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ABSTRACT Saliency detection is important in computer vision. However, most of the existing saliency
models are designed for visible images. It is still a challenging problem to apply saliency detection algorithms
on infrared images. In this paper, an effective propagation based saliency detection method for infrared
pedestrian images is proposed. Firstly, based on the thermal characteristics of infrared images and thermal
radiation models, a thermal analysis based saliency (TAS) is introduced. TAS measures the stableness of
pedestrians based on maximally stable extremal regions, which is further improved by an intensity filter.
Then, by taking into account the appearance characteristic of pedestrians, an appearance analysis weighted
saliency (AAS) is proposed which combines the intensity and shape features of pedestrians to improve the
intensity contrast. Finally, besides the commonly used intra-scale neighborhood, an inter-scale neighborhood
is introduced to jointly construct a mutual guidance-based saliency propagation model. This model could
simultaneously integrate the saliency features and improve the saliency performance. Two datasets DIP
and IMS with 600 infrared pedestrian images are published. Then, extensive experiments and comparisons
with state-of-the-art methods demonstrate the effectiveness of the proposed saliency method for infrared
pedestrian images.

INDEX TERMS Infrared images, pedestrian, saliency, propagation.

I. INTRODUCTION
Human vision has the ability to effectively select relevant
information out of irrelevant noises and to locate the highly
relevant subjects in a scene. As a fundamental issue in
computer vision, saliency detection has been applied as
a pre-processing procedure to a wide range of computer
vision tasks, such as object segmentation [1], image com-
pression [2], object detection [3], and image retrieval [4].
As saliency detection is capable of finding the most important
and distinctive region in an image, we apply saliency detec-
tion to infrared pedestrian detection, which is an essential
and important task for driving assistants and intelligent trans-
portation systems. However, constrained by the characteris-
tics of infrared imaging, it is still challenging to accurately
detect saliency in infrared pedestrian images.

The associate editor coordinating the review of this article and approving
it for publication was Avishek Guha.

The development of saliency detection methods can be
roughly divided into two stages. The first stage focuses on
exploring low-level cues of salient objects, such as color [5],
orientation [6], and texture [7]. Because of the uniqueness
and rareness of salient objects, contrast prior has been widely
used as a computational mechanism to measure the differ-
ence between foreground and background. Contrast could
be investigated from both local and global perspectives
according to the scale of pixel neighborhoods. Local con-
trast [8]–[10] assumes that the more distinctive an object
is compared with its neighborhoods, the more salient this
object will be. However, contrast with only local cues always
results in wrongly suppressed internal regions of salient
objects. To alleviate these problems, global contrast [11] is
proposed, which assigns higher saliency scores to objects
with more unique features in the whole image. Global con-
trast is useful to highlight the whole object, but it may fail
to thoroughly suppress the background. Previous contrast
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mechanisms usually take pixels as processing units, which
may suffer from a boundary blurring problem. To obtain
saliency maps with well-defined boundaries, contrast based
on segments is exploited. It could suppress noises in back-
ground and reduce the computational load, as used inmethods
such as simple linear iterative clustering (SLIC) [12], mean
shift [13], and Gaussian mixture model [14].

The second stage of saliency detection is the propagation
based saliency detection. Recently, propagation algorithms
attract increasing attention in saliency detection and have
achieved state-of-the-art performances. Markov chains [15],
random walks [16], and manifold ranking [17] are the most
frequently used propagation methods, which are all based on
graphs. Harel et al. [18] first put forward the graph based
visual saliency, which employs an ergodic Markov chain to
produce feature maps. Li et al. [19] propose a novel regular-
ized random walk, which suggests a fitting constraint to take
into account the local image data and prior estimation. Later,
Zhang et al. [17] infer the saliency score of each region via
graph-based manifold ranking which ranks the similarity of
superpixels with foreground or background seeds. In addition
to these classic methods, various new patterns of saliency
propagation are proposed. Li et al. [20] define the saliency
value using a co-transduction algorithm, which fuses both
boundary and objectness labels through an inter propagation
scheme. Qin et al. [21] present a cellular automata based
saliency propagation method exploiting the intrinsic rele-
vance between neighboring cells to improve the saliency per-
formance. Qin et al. [22] further propose the Cuboid Cellular
Automata to integrate multiple saliency maps in a Bayesian
framework, which incorporates the low-level image features
as well as high-level semantic information. Nevertheless,
these saliency propagation methods still cannot perform well
with challenging images, especially when the salient objects
are similar to backgrounds.

Even though various saliency models have been proposed
recently, most of them are designed for visible images. Some
works directly apply these state-of-the-art models on infrared
images as pre-processing to locate salient objects [23], [24].
But they could only obtain coarse results or even fail in
saliency detection. Compared with visible images, infrared
images have unique advantages. They are less sensitive to
lighting conditions, and this makes it possible to eliminate
the influence of illumination variations, so it could be used
in both day and night and other difficult situations. Addi-
tionally, benefiting from the insensitivity to color, texture,
and other appearance features, infrared images can be used
to separate objects with similar appearances by their thermal
radiation differences. With infrared pedestrian images, more
challenges exist. Firstly, due to the limitation of infrared
thermal imaging, infrared pedestrian images have low clarity,
low SNR, and low contrast. Secondly, there is no color or
little texture information in infrared images, which makes
it difficult to extract saliency features of objects in infrared
images. And this is also the primary reason why most of the
existing saliency models fail with infrared images. Thirdly,

high image intensity is a crucial characteristics for pedestri-
ans in infrared images, but non-human objects, such as light
poles, vehicles, and tree trunks, may also produce additional
bright areas. These interferences increase the difficulty of
saliency detection in infrared pedestrian images.

To apply saliency detection to infrared pedestrian images,
some researches have been carried out. Ko et al. [25] calculate
the luminance saliency map by estimating the luminance
contrast using a center-surrounded scheme. Zhang et al. [26]
propose an associative saliency, generated from both region
and edge contrasts. Li et al. [27] apply the gradient informa-
tion on pedestrians to enhance the uniqueness of intensity,
and combine it with multi-scale contrasts to obtain the final
saliency.Wang et al. [28] exploit a mutual consistency guided
fusion strategy to adaptively combine the luminance contrast
saliency map and contour saliency map for infrared images.
Li et al. [1] first calculate the background likelihood with
background prior, and then use a Bayesianmodel to obtain the
object prior based saliency. The final saliency of this method
is an integration of background prior and object prior.

However, previous saliency models designed for infrared
images mainly use low-level features, such as gradient and
intensity to describe salient objects, and employ weighted
summation or multiplication to integrate these features. Thus,
these features only fit simple images, and they perform poorly
for complex infrared scenes, which have diverse composi-
tion of backgrounds, including trees, buildings, roads, skies,
street lamps, brushwood, and other objects. And taking the
above problems into consideration, our work proposes two
unique saliency features from both thermal characteristics
and appearance characteristics to describe pedestrians in
infrared images. These two features have better ability to
represent the saliency of pedestrians in infrared images. Also,
our algorithm introduces saliency propagation to integrate
features and optimize the saliency performance simultane-
ously. The proposed method consists of three parts: Firstly,
the thermal analysis based saliency (TAS) is proposed based
on the thermal characteristics of pedestrians and radiation
models; Secondly, taking into account the appearance fea-
tures, the appearance analysis-weighted saliency (AAS) is
introduced as a complement; At last, the mutual guidance-
based saliency propagation method is proposed in this paper
to mutually facilitate the two features and improve the final
saliency.

Thus, the main contributions of this paper are as follows:
• A novel propagation based saliency model is proposed
to adaptively detect pedestrians from complex infrared
images. The proposed method advances state-of-the-art
saliency detection methods on both public datasets and
a more complex dataset constructed in this work.

• Two features are explored from both an infrared
imaging mechanism and the actual performance
to describe the saliency of pedestrians in infrared
images, including TAS and AAS. These features
are able to distinguish pedestrians from complex
backgrounds.
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FIGURE 1. The diagram for the proposed saliency detection method.

• A mutual guidance based saliency detection method is
developed in this paper, which puts forward the concepts
of intra-scale and inter-scale neighborhoods. This prop-
agation method can not only integrate the two saliency
features but also correct any mistakes in initial saliency
maps to improve the final saliency.

• Two datasets IMS and DIP are constructed includ-
ing 600 infrared pedestrian images with more than
33 scenes. We publish the dataset and the source code
of this work at <https://github.com/zhxtu/SP_IR>.

II. PROPOSED METHOD
Fig. 1 shows the diagram of the proposed saliency detection
method for infrared pedestrian images. Firstly, SLIC [29]
is used to segment the input infrared image into homoge-
neous superpixels. Secondly, the maximally stable extremal
region (MSER) [30] is extracted to measure the stableness of
pedestrians, which is further improved by an intensity filter
to obtain the thermal analysis based saliency (TAS). Thirdly,
the intensity contrast is calculated and further enhanced
by the vertical edge weight and intensity weight to obtain
the appearance analysis-weighted saliency (AAS). Finally, a
mutual guidance based propagation method, which combines
the intra-scale and inter-scale neighborhoods, is introduced to
integrate the two features and improve the final saliency.

A. THERMAL ANALYSIS BASED SALIENCY (TAS)
Infrared images are generated from the translation of ther-
mal radiation through thermographic cameras. Thus, infrared
images are the products of the complex interaction among
factors such as temperature, emissivity, and atmosphere
effect. Besides, the intensity of each object is determined not
only by the thermal radiation of the object itself, but also
by the reflection of other objects and the atmosphere [31].
Calculating the saliency of pedestrians is actually suppressing
the radiation from background and obtaining the radiation of
pedestrians themselves.

Based on the thermal analysis, we first introduce the
MSER-based local stableness, which is further improved by
the intensity filter to obtain the TAS.

FIGURE 2. An example of a local region in an infrared pedestrian image,
and the corresponding 3D intensity plot.

1) MSER-BASED LOCAL STABLENESS
Fig. 2 shows an infrared image with a pedestrian and its
corresponding 3D intensity plot. Obviously, the intensity on
the pedestrian differ greatly from that of its surrounding
regions. This phenomenon results from the thermal imaging
principle [32] that stronger thermal radiations generate higher
intensities. As temperature increases, the atomic and molecu-
lar activitywould be enhanced. This would producemore heat
and stronger thermal radiation. Thus, pedestrians with higher
temperatures are usually brighter than the background.

Besides, object emissivity serving as a decisive factor of
infrared radiation is closely related to the material property of
the object [31]. Thus, regions composed of different materials
differ in intensity accordingly. Then, pedestrian regions are
different from their surrounding regions and are completely
surrounded by regions with lower intensities.

Following the principle that areas surrounded by others
tend to be more salient, infrared pedestrian regions could
be described by the capacity of the MSER for detecting
the surrounded regions with a homogeneous intensity. Thus,
the MSER-based local stableness is proposed. Although
MSER is an existing approach, it is mostly applied in text
localization and has not been used to measure accurate
saliency yet. MSER is defined by an extremal property of
its intensity function in the region and on its outer boundary.
To calculate MSER in an image Im, the extremal regions are
defined as Rl :

∀p ∈ Rl, ∀q ∈ boundary(Rl)→ Im(p) ≥ Im(q), (1)
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FIGURE 3. (a) Pixel based stableness F; (b) Superpixel based stableness
without an intensity filter; (c) Superpixel based stableness with an
intensity filter.

where Im(p) is the intensity of pixel p in the region and Im(q)
is the intensity of pixel q on its outer boundary. The extremal
regions are identified as connected regions within the binary
threshold images Igbim:

Igbim =

{
1 Im ≥ g
0 otherwise

g ∈ [min(Im),max(Im)], (2)

where threshold g is a series of integers from the lowest
intensity value to the highest intensity value of the input
image Im. To generate MSER from Rl , the stableness value
9 is calculated for each connected region as follows:

9(Rgl ) = (|Rg+δl − Rg−δl |)/|R
g
l |, (3)

where Rgl is the l-th region in image Igbim , and δ is a stability
range. If9(Rgl ) is lower than threshold TM ,Rgl would be taken
as MSER. Thus, the final MSER contains K stable regions
SR = {sr1, sr2, . . . , srK }.
To measure the stablenessF of each pixel, their probability

of belonging to stable regions is calculated. For each stable
region in SR, pixels inside the region are set as 1 while other
pixels are set as 0 to obtain the score matrix {e1, e2, . . . , eK }.
Thereafter, the number of stable regions which overlap each
other in the same pixel is accumulated to measure the stable-
ness of the corresponding pixel. The more stable a pixel is,
the higher its probability of belonging to a pedestrian will be:

F(p) =
k∑

k=1

ek (p) ek (p) =

{
1 p ∈ srk
0 otherwise,

(4)

where ek (p) indicates whether pixel p belongs to the k-th
stable region srk . AndF(p) is the stableness for pixel p, which
is shown in Fig. 3(a).

As thermal radiation from parts of a human body is ham-
pered by clothes, there are generally noises inside pedestrian
regions. In order to smooth the internal distribution of inten-
sities inside pedestrian regions, the image is segmented into
N homogeneous superpixels SP = {sp1, sp2, . . . , spN } by
SLIC. And then, the saliency value Fs of each superpixel is
calculated by mapping the pixel-wise stableness F into its
corresponding superpixel:

Fs(i) =

∑
p∈spi

F(p)

|spi|
. (5)

With the accumulation on each superpixel, stable regions
could be enhanced and backgrounds are suppressed, while

the accurate contour information could also be preserved.
Fig. 3(b) shows that superpixel based stableness can reduce
the inhomogeneous saliency distribution inside human body
regions and partly reduce noises in background.

2) INTENSITY FILTER-ENHANCED SALIENCY
With only TAS, some objects, such as street lamps and tree
trunks, may be wrongly assigned with high saliency values.
To distinguish pedestrians from other objects, the principle
that pedestrians always produce stronger thermal radiation
is used. For pedestrians in the scene, the thermal radiation
received by an infrared camera is not only from pedestrians
themselves, but also from the radiation reflected from other
objects onto pedestrians and the thermal radiation of atmo-
sphere. According to the physics of radiation [33], emissivity
and reflectivity are inversely proportional. And the reflectiv-
ity of the pedestrian is usually much lower than its emissivity
because of its rough surface. Thus, radiation reflected from
other objects could be ignored. As the radiation of atmo-
sphere is directly received by a thermal sensor, the influence
of atmosphere is significant. As a result, the total radiation
composition E of an object is:

E = Eo + EA, (6)

where EA is the radiation from atmosphere, and Eo is the
radiation of the object itself. By subtracting EA from E , Eo
is obtained to measure the saliency.

Since the values of E , Eo, and EA cannot be directly cal-
culated, their corresponding contributions on intensities are
employed. E corresponds to the intensity value in the image.
Eo of pedestrians is much different from Eo of other objects,
thus the contribution of Eo to intensity is obtained to show
the saliency of pedestrians. Since atmosphere exists in the
whole scene, the contribution of EA on intensity is defined
as the average intensity Iµ of the image Im. Corresponding
to Eq. (6), the intensity filter IF is defined by subtracting Iµ
from the average intensity of each superpixel to obtain the
saliency of pedestrians:

IF(i) =

∣∣∣∣∣∣∣
∑
p∈spi

Im(p)

|spi|
− Iµ

∣∣∣∣∣∣∣
2

, (7)

where |spi| is the area of the i-th superpixel. By enhancing the
stableness with an intensity filter, TAS is calculated as:

STAS (i) = Fs(i) · IF(i). (8)

By subtracting Iµ from the intensity of each superpixel,
the radiation of atmosphere would be removed. The high
intensity of pedestrian regions is the result of its strong
radiation, which can produce a higher IF value. Also, with
l2-th calculation, the difference of saliency between pedes-
trians and other objects would be further enlarged. With the
integration of the intensity filter and stableness, the saliency
of pedestrians is effectively improved while the saliency of
other objects is suppressed. It is obvious in Fig. 3(c) that
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FIGURE 4. (a) Contrast without weight; (b) Contrast with vertical edge
weight; (c) Contrast with both vertical edge weight and intensity weight.

the intensity filter has greatly suppressed the background and
enhanced the performance of stableness.

B. APPEARANCE ANALYSIS-WEIGHTED SALIENCY (AAS)
Although TAS has a good ability to make pedestrian regions
prominent, some targets which are too small or too similar
to the background may be wrongly suppressed by TAS. As a
supplement, the AAS is introduced. Contrast is a commonly
used feature in saliency detection, which often measures the
color difference. Observed from infrared pedestrian images,
the intensity distribution of a pedestrian is obviously different
from backgrounds. Therefore, the contrast can also be applied
to infrared images to highlight pedestrians. And the contrast
is defined as:

con(i) =
N∑
j=1

|vi − vj| · exp
(
di − dj|

)
, (9)

where di and vi are the coordinates and average intensity for
spi. And dj and vj are the corresponding values for
spj. As shown in Fig. 4(a), contrast has the ability to make

pedestrians more prominent.
However, there are two shortcomings for the contrast fea-

ture. Firstly, low contrast is an inherent characteristic of
infrared images, which makes it difficult to separate pedes-
trians from backgrounds with only the contrast feature. And
then, tree, lamps, and other objects with high intensities may
also have high values in the contrast map, which may affect
the saliency detection of pedestrians. To handle these prob-
lems, the AAS is introduced which employs the appearance
information of pedestrians to enhance the contrast, which is
calculated as:

SAAS (i) = wi · Con(i), (10)

where wi is the appearance weight for superpixel spi, com-
posed of the vertical edge weight and intensity weight.

Vertical shape is a distinct feature of pedestrians, which is
widely used in pedestrian detection and recognition. Aspect
ratio [34] is commonly used to describe the vertical feature of
pedestrians, yet it is inaccurate and difficult to extract. In this
paper, the vertical edge weight is used to describe the vertical
feature of pedestrians. As objects usually contain more edge
information than background, superpixels with more edge
information are more likely to belong to the salient object.
Also, the vertical edges of a pedestrian aremuch stronger than
the horizontal edges and can better represent a pedestrian as
shown in Fig. 5.

FIGURE 5. An example of a pedestrian in an infrared image, and its
vertical edges and horizontal edges obtained by the Canny edge detection
method.

To calculate the vertical edge weightwve, the probability of
boundary (PB) [35] is used to detect the boundary map Mpb

of the input image. Then, the vertical gradient gv of M
pb is

obtained to measure the vertical edge weight wve:

wvei =
1
|bi|

∑
p∈bi

gv(p), (11)

where wvei and bi represent the vertical edge weight and
edge pixel set for superpixel spi respectively, and gv(p) is
the vertical gradient value for pixel p. Seen from Fig. 4(b),
the vertical edge weight is able to suppress backgrounds.

However, background regions along edges are wrongly
highlighted, while the regions inside the pedestrian with only
a few edges are also mistakenly suppressed by the vertical
edge weight at the same time. As pedestrians have higher
intensities than surrounding regions, the intensity of each
superpixel is applied as the intensity weightwin to distinguish
inner regions of pedestrians from backgrounds:

wini =
1
|spi|

∑
p∈spi

Im(p). (12)

Fig. 4(c) shows that the intensity weight is an effective
complement to the vertical edge weight. It not only fills
the holes caused by the edge weight, but also suppresses the
surrounding regions of pedestrians. At last, by integrating the
vertical edge weight and the intensity weight, the appearance
weight w is defined as:

w = wve + win. (13)

This equation formulates the rule that superpixels with
more vertical edges and higher intensity values have higher
probabilities of belonging to pedestrians. The effectiveness
of the appearance weight is demonstrated by Fig. 4. The
vertical edge weight performs well to suppress backgrounds,
and the intensity weight can better highlight foregrounds.
Thus, the appearance weight improves the intensity contrast
to achieve a better saliency detection performance.

C. MUTUAL GUIDANCE BASED SALIENCY PROPAGATION
Previous propagation based saliency models commonly
integrate saliency features to obtain the initial saliency
map before propagation via summation or multiplica-
tion [16], [21]. These integration methods always result in
information loss and wrong saliency distribution. Thus, the
proposed method introduces mutual guidance based propa-
gation to integrate saliency features and optimize saliency
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FIGURE 6. Demonstration of the proposed mutual guidance based propagation method: intra-scale neighborhood, inter-scale neighborhood and update
rules.

performance simultaneously, which does not need integration
before propagation. The propagation method is inspired by
cellular automata which consists of three factors: cell, neigh-
borhood and updating rules.

In this paper, each superpixel is taken as a cell. Previ-
ous propagation models only use surrounding superpixels to
smooth and amend the initial saliency. Different from this,
the proposed method propagates saliency scores between
not only the neighboring superpixels (intra-scale neighbor-
hood), but also the TAS and AAS feature maps (inter-scale
neighborhood).

1) INTRA-SCALE NEIGHBORHOOD
Based on the intuition that neighboring cells are likely to
share similar saliency values, the saliency of each cell should
be determined by its neighborhood. As shown in Fig. 6, the
intra-scale neighborhood of a cell (red dot) is defined as
its direct neighboring cells (green dots connected by solid
lines) and the direct neighborhood of these cells (green dots
connected by dotted lines). Also, neighborhoods that have
similar intensities to the central cell should be assigned a
large weight on the central cell. Thus, the intensity similarity
matrix M = [mij]N×N is defined to determine the impact
strength of each cell on the central cell:

mij =

{
exp(|vi − vj|/σ 2) j ∈ NB(i)
0 i = j or otherwise,

(14)

where NB(i) is the intra-scale neighborhood of the i-th cell.
Fig. 7 shows that pedestrians are continuously highlighted via
intra-scale neighborhoods.

2) INTER-SCALE NEIGHBORHOOD
As intra-scale neighborhoods can assimilate neighboring
cells, small targets may be wrongly suppressed, as shown in
the second column of Fig. 7. With the smoothing effect of
intra-scale neighborhoods, pedestrians with small sizes are
likely to be assimilated by their surrounding backgrounds
because of the low contrast between them. To solve this issue,
an inter-scale neighborhood is proposed.

FIGURE 7. Effects of the proposed saliency propagation method. Top:the
original results without propagatio; Middle: results of propagation P0,
which only concerns intra-scale neighborhood. Bottom: results of mutual
guidance based saliency propagation P1.

The principle is that the final saliency value of each cell
should be approximately consistent with their corresponding
values in TAS and AAS. TAS based on MSER can locate the
salient regions and suppress backgrounds, but it sometimes
unduly suppresses salient regions. AAS based on contrast can
enhance the difference between foreground and background,
but it cannot strongly suppress the background. Therefore,
these two features always complement each other. Then, cells
with the same coordinates in the TAS and AAS maps are
defined as the inter-scale neighborhood of each other (red
dots linked by blue arrows in Fig. 6 are a pair of neighbor-
hoods), so they can amend each other as an aid of intra-
scale neighborhoods. Therefore, the state of cell i at the t-th
iteration is determined by three parts:

sf t1 (i)⇐ {sf
t−1
1 (i), sf t−12 (i), sf t−11 (NB(i))}, (15)

sf 1 and sf 2 are used to represent the TAS and AAS feature
maps respectively. Thus for cell i in feature map sf 1 , its
current state is decided by its last state in the two feature
maps, and also the last state of its surrounding cells in sf 2.

113360 VOLUME 7, 2019



Y. Zheng et al.: Mutual Guidance-Based Saliency Propagation for Infrared Pedestrian Images

As can be observed from Fig. 7, the pedestrian with a smaller
size is wrongly suppressed by the intra-scale neighborhood
based propagation, which is represented by P0. But with the
use of inter-scale neighborhoods, the wrongly suppressed
pedestrian is recovered and highlighted by P1. This result
shows the effectiveness of inter-scale neighborhood, which
makes TAS and AAS guide each other in the process of
saliency propagation to further improve the final saliency.

3) UPDATING RULES
To balance the impact strengths of intra-scale and inter-
scale neighborhoods on the propagation, a coherence matrix
C = diag{c∗1, c

∗

2, . . . , c
∗
N is defined in Algorithm 1 from

lines 3 to 7. Thus, to propagate the saliency of each cell in
TAS and AAS, the updating rules are defined as:

FtT = Ft−1T + (I − C) ·M · Ft−1T︸ ︷︷ ︸
Intra-scale

+C · Ft−1A︸ ︷︷ ︸
Intra-scale

FtA = Ft−1A + (I − C) ·M · Ft−1A︸ ︷︷ ︸
Intra-scale

+C · Ft−1T︸ ︷︷ ︸
Intra-scale

FtT =
FtT
‖FtT ‖

,FtA =
FtA
‖FtA‖

St = FtT · F
t
A,

(16)

where FtT ,F
t
A, and St represent the states of TAS, AAS,

and the saliency respectively at the i-th iteration. As defined
in Eq. (16), the intra-scale neighborhood encourages neigh-
boring cells with higher similarities to take similar saliency
scores. If a cell is surrounded by salient cells, the saliency
scores of these neighborhoods will be accumulated by the
calculation ofM ·Ft−1T . Thus, this cell will become more and
more salient through propagation. On the contrary, the back-
ground cells will be suppressed. Thus, an intra-scale neigh-
borhood has the ability to smooth and optimize saliency.
However, if a salient cell is mostly surrounded by background
cells, e.g., pedestrians with smaller sizes, the smoothing
effect of intra-scale neighborhoods may wrongly suppress the
salient cell. At this time, the proposed inter-scale neighbor-
hood can be used to solve this problem. With the definition
of C , if a cell has a significant difference with its intra-scale
neighborhood, the weight of its inter-scale neighborhood will
be larger. Therefore, the saliency value in the next state should
be more dependent on its inter-scale neighborhood. Due to
the supplementary effect of the two features, the saliency can
be amended and improved. To avoid the modulus of saliency
features to become too large or too small, they are normalized
in each iteration.

It is also important to decide when to stop the iteration.
If there are not enough iterations, the propagation cannot
achieve an ideal result. Otherwise, if it iterates too many
times, there will be unnecessary increase in computational
load. And sometimes excessive iterations may make the
saliency result worse. Qin et al. [21] set the maximum iter-
ation to a fixed value, which is simple but not always suit-
able for all the images. The complexity of images and the
performances of TAS and AAS all affect the propagation,

Algorithm 1Mutual Guidance Based Saliency Propagation
Input: The TAS and AAS. The intra-scale neighborhood
similarity matrix M = [mij]N×N . The balance parameter
σ .
1: t = 0
2: Initialize: F0

T = STAS , F0
A = SAAS , check = 1,

Tmax = 15
3: For i← 1 to N do
4: ci = 1

max(mij)
j = 1, 2, . . . ,N

5: End for
6: {c∗1, c

∗

2, . . . , c
∗
N } = Normalize{c1, c2, . . . , cN }

7: C = diag{{c∗1, c
∗

2, . . . , c
∗
N }

8: For t ← 1 to 3 do
9: FtT = Ft−1T + (I − C) ·M · Ft−1T + C · Ft−1A
10: FtT = Ft−1T + (I − C) ·M · Ft−1T + C · Ft−1A

11: FtT =
FtT
‖FtT ‖

, FtA =
FtA
‖FtA‖

12: St = FtT · F
t
A

13: End for
14:While check > thresh to t ≤ Tmax do
15: FtT = Ft−1T + (I − C) ·M · Ft−1T + C · Ft−1A
16: FtT = Ft−1T + (I − C) ·M · Ft−1T + C · Ft−1A
17: FtT = Normalize(FtT ), F

t
A = Normalize(FtA)

18: St = FtT · F
t
A

19: check = var(St−3,St−2,St−1,St )
20: End while
21: T = t , Sfinal = Normalize(ST )
Output: The final saliency scores Sfinal for each cell.

thus an adaptive termination condition of the iteration is
necessary. In this work, the termination of iteration is decided
by checking the average variance among the current state and
its previous 3 iterations:

check = var(St−3,St−2,St−1,St ). (17)

Considering the propagation mechanism, the propagation
would develop a steady local environment of results and come
to convergence. Thus, when check reaches the threshold TC ,
the iteration should stop. Whereas there are cases that the
value of check is always larger than TC , the maximum of
iteration is empirically set as Tmax = 15.

In summary, the stopping criterion of saliency propagation
is defined by the following rules:
• When chenk has a value below threshold TC− = 10−5,
the iteration will stop.

• When iterations reaches Tmax , the iteration will stop,
regardless of whether check has reached TC .

And after the iteration stops, the final saliency of the
proposed method will be Sfinal = ST , where T is the number
index of the last iteration.

4) CONVERGENCE ANALYSIS
Since the saliency score is propagated with the similarity
estimation, salient parts with a similar appearance in the
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FIGURE 8. (a) Average variance trend in the propagation; (b) Performance
evaluation for iterating certain times T on PR curves.

image would naturally merge and enhance each other due to
the connectivity and compactness of the object. Moreover,
the boundary between an object and the background would
become more explicit according to the contrast between dif-
ferent components. Thus, saliency maps would not change
any more once the system achieves stability. And the propa-
gation would converge gradually.

To intuitively demonstrate the convergence, experiments
are also conducted. As shown in Fig. 8(a), the variances of all
images in the dataset DIP are recorded from the 5-th iteration
to the 17-th iteration, and then variances are averaged at each
iteration. The trend is declining and will gradually flatten
to 0.4 × 10−4, which indicates that the propagation would
eventually converge and saliency results would barely change
once the number of iterations reaches a sufficiently large
value.

To further illustrate the convergence of the propagation,
we set the iteration number T to a fixed value for the whole
dataset and change it from 11 to 17 to see its influence on the
final saliency via the precision-recall (PR) curves [15]. A PR
curve is a commonly used evaluation metric which measures
the similarity between saliency maps and the ground truth
(GT). Fig. 8(b) shows that the performances for different
values of T are very similar with each other. This result
demonstrates that the saliency performance will eventually
stabilize and converge with the growing number of iterations.

Furthermore, we use mathematical inference to prove the
convergence of the proposed propagation method. Re-writing
the update rules in Eq. (16) into a matrix form, we have[

FtT
AtT

]
=

[
I + (I − C) ·M C

C I + (I − C) ·M

] [
Ft−1T
At−1T

]
.

(18)

The update rules can be rewritten as a linear recursive
sequence:

u = Aut−1 (t = 1, 2, . . .), (19)

where A =

[
I + (I − C) ·M C

C I + (I − C) ·M

]
n×n

,

n = 2N , ut−1 =
[
Ft−1T
At−1T

]
, and ut =

[
FtT
FtA

]
. And we have

ut = Aut−1 = A2ut−2 = · · · = Atu0. (20)

As the coherence matrix C is a diagonal matrix, and
the similarity matrix is a symmetric matrix, A is also a
symmetric matrix. Thus, A has n linearly independent
eigenvectors. Sorting the eigenvalues of A in descending
order, we have eigenvalues λ1, λ2, . . . , λn and their corre-
sponding eigenvectors x1, x2, . . . , xn, satisfying Axi = λi
xi(i = 1, 2, . . . , n). If A has only one maximum eigenvalue,
they will satisfy the inequality

|λ1| > |λ2| ≥ |λ3| ≥ . . . ≥ |λn| (21)

If A has r multiple maximum eigenvalues, they will satisfy
the inequality

|λ1|=|λ2| = . . . = |λr | > |λr+1| ≥ |λr+2| ≥ . . . ≥ |λn|

(22)

As x1, x2, . . . , xn are linearly independent, there exists
only one array α1, α2, . . . , αn that is not all zero to rewrite
u0 as:

u0 = α1x1 + α2x2 + . . .+ αnxn. (23)

To avoid the modulus of ut to become too large or too
small, it is normalized in each iteration. Therefore, the nor-
malization could be represented asyt =

ut
‖ut‖

ut = yt
(t = 1, 2, . . .), (24)

Substituting Eq. (20) and Eq. (23) into Eq. (24), we have

yt =
Atu0∥∥Atu0∥∥ = α1Atx1 + α2Atx2 + · · · + αnAtxn∥∥α1Atx1 + α2Atx2 + · · · + αnAtxn∥∥

=
α1λ

t
1x1 + α2λ

t
2x2 + · · · + αnλ

t
nxn∥∥α1λt1x1 + α2λt2x2 + · · · + αnλtnxn∥∥

=

(
λ1

|λ1|

)t α1x1 + α2
(
λ2
λ1

)t
x2 + · · · + αn

(
λn
λ1

)t
xn∥∥∥∥α1x1 + α2 (λ2λ1 )t x2 + · · · + αn (λnλ1 )t xn
∥∥∥∥ .
(25)

Considering Eq. (21), when t → ∞, if A as only one
maximum eigenvalue, we have

yt =
[
FtT
FtA

]
→


α1x1
‖α1x1‖

λ1 > 0

±
α1x1
‖α1x1‖

λ1 < 0.
(26)

Letting α1x1
‖α1x1‖

=

[
s1
s2

]
, where s1 and s2 are both N

dimension vectors. Then, we have:
With λ1 > 0, we have FtT → s1, FtA → s2, and the final

saliency St = FtT · F
t
A→ s1 · s2.

With λ1 < 0, we have FtT → ±s1, F
t
A → ±s2. As the

signs in front of s1 and s2 are always the same, we have St =
FtT ·F

t
A→ s1 · s2 or St = FtT ·F

t
A→ (−s1) · (−s2) = s1 · s2.
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Considering Eq. (27), when t ← ∞, if A has multiple
maximum eigenvalues, we have

yt =
[
FtT
FtA

]
→


α1x1 + α2x2 + . . .+ αrxr
‖α1x1 + α2x2 + . . .+ αrxr‖

λ1 > 0

±
α1x1 + α2x2 + . . .+ αrxr
‖α1x1 + α2x2 + . . .+ αrxr‖

λ1 < 0

(27)

As the linear combination of eigenvectors corresponding to
the same eigenvalue is still an eigenvector of that eigenvalue,
α1x1 + α2x2 + . . .+ αrxr is also an eigenvalue of λ1. Thus,
similar to the case that A has only one maximum eigenvalue,
we could also have St = FtT · F

t
A → s1 · s2 by defining

α1x1+α2x2+...+αrxr
‖α1x1+α2x2+...+αrxr‖

=

[
s1
s2

]
.

Consequently, the saliency score always has a certain limit,
which proves the convergence of the proposed propagation
method.

III. EXPERIMENTS
A. DATASET AND ANALYSIS
To evaluate the effectiveness of the proposed method, exper-
iments are carried out on three datasets.

1) OSU
Sequences irw01 and irw06, from the public Terravic Motion
IR Database in the OTCBVS Benchmark Dataset Collec-
tion [36] are used. There are totally 400 images in this dataset
and each image contains two pedestrians. This dataset mainly
focuses on the changing postures of pedestrians, which is
much simple to handle because of its high contrast and flat
backgrounds.

2) IMS
This dataset, which is provided by our collaborator, consists
of 200 images. There are 39 images containing one pedes-
trian and other images containing two pedestrians. In this
dataset, pedestrians either walk towards or walk away from
the camera, so the sizes of pedestrians change greatly. With
this dataset, the robustness of the proposed algorithm for
pedestrians with different sizes could be verified. Moreover,
the images in dataset IMS have a lower contrast than those in
dataset OSU.

3) DIP
As the datasets above are relatively simple and only cover
a small number of scenes, we construct a more comprehen-
sive dataset to testify the effectiveness of our method. There
are 400 infrared images with human-segmented GT in this
dataset, which were obtained via the use of a Tau 2 LWIR
camera. The complexity of the dataset DIP can be illustrated
on the following aspects:
Complex Objects: with multiple pedestrians with diverse

postures and sizes. There are totally 634 pedestrians in the
dataset, which contains not only 220 images with a single
pedestrian but also 180 images with multiple pedestrians.

These pedestrians are enormously different from each other
in clothing, somatotype, posture and size.
Complex Backgrounds: with diverse composition of back-

ground in multiple scenes. There are totally 31 scenes which
differ greatly from each other in the dataset DIP. And these
scenes have diverse background compositions, including
road, sky, buildings, street lamps, trees, brushwood, and other
objects.

Based on its complexity and comprehensiveness, dataset
DIP is closer to actual scenes and can be better used to exam-
ine the robustness of saliency models for infrared pedestrian
images.

B. EVALUATION METRICS
In order to evaluate the saliency models, the widely used
PR curves [15], F-measure [8], and mean absolute error
(MAE) [8] are employed to measure the correctly/wrongly
assigned pixels between each image and its corresponding
GT among the whole dataset. A good saliency map should
achieve a higher PR curve and a larger F-measure value,
meanwhile maintaining a low MAE value.

Firstly, to measure the similarity between saliency maps
and the GT, precision and recall are defined as:

Precision(h) =
|BM(h) ∩ GT |
|BM(h)|

, (28)

Recall(h) =
|BM(h) ∩ GT |
|GT |

, (29)

where BM(h) is the binary mask obtained by binarizing the
saliency map with threshold h, and h is a set of integer
values from 0 to 255. Then under the same h, precision or
recall values are averaged among the dataset to estimate the
percentage of correctly assigned pixels.

Secondly, as precision and recall measure the saliency
performance from different point of views, the F-measure is
used to obtain the combination of them:

F − measure =
(1+ β2)× Precision× Recall
β2 × Precision+ Recall

. (30)

For saliency detection, precision is a measurement of correct-
ness, which evaluates the percentage of actual salient regions
in detected regions, and recall is a measurement of coverage
rate, which focuses on howmany salient regions are detected.
As saliency detection is usually used to automatically locate
salient objects, it is more important to determine whether the
salient regions are correctly located than whether each salient
region is totally detected.Moreover, 100% recall can be easily
achieved by setting the whole region to foreground [37].
Thus, precision is more important than recall in saliency
detection. As suggested by existing saliency detection meth-
ods [8], [10], [12], β2 is set to 0.3 to bias toward the precision
rate.

Lastly, MAE is used as a complement of PR curves and
F-measure to measure the pixel-wise error between the
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saliency map and GT:

MAE =
1
|S|

∑
p∈S

|S(p)− GT (p)| , (31)

where S(p) denotes the saliency value of pixel p.

C. PARAMETER ANALYSIS
To choose the appropriate parameters for our model, we use
a sub set (20%) of dataset DIP as the validation set to tune the
parameters N , TM , σ 2 and TC .

1) PARAMETER N OF SLIC
N controls the number of superpixels. If N is too small, SLIC
might wrongly merge targets and background into the same
superpixel. If N is too large, objects would be segmented
into many superpixels, which not only increases the compu-
tational load, but also loses the ability for noise suppression.
To choose a suitable value for N , the experiment is conducted
by varying N from 400 to 900. Fig. 9(a) shows that the
proposed method performs the best in PR curves when N is
set as 700. Hence, we used 700 as the optimal value for N in
all subsequent experiments.

2) PARAMETER TM OF TAS
TM is the threshold for the generation of MSER. Extremal
regions with stableness 9 lower than TM will be taken
as MSER. To decide the value for TM , we vary TM from
0.05 to 0.3 in the experiment. Fig. 9(b) shows the variation
of saliency performance for different values of TM . We can
see that the performance increases following the decrease
of TM until TM = 0.1. Actually, if TM is too large, many
background regions will be taken as MSER. This would
produce wrongly highlighted background regions. If TM is
too small, the number of MSER will reduce and parts of
pedestrians may be missed. Thus, TM is set as 0.1.

3) PARAMETERS σ2 AND TC OF THE MUTUAL GUIDANCE
BASED SALIENCY PROPAGATION
σ 2 is the parameter in Eq. (14), which controls the similarity
between neighboring cells. Fig. 9(c) shows the variation of
the final saliency performance with different values of σ 2.
Obviously, the final saliency obtains the best PR performance
when σ 2 is approximately set as 0.1. Also, the performance
becomes better with the increase of σ 2 when it is smaller than
0.1. Then, the performance becomes worse with the increase
of σ 2. Consequently, we set σ 2

= 0.1 in this paper. TC is a
threshold parameter, which decides when to stop the saliency
propagation. The smaller the TC is, the larger number of
iterations the propagation might need. This may lead to the
unnecessary increase in computational load. If TC is too large,
the smaller number of iteration will result in low performance
with propagation. It is shown in Fig. 9(d) that the method
performs the best when TC = 1 × 10−5 in the largest range
of recall. Thus, TC is set as 1× 10−5.

D. EVALUATIONS OF MODEL COMPONENTS
In this section, a series of experiments are presented to
investigate the influence of various factors on the proposed
saliency model.

1) INTENSITY FILTER
To eliminate the effect of atmosphere from the radiation of
pedestrians, the intensity filter is introduced, which subtracts
the average intensity of infrared images from each superpixel.
To explore the best functional form of the intensity, we define
the intensity filter as:

IF(i) = 9


∑
p∈spi

Im(p)

|spi|
− Iµ

 . (32)

9 is defined as 9 = |·|2 in this paper, which performs
better compared with other forms of the intensity filter. In the
top row of Fig. 10, Fs represents the superpixel-based stable-
ness without an intensity filter, which is defined in Eq. (5).
9 = exp(), 9 = |·|1, and 9 = |·|2 represent the exponential
function, linear function, and quadratic function respectively.
It is obvious that the saliency performance of stableness
is effectively improved by an intensity filter. Moreover,
the MAE, PR curves, and F-measure all demonstrate that the
quadratic function is superior to the others. Hence, a quadratic
function is selected for the intensity filter, which is shown in
Eq. (7).

2) APPEARANCE WEIGHT
To measure the availability of each part of the appearance
weight, the experiment is designed by comparing their corre-
sponding saliency performances. In themiddle row of Fig. 10,
Con represents the intensity contrast of Eq. (8). Con · wve is
the vertical edge weighted contrast. Con · win is the intensity
weighted contrast. And contrast with both wve and win is
the result SAAS of Eq. (9). It can be found that Con · win

performs better in all the evaluation metrics than Con, which
verifies the effect of intensity weight. Con · wve performs
worse in PR curves and F-measure. That is because vertical
edge weight aims at emphasizing the superpixels containing
vertical edges, which suppresses the regions inside pedestri-
ans. However, Con · wve performs the best in MAE, which
demonstrates the effectiveness of vertical edge weight in
suppressing backgrounds. Besides, SAAS is better than both
Con · win and Con · wve. This shows the effectiveness of
appearance weight and the complementary effect between
vertical edge weight and intensity weight.

3) EFFECTIVENESS OF PROPAGATION
This experiment is designed to verify the effectiveness of
the saliency propagation model and the contribution of inter-
scale neighborhood on the saliency result. P0 is the propaga-
tion without inter-scale neighborhood, and P1 is the proposed
mutual guidance based saliency propagation method. The
original saliency is defined as S0 = STAS × SAAS . Thus, S0,

113364 VOLUME 7, 2019



Y. Zheng et al.: Mutual Guidance-Based Saliency Propagation for Infrared Pedestrian Images

FIGURE 9. Saliency comparisons for parameter analysis with PR curves. (a). on N . (b) on TM . (c) on σ2. (d) on TC .

FIGURE 10. Performance evaluations of model components with MAE, PR curves and F-measure. Top: the effects of different intensity filters.
Middle: the effectiveness of appearance and each part of it. Bottom: the mutual guidance based saliency propagation.

SP0, and Sfinal represent the final saliency without propaga-
tion, with the propagation P0 and with the propagation P1
respectively.

Firstly, with the P1 propagation, STAS and SAAS are both
improved to a better performance, which is shown in the
bottom row of Fig. 10. It is worth noting that, although SAAS
performs better than STAS , P1 could improve their saliency
performance to a similar state. Furthermore, the final saliency

Sfinal is also better than STAS and SAAS . These results demon-
strate the effectiveness of the mutual guidance based prop-
agation on improving the saliency performance to a certain
degree.

To show the contribution of inter-scale neighborhood
through quantitative analysis, the performance of saliency
propagation with only intra-scale neighborhood P0 is
compared with P1 which concerns both intra-scale and
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inter-scale neighborhoods. It is worth noting that with the
promotion of P1, TAS, AAS, and the final saliency are all
improved to better performances than P0, which is obvious
in Fig. 10. These facts illustrate the contribution of the inter-
scale neighborhood to complement the intra-scale neighbor-
hood and improve the saliency performance.

Moreover, as can be seen from Fig. 10, the final saliency is
better than the results of both TAS andAAS after propagation.

E. COMPARISON WITH STATE-OF-THE-ART
SALIENCY MODELS
Following previous saliency models for infrared images
[24]–[28], the proposed saliency detection method is first
compared with 10 state-of-the-art saliency models: FT [8],
CA [11], GS [38], BD [39], BSCA [21], MAP [40],
MB+ [41], RS [17] and HCA [22]. And the experiments are
carried out on three datasets, OSU, IMS, and DIP.

1) SUBJECTIVE COMPARISONS
Some saliency maps of the proposed method and state-of-the-
art methods are shown in Fig. 11, which directly present the
visual comparisons. For data set OSU, we can see that most
saliency models effectively handle the second image. This is
because the second image has a relatively simple background
and a high contrast between pedestrians and backgrounds.
However, it can be found that all the methods except FT and
our method fail in the first image, because salient objects
are defaulted to be close to the center of an image in most
saliency detectors. And it is difficult to detect pedestrians near
the border. Moreover, it is obvious that the proposed method
better suppresses the background than FT.

For dataset IMS, most of the state-of-the-art methods per-
form badly, where pedestrians cannot even be recognized.
That is because the ground and trees along the road have
high intensities similar to pedestrians. HCA could accurately
highlight the pedestrians, while parts of the background are
also wrongly highlighted. CA could highlight the contour
of pedestrians and partly suppress the background. But the
blurring contour and wrongly highlighted background make
CA a bad saliency detector. The proposed method could
highlight the whole region of pedestrians and suppress the
background at the same time.

For dataset DIP, saliency detection is more difficult than
the two other datasets. Almost all these methods have the
ability of separating pedestrians from background in the third
image of Fig. 11, where the pedestrians have relatively lager
sizes. But they fail in the other images with pedestrians of
small sizes. Because the state-of-the-art saliency models are
all tested on datasets with larger salient objects. BD and HCA
can separate pedestrians from the background inmost images,
but the noises in background cannot be suppressed efficiently.
Note that the proposed method could highlight pedestrians
regardless of the size of pedestrians and has better saliency
value distributions.

Therefore, the proposed method achieves good saliency
detection performance for infrared pedestrian images supe-
rior to the other state-of-the-art methods.

2) OBJECTIVE COMPARISONS
We further objectively compare different saliency models
using PR curves, F-measure, and MAE. For dataset OSU,
it is obvious in Fig. 12 that the proposed method achieves
similar performances to the BD method on PR curves and
F-measure. However, it is noteworthy that our saliency model
has the lowest MAE value 0.01, which is smaller than all
other methods. This fact demonstrates the effectiveness of our
method on background suppression.

For dataset IMS, the proposed method is superior to the
other state-of-the-art methods in all the evaluation metrics.
The proposedmethod achieves the highest precision in almost
all the recall range [0, 1] up to 0.95, while the precisions of
all the other methods are lower than 0.2. Also, the proposed
method performs the best in MAE and F-measure. This is in
accord with the visual performance that the dark sky region
tends to be taken as a salient region, while the pedestrian
regions are totally suppressed with these compared methods.

For dataset DIP, the proposed method achieves the best
performance than other methods, which attains the highest
precision in almost all the recall range [0, 1] up to 0.91,
while all the other method are lower than 0.7. HCA could
only obtain a high precision value when its recall is small,
because the background noise cannot be well suppressed by
HCA. The F-measure value of the proposed method is also
higher than the others. And it achieves the lowest MAE value,
which is close to 0.03. These results demonstrate the ability
of the proposed method to highlight pedestrians and suppress
backgrounds.

All the experiments illustrate the superiority of the pro-
posed method and also its robustness to the complexity of
images.

F. COMPARISON WITH SALIENCY MODELS OF
INFRARED PEDESTRIAN IMAGES
Actually, the above state-of-the-art saliency models are
designed for visible images, and saliency detection of infrared
images has not been extensively studied. To comprehen-
sively demonstrate the superiority of the proposed saliency
model, four saliency models which are designed for infrared
pedestrian images are applied as comparison. These methods
include LSM [25], AS [26], CD [27], MCS [28], and BO [1]
which have been introduced in Section I. The experiments are
also conducted on all the three datasets, OSU, IMS, and DIP.

1) SUBJECTIVE COMPARISONS
Fig. 13 shows saliency maps of the proposed method and the
other infrared saliency models mentioned above. It is obvious
that the proposed method achieves the best performance.
We can find that LSM CD, and MCS attempt to obtain edges
of pedestrians, while AS, BO and the proposed method try to
highlight the whole pedestrians.
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FIGURE 11. Visual comparison on the three datasets OSU, IMS and DIP among the proposed method and 10 state-of-the-art saliency detection
methods.

For dataset OSU, as the background of images in this
dataset consists of bushes, their abundant textures lead to the
failure of LSM to separate pedestrians from the background.
MCS has a better ability to suppress the noises of back-
ground, whereas CD performs better than LSM and MCS in
highlighting pedestrians. Different from the above methods,
AS, BO and the proposed method can highlight pedestrians
as a complete region. And the proposed method suppresses
background more effectively.

For dataset IMS, the background is more homogeneous
than OSU, so edges in background are better suppressed in
saliency maps for LSM, CD andMCS. But the wrongly high-
lighted edges in background and regions inside pedestrians

all indicate the poor performance of these methods. AS could
separate pedestrians from background and highlight each
pedestrian as a whole region. However, the high intensity
corners are wrongly distributed with high saliency values
by AS. BO performs poorly in the second image, because
BO first needs an object detection method to locate pedes-
trians, and then calculates the saliency of pedestrians in
the detected regions marked by rectangle boxes. Its perfor-
mance of saliency detection heavily depends on the accuracy
of detection methods. The proposed method needs no pre-
detection but accurately locates the pedestrians via saliency.

For dataset DIP, the complex background of this dataset
still results in poor performance of LSM and MCS. CD and
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FIGURE 12. Objective comparison among the proposed method and 10 state-of-the-art methods with MAE, PR curves and F-measure.
From top to the bottom are on datasets OSU, IMS, and DIP.

FIGURE 13. Visual comparison on the three datasets OSU, IMS and DIP between the proposed method and
4 saliency models of infrared pedestrian images.
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FIGURE 14. Objective comparison among the proposed method and 4 saliency models of infrared images with MAE, PR
curves, and F-measure. From top to the bottom are on datasets OSU, IMS, and DIP.

BO perform much better than LSM and MCS. CD even has a
much better ability thanAS to suppress the background, while
it cannot highlight the inner part of pedestrians. BO performs
well in some images, but there still exists wrong saliency
distribution and missed detection due to the inaccuracy of
pre-detection. Comparing with the five methods above,
the proposed method performs much better in suppressing
background and highlighting pedestrians.

2) OBJECTIVE COMPARISONS
PR curves, F-measure, and MAE are also used to compare
the objective performance of the proposed method and other
models designed for infrared pedestrian images. For dataset
OSU, it is obvious that the proposed method is superior to
the other methods in all the datasets and evaluation metrics.
AS and BO achieve comparative performance to the proposed
method. This fact is consistent with their subjective perfor-
mances, which also verifies the effectiveness of the evaluation
metrics. The proposed method achieves the highest precision
close to 0.9, while the precisions of the other methods apart
fromAS and BO are lower than 0.4.Meanwhile, the proposed
method obtains the lowest MAE close to 0.01 and the highest
F-measure up to 0.7.

For dataset IMS, we can see from Fig. 14 that the proposed
method achieves the lowest MAE value 0.01. The F-measure
value of the proposed method is close to 0.7, while the

F-measure for all the other models are even lower than 0.2.
It is noteworthy that, the highest precision in the PR curve of
the proposed method is up to 0.95, while the PR curves for
others are lower than 0.3.

For dataset DIP, the proposed method achieves the highest
precision 0.9, the lowest MAE 0.027 and the highest
F-measure 0.72. We can find that AS and CD perform much
better than LSM and MCS in PR curve and F-measure, while
they perform worse in MAE. This is because AS and CD
not highlight only pedestrians but also the background. So,
superior performance of the proposed method in both PR
curves and MAE verifies its ability to highlight pedestrians
and suppress background.

In summary, the proposed method performs much bet-
ter than previous saliency models designed for infrared
pedestrian images.

G. RUN TIME COMPARISONS
The run time experiment is performed via MATLAB 2015b
on an Intel i5-3450 (3.10GHz) CPU with 8 GB RAM.
The proposed method is compared with both state-of-the-art
saliency models and saliency models for infrared pedestrian
images in Table 1. Our method is slower than most of the
others because of the calculation for the vertical edge weight,
which consists of PB algorithm-based boundary map extrac-
tion and the edge weight calculation. The PB algorithm takes
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TABLE 1. Run time comparisons.

more than half of the total time, and the calculation of edge
weight needs to traverse all the superpixels, which also takes
lots of time. However, better results could be obtained as
shown in the above comparisons of performances, at the cost
of more computational time.

IV. CONCLUSION
In this paper, by analyzing the thermal and appearance char-
acteristics of infrared pedestrian images, a novel saliency
detection method for infrared pedestrian images is proposed.
Two features on thermal analysis-based saliency and appear-
ance analysis-weighted saliency are first proposed. And then,
a mutual guidance based saliency propagation method is
introduced to facilitate the two features and improve the
final saliency. We have also built two datasets DIP and IMS
with 600 infrared pedestrian images, and have made them
available to the public. All the experiments on three infrared
pedestrian datasets demonstrate the effectiveness of the pro-
posed method.
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