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ABSTRACT With the development of computer technology and artificial intelligence (AI), service robots
are widely used in our daily life. While the manufacturing cost of the robots is too expensive for most
small technology companies. The biggest technical limitations are the design of the robot service and the
resources sharing of the robot groups. As far as we know, there is no complete and open-source service
robot cloud service platform. To solve the above problems, in this paper, a novel robot cloud platform called
cloud robotics intelligent cloud platform (CRICP) is designed, which consists of gateway layer, an interface
layer, service pool, and algorithm layer. Gateway layer mainly solves the problem of robot access control and
service invocation requests scheduling. In addition, a standardized access method is proposed to overcome
the problem that heterogeneous service robots cannot access the cloud platform. Interface layer is responsible
for protocol injection, including motoring protocol, a management protocol, and other algorithms invocation
protocol or service invocation interfaces protocol. Service Pool consists of different kinds of robot services
which could scale based on the historical data analysis. In Algorithm layer, we can implement machine
learning (ML) algorithm, deep learning (DL) algorithm, distributed algorithm, and so on. Finally, voice
recognition service invocation experiment and cloud service dynamic scaling test are taken as an example to
verify the availability and accuracy of our platform. Moreover, the compared results with a local framework
and SOA also verifies the superiority of our platform.

INDEX TERMS Cloud platform, robotics, service robots, service pool, multi-layer.

I. INTRODUCTION
Nowadays, the aging phenomenon of population becomes
more andmore serious. The cost of labor continues to rise and
the role of service robots becomes increasingly important.
Traditional service robots are designed as a single service
unit which is mainly composed of driven system, control
system and sensor system. However, service robots are hard
to be promoted. There are two reasons to explain the above
questions. On one hand, due to the limitation of its own
hardwares and resources, a huge technical bottleneck still
exists in environmental perception and understanding, emo-
tion interaction, intellectual development and other aspects.
On the other hand, as the service robot software technology
keeps updating, more superior hardwares are needed to adapt,
and the cost of robots will become higher as well.

The associate editor coordinating the review of this manuscript and
approving it for publication was Yingxiang Liu.

With the development of cloud computing [1], a great num-
ber of cloud technologies are emerging which have changed
the way of software application and resources sharing. Driven
by these technologies, different kinds of cloud platforms have
been designed for different purposes [2], [3]. Many services
paradigms evolved from that since then, such as Infrastructure
as a Service (IaaS) [7], Platform as a Service (PaaS) [8]
and Software as a Service (SaaS) [9]. Service developers
could use the huge resources and powerful computing power
everywhere by the above ways [5]. The cloud could offer
various advantages and provide a good idea for solving the
existing problems of service robots.

The continuous developments of these above technologies
have spawned the concept of cloud service robots. The new
paradigm can take the advantages of parallel computing and
data sharing. It also makes the robot lighter and smarter.
A networked robotic system model was introduced in [10],
which is composed of robotic devices and connected via
a wired or wireless network. The model was similar to a
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stand-alone robot which improves the robot’s processing
power and intelligence level tremendously as well. However,
the model was also limited by resources and information
sharing. In 2010, James J. Kuffner proposed the concept
‘‘cloud robotics’’ [4], which was different from the traditional
design way of robot. He regarded the service robots as an
agent. Robots could offload complex data processing, plan-
ning, decision-making and other services to the cloud. The
knowledge capability of robots was extended and beyond the
limit of physical ontology. Some key problems in service
robots have also been solved. Thereafter, researchers tried
to make robots lighter, cheaper and smarter. Thus, a new
framework which can provide sufficient needs for service
robots is imminent.

Cloud service platform was a new paradigm which is
different from tradition cloud computing platform. The ear-
liest service robot cloud platform was based on a typi-
cal distributed computing module [11], such as M2M/M2C
(Machine to Machine/Machine to Cloud), ROS (Robot Oper-
ating System) [12] and UNR-PF (Ubiquitous Network Robot
Platform) [13]. Most of them were used in a small scale.
The distributed monomer was a mainstream development
framework. Moreover, the monomer could make efficient
resource-sharing and programming, while developers were
forced to use a specified programming language and style,
and the usage was limited in small environments. Meanwhile,
some researchers tried to apply high performance comput-
ing (HPC) to cloud robots [14], and combined Hadoop frame-
work with simultaneous localization and mapping (SLAM)
[6]. There are problems in all the above ways of setting up
a cloud platform. Most of them can accomplish in a small
network-based environment, while they can’t get out of the
laboratory.

Therefore, based on the previous work of the predecessors,
a new service robot cloud platform is presented. The platform
could make heterogeneous service robots access the platform
more easily and get the services they need. We also provide
more easier way for developers to design light, stateless and
efficient service module. Finally, voice recognition service
invocation by four kinds of robots is adopted to verify the
new platform.

The paper is structured as follows. Related work discusses
previous work about robot cloud platform in Section II.
In Section III, the architecture of our platform is designed
in detail. Service encapsulation and access standard are pro-
posed in IV. In Section V, four experiments with voice recog-
nition service are taken as an example to verify our proposed
platform. Section VI provides conclusions of the paper and
future works.

II. RELATED WORK
Service robot cloud platform was first developed in multi-
sensor cloud platform [15], [16]. Researchers visualized the
physical sensors into cloud sensors. The platform could sep-
arate system management and sensor data in this way, and
eliminate the heterogeneity between service robots and the

cloud platform. It could also achieve fast response in small
scenes and small scales. In [17], an improved sensor network
was proposed, which was composed of sensor networks,
gateways, and a testbed server. Users could get more accurate
experimental data and simulation data from the platform.
However, the functionality of the above platform is too sim-
ple, which focuses mainly on the data processing of sensors.

In 2011, the European scientists started a groundbreaking
service robot cloud project called ‘‘RoboEarth’’ [18]. The
project aimed to break through the original single technol-
ogy limit, and build a huge resources and computing power
repository. Robots could share their own information and
knowledge. Thus they could evolve quickly by learning from
each other. Developers used the resources on the platform to
improve the accuracy of service robots in context awareness
and behavior planning. Thereafter, Google and Microsoft
developed a new project called ‘‘RobotBrain’’ [19], which
tried to make the platform as a brain of all the robots and
decision for the robots quickly and accurately. In 2012,
Narita et al. [20] proposed a robot platform and designed a
communication protocol called robot service network pro-
tocol (RSNP) that it could assign the tasks according to
the user’s requirements. After that, they proposed Jeeves
based on RSNP [21]. Multi-machine collaboration of cloud
robots was realized through the interaction of information,
the dynamic search and distribution of cloud resources.

Rayuta [22] was regarded as a famous cloud engine and
a service platform framework. It used cloud resources and
parallel computing algorithms to achieve robotic services,
and provided solutions for robots on monitoring data, cloud
data sharing and services schedule. A bridge of cloud comput-
ing and robotics was proposed in [23]. The author attempted
to create a large centralized robot cloud platform and build
a robotic bridge between the physical world and the cyber
world. The author proved that building a large robot center
is better than multiple independent centers. In [24], a Robot
Cloud Center (RCC) based on Service-oriented architec-
ture (SOA) and cloud computing was proposed. The part
of each function of the robot was packaged into a service
in the SOA framework. RCC was reusable, visualized, scal-
able and easy to upgrade. A family service robot platform
architecture was proposed in [25], which could be seen as a
RaaS unit module and developed by using Lua programming
language.

In order to make it more flexible and easier to access
service robot cloud service platform, our laboratory has done
a lot of work in recent years. In 2005, Chen et al. [26]
designed a cloud computing platform interface model based
on SOA architecture. By using service description and recon-
struction, the differences among systems were eliminated.
In 2017, based on the previous work, Zhou and Yin [27] pro-
posed service quality assessment and scheduling algorithm
of robot cloud platform based on SOA interface layer. The
platform could provide efficient and computational inten-
sive services for distributed heterogeneous robots. However,
the above works didn’t have a systematic management of
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FIGURE 1. The overall architecture of the service robot cloud platform.

service robots. Therefore, it’s essential to design a new ser-
vice robot cloud platform.

III. ARCHITECTURE OF THE SERVICE ROBOT
CLOUD PLATFORM
The whole architecture is shown in Fig.1. It is based on
the distributed computing architecture Spark [28] engine and
divided into a Gateway layer, a Service Pool and an Algo-
rithm layer. The periphery of the entire architecture is the
Interface layer which could connect all layers.

The Gateway Layer is mainly responsible for protocol
conversion, robot authentication and service scheduling. The
robots or developers send the service requests according to
specified JSON file format. The JSON parser parses the
data, protocol text, and service requirements. The protocol
converter will implement standardized conversion of hetero-
geneous robot protocols. Service authentication layer uses
three-access authentication control to implement the legality
check of the robot. After the verification, the service sched-
uler invokes the service by applying the scheduling algorithm.

The Service Pool is primarily responsible for service pars-
ing and configuration, service evaluation and selection, and
cloud service storage. Service developers submit the robot

cloud service codes. The basic services and models will be
encapsulated and injected into the Service Pool through the
parsing layer and model layer. After the service request is
parsed by the service accessor, the service selection layer
performs service evaluation and selection, and the result is
assigned to the service node. The service node layer applies
for resources according to the service request and deals with
the service request.

The Algorithm Layer is mainly responsible for algorithm
invocation. It is built on an elastic physical cluster to provide
sufficient computing resources for complex or a large-scale
operations. We adopt Spark as the core computing engine.
The file sharing system is based on the Hadoop Distributed
File System (HDFS). The resources management utilizes
the Yet another resource negotiator (Yarn) framework. The
distributed data storage uses the column family database
named HBase. The computing log monitoring is composed
of kafka system. The consistency and accuracy of data are
fully guaranteed by the distributed application coordination
service Zookeeper. This layer also provides machine learn-
ing (ML) library, deep learning (DL) library, etc. And it
can also be implemented developer’s algorithm through the
Interface Layer.
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FIGURE 2. Structure of the protocol conversion layer.

The Interface Layer is responsible for providing the
appropriate connection interface among the above lay-
ers. It increases the flexibility in development, usage and
management indeed. Robot managers could have a detailed
management of the robots through the Interface Layer.
Algorithm developers can implement their own efficient
scheduling algorithm. Service developers can have an easier
way to submit robot services designed or improved by them-
selves, and they can also have an overview about the service
utilization with service monitor.

A. GATEWAY LAYER
As a middleware for connecting external service requests and
internal service invocations, the Gateway Layer consists of a
protocol conversion layer, a service authentication layer and
a scheduling layer. The layer parses protocol file, authenti-
cates the service robot and implements service scheduling
algorithm. The service robot could invoke the cloud service
based on the defined interface through Interface Layer.

1) PROTOCOL CONVERSION LAYER
The Protocol conversion layer mainly checks and con-
verts the parsed protocol files, which is shown in Fig.2.
When the service robots send a service request, the layer
retrieves the data and other involved information from JSON
parser firstly, and compares its verification information with
the data from the Information Library. The results of the
verification will be sent to Gateway Layer as the process-
ing information. Then, the template caller extracts the data
template from the template database. The data filler backs up
the data template and initializes the variables therein. Finally,
the regularized protocol file is verified and formatted after
data integration. The final file will be output to the service
agent through Interface Layer.

2) SERVICE AUTHENTICATION LAYER
The Service authentication layer performs security authenti-
cation on the service robots. The simple security authentica-
tion model is shown in Fig.3.

The security certification process is as follows.
Step one, the Authentication layer retrieves the ontology

information in Service Information Database according to the
authentication request, and checks ID and secret key.

FIGURE 3. Security authentication model.

Step two, the platform asks for a trust certificate obtained
by the service robot developer on the platform from the
service robot. After the certificate is received, the platform
will check it again.

Step three, the platform requests to compare the finger-
print which is mainly composed of Media Access Control
Address (MAC). The service robot receives the information
and returns the encrypted fingerprint. After that, the Authen-
tication Layer will check it again.

Step four, the Model scheduler selects the existing and
appropriate service model in the pool according to the
requirements of the service robot. The service scheduler com-
pletes the scheduling of the cloud services.

The Service authentication layer utilizes a three-level
access control model to ensure the security and robustness
of the cloud platform fully, and the credibility of the service
robot cloud platform is enhanced as well.

3) SCHEDULING LAYER
The scheduling layer uses the service scheduler which can
be applied developers’ algorithm through the Interface Layer.
It ensures that the cloud platform meets the real-time invoca-
tions requirement when a large-scale service robot accesses.
The Scheduling layer model is shown in Fig.4.

The master scheduler schedules the cloud service in
Service Pool by applying the algorithm designed by the
researchers through the Interface Layer. The scheduling mon-
itor obtains the running status of master scheduler and writes
the results to the log collection repository. When the requests
monitor detects a large-scale service invocations, the schedul-
ing algorithm optimizer updates the current service invoca-
tion strategy by using corresponding optimization algorithms.
The auxiliary scheduler will help to alleviate the load balanc-
ing pressure to ensure the stability when a large-scale cloud
service requests access the platform.

B. SERVICE POOL
The Service Pool is mainly responsible for cloud service
storage, construction and processing, which is composed of
service node, a service controller, a service builder and a basic
service storage pool. Service Pool could also implement the
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FIGURE 4. Service scheduler model.

query and invocation of the requested service, the construc-
tion and injection of the service, thus the cloud knowledge
could be built and the intellectual evolution of robots could
be realized. The storage capacity is theoretically considered
to be infinite, and the dynamic expansion can achieve a hun-
dredfold increase in cloud services. The simultaneous access
and service real-time invocation of a great number of service
robots could be satisfied.

1) SERVICE POOL HIERARCHY
The Service Node is deployed on a cloud cluster based on
the distributed architecture which configures the resources
required by the service properly. The Service Processor will
invoke the cloud service and process the data transmitted by
the robot.

The Service Selection layer selects, evaluates the services
and writes the optimal services into the service quality
database. The evaluation algorithm could also be imple-
mented through the Interface Layer. A simple way to evaluate
is implemented, including the number of service invoca-
tions (CNU), single robot execution accuracy (REA), single
cloud resource occupancy rate (CRU) and single user evalu-
ation (UCS). The formula is as follows.

S = ωh

∑
REA+ UCS
CNU

+ ωl

∑
CRU

CNU
(1)

In (1), ω∗ is the evaluation weight value. The platform will
recommend the best service according to the formula.

The Service Building layer parses the service script sub-
mitted by service developers and detaches a monitor model
of service so that managers could have a clear understanding
of service execution. The way of building a service will be
introduced in next section.

As the container of service robot cloud service increases,
the basic service storage pool will adopt distributed parallel
expansion storage, the capability of service virtualization
awareness, and multi-node hot standby.

2) ELASTIC SCALING STRATEGY
When a large-scale service requests are received, the qual-
ity of service on the platform decreases. Aiming at this
problem, based on the historical data and threshold method
[29], this paper proposes a cloud service elastic scaling
strategy based on request state. It realizes the dynamic

configuration of cloud resources and improves the utilization
of cloud resources.

By analyzing the basic characteristics of the service robot
cloud service, without loss of generality, the cloud service
characteristics of the service robots are described in the fol-
lowing three aspects.

Aspect one, occupied bandwidth (OB) represents the
bandwidth that a service needs to consume during operation.

Aspect two, occupied memory (OM) represents the mem-
ory that a service needs to consume during operation.

Aspect three, service cost (SC) represents the cost of the
service from being called to being released.

To describe the elastic scaling strategy, the following four
definitions are given.

Definition one, CPU utilization indicates the CPU usage
at the service invocation time t .

CU =

m∑
i=1

Cused
i

CT
(2)

where CU is the utilization of CPU. Cused
i is the amount of

CPU used by the i-th server currently. CT is the total amount
of CPU in the cluster and m is the total number of servers in
the cluster.

Definition two, memory utilization indicates the memory
usage at the service invocation time t .

MU =

m∑
i=1

Mused
i

MT
(3)

whereMU is the utilization of memory.Mused
i is the amount

of memory used by the i-th server currently. MT is the total
amount of memory in the cluster and m is also the total
number of servers in the cluster.

Definition three, the service request collection period
T , the collection interval T0, the number of acquisitions k .
When the number of detected services exceeds the CU and
MU thresholds. The system samples the number of service
requests every T0 and a total of total k times.
Definition four, the service request rate SA indicates the

ratio of the service request in the service request sequence
and time within a short time 1t .

The elastic scaling strategy is shown in Fig.5.
The specific workflow is as follows.
1) The cloud service platform initializes MU ,CU ,T , T0,

k and SA. After that, the platform extracts the state
parameters of the platform, and waits for the service
requests of service robots.

2) When the cloud platform status parameter MU is
greater than 85% and CU is greater than 90%, the plat-
form will sample the request data parameter of the
service robot according to the value of T , T0 and k .
When MU is lower than 10% and CU is lower than
8%, the state parameters of the cloud service deployed
on the cloud service platform will be extracted. In other
cases, the platformwill be monitored again in real time.

VOLUME 7, 2019 182955



J. Liu et al.: Novel Cloud Platform for Service Robots

FIGURE 5. Scaling strategy flow diagram.

3) When the service request rate SA exceeds the set thresh-
old, the cloud service platform will perform incremen-
tal elastic scaling according to formula 4. The platform
configures the resources such as memory and band-
width of the cloud service to satisfy the requests. The
current platform state parameter is updated according
to the changing of service parameter and the histor-
ical state parameter database at the time of service
invocation.

1 = λ(SA′ − SA) (4)

where 1 is the increment. λ is the coefficient of the
increment. SA′ is the current rate of the requests, while
SA is the set threshold.
When the service request rate is less than the SA thresh-
old, the platform will sample the request data and the
service parameters for k times. Perform data smoothing
processing and save the processing results to HDFS.

4) The cloud platform invokes the autoregressive pre-
diction model [30] from the Algorithm Layer and
obtains the service extension prediction value. After
that, the scheduler combines the specific attributes of
the serviceOB,OM and SC with the needed resources,
and optimizes the deployment of the platform.

IV. SERVICE ENCAPSULATION AND ACCESS STANDARD
A. SERVICE ENCAPSULATION
The service designed by developers will be encapsulated by
a specified way through the Interface Layer. The structure of
the service building layer is shown in Fig.6.

FIGURE 6. Structure of the service building layer.

The construction process is as follows.
Firstly, the developer’s service code is submitted to the

Service Building Layer. The script parser decomposes the
code into service scripts and model scripts. When the service
associates movement, sensors and etc. The model is usually
needed to provide the service model which makes the man-
agers have an overview about the service. The service scripts
contain the main service logic.

Secondly, theModel Parser obtains the includedmodel and
injects it into Model Pool. Meanwhile, the Service Parser
will parser the service logic script and transmit it to Service
checker.

Thirdly, after the verification, the basic component are
separated including package, deep-learning model, and the
peripheral architecture including network, authentication.
It is made as a container which could be used on any plat-
forms. The service instance template is applied for the con-
tainer, and sidecar will be injected, thus the service traffic
could be monitored.

Fourthly, the service optimizer optimizes the resources
including bandwidth, memory and other resources required
by the service. After that, the service is injected into the Ser-
vice Pool and registered into the service registration database
through the Registrar.

Finally, the service is injected the invocation interface
through the Interface injector. The service robots could
invoke the service in specified format file through the released
interfaces.

B. ACCESS STANDARD
The access standard makes a simple way to invoke the service
through the Interface Layer. It mainly contains the interaction
protocol between the service robot and cloud service plat-
form. The design requirement is to ensure that a large-scale
robots can interact with the cloud platform efficiently. There-
fore, this paper designs an interface protocol format based on
JSON language and it is shown in Fig.7.

This simple interface format defines the necessary param-
eters for the service robot legality verification, invocation
parameters and entity service parameters. Heterogeneous
robots can get the same processing and results according
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FIGURE 7. Structure of the service building layer.

FIGURE 8. Disk usage.

FIGURE 9. NIC usage.

to the specific standard access. The developers could have
a flexible way to customize the file content according to
the characteristics of the service robots, which solves the
access problem of the heterogeneous service robots in a
simple and better way. The developers could also interact with
the platform conveniently, and the robustness of the service
invocation can be ensured.

In order to make it clear, here we implement the clus-
ter monitor, robot company management interface and ser-
vice management interface that is shown in Fig.8, Fig.9,
Fig.10 and Fig.11.

As can be seen from Fig.8 and Fig.9, we could know
the usage of disks and NIC when the robots invoke ser-
vices. Fig.10 shows an easier way to manage the companies
and robots which want to register into our cloud platform.
As can be seen from Fig.11, the state of the running ser-
vice could be monitored. The contents in the read rectangle
which is in the upper middle part of the picture shows the
service name. A complete understanding and status of the
specific service can be seen from the little chart with two
red lines. In the lower left corner of the picture, a services
list is recommended for the those robots registered on the
platform.

V. EXPERIMENT AND ANALYSIS
In this section, we take a voice recognition service as an
example. Several experiments are designed to verify the
ability of our proposed platform when different scale and
different kinds of service robots access.

A. EXPERIMENT SETUP
The service robots used in the experiments are shown
in Fig.12.

These are intelligent escort robot, humanoid robot, desktop
robot, and quadruped robot developed independently by our
laboratory or jointly developed by the cooperation company.

The escort robot is equipped with ARM architecture Rasp-
berry Pi II and centos/7 operating system. The desktop robot
is equipped with Raspberry Pi III and Ubuntu16.04 oper-
ation system. The humanoid robot designed by UBTECH
Company is equipped with more sophisticated motion con-
trol and voice system, and operating system is android. The
quadruped robot is equipped with flexible quadruped motion
system and with ubuntu operating system. All the service
robots are equipped with microphone arrays and wireless
modules from the project partner AISPEECH Company.

The service robot cloud platform adopts 16 cloud servers
provided by the project cooperation unit Inspur Cloud Plat-
form Development Department. The single server configura-
tion is shown as Table.1. The number of CPU cores per server
is 16. The memory is 32G, and the data disk is 1TB. To make
the platform easier to develop, ubuntu operating system is
adopted. In order to develop the service, we use the integrated
development tools named IntelliJ IDEA (IDEA) and the pro-
gramming language is python and Java.

B. SERVICE INVOKING
The above four kinds of robots are used in the experiment
to call the speech recognition service deployed on the cloud
service platform.

All the robots are deployed in the same room under the
same network. Here, an escort robot called DaZhi (DZ in
short) is taken as an example. The process of interaction is
shown in Fig.13.

TABLE 1. The information about the development.
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FIGURE 10. Company management.

FIGURE 11. Service management.

Firstly, the Gateway Layer will make validation when DZ
tries to invoke services. Access token will be returned while
DZ registers on the platform or tries to register again.

Secondly, registered DZ can apply for desirable services.
Once DZ has signed its sensors, the cloud service plat-
form will recommend a list of available services. Otherwise,
DZ can only get one recommend service.

Thirdly, the service invocation requests will be accepted
by the platform. The scheduler gets the service from Service
Pool, and the service will invoke the corresponding speech
recognition algorithm and other relevant algorithms from
Algorithm Pool. After the process is finished, the recognition
results will be returned to DZ.

In the above process, the invocation protocol file is shown
in Fig.14.

In order to verify the performance of cloud platform,
we use four types of robots. The number of each type

is 10. Robots are randomly combined to invoke the service
and given a verification on average delay and accuracy when
the number of the accesses is 10, 20, 30 and 40.

1) THE AVERAGE DELAY TEST
The average delay shows the response of the cloud service
platform when the service is invoked. The lower the average
delay is, the faster the responses of the platform will be.

The relationship between the number of service invoca-
tions and the average delay is shown in Fig.15. As can be seen
from the figure, when the number of accesses is 10,20,30,40,
respectively, the average delay time are 10.3ms, 10.7ms,
11ms and 11.8ms. As the number of service invocations
increases, the number of the fluctuation spikes and the peak
value of spikes also increases. This is due to the frequent
service invocations from service robots and fluctuations in
network conditions.
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FIGURE 12. Service robots.

FIGURE 13. The process of interaction.

2) THE ACCURACY TEST
Accuracy η is the percentage of the total number when robots
invoke services that recognizes the voice successfully which
can be illustrated as follows.

η =
ST

ST + FT
% (5)

where ST is the number of the service that recognizes the
voice successfully. FT is the total number of service that
occurs errors or fails to recognize the voice.

The accuracy test results are shown in Fig.16. As can be
seen from the figure, when the number of invocations is less
than 1000, the accuracy of the voice recognition is above
96%. As the number of accesses increases, the accuracy rate
of the robot service invocation remains basically unchanged.
When the number of service invocations increases, the accu-
racy rate decreases. The reason is that multiple service

FIGURE 14. Demand file format for service invocation.

FIGURE 15. The result of average delay test.

invocations cause the bit error rate to rise temporarily, while
the actual service demand can still be met.

3) THE CLOUD SERVICE DYNAMIC SCALING TEST
The elastic scale factor that we propose here represents the
elastic scaling ability of the service robot cloud service plat-
form when robots invoke the services. The larger the scale
of service invocations becomes, the stronger the scheduling
ability and elasticity of the platform will be. The calculation
formula of the factor is as follows.

ζ = 1− µ1(

m∑
i=1

(CU ′ − CU0)

m− 1
)− µ2(

m∑
i=1

(MU ′ −MU0)

m− 1
)

(6)

where ζ is the elastic scale factor. m is the number of service
invocations, µ∗ represents the weight coefficient. CU ′ and
MU ′ are the current CPU utilization and the current memory
utilization respectively. CU0 andMU0 are the threshold.

We set the sampling T = 100ms, SA = 30 times/ms,
k = 3, T0 = 20ms. The number of services is 2000, 3000,
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FIGURE 16. The result of accuracy test.

FIGURE 17. The Result of cloud services scale flexibly.

4000, 5000 and 6000. The result is shown in Fig.17. As can
be seen from the figure, the current number of services is
close to the ideal number of requirements. As the number
of service invocations increases, the elastic scale factor has a
small fluctuation, while the average of the factor is still higher
than 0.72. It can be seen that our proposed platform could
achieve the elastic of services, improve service invocation
efficiency and reduce the waste of resources.

4) THE COMPARATION WITH OTHER FRAMEWORK
More service invocations on SOA and local framework (e.g.
local laptop) to verify the time-savings of CIRCP. The result
is shown in Fig.18.

As can be seen from the figure, although the total time con-
sumption increases with the number of service invocations
increasing. CIRCP takes the least time to complete the ser-
vice invocation, and the total time consumption gap becomes
larger as well. The total time cost gap is near 5000ms between
local framework and CIRCP when the number of service is
6000. The gap will be larger as could be seen from the trend.
When run the services on the local framework, it may be met
the fundamental demand when fewer service invocations are
accessed. while the number of service calls becomes larger,

FIGURE 18. The result of total time consumption.

local framework has the worst performance in the three ways.
The result also shows that CIRCP has a better performance in
time-savings than the above two frameworks.

VI. CONCLUSION
The continuous development of service robot technology
and cloud computing have promoted the research of cloud
service platforms. While the cost of robot service design and
resources sharing remains high, and the technical limitations
are still difficult to overcome. This paper proposes a cloud
service platform for service robots based on the work of
the predecessors. The Gateway Layer and Service Pool are
designed in detail to solve the problem of robot access con-
trol and service invocation requests scheduling. An access
standard is designed for heterogeneous service robots, and an
elastic scaling strategy is proposed to improve the stability of
the platform. In experiment section, cloud platform is verified
through the service invocations. The results show that the
platform could be used for the service robots, and could have
a better performance than SOA and local framework in time-
savings.

In the future work, we will do more research on scheduling
to achieve efficient scheduling of the service robot cloud plat-
form. We do also hope that more and more research institutes
join us and make a better service robot cloud platform.
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