 300, and 500. For each
case and each of the three datasets, 50 replicate runs of
SMCPA were executed and RMSECV values were recorded.
Experiments with different selection ratios,we found that the
fixed selection ratio does not have a significant influence on
the performance of SMCPA. Therefore, we do not discuss the
effect of the fixed selection ratio on the SMCPA, and only
consider the influence of the number of MCS runs, and the
selection ratio was set to 0.8 in all experiments.

In the following sections, the wheat, corn, and beer datasets
set the optimal numbers of MCS runs were 50, 100, and 100,
respectively. The resulting statistical box-plots are shown
in Figure 4.

B. WHEAT DATASET
The statistical results of variable selection methods,i.e.,
CARS, VCPA,BOSS and SMCPA, over 50 runs on the wheat
dataset, are summarized in Table 1. It can be clearly seen
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FIGURE 4. Dataset box plots for 50, 100, 200, 300, and 500 MCS
iterations. (A) Wheat dataset. (B) Corn dataset. (C) Beer dataset.

that the prediction performances of the four variable selec-
tion methods are better than that of PLS full-spectrum,which
means that variable selection is a necessary and important
step for the NIR model. The four variable selection meth-
ods have improved prediction performance both on cross-
validation and the test set predictions. The enhancement of
prediction ability by the SMCPA algorithm is significant
Compared to the PLS models of full spectral PLS models.

The values of RMSECV and RMSEP for SMCPA decrease
from 0.607 and 0.519 to 0.232 and 0.234, respectively, and
the values of Q2_cv and Q2_test increase from 0.748 and
0.774 to 0.942 and 0.889, respectively. Compared to other
selection methods, the SMCPA algorithm has better predic-
tion performance in terms of RMSECV, RMSEP , Q2_cv, and
Q2_test. Taking RMSEP as an example,RMSEP of SMCPA
is 0.234,while the other selection methods, CARS,VCPA and
BOSS are 0.418,0.289 and 0.305. The number of selected
variables by SMCPA decreases from 175 to 6.7. SMCPA
selected fewer variables with lower RMSECV and RMSEP,
whichmeans that it can achieve better prediction performance
with fewer variables for wheat dataset. In terms of algorithm
computation cost, the average computation times of SMCPA
and CARS is about 0.8 s, which proves the efficiency of
two methods. While VCPA and BOSS have much compu-
tation times of 142.09s and 36.34s, respectively, although
they have a better performance models. The both of VCPA
and BOSS increase computational cost to obtain better model
prediction performance. It is obvious that SMCPA is the
best in prediction performance of model and computational
efficiency.

The variables selected by different selection methods over
50 runs on wheat datasets are displayed in FIGURE 5. The
information variables in the 1150–1350 nm region were
selected for all four algorithms. This region belongs to
the second overtone of the C-H stretching bands and the
first overtone of the O-H stretching bands. The spectral fea-
tures of samples in the near-infrared(1000–2500nm) spectral
region are associated with the vibrational modes of functional
groups. The organic species present in the sample have a
distinct spectral fingerprint in the NIR region, namely a
relatively strong overtone absorption and mode combination
relative to several functional groups(C-H,N-H,O-H,i.e.).

From Figure.5, we found that VCPA, BOSS, and
SMCPA selected variables in similar regions that were
roughly distributed in the range 1150–1350 nm. However,
the CARS selected variables were distributed over the entire
1100–2500 nm spectral range, which means that selected
variables by CARS include uninformative or interfering vari-
ables cause to the poor prediction performance. The SMCPA,
BOSS and VCPA selected wavelength regions were con-
sistent with the chemical properties of wheat dataset, and
selected those relevant variables that had better and accurate
performance of models.

C. CORN MOISTURE DATASET
The statistical results of variable selection methods, i.e.,
CARS, VCPA,BOSS and SMCPA,over 50 runs on the corn
moisture datasets are summarized in Table 2. Compared to
the PLS models of full spectral PLS models, the RMSECV
and RMSEP for SMCPA decrease by 98.6% and 98.1%,
respectively. The values of RMSECV and RMSEP decreased
from 0.02111 and 0.01522 to 0.00030 and 0.0.00031, respec-
tively, and the values of Q2_cv and Q2_test increased from
0.96710 and 0.93780 to 0.99999 and 0.99999, respectively.
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FIGURE 5. The frequency of selected variables within 50 times on the wheat dataset: (A) CARS, (B) VCPA, (C) BOSS,
(D) SMCPA.

TABLE 1. Results for the wheat dataset. nVAR: number of variables; nLVs: number of latent variables; RMSECV: root-mean-square error of cross-validation;
RMSEP: root-mean-square error of prediction; Q2_CV: coefficient of determination of cross-validation; Q2_test: coefficient of determination of test set;
T/s: average computation time for 50 replicate runs; and statistical results with the form mean value ± standard deviation over 50 runs.

Compared to other selection methods,the SMCPA algo-
rithm has better prediction performance in terms of the
RMSECV,RMSEP, Q2_cv, and Q2_test, SMCPA showed
the best results; RMSECV(0.00030), RMSEP(0.00031),
Q2_cv(0.99999), and Q2_test(0.99999),were followed by
CARS(0.00048, 0.000053, 0.99993 and 0.99992), VCPA
(0.00039, 0.00045, 0.99995 and, 0.99996), BOSS(0.00036,
0.00039, 0.99997 and 0.99995).

Obviously, SMCPA shows the best predictive perfor-
mance among all the four variable selection methods. From
the 95% confidence interval, SMCPA yields the lowest
standard deviation, indicating higher stability. In addition,

SMCPA has selected fewer variables than other methods
with lower RMSECV and RMSEP, which means that it can
achieve better prediction performance with fewer variables
for this dataset. In terms of algorithm computational cost,
the average computational time of SMCPA was approxi-
mately 1.35 s, which demonstrates that the SMCPA com-
prehensively improves the efficiency of variable selection.
Due to the high quality of spectral acquisition in the corn
dataset, the other three algorithms also exhibit good variable
selection results. However, the both of VCPA and BOSS
are increase the computational cost to obtain better predic-
tion performance of models. It is obvious that SMCPA is
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FIGURE 6. The frequency of selected variables within 50 times on the corn moisture dataset: (A) CARS,
(B) VCPA, (C) BOSS, (D) SMCPA.

TABLE 2. Results for the corn dataset. nVAR: number of variables; nLVs: number of latent variables; RMSECV: root-mean-square error of cross-validation;
RMSEP: root-mean-square error of prediction; Q2_CV: coefficient of determination of cross-validation; Q2_test: coefficient of determination of test
set; T/s: average computation time for 50 replicate runs; statistical results have the form mean value ± standard deviation over 50 runs.

the best in model prediction performance and computational
efficiency.

The variables selected by different methods over 50 runs on
corn moisture datasets are displayed in Figure 6. The 1908nm
and 2108 nm wavelengths, which correspond to the water

absorption and the combination of O-H bond, were proved to
be the key wavelengths in the reference [31], [35]. From the
Figure.6 both of wavelengths were selected very frequently
by all the methods. We found that CARS could not always
select key variable 2108 nm in 50 replicate runs. For VCPA,
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FIGURE 7. The frequency of selected variables within 50 times on the beer dataset: (A) CARS, (B) VCPA, (C) BOSS,
(D) SMCPA.

in addition to choosing these two variables, it also choose
many other wavelengths across the entire 1100–2500 nm
NIR regions. The selected variables by VCPA included unin-
formative or interfering variables that lead to the lower pre-
diction performance. SMCPA could always select two key
variables in 50 replicate runs, 1908nm and 2108nm, which
means that SMCPA is a very effective and stable variable
selection algorithm.

D. BEER DATASET
The statistical results of variable selection methods, i.e.,
CARS, VCPA,BOSS and SMCPA, over 50 runs on the beer
datasets are summarized in Table 3. From the table,it can
be shown that variable selection methods have made much
more predictive performance compared with the PLS full-
spectrum. The RMSECV and RMSEP for SMCPA decreased
by 86.5% and 83.8%, respectively, the values of RMSECV
and RMSEP decreased from 0.622 and 0.822 to 0.084 and
0.133, respectively, and the values of Q2_cv and Q2_test
increased from 0.940 and 0.852 to 0.998 and 0.995, respec-
tively. Compared with CARS, VCPA, and BOSS, SMCPA
has better prediction ability in cross-validation and the test
results, the values of RMSECV and RMSEP were the lowest,
and the values of Q2_CV and Q2_test were the highest.
The enhancement of prediction ability by the SMCPA was
significant. Although VCPA can also achieve very good pre-
dictive performance, it has some drawbacks. In the Ref [35],

VCPA will eventually search for the optimal variable subset
from the remaining 14 variables. Thus,VCPA is inclined to
select fewer variables, which is unsuitable for many datasets.
In the Ref [25], we found that VCPA is limited by the com-
puter memory,When the number of residual variables is 16,
it cannot be computed as a 65535(216-1) combination in a
common computer due to an out-of-memory error. From the
95% confidence interval, SMCPA yields the lowest standard
deviation, indicating higher stability. The beer dataset is an
NIR spectral ensemble of 60 beer samples containing a rather
large noisy part [53], so the selection variables methods and
the PLS of models will be affected by the noise. However,
the advantage of SMCPA is that it can eliminate the negative
impact of noise and achieve the best predictive performance.
In terms of algorithm computational cost, the average compu-
tational times of SMCPA and CARS were approximately 1 s,
which proves the efficiency of the twomethods. While VCPA
and BOSS have higher computation times of 162.13s and
56.22s, respectively, although they have better performance
models. Both VCPA and BOSS increase the computational
cost to obtain better prediction performance of models. It is
obvious that SMCPA is the best in predicting model perfor-
mance and computational efficiency.

The variables selected by different methods over 50 runs
on the beer datasets are displayed in Figure 7. CARS and
BOSS tend to select a large number of variables, while the
nVAR obtained by VCPA and SMCPA are lower. We found
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TABLE 3. Results for the beer dataset. nVAR: number of variables; nLVs: number of latent variables; RMSECV: root-mean-square error of cross-validation;
RMSEP: root-mean-square error of prediction; Q2_CV: coefficient of determination of cross-validation; Q2_test: coefficient of determination of test set;
T/s: average computation time for 50 replicate runs; statistical results have the form mean value ± standard deviation over 50 runs.

that VCPA selects the lowest variables of all methods
(in Table 3),but SMCPA achieves better prediction perfor-
mance than VCPA, we can infer the reasonmay be that VCPA
misses some informative variables. In Figure 7, these four
methods could succeeded in selecting informative regions of
1100nm–1350nm, which corresponds to the first overtone of
the O-H stretch bond vibration. However, CARS, VCPA, and
BOSS still select some redundant and uninformative variables
outside of those informative regions(1100nm-1350nm). For
example, variables selected by CARS were distributed in
1100-1350nm and 1600-2250nm, and variables selected by
BOSS almost scattered across almost the entire NIR spec-
trum. The regions of 1350-2250nmwere likely to have a large
number of uninformative or interfering variables, leading to
lower prediction performance of models. For the understand-
ing and interpretation of the selected variables, the frequency
of each variable within 50 replicate runs is shown in Figure.7.
The SMCPA selection variables were mainly concentrated
in the region 1100–1350 nm, which is consistent with the
chemical properties of interest. This clearly demonstrates the
excellent selectivity of SMCPA.

V. CONCLUSION
This paper has proposed a novel variable selection method,
SMCPA. There are some obvious advantages to this
approach. First, SMCPA theoretically make sure that itera-
tively and shrinks variable space to obtain the best variable
combination, and the statistical analysis information (SMC)
of the interesting output of a large number of sub-models
is highlighted. Second, SMCPA combines new criteria of
variable importance (SMC), statistical analysis(F-test) and
some mathematical ideas (such as MC-sampling, EDF and
WBS, etc.) in the algorithm, reducing the risk of eliminating
informative variables and taking variable combination effects
and interpretability into consideration. Finally, SMCPA has
balance between computation ability and predictability.

With applications three real NIR spectral datasets, it was
proved that SMCPA is a promising method for eliminating
uninformative variables and constructing a high-performance
calibration model. The results indicate that variable selection
is really necessary and better prediction could be obtained
using a few chemically meaningful key variables.

It should be noted that although SMCPA was employed
on an NIR dataset, it is a general strategy and therefore
could be coupled with other modeling methods and applied
to other areas, such as genomics, proteomics, bioinformat-
ics, metabolomics, quantitative structure–activity relation-
ship (QSAR), etc. Our future work will focus on investigating
the application of SMCPA in other fields.
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