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ABSTRACT Aiming at the problem of high complexity and low feedback accuracy of existing channel
state information (CSI) feedback algorithms for frequency-division duplexing (FDD)massive multiple-input
multiple-output (MIMO) systems, this paper proposes a CSI compression feedback algorithm based on deep
learning (DL), which is suitable for single-user and multi-user scenarios in massive MIMO systems. This
algorithm considers the spatial correlation of massive MIMO channel and uses bidirectional long short-term
memory (Bi-LSTM) and bidirectional convolutional long short-term memory (Bi-ConvLSTM) network
to decompress and recover the CSI for single-user and multi-user, respectively. The proposed DL-based
CSI feedback network is trained offline by massive MIMO channel data and could learn the structural
characteristics of the massive MIMO channel by fully exploiting the channel information in the training
samples. The simulation results show that compared with several classical CSI compression feedback
algorithms, the proposed CSI compression feedback algorithm has lower computational complexity, higher
feedback accuracy, and better system performance in massive MIMO systems.

INDEX TERMS FDD, massive MIMO, channel state information, compressed feedback, deep learning.

I. INTRODUCTION
As a key technology of the fifth generation (5G) com-
munication system, massive multiple-input multiple-output
(MIMO) technology has many advantages, such as high
spectrum efficiency [1], large system capacity, strong system
robustness [2]–[4]. So, massive MIMO has attracted more
and more attention from industry and academia. However,
the significant advantages of massive MIMO technology can
be largely determined by the fact that the transmitter can
obtain the channel state information (CSI) of the downlink.
In the frequency-division duplexing (FDD) massive MIMO
systems, the base station (BS) needs to obtain the downlink
CSI through the feedback of the receiver [5], [6]. However,
the use of massive antenna arrays causes a sharp increase in
channel feedback overhead. Thus, how to reduce the feedback
overhead of CSI in practical applications has become an
urgent problem to be solved [7].

The associate editor coordinating the review of this manuscript and
approving it for publication was Guan Gui.

In massive MIMO systems, the channel has a strong spa-
tial correlation because of the use of the massive antenna
arrays and the dense deployment of antennas. Considering
this channel characteristics, compression sensing (CS) or
dimensionality reduction technology have been proposed to
solve the CSI compressed feedback problems recently. In [8],
the CS is introduced into the finite feedback of massive
MIMO for the first time. Based on the spatial correlation
characteristics of massive MIMO channels, two adaptive
compression algorithms, Karhunen-Loeve transform (KLT)
and discrete cosine transform (DCT) are proposed to improve
the feedback efficiency. In [9], the DCT and KLT are also
used as sparse basis. Based on the strong spatial correla-
tion of the channel, when the BS adopts a uniform square
matrix, the channel is compressed after independent principal
component transform, which reduces the feedback overhead
and codebook search complexity. However, the algorithms
proposed in [8] and [9] need to use the correlation matrix
of the downlink channel to generate compression matrix and
recovery matrix, and users need to periodically feed back the
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information to BS according to the change of the channel.
When the channel changes quickly, it is difficult for BS to
obtain the channel correlation information accurately and
timely, which causes a decrease in feedback accuracy. And
also, when the number of antennas increases, the dimen-
sions and the number of the elements of the channel corre-
lation matrix will increase greatly, resulting in an increase in
feedback overhead. Considering the system performance and
complexity during compression, principal component anal-
ysis (PCA) is an effective compromise solution. The authors
in [10]–[12] proposed a PCA-based dimensionality reduction
compression feedback algorithm for multi-user scenarios.
The proposed algorithm can reduce the feedback overhead
and achieve a tradeoff between system capacity and compu-
tational complexity, but the compression matrix is estimated
by the previous long-term phase, so it is difficult for BS to
obtain accurate CSI.

Deep learning (DL) has attracted great attention in large
data processing recently, it has been successfully applied in
physical layer of wireless communication systems [13]–[16].
In [14], the authors proposed a DL-based method, which
combines two convolutional neural networks (CNNs) trained
on different datasets, to achieve higher accuracy of auto-
matic modulation recognition (AMR). A fast beamform-
ing design method using unsupervised learning is proposed
in [15], this method trains the deep neural network (DNN)
offline and provides real-time service online only with simple
neural network operations, reducing computational complex-
ity significantly. The authors in [16] proposed a novel and
effective DL-aided non-orthogonal multiple access (NOMA)
system, a long short-term memory (LSTM) network based
on DL is exploited to learn a completely unknown chan-
nel environment, the proposed scheme is more robust and
efficient compared with conventional approaches. In [17],
a DL-based joint channel equalization and decoding algo-
rithm is proposed. This algorithm uses CNN and DNN to
achieve channel equalization and decoding in non-linear
channel respectively. Compared with some existing equal-
ization and decoding algorithms, this algorithm can obtain
better results. In [18], a DL-based channel estimation and
direction-of-arrival (DOA) estimation algorithm for massive
MIMO systems is proposed. This algorithm uses DNN to
effectively learn the statistical characteristics of wireless
channels and the spatial structure in the angle domain. Com-
pared with conventional algorithms, this algorithm can obtain
better performance of DOA estimation and channel estima-
tion. Additionally, a DL-based hybrid precoding algorithm in
millimeter-wave massiveMIMO systems is proposed in [19],
in which each selection of the precoders for obtaining the
optimized decoder is regarded as a mapping relation in DNN.
Specifically, the hybrid precoder is selected through train-
ing based on DNN for optimizing precoding process of the
millimeter-wave massive MIMO. Compared with conven-
tional precoding, the DNN-based hybrid precoding can min-
imize bit error ratio (BER) and enhance spectral efficiency,
which achieves better performance in hybrid precoding while

substantially reducing the computational complexity. In [20],
the authors proposed a DL-based CSI feedback algorithm
for massive MIMO system. The CSI feedback is realized by
using CsiNet network which is composed of fully connected
network and residual network. Compared with conventional
CS algorithms, CsiNet network has higher recovery accuracy
and better performance. However, the network has many
training parameters, and only convolutional layers and fully
connected layers are used to extract the features of the data to
complete CSI compression and recovery, the spatial correla-
tion between antennas is not fully utilized in massive MIMO
system.

Therefore, this paper studies the CSI acquisition problems
for FDD massive MIMO systems. Aiming at the problems
of high computational complexity, low feedback accuracy in
conventional algorithms and a lack of consideration of spatial
correlation between antennas in CsiNet network, this paper
proposes a DL-based CSI compression feedback algorithm
with low feedback overhead and high feedback accuracy for
FDD massive MIMO systems, which considers the spatial
correlation of massive MIMO channel data. The main con-
tributions are as follows:

1) Aiming at the shortcomings of existing CSI feedback
algorithms in massive MIMO systems, this paper pro-
poses a DL-based CSI feedback algorithm for FDD
massive MIMO systems. The network structure used in
this algorithm is suitable for single-user and multi-user
scenarios, and signal processing includes compression
process and decompression process.

2) In compression process, the proposed algorithm
uses two two-dimensional (2D) CNN and two
three-dimensional (3D) CNN networks to learn the
non-linear structural characteristics of the channel
and extract the channel feature vectors accurately for
single-user and multi-user respectively. Then, the out-
puts of 2D CNN and 3D CNN can be reduced by using
2D Maxpooling network and 3D Maxpooling net-
work respectively, which can effectively compress the
data.

3) In decompression process, firstly, a fully connected
layer is used to increase the compressed CSI data
dimension to the dimension before compression, and
then making full use of the strong ability of bidirec-
tional long short-term memory (Bi-LSTM) network
and bidirectional convolutional long short-term mem-
ory (Bi-ConvLSTM) for processing sequence data,
the Bi-LSTM and Bi-ConvLSTM network are used to
recover the original CSI for single-user and multi-user
respectively by using the structure characteristics of
forward and backward antenna data, so as to improve
the reconstruction quality and feedback accuracy.

4) The proposed network can be seen as a black box to
realize end-to-end CSI feedback design and it is trained
offline by massive MIMO channel data. The complex-
ity of the proposed algorithm and several classical CSI
feedback algorithms are analyzed. In addition, their
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feedback performance under different massive antenna
numbers is also compared.

The rest of this paper is organized as follows. In Section II,
the system model of massive MIMO is described.
In Section III, the core ideas of and the specific steps of the
proposed algorithm are presented. In Section IV, the com-
plexity of various algorithms is analyzed. Simulation results
are provided in Section V. Finally, the conclusion is discussed
in Section VI.

II. SYSTEM MODEL
This paper consider the multi-user massive MIMO wireless
communication system in FDDmodewithNt >> 1 transmit-
ting antennas and Nr ≥ 1 receiving antennas and K mobile
users in the cell, the channel is Rayleigh flat fading channel.
The system model is showed in Fig. 1.

FIGURE 1. Diagram of channel feedback of multi-user MIMO system.

In the FDD system, the downlink direction is first consid-
ered. The BS side pre-codes the data stream and then trans-
mits the signal through the wireless channel. After receiving
the signal, the user side first obtains the CSI through the chan-
nel estimation algorithm, then processes the CSI, and finally
feeds back the CSI to the BS through the uplink channel. The
BS side recovers the CSI and performs precoding and the like
by using the obtained CSI. Assuming that there are K mobile
users in the cell, the channel matrix from BS to kth user is
Hk ∈ CNr×Nt .U is the precoding matrix of Nt×KNr , s is the
transmitting signal vector of KNr × 1. The receiving signal
of the kth user is

yk = HkUs+ nk (1)

where nk is the additive Gaussian white noise of the kth user
for which the mean is 0 and the variance is 1. The signals
received by all users are

y = HUs+ n (2)

where y =
(
yT1 , · · · , y

T
K

)T , H =
(
HH

1 , · · · ,H
H
K

)H ,
n =

(
nT1 , · · · ,n

T
K

)T , and (·)T is the transposition of a matrix.
Assuming that E

[
ssH

]
= 1, E

[
nnH

]
= 1 and the transmit-

ting power of the BS is limited to P, so tr
(
UUH

)
≤ P, where

tr (·) is the trace of the matrix. In the massive MIMO system,
there is a certain correlation between antennas because of
the large number of antennas at transmitter and receiver,

the dense arrangement of antennas makes the channel cor-
related highly. The channel matrix H with spatial correlation
can be modeled as [8]

H =
1

√
tr (Rr )

Rr
1
2HiidRt

1
2 (3)

where Rr ∈ RNr×Nr is the receiving correlation matrix,
Rt ∈ RNt×Nt is the transmitting correlation matrix, and
Hiid ∈ CNr×Nt is the independent and identically distributed
complex Gaussian random vector with the mean value of 0
and the variance of 1. Assuming that a uniform linear array
antenna are deployed at both the transmitter and receiver
of the wireless link, the spatial correlation matrix can be
obtained by the Clarke [21] model. All elements in Rt or Rr
are rij, where rij is the correlation coefficient between the ith
antenna and the jth antenna of the transmitter or the receiver,
it can be expressed as

rij = J0

(
2πdij
λ

)
= J0

(
2πd
λ
|i− j|

)
(4)

where J0(·) is the zero-order Bessel function of first kind,
i and j denote the array element number of the antenna, dij is
the distance between the ith transmitting antennas and the jth
receiving antennas, d represents the distance between adja-
cent transmitting or receiving antennas, and λ is the carrier
wavelength.

III. DL-BASED MASSIVE MIMO CSI FEEDBACK
ALGORITHM
A. PROPOSED DL-BASED NETWORK FRAMEWORK
Aiming at the problems of large CSI feedback overhead in
massive MIMO systems, this paper proposes a DL-based
CSI feedback network which is suitable for single-user and
multi-user scenarios. The proposed CSI feedback network is
divide into two parts: compression process and decompres-
sion process, and its structure is shown in Fig. 2.

In the compression process, this network extracts the
feature vectors through two 2D CNN or 3D CNN, and
then compresses the parameters to be estimated through the
2D Maxpooling or 3D Maxpooling layer. In the decom-
pression process, the dimension of the compressed data is
first transformed to the same dimension before compress-
ing by the fully connected network, and then the trans-
formed data is used to predict the CSI through Bi-LSTM
or Bi-ConvLSTM network. Finally, the output dimension of
Bi-LSTM or Bi-ConvLSTM network is reduced through the
fully connected network, and the fully connected network
outputs the final recovered CSI. In particular, for single-user
case, the 2D CNN, 2D Maxpooling and Bi-LSTM network
are used, for multi-user case, the 3D CNN, 3D Maxpooling,
and Bi-ConvLSTM network are used.

The original CSI is fed back through the feedback network,
and the data flow is shown in Fig. 3. As shown in Fig. 3,
the compression processing and decompression processing
are described in detail below, respectively.
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FIGURE 2. The structure of proposed CSI feedback network.

FIGURE 3. Data flow in the proposed massive MIMO CSI feedback
network.

1) COMPRESSION PROCESS
In this paper, the input data of the learning network is a
channel matrix of Nt × Nr × K size, that is, H ∈ CNt×Nr×K ,
for single-user case, K is set as 1. Since the channel data is
a complex signal, the input data needs to be pre-processed
before it is input into the proposed learning network. The real
part and the imaginary part of the input data are extracted
separately and then used as the number of channels, the input
data becomes H′s ∈ RNt×Nr×2 for single-user case and H′m ∈
RNt×Nr×K×2 for multi-users case.
The input data is pre-processed and sent to two 2D CNN or

3D CNN network. The main task of the 2D CNN or 3D CNN
network is to extract the data feature vectors. Unlike con-
ventional machine learning algorithms that perform feature
extraction manually, CNN can automatically extract feature
vectors from the data to obtain representative vectors from the
input data. In this paper, the two 2D CNN network is mainly
used to extract feature vectors of the original channel H.

For single-user case, the number of convolution kernel of
the first and second 2D CNN are 4 and 2, respectively, and all
the convolution kernel size are 3× 3. The output of first two
2D CNN networks is

H′′s = f
(
f
(
H′s ∗W1,s + b1,s

)
∗W2,s + b2,s

)
(5)

where H′′s ∈ RNt×Nr×2, W1,s and W2,s are the weights of
the first and second 2D CNN, respectively, b1,s and b2,s are
the baises of the first and second 2D CNN, respectively. f is
the ReLU activation function and ∗ denotes the convolution
operation.

For multi-user case, the number of convolution kernel of
the first and second 3D CNN also are 4 and 2, respectively,
and the convolution kernel size both are 3×3×3. The output

of first two 3D CNN networks is

H′′m = f
(
f
(
H′m ∗W1,m + b1,m

)
∗W2,m + b2,m

)
(6)

where H′′m ∈ RNt×Nr×K×2, W1,m and W2,m are the weights
of the first and second 3D CNN, respectively. b1,m and b2,m
are the baises of the first and second 3D CNN, respectively.
Like the single-user, f is also the ReLU activation function
and ∗ denotes the convolution operation. The expression of
ReLU activation function is

ReLU (x) = max (0, x) (7)

The Maxpooling network is mainly used to reduce the
dimension of the feature vector after convolution, and a pool-
ing window is used to find the maximum value of the filter
output. The output of the second 2D CNN and the second 3D
CNN network will be compressed through the 2D Maxpool-
ing and 3D Maxpooling networks respectively, and the data
will be compressed to 1/4 of the original.

The pooling window sizes of 2D and 3D Maxpooling
networks are 2× 2 and 2× 2× 1, respectively, so the output
of Maxpoling are

_

Hs ∈ R
Nt
2 ×

Nr
2 ×2 and

_

Hm ∈ R
Nt
2 ×

Nr
2 ×K×2,

respectively. Then they are reshaped into a one-dimensional

vector
_

H
′

s ∈ R
NtNr
2 and

_

H
′

m ∈ R
NtNrK

2 .

2) DECOMPRESSION PROCESS
In the decompression part, the fully connected network is

first used to increase the dimension of
_

H
′

s ∈ R
NtNr
2 and

_

H
′

m ∈ R
NtNrK

2 , and the dimension is increased by 4 times

to get
_

H
′′

s ∈ R2NtNr and
_

H
′′

m ∈ R2NtNrK , respectively.
They are then reshaped into the form which is suitable for

Bi-LSTM and Bi-ConvLSTM network inputs,
_

H
′′

s ∈ R2NtNr

is reshaped to
^

Hs ∈ RNt×2Nr , and
_

H
′′

m ∈ R2NtNrK is reshaped

to
^

Hm ∈ RNt×Nr×K×2. The reshaped CSI is then predicted by
the Bi-LSTM or Bi-ConvLSTM network. For CSI feedback,
each time step of the Bi- LSTM and Bi-ConvLSTM network

has an output. Let
^

Hs =

[
^

h
(1)

s , · · · ,
^

h
(t)

s , · · · ,
^

h
(Nt )

s

]H
and

^

Hm =

[
^

h
(1)

m , · · · ,
^

h
(t)

m , · · · ,
^

h
(Nt )

m

]H
, where

^

h
(t)

s ∈ R2Nr and

^

h
(t)

m ∈ RNr×K×2.
Considering the correlation between antennas in mas-

sive MIMO systems, Bi-LSTM and Bi-ConvLSTM net-
works are designed to predict CSI using correlation between
antennas in massive MIMO systems. Because Bi-LSTM
and Bi-ConvLSTM networks features well performance
in sequence task learning, this paper uses Bi-LSTM and
Bi-ConvLSTM networks for CSI prediction. For forward pre-
diction, the CSI of the latter antenna is predicted by the CSI
of the previous antenna. For backward prediction, the CSI of
the previous antenna is predicted by the latter antenna, and the
CSI of the forward and backward antennas is fully utilized to
further improve the recovery accuracy of the CSI.
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The Bi-LSTM network is used to predict the data for
single-user, which is a combination of two LSTM networks.
One of the LSTM networks is used for forward data predic-
tion and the other LSTM network is used for backward pre-
diction. Each LSTM network is composed of several LSTM
units. Each unit is composed of the input gate, forget gate,
output gate and memory unit. This LSTM structure can also
be called feedforward LSTMbecause its internal departments
are calculated based on a feedforward-like neural network.

The hidden layer and output update transformation formula
of each time step LSTM network can be simplified to equa-
tions (8) and (9)

l(t)s = LSTM
(
l(t−1)s ,

^

h
(t)

s , θs

)
(8)

o(t)s = tanh
(
Wsol(t)s + bso

)
(9)

where, l(t)s and o(t)s denote the hidden layer and the final output
vector of the LSTM network at tth antenna, respectively,
l(t−1)s denotes the hidden layer vector of LSTM network at
t-1th antenna, θs denotes all the parameters of the LSTM
network. Wso and bso denote hidden-to-output weight and
bais, respectively, LSTM (·) denotes the update transformation
formula of the hidden layer from the t-1th antenna to the tth
antenna. The tanh activation function is used in LSTM, and
its expression is

tanh (x) =
1− e−2x

1+ e−2x
(10)

Bi-LSTM network is a combination of two LSTM net-
works, so the output transformation formula of the Bi-LSTM
network is

h̃(t)s = Concat
(
o(t)sf , o

(t)
sr

)
(11)

where o(t)sf and o(t)sr denote the forward and backward output

of Bi-LSTM at tth antenna, respectively. h̃(t)s denotes the
total output of Bi-LSTM at tth antenna, Concat (·) denotes
the function that concatenates two vectors in a specified
dimension. Similarly, Bi-ConvLSTM, which is the same as
Bi-LSTM, is used to predicts CSI, but Bi-ConvLSTM is
used for multi-user, and Bi-ConvLSTM is somewhat different
from Bi-LSTM. The feedforward LSTM can handle the tim-
ing data well, but for spatial data, it will bring redundancy
because the spatial data has strong local features, and the
feedforward LSTM cannot describe this local feature. Con-
vLSTM attempts to solve this problem, which replaces the
feedforward connection with convolution between the input
and each gate in the feedforward LSTM network, and the
convolution operation is also replaced between states.

So the output of Bi-LSTM at each time step can be
expressed as

h̃(t)s = Bi− LSTM
(
l(t−1)sf , l(t−1)sr ,

^

h
(t)

sf ,
^

h
(t)

sr ,2s

)
(12)

h̃(t)m = Bi− ConvLSTM
(
l(t−1)mf , l(t−1)mr ,

^

h
(t)

mf ,
^

h
(t)

mr ,2m

)
(13)

where, l(t−1)sf and l(t−1)sr denote the forward and backward hid-
den layer vectors of the Bi-LSTM network at t-1th antenna,

respectively,
^

h
(t)

sf and
^

h
(t)

sr denote forward and backward
input of the Bi-LSTM network at tth antenna, respectively,
2s denotes all the parameters of the Bi-LSTM network,
h̃(t)s denotes the final output of the Bi-LSTM network at
tth antenna. l(t−1)mf and l(t−1)mr denote the forward and back-
ward hidden layer vectors of the Bi-ConvLSTM network

at t-1th antenna, respectively,
^

h
(t)

mf and
^

h
(t)

mr denote forward
and backward input of the Bi-ConvLSTM network at tth
antenna, respectively, 2m denotes all the parameters of the
Bi-ConvLSTM network, h̃(t)m denotes the final output of the
Bi-ConvLSTM network at tth antenna.
The output dimensions of the Bi-LSTM and

Bi-ConvLSTM network are twice their input, respectively,
i.e., h̃(t)s ∈ R4Nr and h̃(t)m ∈ RNr×K×4. Finally, the output of
each time step of the Bi-LSTM and Bi-ConvLSTM network
is dimensionally transformed through the fully connected
network, so that the final output dimension is consistent with
the input dimension. After the data passes through the fully
connected network, the outputs h̄(t)s ∈ R2Nr and h̄(t)m ∈

RNr×K×2 are obtained. Finally, add their real and imaginary
parts together to get the final output

Ĥs =

[
ĥ(0)s , · · · , ĥ(t)s , . . . , ĥ

(Nt )
s

]H
(14)

Ĥm =

[
ĥ(0)m , · · · , ĥ(t)m , . . . , ĥ

(Nt )
m

]H
(15)

where Ĥs ∈ CNt×Nr , Ĥm ∈ CNt×Nr×K , ĥ(t)s ∈ CNr , ĥ(t)m ∈
CNr×K . So far, the signal processing flow of the proposed
DL-based CSI feedback algorithm for massiveMIMO system
is sorted out as shown in Algorithm 1.

B. OFFLINE MODEL TRAINING AND ONLINE FEEDBACK
Considering the two sides of the existing wireless communi-
cation system, especially the user side is limited by energy
and computing power, the algorithm proposed in this paper
adopts offline model training and online feedback for sig-
nal processing. This paper collects data through MATLAB
and uses Python for the offline model training. For the
well-trained model, we can use it directly when we need
feedback instead of repetitive training.

The training device used in this article is configured
as a GeForce GTX 1060 GPU and an Intel Xeonr
E3-1231 V3 CPU. The channel model we use is a massive
MIMO Rayleigh flat fading channel [8]. Using this channel
model, our training data can be obtained through the MAT-
LAB simulation platform. For the offline training, the CSI
of massive MIMO channel is used as input data and label
data to train the learning network. The number of samples
of the training sets, the verification sets and the test sets
are 20000, 5000 and 1000 respectively. The initial learning
rate of the proposed CSI feedback network is set to 0.01,
the training epochs is 100, and the bacth size is 100. In this
paper, we use the end-to-end method to obtain all the weights
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Algorithm 1 DL-Based CSI Feedback Algorithm for Mas-
sive MIMO System
Input: Original channel matrix Hs and Hm
Output: The estimated values of CSI feedback Ĥs and Ĥm
Step 1:The input data is preprocessed, and the real and
imaginary parts of the channel matrix are separated by the
Copy function, and the real part and the imaginary part are
taken as a new dimension, and obtain real values H′s and
H′m, respectively;
Step 2: After the data is preprocessed, input H′s to two
2D CNN networks to extract frequency feature vectors,
the output of the first two 2D CNN networks is H′′s ; input
H′m to two 3D CNN networks to extract frequency feature
vectors, and the output of the first two 3D CNN networks
is H′′m;
Step 3: The outputs parameters to be estimated of the sec-
ond 2D CNN and the second 3D CNN network are com-
pressed by a 2DMaxpooling and 3DMaxpooling network,
respectively, and the compressed outputs are

_

Hs and
_

Hm,
respectively;
Step 4:Reshape

_

Hs and
_

Hm into a one-dimensional vector,

respectively, to obtain
_

H
′

s and
_

H
′

m;

Step 5: Increase the dimension of
_

H
′

s by a fully connected

layer with 2NtNr neurons to obtain
_

H
′′

s , and the dimension

of
_

H
′

m is increased by a fully connected layer with 2NtNrK

neurons to obtain
_

H
′′

m;

Step 6:
_

H
′′

s is reshaped into
^

Hs, which is suitable for

Bi-LSTMnetwork input form, and
_

H
′′

m is reshaped into
^

Hm,
which is suitable for Bi-ConvLSTM network input form;
Step 7: Input

^

Hs into the Bi-LSTM network to obtain
the predicted H̃s, and input

^

Hm into the Bi-ConvLSTM
network to obtain the predicted H̃m;
Step 8: Input H̃s and H̃m to the fully connected layer to
reduce their dimensions and obtain H̄s and H̄m, respec-
tively;
Step 9: The real part and imaginary part of H̄s and H̄m are
added respectively and get the final output Ĥs and Ĥm.

and biases in the network, and use the adaptive moment esti-
mation (ADAM) optimization algorithm to train the network.
The ADAM algorithm is different from the conventional
gradient descent algorithm with fixed learning rate, it can
update the learning rate adaptively through training. The loss
function used in this paper is mean square error (MSE), all
parameters in the network are updated by minimizing the
MSE between the output of the learning network and the label
data. The calculation method of the MSE loss function is as
follows:

L (2csi) =
1
N

N∑
i=1

(f (Hi;2csi)−Hi)
2 (16)

TABLE 1. Comparison of the complexity of different algorithms.

whereHi is the original input data of the ith sample,2csi is all
the parameters in the network, f is the transformation formula
of the entire network, f (Hi;2csi) is the recovered matrix of
the ith sample, and N is the total number of samples.

IV. ALGORITHMIC COMPLEXITY ANALYSIS
In the following, the complexity of the DL-based CSI feed-
back algorithm proposed in this paper is compared with
the existing algorithms. The complexity of the compression
process and the inverse recovery channel matrix process are
mainly considered, as shown in Table 1.

For compression process, the DCT algorithm directly per-
forms discrete cosine transform on the channel vector, the real
part and imaginary part need to be compressed separately.
The KLT algorithm needs to first vectorize the channel matrix
and then obtain the KLT compressed sparse basis by cal-
culating the covariance matrix of channel vector. The PCA
algorithm needs to calculate a small number of main com-
ponents. As for the decompression process, the DCT algo-
rithm needs to decompress both real part and imaginary part
respectively, KLT algorithm needs to use sparse matrix with
large dimensions to decompress the original signal, the PCA
algorithm needs to use the compression matrix with small
dimensions to decompress the compressed CSI. While in the
DL algorithm, the DL network only needs simple matrix
multiplication to complete the CSI feedback, so it is less
computationally complex than the conventional CSI feedback
algorithms. In particular, compared with CsiNet network,
the proposed network structure is simpler and has fewer
parameters. Theoretical analysis shows that the proposed
algorithm has lowest computational complexity.

V. SIMULATION ANALYSIS
In this section, in order to verify the performance of the pro-
posed CSI compression feedback algorithm for FDDmassive
MIMO systems, the proposed algorithm and other CSI com-
pression feedback algorithms are compared through MAT-
LAB simulation platform. Assuming that the ideal downlink
CSI has been obtained on the user side, the main parameters
of the simulation system are shown in Table 2. According
to formula (4), the spatial correlation can be obtained by the
antenna number, working frequency and antenna spacing.

A. COMPARISON OF NORMALIZED MEAN
SQUARE ERRORS
For the easy-to-handle analysis of communication perfor-
mance, the compression feedback error is only considered.
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TABLE 2. Simulation parameters.

In this paper, the normalized MSE (NMSE) performance of
proposed DL-based CSI feedback algorithm and the DCT,
PCA, KLT and CsiNet algorithms are compared under the
data compression rate is 1/4. The NMSE is the difference
between the recovered Ĥ and the originalH, and it is defined
as

NMSE = E
{
‖ H− Ĥ ‖22 / ‖ H ‖

2
2

}
(17)

where the smaller the NMSE, the smaller the channel com-
pression feedback error and the better the performance. In this
paper, the NMSE is represented in logarithmic form and the
results are shown in Table 3.

As can be seen from Table 3, for the case of single-
user, when the number of antennas at BS side are 32 and
64, respectively, the NMSE of the proposed DL-based CSI
feedback is about 3 and 5 dB smaller than conventional PCA
and DCT algorithms, and is about 1.4 and 2 dB smaller than
the CsiNet algorithm. For the case of multi-user, the NMSE
of the proposed DL-based algorithm is also smaller than
that of other algorithms. Table 3 shows that whether it is
single-user or multi-user and the number of antennas at the
BS side is 32 or 64, the proposed DL-based CSI feedback
algorithm has excellent NMSE performance. This algorithm
can recover CSI more accurately and improve the quality
of the recovered CS significantly. This is mainly because
the proposed DL-based CSI feedback network does not need
to know the channel distribution, it can be trained by using
training samples. The network makes full use of the spatial
correlation of massive MIMO channels and can learn the
channel structure characteristics well. Therefore, the recov-
ered CSI of the network is closer to the original data.

It is worth mentioning that we do not mention KLT algo-
rithm in this section. This is because KLT algorithm could
vectorize the channel matrix and then calculate the covariance
matrix of channel vectors to get KLT compression sparse
base. When the base station and mobile users all get instan-
taneous correlation matrix, KLT algorithm can get the per-
fect sparse performance. So it can recover the information
accurately using few measured data and the error is almost
0 all the time. However, when the base station does not
get the instantaneous correlation matrix, receiver needs extra
feedback overhead to feedback the KLT sparse base to the

base station to recover the original signal. As the amount of
information is large, it is almost equal to complete feedback.
Therefore, when the BS does not get instantaneous correla-
tion matrix, KLT algorithm cannot have sparse compression
effect.

B. BER
In general, the BER performance is a macro measure of
the impact of CSI recovery algorithms on overall system
performance. In this paper, the feedback compression ratio is
set to 1/4. Under the condition of ensuring the same feedback
compression ratio, the BER performance of single-user and
multi-user massive MIMO system are simulated respectively.

Fig. 4 shows the variation curves of BER performance
with signal to noise ratio (SNR) of different algorithms for
a single-user system with 32 and 64 antennas at BS and
2 antennas at receiver. It can be seen from Fig. 4 that the
BER performance of the proposed DL-based CSI feedback
algorithm is better than the DCT, PCA, KLT and CsiNet algo-
rithms. For conventional DCT, PCA and KLT algorithms,
the BER performance of DCT is the worst, KLT is the best,
and CsiNet algorithm is better than the conventional algo-
rithms.

When the BS antenna is 32, the proposed algorithm has
a SNR gain of about 2-4 dB compared with the conven-
tional DCT, PCA, and KLT algorithms, and the SNR gain is
about 0.5 dB compared with the CsiNet algorithm. When the
number of antennas at BS is 64, the proposed algorithm has
about 2-6 dB SNR gain comparedwith the conventional DCT,
PCA, and KLT algorithms, and has about 0.7 dB SNR gain
compared with the CsiNet algorithm. As can be seen from
Fig. 4, when the BER performance is 10−6 and the number
of antennas at BS is 32, the SNR required for the proposed
algorithm is about 10 dB, while is about 5.5 dB required for
64 antennas. This shows that the more the number of antennas
at BS in massive MIMO system based on spatial correlation,
the better the BER performance.

Fig. 5 shows the curves in which BER performance varies
with signal to noise ratio (SNR) for different algorithms of
a multi-user system when the BS has 32 or 64 antennas,
the receiver has 2 antennas and the number of users is 3.
The BER performance of multi-user system is consistent with
that of single-user system, regardless of 32 or 64 antennas at
BS. The BER performance of proposed algorithms is better
than that of DCT, PCA, KLT and CsiNet algorithms, and the
more antennas at BS side, the better the BER performance.

As can be seen from Fig. 4 and Fig. 5, the proposed
algorithm has better BER performance than the DCT, PCA,
KLT, and CsiNet algorithms under the conditions of 32 and
64 antennas at BS, single-user and multi-user scenarios. This
is because the DCT needs to use the correlation matrix of
the downlink channel to generate compression matrix and
recovery matrix, and terminals need to periodically feedback
the information to the BS according to the change of the
channel. When the channel changes rapidly, it is difficult for
the BS to acquire the channel-relative information accurately
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TABLE 3. NMSE (dB) comparison of various CSI feedback algorithms.

FIGURE 4. Comparison of BER of various feedback algorithms for single-user system.

FIGURE 5. Comparison of BER of various feedback algorithms for multi-user system.

and timely, which causes a decrease in feedback accuracy.
The PCA compresses and recovers the channel matrix by
extracting the main components, but the compression matrix
is estimated by the previous long period, so it is difficult for
the BS to obtain accurate CSI. TheKLT algorithm can recover
channel matrix better than DCT and PCA algorithm. This is
because KLT base has the best sparse representation when
both BS and mobile terminal know instantaneous correlation
matrix. It only needs very little measurement data to recover

channel matrix accurately. However, KLT base has signal
dependence and needs to feed back the channel instantaneous
matrix, which increases the amount of feedback, and the
computational complexity of the KLT algorithm is very high.

In addition, CsiNet algorithm does not consider the antenna
correlation in massive MIMO system, but the proposed algo-
rithm makes full use of the antenna correlation in massive
MIMO systems to accurately recover CSI. The network used
can better mine the non-linear characteristics of data, and the
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FIGURE 6. Comparison of BER of various feedback algorithms for single-user system.

FIGURE 7. Comparison of BER of various feedback algorithms for multi-user system.

features of the channel can be learned well. Therefore, for all
of above case, the proposed algorithm shows excellent BER
performance, and the error of the recovered matrix is very
small, which effectively improves the feedback accuracy of
CSI.

C. SYSTEM CAPACITY
Fig. 6 shows the system capacity variation with SNR for
a single-user system with 32 antennas and 64 antennas at
the BS and 2 antennas at the receiver. It can be seen from
Fig. 6 that the system capacity of the proposed algorithm
increases with the increase of SNR, and the system capac-
ity of the proposed algorithm is higher than other algo-
rithms. When the number of antennas at BS side is 32,
the system capacity of the proposed algorithm is increased by
1.6-2.8 bps/Hz than the conventional algorithms. Compared
with the CsiNet algorithm, the system capacity is increased by
about 0.3 bps/Hz.When the BS end is 64 antennas, the system

capacity of the proposed algorithm is increased by about
2-3 bps/Hz than the conventional algorithms. Compared with
the CsiNet algorithm, the system capacity is increased by
about 0.5 bps/Hz. The proposed algorithm maintains a high
system performance gain under the different antenna config-
urations at the BS.

Fig. 7 shows the curves of system capacity with SNR
for different algorithms of multi-user system with 32 and
64 antennas at BS and 2 antennas at receiver and 3 users.
From Fig. 7, it can be seen that for massive multi-user
MIMO systems, the proposed algorithm has obvious per-
formance improvement and better channel capacity under
high SNR conditions. When the SNR is 20 dB and the
number of antennas at BS side is 32, the system capacity
of the proposed algorithm is about 1-2 bps/Hz higher than
the conventional algorithms, about 0.4 bps/Hz higher than
the CsiNet algorithm. When the number of antennas at BS
side is 64, the system capacity of the proposed algorithm is
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about 1.5-2.5 bps/Hz higher than the conventional algorithms
and about 0.6 bps/Hz higher than the CsiNet algorithm. How-
ever, compared with single-user, under the same number of
antennas at BS and SNR, the capacity of multi-user system
is smaller than that of single-user system because of user
interference between multiple users.

VI. CONCLUSION
In this paper, the CSI compression feedback algorithm based
on spatial correlation for FDD massive MIMO systems is
studied. Considering the high complexity and inaccurate
feedback of the conventional CSI compression feedback
algorithms, and the CsiNet algorithm does not consider the
spatial correlation of the antenna in the massive MIMO
systems and its feedback accuracy is not high, this paper
proposes a novel DL-based CSI compression feedback algo-
rithm and apply it to single-user and multi-user scenarios.
The algorithm considers the spatial correlation of massive
MIMO uniform linear antenna arrays, and makes full use of
the channel information in the training samples, the channel
structural characteristics learned by the model can better
represent the channel, thus improving the accuracy of CSI
compression feedback. The theoretical analysis and simu-
lation results show that the proposed algorithm has lower
complexity, better BER and system capacity performance
than the conventional CSI compression feedback algorithms
and CsiNet algorithm.
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