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ABSTRACT This paper focuses on the digital image authentication and forgery localization using demo-
saicing artifacts. The aim is to build an algorithm allowing a bridge between the color filter array pattern
and demosaicing algorithm estimation, and the statistical analysis of demosaicing artifacts in spatial domain
to improve the authentication and localization performance. After analyzing the evolution of demosaicing
traces in camera acquisition pipeline, a robust feature statistic characterizing demosaiced digital images is
first developed on the basis of the noise residue of green channel. Such a feature statistic is less sensitive to
the edges problem because only the smooth region of green channel is used in the development. Next, a single
normalmixturemodel is proposed to describe the probability distribution of feature statistics for both original
and tampered images. Therefore, normality tests can be used to authenticate automatically digital images.
The authentication performance can be further improved by human interpretation of supported graphic tools.
Finally, a penalized expectation-maximization algorithm is used to localize forged areas in tampered images.
Numerous comparative studies on four well-known datasets show that the developed algorithm yields better
performance and robustness than existing forensics algorithms of the same kind.

INDEX TERMS Demosaicing traces, digital image authentication, forgery localization, normal mixture
model, penalized expectation-maximization algorithm.

I. INTRODUCTION
Images traditionally describe the truth of what has hap-
pened in real-world. Nevertheless, in today’s digital age,
the trustworthiness of such content is of great concern due
to the dissemination of easy-to-use and low-cost image edit-
ing tools. As a consequence, digital forensics have emerged
as an indispensable research field to restore some trust to
digital images. Indeed, a large number of techniques for
digital image forensics have been developed over the last
two decades (see e.g., [1]–[5] for some recent reviews).
Generally speaking, these techniques are classified into two
major categories [6]: active (non-blind) approach and passive
(blind) approach. With ‘‘active’’, we mean that some preset
authentic information (e.g., watermark, signature) embedded
in digital images is required to examine their truthfulness.
Whereas, with ‘‘passive’’, certain of intrinsic traces in the
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image acquisition or some specific traces left by forgeries
are exploited to distinguish between tampered and natural
images. As such, the passive approach does not rely on any
prior information, and hence having broader applications than
the active approach [7].

The present paper addresses a passive algorithm for dig-
ital image authentication and forgery localization using
demosaicing traces. In a digital camera acquisition pipeline,
demosaicing (also known as color filter array (CFA) inter-
polation) is an upstream operation for reconstructing a full
color image from the sampled data overlaid with a CFA (see
Fig. 1). Although such an acquisition pipeline is common
for most of commercial camera devices, each step therein is
personalized according to manufacturer choices. Traces left
by demosaicing are thus different but specific for different
camera brands and/or models. When these traces are totally
missing in an image, or when there exists any inconsistency
in traces for different image regions, the photographic image
is likely to be tampered. Therefore, demosaicing traces can

125038 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-3873-2795
https://orcid.org/0000-0001-9273-4260


N. Le, F. Retraint: Improved Algorithm for Digital Image Authentication and Forgery Localization

FIGURE 1. Illustration of a typical acquisition pipeline in a digital camera.

be taken as evidence to assess the credibility of a digital
image.

Hereinafter, to better understand the novelty of the algo-
rithm proposed in this paper, we first analyze previous works
on image forensics considering demosaicing traces. Next,
we state the paper scope and its contributions.

A. ANALYSIS OF PREVIOUS WORKS
According to the nature of demosaicing traces, we can cate-
gorize previous works on image forgery detection and local-
ization into two main classes. The first class consists of
algorithms aiming at estimating from a digital image the
CFA pattern and/or the demosaicing algorithm inherent in
camera devices. The second class characterizes algorithms
used to evaluate the presence/absence of artifacts generated
by demosaicing operations.

1) FIRST CLASS
As to the first stream in the class, the works [8]–[12] repre-
sent key methods for CFA pattern identification. In [8], the
Bayer CFA pattern is identified by minimizing the difference
between the raw sensor signal and the inverse demosaiced
signal. In [9], the identification is performed via an intermedi-
ate value counting algorithm developed from the observation
that the value of interpolated color samples is always between
the minimum and maximum values of their neighbors. Other
method is to compute the ratio between the average noise
variance of interpolated pixels and of acquired pixels for
all possible candidate CFA patterns of a digital image; the
pattern providing the largest ratio is considered as the true
one [10]. More recently, color difference blocks are proposed
as a means for estimating the CFA configuration in [11], [12].

Beyond the CFA pattern identification, works within
the second stream focus more especially on estimating demo-
saicing algorithms. In [13], an expectation-maximization
(EM) algorithm is employed to estimate the coefficients of
linear interpolation kernels. An improvement is made in [14]
by combining the EM algorithm with average second-order
derivative spectrum [15] to obtain interpolation coefficients
from smooth and non-smooth regions of images separately.
Also partition an image into smooth, horizontal and vertical
non-smooth regions, a two-step estimation process is pro-
posed in [16]: (i) linear interpolation coefficients associated

with each of candidate CFA patterns are first derived using the
singular value decomposition, (ii) a minimum interpolation
error criterion is next used to jointly identify the correct
CFA pattern and demosaicing algorithm for separate image
regions. In [17], an accurate method based on the partial
second-order image derivative correlationmodels is proposed
to recover demosaicing formulas. The method allows to take
into account the correlation between three color channels of
the image.

Since the CFA pattern and/or the demosaicing algorithm
are specific for each class/branch/model of camera devices,
they can be used as proofs for image forgery detection and
localization. For instance, in [18], [19], the inconsistencies
among the estimated demosaicing coefficients are exploited
to check if an image has undergone any form of subsequent
processing. By remarking that the CFA pattern is changed
if the image color is modified, the authors of [20] have
designed an advanced intermediate value counting algorithm
for measuring the change in the CFA pattern, and hence
localizing the extent of color modification in digital images.
We also note that estimated CFA pattern and/or demosaicing
algorithm are used not only for assessing the credibility of
images content, but also for camera source identification (see
e.g., [21]). However, the latter is out of the paper scope.

2) SECOND CLASS
The first stream in the second class relies on periodic artifacts
caused by the demosaicing. In fact, the image sensors in a
CFA are usually organized periodically [22]. Besides, many
demosaicing algorithms behave as a filtering process where
missing signals are interpolated by periodically applying an
interpolation kernel to acquired signals (see e.g., [13]). There-
fore, periodicity in demosaicing artifacts is intrinsic to digital
photographs, and may help to authenticate images. Inspired
by this idea, Popescu and Farid build in [13] a probability
map to expose the periodic pattern of correlated pixels. When
interpolated pixels are present, the periodicity of the map is
clearly visible in the Fourier domain. Such an analysis can
be applied to different areas of the tested image to detect the
presence of local tampering, however the area size should
not be smaller than 256 × 256 to assure the accuracy of the
results. Observing that the variance of the second derivative
of interpolated images is periodic [15], Gallagher and Chen
use in [23] high pass filtering and Fourier analysis to compute
periodic frequency locally. Forged regions of an image will
have a different periodicity than the rest. This method is
applicable for image blocks with size 64 × 64 or more.
Another method based on periodicity analysis of prediction
errors variance is recently proposed by Li et al. in [24].
Assuming that interpolation errors are Gaussian distributed,
a posterior probability map is derived according to Bayes’
rule. Such amap shows the periodic interpolation of the tested
image in an intuitive way. An analysis with two dimensional
discrete Fourier transform allows to capture the periodicity.
By experiments, Li et al. show that this method can be applied
for local tampering detection with blocks size up to 32× 32.
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For the second stream, methods for digital image forgery
detection are based on the differences in the distribution of
acquired and interpolated pixels. In [25], Dirik and Memon
recognize that the low pass nature of CFA demosaicing make
the variance of the sensor noise in interpolated pixels sig-
nificantly lower than acquired pixels. As a result, demosaic-
ing artifacts can be measured by a ratio of noise variances
between interpolated and acquired pixels. If this ratio is close
to 1, tampering has been performed on the image. Themethod
presents a good performance for image blocks with size
greater than 96×96. Sharing the same idea, Ferrara et al. [26]
carry out fine-grained analysis of CFA artifacts and propose
a feature to measure the presence of demosaicing even at
the smallest 2 × 2 block level. However, numerical exper-
iments show that the tampering localization yields the best
performance at 8 × 8 block size. While the above works
consider spatial features of demosaicing artifacts, González-
Fernández et al. [27] are rather interested in their spectrum.
Indeed, by computing the probability of each interpolated
pixel and then applying the discrete cosine transform (DCT)
on small blocks of the probability map, the presence/absence
of the demosaicing artifacts within a block could be ver-
ified via the DCT coefficient at the highest frequency.
Experiments show that the method is reliable for blocks of
size 16× 16.

Compared to the first stream, methods within the sec-
ond stream brings out better localization resolution and
higher fidelity. However, their performance seems more
sensitive to JPEG compression than the first stream,
especially when the compression quality is significantly
low.

3) COMMON REMARKS
Since the demosaicing is an upstream operation in the acqui-
sition pipeline of digital cameras, its traces are independent
of forgeries such as cloning, splicing, inpainting, resizing, etc.
Therefore, methods based on demosaicing traces do not target
any specific forgery operation, but are rather applicable to
a variety of operations. Despite this advantage, demosaicing
traces are easily destroyed by JPEG compression, even with
very high quality levels. This is why these methods is suitable
to uncompressed or less-compressed photographs. This is a
common and almost unavoidable limitation of demosaicing
traces-based methods. Moreover, very often a comparison
threshold is required to detect or localize forgeries (see e.g.,
[24]–[26]). In practice, the choice of such a threshold is not
easy andmay be very influential in the robustness of themeth-
ods. Besides, employed demosaicing traces (i.e., CFA pattern,
demosaicing algorithm, periodicity of demosaicing artifacts,
differences in the distribution of acquired and interpolated
pixels) are closely correlated. However, the above classifica-
tion of related works implies that they are treated separately
in most existing algorithms. Jointly use these traces could
improve the performance of image forgery detection and
localization.

B. SCOPE, CONTRIBUTIONS AND ORGANIZATION
To authenticate digital photographs and localize forgeries
of tampered images efficiently, we develop in the present
paper a hybrid algorithm consisting of CFA pattern iden-
tification, demosaicing algorithm estimation, and artifacts
analysis. According to the above classification of demosaic-
ing traces-based works, the developed algorithm allows a
bridge between the first class and the second class. Aiming
at fine-grained detection, the identification scheme proposed
in [16] is adopted to reveal the CFA pattern and interpolation
kernel, and a local analysis similar to [26] is used to expose
demosaicing artifacts from prediction residues. Their combi-
nation allows to build robust feature statistics characterizing
the presence/absence of demosaicing artifacts. Despite these
similarities, several improvements have been made.

1) We theoretically analyze how the mean and variance of
prediction residues in interpolated and acquired signals
evolve in a digital camera acquisition pipeline from the
RAW format to the JPEG format. This is the basis to
build feature statistics of interest. Besides, the analy-
sis also helps to explain in part why the demosaicing
traces-based approach is less effective with JPEG com-
pressed images.

2) In most demosaicing traces-based algorithms (see e.g.,
[13], [24], [26], [28]), prediction residues are given
from entire pixels. Here, by further partitioning a pixel
into content and noise parts, we realize that the demo-
saicing behaves in the same manner for content, noise,
as well as entire pixel. However, due to the weak
energy of noise, demosaicing traces are most visible
in noise part. This is why feature statistics used in the
algorithm are derived from noise residues rather than
the residues of content or entire pixels.

3) As mentioned in [26], the presence of sharp edges
in images reduces the quality of feature statistics,
because it may disrupt the correlation between interpo-
lated and acquired residues. To overcome this obstacle,
we build our feature statistics from smooth region of the
green channel instead of the entire channel. As such,
the edges problem is no longer a great concern.

4) Regarding the authentication, after verifying the
standard normal distribution of feature statistics
in natural images, we adopt normality tests (i.e.,
Anderson-Darling test, one-sample Kolmogorov-
Smirnov test, Jarque-Bera test, and Lilliefors test)
to verify their integrity automatically. Such an auto-
matic detection is somewhat scattered in demosaicing
traces-based works. Besides, we also provide other
tools (i.e., Q-Q plot diagram, probability distribu-
tion curves, and localization map) which can help to
improve authentication performance by human inter-
pretation. It is noticed that the image authentication
is more general than the content integrity verification,
because it encompasses also the source attribution,
as well as the context verification [4]. Nevertheless,
for the sake of consistency, we follow the common

125040 VOLUME 7, 2019



N. Le, F. Retraint: Improved Algorithm for Digital Image Authentication and Forgery Localization

convention in the Multimedia Forensics community,
and consider the terms ‘‘authentication’’ and ‘‘integrity
verification’’ having the same meaning in this paper.

5) By modeling the distribution of feature statistics in
tampered images as a normal mixture, we applied a
penalized EM algorithm to localize forged regions.
Since the algorithm does not require a comparison
threshold, it provides robuster localization results than
traditional threshold-based methods [25], [26].

Numerous numerical experiments also confirm that the pro-
posed algorithm yields better performance than existing algo-
rithms of the same kind.

The remainder of the paper is organized as follows.
Section II focuses on analyzing statistical properties of demo-
saicing traces when they evolve in a digital camera acqui-
sition pipeline. The analysis is next extended to develop
feature statistics measuring the unbalance between the local
variances of prediction residues for the green channel of
demosaiced images in Section III. A robust feature statistic is
eventually identified. Section IV develops a single statistical
model for the proposed feature statistic. Such a model is next
used to authenticate digital images and to localize the tam-
pered regions. Numerous numerical experiments are provided
in Section V. Finally, some conclusions and perspectives are
discussed in Section VI.

II. STATISTICAL ANALYSIS OF DEMOSAICING TRACES
Analyzing statistical properties of demosaicing traces is a key
step to define a relevant feature statistic for tampering detec-
tion and localization. In this section, we are interest more
especially in the mean and variance of prediction residues
in both interpolated and acquired signals. In ideal cases,
we prove that the residues variance in acquired signals is
greater than in interpolated signals, while their mean values
are always 0. However, such a difference weakens under the
impact of JPEG compression. Hereinafter, as in [26], only
the green channel is considered, because it is upsampled by
a factor 2. The same number of acquired and interpolated
pixels in each generic square block leads to the same esti-
mation reliability for both classes of pixels. Moreover, for
an easier representation, the analysis is just done for one
dimensional signals (i.e., a given row in the green channel
of digital image). The results for two dimensional signals can
be interpreted in a similar way.

A. DEMOSAICING TRACES AT PIXEL LEVEL
Let consider a row in the green color channel of an image
obtained by using a Bayer filter and a linear demosaicing
algorithm. Without loss of generality, we assume that the
Bayer CFA pattern is arranged in the manner that acquired
pixels are at even positions of the row (interpolated pixels will
be at odd positions). Each acquired pixel consists of two parts:
real scene content and noise. The real scene content is the
true image information, while noise is generated everywhere
during camera imaging. Mathematically, an acquired pixel

pA (x) at position x on the row can be expressed as [10]

pA (x) = cA (x)+ nA (x) , if x even (1)

where cA (x) and nA (x) are respectively the content and
noise of pA (x). Applying a linear demosaicing algorithmwith
interpolation kernel hu to acquired pixels, we obtain the value
of an interpolated pixel at position x on the row as

pI (x) =
∑
u6=0

hupA (x + u) , if x odd, (2)

where
∑

u6=0 hu = 1, and u takes odd values. Substituting (1)
in (2), we obtain

pI (x) = cI (x)+ nI (x) , if x odd, (3)

where cI (x) and nI (x) are the content and noise of pI (x)

cI (x) =
∑
u6=0

hucA (x + u) , (4)

and

nI (x) =
∑
u6=0

hunA (x + u) . (5)

The similarity of (2), (4) and (5) implies that the content
part and noise part are altered in the same way as the entire
pixel after the demosaicing. In other words, we can find
traces left by the demosaicing in the content, in the noise
and in the entire pixel at odd positions of the considered
row.

Hereinafter, we use s to represent a signal which may
be either the entire pixel, its content part or its noise part.
Accordingly, sA and sI denote respectively the acquired and
interpolated signals. The resulting signal sR is either an
acquired signal or an interpolated signal

sR (x) =

{
sA (x) if x even,
sI (x) =

∑
u6=0 husA (x + u) if x odd.

(6)

We will analyze the mean and variance of signal residue to
find out some useful demosaicing artifacts when the digital
image is in TIFF format and in JPEG format.

B. DEMOSAICING ARTIFACTS IN TIFF IMAGES
The RAW image, after demosaicing, white balancing and
gamma correction, becomes an uncompressed high-quality
image in TIFF format. Since, the white balancing and the
gamma correction are lossless operation in terms of informa-
tion [29], we expect that the characteristics of demosaicing
artifacts do not much changed. Let ku, with

∑
u6=0 ku = 1, is

an estimate of the interpolation kernel hu when the considered
image is in TIFF format, then the predicted signal is computed
as

stiffP (x) =
∑
u6=0

kustiffR (x + u) . (7)

VOLUME 7, 2019 125041



N. Le, F. Retraint: Improved Algorithm for Digital Image Authentication and Forgery Localization

When u is odd, then x + u is odd if x even, and is even
otherwise. Using (6), sP (x) can be rewritten by

stiffP (x) =
∑
u6=0

kustiffR (x + u)

=

{∑
u6=0 ku

∑
v6=0 hvs

tiff
A (x + u+ v) if x even,∑

u6=0 kus
tiff
A (x + u) if x odd.

(8)

The residue, which is the difference between resulting and
predictive signals, is thus expressed as

etiff (x) = stiffR (x)− stiffP (x) =

{
etiffA (x) if x even,
etiffI (x) if x odd,

(9)

where

etiffA (x) = stiffA (x)−
∑
u6=0

ku
∑
v6=0

hvstiffA (x + u+ v) , (10)

and

etiffI (x) =
∑
u6=0

hustiffA (x + u)−
∑
u6=0

kustiffA (x + u)

=

∑
u6=0

(hu − ku) stiffA (x + u) . (11)

Since the size of kernel window is usually small, acquired
signals in such a window can be assumed identical indepen-
dent distributed (i.i.d.) with mean µ and variance σ 2. Con-
sequently, the mean E

[
etiff (x)

]
and variance var

[
etiff (x)

]
of

the residue of TIFF image are expressed as
• if x is even, then

E
[
etiffA (x)

]
= µ−

∑
u6=0

ku
∑
v6=0

hvµ = 0, (12)

and

var
[
etiffA (x)

]
= σ 2

1+
∑
u6=0

k2u
∑
v6=0

h2v

 . (13)

• if x is odd, then

E
[
etiffI (x)

]
=

∑
u6=0

huµ−
∑
u6=0

kuµ = 0. (14)

and

var
[
etiffI (x)

]
= σ 2

∑
u6=0

(hu − ku)2 . (15)

These results are obtained following similar steps in [26].
We find that E

[
etiff (x)

]
is always equal to 0 for whatever

position of x. Meanwhile, when the estimate of the interpo-
lation kernel ku is close to the original one hu, var

[
etiff (x)

]
is close to 0 at the positions of interpolated signal (i.e.,
var

[
etiffI (x)

]
→ 0), while it is greater than σ 2 at the positions

of acquired signal (i.e., σ 2 < var
[
etiffA (x)

]
≤ 2σ 2). As

such, the difference between variances of residues in acquired
and interpolated signals can be seen as a useful demosaicing
artifact for TIFF images.

C. DEMOSAICING ARTIFACTS IN JPEG IMAGES
For storage, the high-quality TIFF image is compressed into
JPEG format (see e.g., [30] for the detail of compression
process). If a lossy JPEG compression is applied, the high-
frequency components of 8 × 8 blocks in DCT domain are
weakened by quantization which cannot be restored. This
results in the local homogenization of 8× 8 blocks in spatial
domain. As in [24], we can model such a phenomenon by
mixing the features of the acquired and interpolated signal
residues of TIFF image. Let etiffA and etiffI be the representa-
tives of acquired and interpolated signal residues in a certain
row of 8× 8 blocks of the TIFF image, the associated signal
residues in 8× 8 blocks of the JPEG image can be expressed
by {

ejpegA = αetiffA + (1− α) e
tiff
I ,

ejpegI = αetiffI + (1− α) e
tiff
A ,

(16)

where α ∈ [0.5, 1] is a weighting factor related to the
compression quality Q. When α = 0.5, ejpegA = ejpegI =

1
2

(
etiffA + e

tiff
I

)
; when α = 1, ejpegA = etiffA and ejpegI = etiffI .

These two configurations correspond respectively to a very
small value (Q < 10) and a very high value (Q = 100) of
compression quality.

Let consider now the mean and variance of ejpegA and ejpegI .
From (16), we derive, by using (12) and (14), that

E
[
ejpegA

]
= E

[
ejpegI

]
= 0, (17)

and that

var
[
ejpegA

]
= α2var

[
etiffA

]
+ (1− α)2 var

[
etiffI

]
+ 2α (1− α) cov

[
etiffA , e

tiff
I

]
, (18)

and

var
[
ejpegI

]
= α2var

[
etiffI

]
+ (1− α)2 var

[
etiffA

]
+ 2α (1− α) cov

[
etiffA , e

tiff
I

]
. (19)

Since var
[
etiffA

]
≥ var

[
etiffI

]
(see Subsection II-B), we obtain

var
[
ejpegA

]
≥ var

[
ejpegI

]
. (20)

Thus, for the image in JPEG format, the difference between
residues variances in acquired and interpolated signals is still
a potential demosaicing artifact. But, such a difference is
much weaker when Q decreases, and even disappeared when
Q < 10 (i.e., var

[
ejpegA

]
= var

[
ejpegI

]
when α = 0.5). This

phenomenon is depicted clearly in Fig. 3 of [24].
From the above analyses, we can conclude that, except

some special configurations, the unbalance between the vari-
ances of signal residues at acquired and interpolated positions
is an inherent property of digital images in TIFF and JPEG
formats with high compression quality. When the image
is strongly compressed, the unbalance is less clear. This
explains in part why the demosaicing traces-based approach
does not work well with JPEG compressed images.

125042 VOLUME 7, 2019



N. Le, F. Retraint: Improved Algorithm for Digital Image Authentication and Forgery Localization

FIGURE 2. Proposed process for Bayer CFA pattern identification, interpolation kernel estimation, and feature statistics construction.

III. FEATURE STATISTICS FOR DEMOSAICED IMAGES
This section aims at extending the analysis in Section II
to build feature statistics characterizing demosaiced images.
To this end, we develop a complete process consisting of
the identification of Bayer CFA pattern, the estimation of
interpolation kernel, and the construction of feature statistics
measuring the unbalance between the local variances of pre-
diction residues. Especially, only smooth region of the green
channel is considered to avoid perturbations due to edges. The
main steps of the process is schematically illustrated Fig. 2.
In the following, we provide the detailed developments for
the process.

A. CFA PATTERN AND INTERPOLATION KERNEL
To avoid the edges effects, we adapt the identification scheme
proposed by Swaminathan et al. in [16] to reveal the CFA
pattern and interpolation kernel for the green channel of the
considered image. With a given CFA pattern p ∈ P (see
Fig. 2), we divide the green channel G into three kinds of
regions based on the gradient features in a local neighbor-
hood as follows. Let sR (x, y) be the resulting signal value
at location (x, y), local gradient profiles along the horizontal
and vertical directions are respectively defined as

H (x, y) = |sR (x, y− 2)+ sR (x, y+ 2)− 2sR (x, y)| ,

and

V (x, y) = |sR (x − 2, y)+ sR (x + 2, y)− 2sR (x, y)| .

Let T be a predetermined threshold, the partition of gradient
profile plane is summarized as in Table 1. For each region,

TABLE 1. Regions and meanings.

we approximate interpolated signals with a set of linear equa-
tions of acquired signals, such that

Aiki = Ii, (21)

where Ai, Ii and ki, i ∈ {1, 2, 3}, are respectively the matrix
of acquired signals, the vector of interpolated signals, and
the linear interpolation kernel of the region Ri. Solving (21)
by the well-known least-squares method gives the following
kernel ki

ki =
(
AT
i Ai

)−1
AT
i Ii, (22)

where AT
i and A−1i denote respectively the transpose and

inverse of matrix Ai. Next, the obtained interpolation ker-
nels are then used to reconstruct an estimation Ĝ(p) of the
green channel G. We repeat the above process to derive the
reconstruction error for each CFA pattern. The optimal CFA
pattern and interpolation kernel are jointly selected as the
combination that yields the lowest reconstruction error.

B. LOCAL WEIGHTED VARIANCE OF RESIDUES
The analysis in Section II is done under the assumption of
i.i.d. acquired signals. To adapt its results to the two dimen-
sional green channel of the digital image, we should evaluate
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the variance of prediction residues over small (2K + 1) ×
(2K + 1) windows, in which signal values are expected sta-
tionary. When sharp edges are present in the tested image,
they may disturb this stationary property even for small win-
dows. To overcome this obstacle, we propose using only the
smooth region R3 in the computation of the local variance of
residues. By this way, the condition of i.i.d. acquired signals
is guaranteed.

More precisely, we first compute the residue of the two
dimensional green channel using the interpolated kernel k3
of the region R3

e (x, y) = sR (x, y)−
∑
u,v6=0

k3,u,vsA (x + u, y+ v) , (23)

where sR (x, y) and sA (x, y) denote respectively the resulting
and acquired signals at the location (x, y) of the green chan-
nel, and k3,u,v is an element in k3. Then, mapping the residue
e (x, y) onto the smooth region R3, we obtain

e3 (x, y) =

{
e (x, y) if (x, y) ∈ R3,

0 otherwise.
(24)

Following [31], the local weighted variance of e3 (x, y)within
(2K + 1)× (2K + 1) windows is computed by

σ 2
e3 (x, y) =

1
c

 K∑
i,j=−K

αi,je23 (x + i, y+ j)− µ
2
e3 (x, y)

 ,
(25)

where µe3 (x, y) denotes the local weighted mean

µe3 (x, y) =
K∑

i,j=−K

αi,je3 (x + i, y+ j) , (26)

c = 1 −
∑K

ij=−K α
2
ij is a scale factor, and αij are suitable

weights given by

αij =
α′ij∑
i,j α
′
ij
, (27)

in which α′ij = W (i, j), if e3 (x + i, y+ j) belongs to the
same class of e3 (x, y); and α′ij = 0, otherwise. W (i, j) is a
(2K + 1)× (2K + 1) Gaussian windows centered at (i, j).

C. DEFINITION OF FEATURE STATISTICS
As shown in Section II, the unbalance between residues
variances of acquired and interpolated signals is inherent in
demosaiced images. Here, the aim is to develop some fea-
ture statistics to expose this unbalance on the green channel
locally. To this end, we first divide the variance map of
residues with size N ×N into B×B non-overlapping blocks,
where B is a multiple of the length of Bayer’s filter. Each
B×B block is composed of B

2

2 acquired positions at quincunx
lattices A, and B2

2 interpolated positions at complementary
quincunx lattices I. Accordingly, we distinguish in a given
(m, n) block Bm,n, m, n = 0, . . . , NB − 1, two sets: acquired
variances BA

m,n and interpolated variances BI
m,n. As in [26],

each of these sets can be characterized by the geometric mean
of their elements

GMBA
m,n
=

 ∏
m,n∈BA

m,n

σ 2
e3 (m, n)


1
B2
2

, (28)

and

GMBI
m,n
=

 ∏
m,n∈BI

m,n

σ 2
e3 (m, n)


1
B2
2

. (29)

Note that the geometric mean is used instead of the well-
known arithmetic mean because it is less sensitive to extreme
values. We can therefore define the unbalance between the
local variance of signal residues at lattices A and I in the
block Bm,n by the fraction

Fm,n =
GMBA

m,n

GMBI
m,n

. (30)

By numerical experiments, we find that the probability den-
sity function (pdf) of Fm,n, m, n = 0, . . . , NB − 1, is posi-
tively skewed with long tail on the right. Such a form does
not allows feasible pdf fitting. This is why we apply the
log-transformation to Fm,n to favor the normality

Lm,n =
1
B2
2

∑
m,n∈BA

m,n

log
(
σ 2
e3 (m, n)

)
−

1
B2
2

∑
m,n∈BI

m,n

log
(
σ 2
e3 (m, n)

)
. (31)

Clearly, the feature Lm,n represents the difference between the
arithmetic mean of the logarithm of variances in the set BA

m,n
and BI

m,n. The mean and variance of Lm,n vary from image
to image. To have a feature statistic independent of image
content, Lm,n is standardized

Nm,n =
Lm,n − E

[
Lm,n

]√
var

[
Lm,n

] , (32)

so that the mean and variance of Nm,n are fixed to 0 and 1.

D. ROBUSTNESS OF FEATURE STATISTICS
Since all the signals such as entire pixel, content part, and
noise part could be used to compute the feature statisticsFm,n,
Lm,n and Nm,n, two questions arise naturally.

1) Which one among the three feature statistics Fm,n, Lm,n
and Nm,n is more relevant to characterize demosaiced
images?

2) Which signal allows the robustest feature statistic?
The following experiments seek answers to these questions.

Given a natural digital camera image, we consider at first
the green channel, its content part and its noise part (see
the first line of Fig. 3 for an example given from Image
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FIGURE 3. Used signals and feature statistics pdfs.

ManipulationDataset [32]). For each kind of signals, we com-
pute the local weighted variance map of prediction residues
(with K = 3), and derive the three feature statistics of
interest (with B = 8). Using kernel density estimation (KDE)
method [33], the associated pdf of Fm,n, Lm,n and Nm,n are
given in the second line of Fig. 3. Clearly, the pdf forms
of Fm,n are uncontrollable for all kinds of signals. For the
pdf forms of Lm,n and Nm,n, the ones obtained from the
green channel or its noise part have a nice bell shape as
expected, while the ones computed from the content part
have not. The reason is that the weak demosaicing traces in
the content part is easily covered and/or strongly affected by
the real scene data. Meanwhile, for the noise part, although
the demosaicing traces is still weak, the energy of noise is
relatively small. So that the portion of demosaicing traces in
noise is remarkable. The energy of pixels in green channel is
high, but demosaicing traces therein are also much stronger.
Consequently, the demosaicing artifacts given from the green
channel are still significant. Compared to Lm,n, the advantage
of Nm,n is that its pdf is independent of image content, and
hence more suitable for detection goal. To find out which
one between the green channel and its noise part can provide
robuster Nm,n, we vary the size of B × B blocks and observe

the variation in shape ofNm,n pdfs (see the third line of Fig. 3).
Obviously, the Nm,n pdfs given from the noise part is less
sensitive to the value of B (especially since B = 8). Similar
results given by repeating this experiment for various images
allow us to confirm that the feature statistic Nm,n computed
from the noise part is robustest.

In the remainder of this paper, we use Nm,n as the default
feature statistic. Besides, to simplify the notation, we use
a single index instead of double of indices to indicate the
feature statistic (i.e., using Ni to denote the feature statistic
associated with the i-th B× B block).

IV. FEATURE STATISTIC MODELING FOR IMAGE
AUTHENTICATION AND FORGERY LOCALIZATION
This section aims to develop a single statistical model based
on the feature statisticNi for both natural and tampered digital
images. Such a model is next used to authenticate digital
images and to localize the tampered regions if any.

A. STATISTICAL MODEL OF FEATURE STATISTIC
As mentioned in Subsection III-D, when the tested image
is authentic, Ni is consistent and distributed following a
standard normal distributionN (0, 1). When some regions in
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the image have been manipulated by a new content coming
either from other regions of the same image (e.g., copy-move
forgery, inpainting forgery), or from another images (e.g.,
splicing forgery), the demosaicing traces in these regions
are normally different than the remainder of the image. The
feature statistic Ni of such a tampered image is no longer
consistent. In this case, we expect that values of Ni come
from two different populations P1 and P2 corresponding
to the untampered and tampered regions respectively. Each
region is part of demosaiced images, so Pk , k ∈ {1, 2},
is a normal distribution with mean µk and variance σk . For
simplicity, we also set σ1 = σ2 = σ , because the mean
parameters contribute to the separation between P1 and P2
in most situations. As a result, the population of Ni for an
entire tampered image can be modeled as a normal mixture
distribution NM (γ, µ1, µ2, σ ) with pdf

f (Ni; γ, µ1, µ2, σ)=(1−γ)·f (Ni;µ1, σ )+γ ·f (Ni;µ2, σ),

(33)

where γ , 0 ≤ γ ≤ 1, denotes the proportion of the
population 2, and f (x;µk , σ ) standards for the normal p.d.f
N (µk , σ )

f (Ni;µk , σ ) =
1

σ
√
2π

e−
1

2σ2
(Ni−µk )2 . (34)

As in [34], to avoid the nonidentifiability of (33), we set 0 ≤
γ ≤ 0.5. This implies that the population 2 of the model (33)
is the tampered population P2 under the assumption that
tampered regions are smaller than the remainder of the image.
When µ1 = µ2 or γ = 0, the model (33) degenerates into a
single normal distribution. By this way, we can also use (33)
as a model for both authentic and tampered images.

B. MODEL PARAMETERS ESTIMATION
Given the model (33), the next issue is to estimate the param-
eters γ , µ1, µ2 and σ from the set of feature statistics Ni.
A penalized EM algorithm has been developed for this issue.
Let N =

{
N1, . . . ,Nq

}
be a set of q feature statistics sampled

from a normal mixture population NM (γ, µ1, µ2, σ ), its
ordinary log-likelihood function is given by

lq (γ, µ1, µ2, σ )

=

q∑
i=1

log ((1− γ ) f (Ni;µ1, σ )+ γ f (Ni;µ2, σ )) . (35)

As proved in [35], lq (γ, µ1, µ2, σ ) → ∞ if µk → Ni and
σ → 0 with the other parameters fixed. This implies that
ordinary maximum-likelihood estimator of (γ, µ1, µ2, σ ) is
not well-defined [36], [37]. To remedy, Chen et al. [35]
propose adding penalty term to the ordinary log-likelihood
function. Such an approach has been proved efficient because
of the strong consistency of maximum likelihood estimators
for various penalties on σ [35], [38]. Therefore, we can define
a penalized log-likelihood function as

plq (γ, µ1, µ2, σ ) = lq (γ, µ1, µ2, σ )+ pq (σ ) , (36)

where pq (σ ) is the penalty function on σ . To compensate the
aforementioned undesirable configuration, we should select
pq (σ ) such that it is bounded when σ is large, but goes to
−∞ as σ → 0. Chen et al. [39] have recommended

pq (σ ) = −aq ·

(
s2q
σ 2 + log

(
σ 2

s2q

))
, (37)

where s2q =
1
q

∑q
i=1 N

2
i denotes the sample variance (the

sample mean N̄ = 1
q

∑q
i=1 Ni is always 0), and aq is a

positive tuning parameter. A large value of aq implies a strong
conviction in the prior estimate of σ [35]. As in the works
[40], [41], we choose aq = 1

q .
Until now, the estimation problem returns to find the tuple(
γ̂ , µ̂1, µ̂2, σ̂

)
that maximizes penalized log-likelihood func-

tion (36). Moreover, we would like to perform a population
clustering for the set of feature statistics N. This is why
we try to introduce a vector of binary latent variables Z ={
Z1, . . . ,Zq

}
with Zi = (Zi1,Zi2) indicating the cluster of a

sample Ni in N. The variable Zik , k ∈ {1, 2}, is defined as
follows

Zik =

{
1 if Ni is from the population k
0 otherwise

, (38)

and
∑2

k=1 Zik = 1. Themaximizing the likelihood estimation
is now done on the complete data {N,Z} rather than on the
incomplete data only N. As pointed out in [42, page 431],
the joint pdfs of Zi and Ni | Zi are respectively

f (Zi) =
2∏

k=1

γ
Zik
k , (39)

and

f (Ni | Zi) =
2∏
i=1

f Zik (Ni;µk , σ ) , (40)

where γ1 = 1 − γ , γ2 = γ , and f (Ni;µk , σ ) is given
from (34). Therefore, the complete data likelihood function
takes the form

f (N,Z) =
q∏
i=1

2∏
k=1

γ
Zik
k f Zik (Ni;µk , σ ) . (41)

Taking the logarithm, we obtain the complete data
log-likelihood function

lc (γ, µ1, µ2, σ )

=

q∑
i=1

2∑
k=1

Zik

×

(
log γk − log σ −

1
2σ 2 (x − µk)

2
−

1
2
log 2π

)
.

(42)

Adding pq (σ ), we obtain the complete data penalized log-
likelihood function

plc (γ, µ1, µ2, σ ) = lc (γ, µ1, µ2, σ )+ pq (σ ) . (43)
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Algorithm 1 Penalized EM Algorithm

I-step: For k = 1, 2, get γ (0) from the k-means algorithm
[42, chapter 9], then cluster N, and compute µ(0)k and σ (0)k as
the maximum likelihood estimates of N (µk , σk)

µ
(0)
k =

1
qk

qk∑
i=1

Ni, σ
(0)
k =

√√√√ 1
qk

qk∑
i=1

(
Ni − N̄k

)2
, (44)

where qk is the number of elements of the population k . Set
σ (0) = σ

(0)
k if k is the larger population.

E-step: Given N and the vector of parameters 2(t) =(
γ (t), µ

(t)
1 , µ

(t)
2 , σ

(t)
)
at the t-th current iteration, compute

γ
(t+1)
i1 =

(
1− γ (t)

)
f
(
Ni;µ

(t)
1 , σ

(t)
)

f
(
Ni; γ (t), µ

(t)
1 , µ

(t)
2 , σ

(t)
) , (45)

and

γ
(t+1)
i2 =

γ (t)f
(
Ni;µ

(t)
2 , σ

(t)
)

f
(
Ni; γ (t), µ

(t)
1 , µ

(t)
2 , σ

(t)
) , (46)

where f
(
Ni; γ (t), µ

(t)
1 , µ

(t)
2 , σ

(t)
)
is given from (33).

M-step: Update the set of parameter 2(t) as follows.
1) Update γ (t) by

γ (t+1) =

∑q
i=1 γ

(t+1)
i2

q
. (47)

2) Update µ(t)k , k ∈ {1, 2} by

µ
(t+1)
k =

∑q
i=1 γ

(t+1)
ik Ni∑q

i=1 γ
(t+1)
ik

. (48)

3) Update σ (t) by

σ (t+1) =

√
S(t+1) + 2aqs2q

q+ 2aq
. (49)

where

S(t+1) =
q∑
i=1

2∑
k=1

γ
(t+1)
ik

(
Ni − µ

(t+1)
k

)2
. (50)

S-step: Stop the algorithm whenever t exceeds a limited
iteration number, or the norm

∥∥2(t+1) −2(t)∥∥ is smaller a
threshold. Set

(
γ̂ , µ̂1, µ̂2, σ̂

)
as the final 2(t+1), and stock

the final γ (t+1)i1 and γ (t+1)i2 for feature statistics clustering.

We find that plc (γ, µ1, µ2, σ ) can be trivially maximized
in closed form. Unfortunately, we do not have values
for the latent variables Z, thus we cannot use directly
plc (γ, µ1, µ2, σ ). Instead, we consider firstly its expected
value under the posterior distribution of the latent variables
(i.e., E-step of the EM algorithm). Next, we maximize this

expectation (i.e., M-step of the EM algorithm). Such a proce-
dure can be represented by Algorithm 1.

C. AUTHENTICATION AND LOCALIZATION
Following the above analyses, we can model the digital
images authentication as a decision problem between two
hypotheses{

H0 : Ni ∼ N (0, 1) authentic image,
H1 : Ni � N (0, 1) no conclusion.

(51)

In reality, dazzling areas or missing color ranges existing on
digital images may distort the distribution of Ni. Therefore,
the distribution of Ni does not always have a perfect Gaussian
form even for authentic images. To partially weaken the dis-
tortion impacts, we propose regenerating random samples N̂i
from the model (33) using the estimated parameters obtained
by Algorithm 1 (see e.g., [43, page 53] for a simulation
algorithm). Then, we work with N̂i instead of Ni. As such,
the problem (51) becomes{

H0 : N̂i ∼ N (0, 1) authentic image,
H1 : N̂i � N (0, 1) no conclusion.

(52)

Normality tests are next carried out to decide if the tested
image is authentic or not. In this paper, well-known nor-
mality tests [44] (i.e., Anderson-Darling test, one-sample
Kolmogorov-Smirnov test, Jarque-Bera test and Lilliefors
test) are jointly used to achieve a reliable decision. If all
these tests return H0, the image is decided to be authentic
automatically. Additionally, the authentication can be done
by human interpretation thanks to graphical tools such Q-Q
plot, probability distribution curves, and localization map.

Regarding the forgery localization, we can decide the
belonging of Ni to P1 and P2 from the set {γi1}i=1,...,q and
{γi2}i=1,...,q (see the output of Algorithm 1) as follow

Ni ∈

{
P1 : authentic portion if γi1 > γi2,

P2 : tampered portion if γi1 ≤ γi2.
, (53)

Since each Ni, i = 1, . . . , q, corresponds to the i-th B × B
block of the tested image, we can therefore derive a binary
map indicating tampered region of the image.

For an illustration, we show in Fig. 4 the authentication
and localization results for an original image and a tampered
image respectively. For the original image, the distribution of
feature statistics is standard normal. Accordingly, with a type
1 error α = 0.05, all the considered normality tests returnH0,
while the points in Q-Q plot diagram follow a linear pattern.
This confirms the authenticity of the image. Looking at the
localization map, black and white blocks are equally mixed
overall the image because γ = 0.49, and no concrete form is
appeared. For the tampered image, the distribution of feature
statistics is no longer standard normal. All the normality tests
return then H1, and the points in Q-Q plot diagram follow
a strongly nonlinear pattern. The outliers of dash red line in
Q-Q plot diagram correspond to the smaller population in the
mixture pdf of feature statistics. The location map now shows
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FIGURE 4. Authentication and localization results for digital images given from Image Manipulation Dataset [32]. (a) Original image.
(b) Tampered image.

clearly the tampered regions in white and authentic region in
black.

V. NUMERICAL EXPERIMENTS
Four well-known datasets: Image Manipulation [32], MICC-
F600 [45], Realistic Tampering [46], and CUISDE [47] are
used for numerical experiments. Their detailed description
can be found in [4]. Through these datasets, we aim at eval-
uating the images authentication and forgeries localization
ability of the proposed algorithm.

A. EVALUATION CRITERIA
Due to highly imbalanced datasets1, Precision (P), Recall
(R) and F1-Score (F1) are chosen as criteria for performance
evaluation [48]. Precision and Recall are computed from the
confusion matrix of True Positive (TP), False Positive (FP),
True Negative (TN ) and False Negative (FN ) as

P =
TP

TP+ FP
, and R =

TP
TP+ FN

. (54)

High Precision implies a high probability that detected results
are relevant, while high Recall means a high probability
that relevant results are detected. Obviously, using separately
either Precision or Recall is not enough to evaluate the perfor-
mance of a algorithm. F1-Score, which is the harmonic mean
of Precision and Recall, takes a high value when Precision
and Recall are both important

F1 = 2 ·
P · R
P+ R

=
2 · TP

2 · TP+ FN + FP
. (55)

So, it might be a better measure for performance evaluation.
The higher F1-Score, the more the algorithm is efficient.
Moreover, depending on the authentication or localization

1Datasets here refer to authentic and tampered images in the case of image
authentication, and to untampered and tampered pixels in the case of forgery
localization

TABLE 2. Meaning of measures.

goals, the above measures has their own meanings (see
Table 2 for the details).

B. BENCHMARK ALGORITHMS
The performance and robustness of the developed algorithm
are assessed though comparative studies with algorithms pro-
posed by Dirik and Menon in [25], and by Ferrara et al.
in [26]. These two benchmarks are threshold-based algo-
rithms, so their performance depend closely on a threshold τ
used to distinguish between tampered and authentic regions
in an image. Meanwhile, the performance of the developed
algorithm is dependent on the threshold T used to determine
the smooth regionR3. Besides, the blocks size B is influential
in the performance of all the algorithms. So, sensitivity stud-
ies to these factors are necessary. We also note that the two
benchmark algorithms focuses on images forgery localization
rather than on images authentication.
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C. AUTHENTICATION PERFORMANCE
To assess the authentication performance of the proposed
algorithm, we first randomly choose a set of 150 authentic
images and 200 tampered images from the 4 above datasets.
Next, we apply the algorithm to obtain TP, FN , FP and TN ,
and thence compute the measures P, R and F1. Such a process
is applied to the 2 following case studies.
• Case study 1: B takes respectively the value 2, 4, 8, 16
and 32, T is fixed at 20.

• Case study 2: B is fixed at 16, T varies from 10 to 30
with step 5.

Tables 3 and 4 show the results when the authentication is
done automatically and is interpreted by human support.

TABLE 3. Results of automatic authentication.

TABLE 4. Authentication results given by human interpretation.

Clearly, the performance of the automatic authentication
is relatively weak. Indeed, despite working on the smooth
region R3 instead of on the entire green channel G, and
using N̂i rather than Ni, shape edges and/or strong dazzling
areas existing on realistically authentic digital images still
distort the standard Gaussian form of N̂i pdf. As a results,
the automatic authentication via normality tests is less effi-
cient. However, the performance is much more improved
thanks to human interpretation of graphic tools (i.e., pdf
curves, Q-Q plot, and localization map). To see how the
human interpretation can help, we introduce an example as
in Fig. 5. Since not all the considered normality tests (i.e.,
three among four) result in H0, the automatic authentication

FIGURE 5. Example of image authentication by human interpretation
(original image given from Image Manipulation Dataset [32]).

returns ‘‘no conclusion’’ for the tested image. Nevertheless,
looking at the pdf curves and the Q-Q plot, we find that
the Gaussian assumption of N̂i is almost satisfied. Moreover,
there is no concrete shape found in the localization map. All
these elements confirm the credibility of image content. Thus,
the human interpretation decides that the image is authentic,
which is actually true.

Observing the values of F1-Score in Table 3 and 4, we also
find the importance of B and T . The increasing of blocks
size B leads to smaller samples set in constructing pdf of N̂i.
Meanwhile, by setting T at a high value, more edges are
allowed in the computation of Ni. So, it is not surprising that
the authentication performance decreases in these configura-
tions of T and B.

D. LOCALIZATION PERFORMANCE
Regarding the localization, the aim is to find out (i) which
kinds of forgeries could be localized by the proposed algo-
rithm, and (ii) how good is the proposed algorithm com-
pared to algorithms of the same kind. Tampered images in
Image Manipulation Dataset [32] and Realistic Tampering
Dataset [46] are used in numerical experiments because of
various kinds of forgeries therein. Moreover, binary ground
truths are also provided.

1) FIRST LOCALIZATION ISSUE
To reply to the first issue, we use the proposed algorithm
(with T = 20 and blocks size B = 8) to derive location
maps, and thence compare them with the associated ground
truths. We also apply the algorithms proposed by Dirik and
Menon [25], and by Ferrara et al. [26] to obtain benchmark
location maps. As illustrated in Fig. 6, various kinds of forg-
eries are successfully localized by our algorithm.

Clearly, localization maps returned by our algorithm and
Ferrara et al.’s algorithm are closer to ground truths, andmore
confident than Dirik and Menon’s algorithm. When zooming
in the localized areas, our algorithm allows better resolution

VOLUME 7, 2019 125049



N. Le, F. Retraint: Improved Algorithm for Digital Image Authentication and Forgery Localization

FIGURE 6. Examples of successful forgery localization by the proposed algorithm.

FIGURE 7. Examples of unsuccessful forgery localization by the proposed algorithm.

and higher fidelity. We will understand more deeply this issue
through a quantitative study in Subsection V-D.2. Moreover,
the use of Ferrara et al.’s algorithm is more complicated in
practice because a subjective threshold is required to dis-
tinguish tampered and authentic region. Fig. 7 shows some
configurations that forgeries are not successfully localized.

For cloning forgery (first line of Fig. 7), a part of tampered
region is missing because it have the same alignment of CFA
pattern as the original image. Especially, the localization is
completely failed (see second line and third line of Fig. 7),
if tampered images undergo additional post-processing (e.g.,
JPEG compression with low quality, down-sampling, etc.).
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FIGURE 8. Precision, Recall and F1-Score for the case study 1. (a) Image Manipulation Dataset [32]. (b) Realistic Tampering Dataset [46].

FIGURE 9. Precision, Recall and F1-Score for the case study 2. (a) Image Manipulation Dataset [32]. (b) Realistic Tampering Dataset [46].

2) SECOND LOCALIZATION ISSUE
To reply to the second issue, we first apply the 3 considered
algorithm to compute localization maps for two image sets

associated with Image Manipulation Dataset [32] and the
Realistic Tampering Dataset [46] respectively. Each set con-
sists of 20 random tampered images. From the localization
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maps and corresponding ground truths, we can derive TP,
FN , FP, TN , and therefore compute P, R and F1.
A comparative study on F1-Scores allows to evaluate the

performance of the proposed algorithm, as well as of the two
benchmarks. Similarly to Section V-C, two case studies are
considered.
• Case study 1: B is fixed at 16, the values of τ and T
vary. The threshold T in our algorithm takes value in the
interval [2; 52], while the threshold τ in the benchmark
algorithms takes value from the minimum to the max-
imum of variance maps. Note that, different variance
maps of different images yield different ranges of values
for τ . For comparison purpose, the thresholds value is
further translated into percentage of associated intervals.
Note that 0% and 100% correspond respectively to the
minimum and maximum of each interval.

• Case study 2: The thresholds τ and T are fixed at 60%
of ranges of values, B varies from 2 to 40 with step 2.

Fig. 8 and 9 show respectively the results of these two case
studies. In all cases, the F1-Score of the proposed algorithm
is more stable at higher value than the benchmark algo-
rithms. This implies that our algorithm is more efficient and
robuster. Looking at the diagrams of P and R, we find that
the high F1-Score of our algorithm mostly comes from the
high value of P, because the values of R are more or less
similar in the three algorithms. This results also mean that
our algorithm allows a high probability that localized pixels
are tampered, while the benchmark algorithms do not. This is
totally consistent with the nature of non-threshold-based and
threshold-based localization algorithms.

VI. CONCLUSION AND PERSPECTIVES
We develop in this paper an improved algorithm for digital
image authentication and forgery localization by jointly use
the color filter array pattern identification, demosaicing algo-
rithm estimation, and the local statistical analysis of demo-
saicing artifacts in spatial domain. A new feature statistic
less sensitive to the edges problem is thus built to character-
ize demosaiced images. By modeling such feature statistics
by a single normal mixture model for both tampered and
untampered images, four well-known normality tests (i.e.,
Anderson-Darling test, one-sample Kolmogorov-Smirnov
test, Jarque-Bera test and Lilliefors test) are employed to
automatically authenticate digital images. Numerical exper-
iments on the four well-known datasets (i.e. Image Manip-
ulation, MICC-F600, Realistic Tampering, and CUISDE)
shows that the performance of automatic authentication is
relatively low, but can be much more improved thanks to
human interpretation of supported graphic tools (i.e., Q-Q
plot diagram, probability distribution curves, and localiza-
tion map). Regarding the forgery localization, we propose a
penalized EM algorithm to automatically distinguish between
authentic and forged regions of a tampered image without
any requirement on comparison thresholds as in most existing
localization algorithm. Such a method is proved to be more
effective and robuster by numerical examples.

Even if the developed algorithm yields very encouraging
results, we find that the automatic authentication of digi-
tal images is still at low performance (see Table 3), and
that the forgery localization is limited to uncompressed or
less-compressed images (see Fig. 6 and 7). The focus of our
near future work is to further improve these two points. Build-
ing a new feature statistic taking into account the periodicity
of demosaicing artifacts in DCT domain as in [24] seem to
be a key step for this work. Another perspective is to extend
the developed methods to the videos forensics. The work of
Singh and Aggarwal in [49] could be a good orientation.
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