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ABSTRACT In this paper, we investigate the secrecy outage performance of decode-and-forward (DF)
buffer-aided relaying networks with a multi-antenna destination in the presence of an eavesdropper. In order
to take full advantage of the benefits provided by the multiple antennas at the destination and the available
relays, we adopt the max-link relay selection scheme and propose a half-duplex and two full-duplex secure
transmission schemes for secrecy improvement, i.e., 1) maximal-ratio combining (MRC), 2) maximal-
ratio combining/cooperative jamming (MRC/CJ), and 3) zero-forcing beamforming/cooperative jamming
(ZFB/CJ). For all proposed schemes, we present exact and asymptotic closed-form expressions of the secrecy
outage probability by modeling the dynamic buffer state transitions as aMarkov chain. Moreover, simple and
informative asymptotic results are provided under both L 6→ ∞ and L →∞ scenarios (where L denotes the
buffer size), from which we can obtain further insights on the secrecy diversity gain and the secrecy coding
gain. The highlights of this paper can be summarized as follows: 1) Under L 6→ ∞ scenario, the secrecy
diversity gains of all proposed schemes both reach M . When L →∞, the secrecy diversity gains of MRC,
MRC/CJ and ZFB/CJ increase toM (1+ ND),MND and 2M respectively, whereM is the number of relays
andND represents the number of antennas at the destination; 2) The secrecy coding gain of the system differs
with different schemes, and it improves with the increase ofM and ND under both the two scenarios; and 3)
Under the scenario L 6→ ∞, ZFB/CJ outperforms MRC and MRC/CJ across the entire signal-to-noise ratio
(SNR) range of interest, however, when L →∞, ZFB/CJ outperforms MRC/CJ and MRC in the low SNR
regime, while the opposite holds in the high SNR regime.

INDEX TERMS Buffer-aided relay, multi-antenna, full-duplex, secrecy outage probability, secrecy diversity
gain, secrecy coding gain.

I. INTRODUCTION
Nowadays, cooperative communications through relay nodes
has attracted enormous attention due to their abilities of
increasing the effective data transmission rates and extending
the coverage of wireless networks [1], [2]. For cooperative
networks with multiple relay nodes, higher diversity gain
and more efficient utilization of the system resources can
be achieved by exploiting various relay selection schemes
[3], [4]. In conventional relay networks, the selected relay
receives data from source in the first time slot, and forwards it
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to the destination immediately in the next time slot [5]. That is
to say, a prefixed schedule for data transmission or reception
must be followed at the relays which caused that the best link
may be unavailable in a fast-fading environment. In recent
years, equipping data buffers at the relays has attracted
more and more attention, due to its capacity of providing
extra degrees of freedom and offering higher performance
gains in terms of throughput and diversity [6]–[8]. Although
the buffer-aided relaying introduces an additional delay and
higher complexity, it is still a promising approach for delay
insensitive cooperative networks.

Currently, buffer-aided relaying schemes have been pro-
posed in numerous works [9]–[12]. In [11], the max-max
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relay selection (MMRS) scheme was proposed for decode-
and-forward (DF) cooperative networks. In this protocol,
the relay with the best source-to-relay link can be chosen for
reception in odd time slots, while the relay with the best relay-
to-destination link can be chosen for transmission in even
time slots, which can achieve the diversity gain ofM (M is the
number of relays). Although the MMRS protocol improves
the throughput or signal-to-noise ratio (SNR) gain compared
with conventional relaying protocol, its diversity gain is lim-
ited to M . To overcome the above problem, Krikidis et al.
in [12] proposed the max-link relay selection scheme, which
adaptively activates the link with best channel condition at
each time slot. That is to say, the best link among all available
source-to-relay and relay-to-destination links can be selected
for transmission or reception and hence, a diversity gain of
2M is achieved.

The broadcast nature of the wireless medium makes the
security of data transmission being a vital issue in wireless
networks [13]. As such, a number of researches have investi-
gated the security of buffer-aided relaying systems from the
physical layer perspective [14]–[16]. In [14], a newmax-ratio
relay selection scheme was proposed to improve the confi-
dentiality of transmission in the buffer-aided DF cooperative
wireless networks. The authors in [15] investigated the secure
transmission of buffer-aided cognitive relay networks, and
a closed-form expression of secrecy outage probability was
derived to evaluate secrecy performance. In [16], a buffer-
aided joint transmit antenna and relay selection (JTARS)
scheme was proposed to improve the secrecy performance
of multi-relay multiple-input multiple-output (MIMO) coop-
erative systems in the presence of a passive eavesdropper,
and closed-form expressions of exact and asymptotic secrecy
outage probability were obtained to assess the impact of
different parameters on the secrecy performance.

To further prevent information from being intercepted by
eavesdropper and strengthen the security of cooperative net-
works, the destination jamming scheme was investigated in
several works [17]–[19]. The authors in [18] proposed a
joint source, relay and destination jamming precoding opti-
mization scheme to improve the secrecy performance of
the amplify-and-forward (AF) MIMO untrusted relay net-
works. Furthermore, the idea of introducing the full-duplex
technique into the destination jamming scheme was investi-
gated in [19]. Specifically, the joint transmitting and receiv-
ing beamforming scheme was utilized at the destination to
improve system security where the destination node can
receive signals and send a jamming signal to eavesdrop-
per simultaneously. From the above, combining buffer-aided
relaying with the destination jamming scheme can not only
improve the transmission capacity of the system, but also
provide an effective way to improve the system secrecy per-
formance. To the best of our knowledge, the destination jam-
ming scheme has not been examined in buffer-aided relaying
networks before.

Inspired by the observations above, we consider a
DF buffer-aided relaying network with a multi-antenna

destination in the presence of an eavesdropper. To exploit
the extra degrees of freedom provided by the multiple
antennas at the destination, we propose a half-duplex
scheme and two full-duplex destination jamming schemes,
i.e., 1) maximal-ratio combining (MRC), 2) maximal-ratio
combining/cooperative jamming (MRC/CJ), 3) zero forcing
beamforming/cooperative jamming (ZFB/CJ). The contribu-
tions of this paper mainly lie in the following:
1) We derive novel exact and asymptotic closed-form

expressions for the secrecy outage probability of the
considered system with MRC, which provides an effi-
cient means to assess the impact of key parameters on
the secrecy performance. To gain more deep insights,
simple asymptotic results are also derived in the high
SNR regime considering L 6→ ∞ and L →∞ scenarios
(where L denotes the buffer size). Based on this, the
secrecy diversity gain and the secrecy coding gain are
investigated furthermore, and the results suggest that
they are affected by the buffer size, the number of relays
and the number of destination’s antennas.

2) For destination jamming schemes, i.e., MRC/CJ and
ZFB/CJ, exact and asymptotic expressions for the
secrecy outage probability in closed-form are obtained
respectively. Moreover, the secrecy diversity gain and
the secrecy coding gain of these two schemes are ana-
lyzed based on the derived asymptotic expressions under
L 6→ ∞ and L →∞ scenarios. Specifically, the secrecy
diversity gains of these two schemes both reachM under
the L 6→ ∞ scenario. When L → ∞, the secrecy
diversity gain of ZFB/CJ is 2M , while MRC/CJ can
achieve MND (ND represents the number of destina-
tion’s antennas). Moreover, the buffer size, the number
of relays and the number of destination’s antennas also
affect the secrecy coding gain.

3) The results demonstrate that increasing the number of
antennas ND can improve the secrecy performance of
all the proposed schemes both under the L 6→ ∞ and
L → ∞ scenarios. Moreover, ZFB/CJ outperforms
MRC and MRC/CJ across the entire SNR range of
interest when L 6→ ∞, however, under the scenario
L → ∞, ZFB/CJ outperforms MRC/CJ and MRC in
the low SNR regime, while the opposite holds in the high
SNR regime.

The remainder of the paper is organized as follows.
In Section II, the system model is introduced. Section III
investigates the exact secrecy outage probability of the sys-
tem. Asymptotic secrecy outage probability in the high SNR
regime is provided in Section IV. Section V presents simu-
lation results. Finally, we summarize the conclusions of this
paper in Section VI.
Notation: In this paper, lower-case and upper-case boldface

symbols are utilized to denote vectors and matrices respec-
tively. ‖·‖ and ‖·‖F denote the Euclidean or L2 vector norm
and the Frobenius norm. (·)T and (·)† represent the transpose
operation and the conjugate transpose operation. Fγ (·) and
fγ (·) denote the cumulative distribution function (CDF) and

41350 VOLUME 7, 2019



C. Wei et al.: Secrecy Outage Performance for DF Buffer-Aided Relaying Networks With a Multi-Antenna Destination

the probability density function (PDF) of the random variable
γ respectively.

II. SYSTEM MODEL
We consider a dual-hop multi-relay network as shown
in Fig. 1, which consists of a source node S, a multi-antenna
destination node D, a set of M DF relays {Rk}Mk=1 and an
eavesdropper E . All the nodes are equipped with a sin-
gle antenna except D, which is equipped with ND (ND > 1)
antennas. It is worth noting that the assumed scenario can
be considered as an uplink network, which is similar to [20].
In addition, we assume that each relay is equipped with a data
buffer Bk of finite size L, and the packets in the buffer follow
the ‘‘first-in-first-out’’ rule. It is also assumed that all of the
relay nodes operate in the half-duplex time-divisionmode and
the direct link between S and D is not available due to severe
path loss or shadowing effects caused by some obstacles [14].

FIGURE 1. System Model.

Without loss of generality, we denote the channel coeffi-
cient of link a → b as hab, which is a complex Gaussian
random variable with zero mean and variance λab. Hence,
the channel gain |hab|2 is an exponentially distributed random
variable. Moreover, all the channels are subject to indepen-
dent and nonidentical quasi-static flat Rayleigh fading so
that the channel coefficients remain unchanged during the
coherent time of the channels [16], [21].

A. THE TRANSMISSION SCHEME
In this subsection, we present a half-duplex scheme and two
destination jamming schemes to fully exploit the advantage of
multi-antenna at D. For the reader’s convenience, we utilize
capital letters A, B and C represent the MRC, MRC/CJ and
ZFB/CJ schemes respectively.

1) THE MRC SCHEME
The whole transmission process between S and D is com-
pleted within two hops. In the first hop, S sends the signal to
the selected relay while intercepted by the eavesdropper E .
Hence, the received SNR at the i − th relay and E can be

respectively expressed as

γ ASRi =
PS
∣∣hSRi ∣∣2
σ 2
Ri

, (1)

γ ASE =
PS |hSE |2

σ 2
E

, (2)

where PS denotes the transmit power of S,
∣∣hSRi ∣∣2 and |hSE |2

represent the channel gains of link S → Ri and S → E , σ 2
Ri

and σ 2
E are the variance of the additive white Gaussian noises

(AWGNs) at Ri and E .
In the second hop, the destination node D adopts the

MRC scheme to strengthen the signal reception. Therefore,
the received SNR at D and E are given by

γ ARjD =
PR
∥∥∥h1RjD∥∥∥2
σ 2
D

, (3)

γ ARjE =
PR
∣∣hRjE ∣∣2
σ 2
E

, (4)

where PR represents the transmit power of Rj,
∣∣hRjE ∣∣2

is the channel gain of link Rj → E and h1RjD =[
hRjD1 , hRjD2 · · · , hRjDND

]T
denotes the ND× 1 channel vec-

tor between Rj and D. σ 2
D is the variance of AWGN at D.

2) THE MRC/CJ SCHEME
For the MRC/CJ scheme, the destination D performs in the
full-duplex mode, where there are ND− 1 receiving antennas
and one jamming antenna. The first hop of MRC/CJ is the
same as the MRC scheme. Hence we have γ BSRi = γ

A
SRi , and

γ BSE = γ ASE . In the second hop, D receives signal from the
selected relay utilizing MRC linear processing scheme and
sends jamming signal from the jamming antenna simultane-
ously. However, it is critical for full-duplex communication
to measure and suppress the self-interference (SI) accurately.
With advances on antenna design and signal processing,
the SI can be significantly canceled or sufficiently suppressed
to a very low level and made negligible by using existing SI
cancellation (SIC) technologies, such as directional SI sup-
pression, antenna separation, analog cancellation and digital
cancellation, and thus the full-duplex mode has attracted a lot
of attention from the research community [22], [23]. In order
to facilitate the following analysis, we assume that the SI atD
can be completely suppressed [24]. Hence the received SNR
at D and signal-to-interference-plus-noise ratio (SINR) at E
can be respectively expressed as

γ BRjD =
PR
∥∥∥h2RjD∥∥∥2
σ 2
D

, (5)

γ BRjE =
PR
∣∣hRjE ∣∣2

PD |hDE |2 + σ 2
E

, (6)
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where h2RjD =
[
hRjD1 , hRjD2 · · · , hRjDND−1

]T
denotes the

(ND − 1) × 1 channel vector between the ND − 1 receiving
antennas of D and Rj, PD is the transmit power of D, |hDE |2

represents the channel gain between the jamming antenna of
D and E .

3) THE ZFB/CJ SCHEME
For the ZFB/CJ scheme, we assume that the destination D
where there is one antenna for receiving signal from the
source node and ND − 1 antennas for transmitting jamming
signal. In the first hop, S sends the signal to the selected relay
while the useful information is intercepted by eavesdropper
E and we also have γ CSRi = γ

A
SRi . Simultaneously, D transmits

a jamming signal to degrade the quality of eavesdropper’s
channel. The ZFB scheme is applied to null the undesirable
interference at the selected receiving relay. Thus, according
to the ZFB principles, the problem formulation for finding
the optimal weight vector wZF is given by

max
wZF

∣∣∣h†DEwZF ∣∣∣
s.t. :

∣∣∣h†DRiwZF ∣∣∣ = 0

‖wZF‖F = 1, (7)

where hDE =
[
hD1 E , hD2 E · · · , hDND−1E

]T
denotes the

(ND − 1) × 1 channel vector between the ND − 1 jamming
antennas of D and E . Similarly, hDRi is the channel vector
between the ND − 1 jamming antennas of D and Ri. Then,
by utilizing projection matrix theory [25], the optimal weight
vector that satisfies the above optimization method can be
expressed as

wZF =
T⊥hDE∥∥T⊥hDE∥∥ , (8)

where T⊥ =
(
I − hDRi

(
h†DRihDRi

)−1
h†DRi

)
denotes the

projection idempotent matrix with rank ND − 2. Thus,
the received SINR at E is given by

γ CSE =
PS |hSE |2

PD
∣∣∣h†DEwZF ∣∣∣2 + σ 2

E

, (9)

In the second hop, the destination D receives the signal
from the selected relay while send a jamming signal to the
eavesdropper E by using maximal-ratio transmission (MRT)
processing approach. The received SNR at D and SINR at E
are respectively given by

γ CRjD =
PR
∣∣hRjD∣∣2
σ 2
D

, (10)

γ CRjE =
PR
∣∣hRjE ∣∣2

PD ‖hDE‖2 + σ 2
E

, (11)

where
∣∣hRjD∣∣2 represents the channel gain between the receiv-

ing antenna of D and Rj.

According to [26], [27], the achievable secrecy rate of the
first and second hop can be formulated as

C?SRE =
[
log2

(
1+ γ ?SRi

)
− log2

(
1+ γ ?SE

)]+
, (12)

C?RDE =
[
log2

(
1+ γ ?RjD

)
− log2

(
1+ γ ?RjE

)]+
, (13)

where ? ∈ {A,B,C}, [x]+ = max {0, x}.

B. THE MAX-LINK RELAY SELECTION SCHEME
In this subsection, the max-link relay selection scheme is
adopted to strengthen the secrecy performance of the system
[12]. Before delving into analyzing the max-link scheme,
we first model the number of the data packets in each
buffer as a state. Hence sn = [ϕn (1) , ϕn (2) , · · · , ϕn (M)]T

denotes the n−th state of all possible states, where ϕn (k) ∈
{0, 1, · · · ,L} (1 ≤ k ≤ M) represents the number of data
packets in buffer Bk at state sn.

Then, the number of available links in the first and second

hop at state sn are respectively given by M1,n=
M∑
k=1

φ1,n (k)

and M2,n=
M∑
k=1

φ2,n (k), where φ1,n (k) =

{
1, ϕn (k) 6= L
0, ϕn (k) = L

and φ2,n (k) =

{
1, ϕn (k) 6= 0
0, ϕn (k) = 0

. More specifically, when

ϕn (k) = L or ϕn (k) = 0, it means that the relay Rk can no
longer be selected for reception or transmission. Therefore,
φ1,n (k) = 0 and φ2,n (k) = 0 represent the corresponding
link is not available at state sn. On the contrary, φ1,n (k) =
1 and φ2,n (k) = 1 mean that the corresponding link is
available, that is to say, the relay Rk can be used for recep-
tion or transmission.

Based on the above definition, we will present the expres-
sion of the max-link relay selection scheme in the following
part. The main idea of the max-link scheme is to select the
strongest link for data transmission among all source-to-relay
and relay-to-destination available links. It can be mathemati-
cally expressed as

R∗ = argmax
{
γSR′M1,n

, γR′′M2,n
D

}
, (14)

where γSR′M1,n
= PS

∣∣∣∣hSR′M1,n

∣∣∣∣2 /σ 2
R and

∣∣∣∣hSR′M1,n

∣∣∣∣2 =

max
ϕn(i)6=L

{∣∣hSRi ∣∣2} denote the maximum SNR and the best

channel gain of the M1,n available links respectively in the

first hop. γR′′M2,n
D ∈

{
γ AR′′M2,n

D, γ
B
R′′M2,n

D, γ
C
R′′M2,n

D

}
, for the

MRC or MRC/CJ scheme, γ AR′′M2,n
D = PR

∥∥∥∥h1R′′M2,n
D

∥∥∥∥ /σ 2
D

and γ BR′′M2,n
D = PR

∥∥∥∥h2R′′M2,n
D

∥∥∥∥ /σ 2
D represent the maximum

SNR,

∥∥∥∥h1R′′M2,n
D

∥∥∥∥ = max
ϕn(j)6=0

{∥∥∥h1RjD∥∥∥} and

∥∥∥∥h2R′′M2,n
D

∥∥∥∥ =
max
ϕn(j)6=0

{∥∥∥h2RjD∥∥∥} denote the strongest channel vector norm
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of all available M2,n links. Similarly, for ZFB/CJ scheme,

γ CR′′M2,n
D = PR

∣∣∣∣hR′′M2,n
D

∣∣∣∣2 /σ 2
D also represents the maximum

SNR, and

∣∣∣∣hR′′M2,n
D

∣∣∣∣2 = max
ϕn(j)6=0

{∣∣hRjD∣∣2} denotes the best

channel gain among M2,n available links in the second hop.
According to the relay selection scheme above, we can

easily find that the best relay R∗ is always selected for data
transmission according to the instantaneous quality of the
links and the state of the buffer at the relays. Specifically,
if the source-to-relay link is available, i.e., the corresponding
buffer is not full, meanwhile, the corresponding channel gain
is best among all available links, hence the relayR∗ is selected
for reception. In that case, S transmits the data packet to the
selected relay R∗, R∗ receives and decodes the data packet
while intercepted by E . At the meantime, the packet can be
stored in the buffer B∗, hence, the number of the packets
in buffer B∗ will be increased by one. Similarly, when R∗

is chosen for transmission, D receives and decodes the data
packet successfully, buffer B∗ discards the packet and the
number of the packets correspondingly decreases by one.

III. EXACT SECRECY OUTAGE ANALYSIS
This section investigates the exact secrecy outage analysis
for DF buffer-aided relaying networks with a multi-antenna
destination. The secrecy outage probability is defined as the
probability that the achievable secrecy rate is less than the
predefined secrecy rate Rs (bit/s/Hz). The secrecy outage
probability of this system can be represented as [12]

Pout (γth) =
N∑
n=1

πnPout,n (γth) , (15)

where N = (L + 1)M is the total number of states, πn and
Pout,n (γth) denote the stationary distribution probability and
the secrecy outage probability at state sn, and γth

1
= 22Rs is

the secrecy outage threshold. It is worth noting that the expo-
nential term is ‘‘2R′′s due to the whole transmission process is
divided into two time slots.

Next, we will proceed with the secrecy outage probability
of three schemes in the following subsections.

A. PRELIMINARIES
Before delving into analyzing the secrecy outage perfor-
mance of the proposed transmission schemes, we first define

random variables X =

∣∣∣∣hSR′M1,n

∣∣∣∣2 and Y =

∥∥∥∥h1R′′M2,n
D

∥∥∥∥2.
Moreover, for the tractability of analysis, we denote γ̄SR =
E
(
γSRi

)
, γ̄RD = E

(
γRjD

)
, γ̄SE = E (γSE ), γ̄RE = E

(
γRjE

)
and γ̄DE = E (γDE ) and the noise variance is σ 2

= 1. Then
we present the CDF or PDF of these random variables in the
following analysis.
Lemma 1: The CDF of X is given by

FX (x) =
M1,n−1∑
s=0

M1 (s)
N1 (s)

(
1− e−N1(s)x

)
(16)

where M1 (s)=
(
M1,n − 1

s

)
(−1)sM1,nPS

γ̄SR
and N1 (s) =

(s+1)PS
γ̄SR

.
Proof: The proof can be found in [28].

Lemma 2: The CDF of Y can be expressed as

FY (y) =
∑

r0+r1+···+rND=M2,n

M2,n!

r0!r1! · · · rND !

×
(−1)M2,n−r0

ND∏
m=1

[0 (m)]rm

(
PRy
γ̄RD

)T 1
RD

e−
(M2,n−r0)PRy

γ̄RD (17)

where T 1
RD =

ND∑
m=1

(m− 1)rm, and r0, r1 · · · rND ∈{
0, 1, · · ·M2,n

}
.

Proof: Without loss of generality, we define Y1 =∥∥∥h1RjD∥∥∥2. According to [29], we find that Y1 is a chi-squared
random variable with 2ND degrees of freedom if D adopts
MRC processing. Hence its CDF is given by

FY1 (y) = 1−
ND∑
m=1

(
PRy
γ̄RD

)m−1 1
0 (m)

e−
PRy
γ̄RD , (18)

Noticing that there is M2,n available relays for transmis-
sion, the CDF of Y can be further expressed as FY (y) =[
FY1 (y)

]M2,n . Then, utilizing the multinomial theorem,
the CDF of Y can be easily derived.

B. THE MRC SCHEME
From (15), in order to derive the secrecy outage probability of
MRC, we will analysis PAout,n (γth) first. For the notation con-

venience, we define γ ASR′M1,n
E =

(
1+ γ ASR′M1,n

)
/
(
1+ γ ASE

)
and γ AR′′M2,n

DE =

(
1+ γ AR′′M2,n

D

)
/

(
1+ γ AR′′M2,n

E

)
. According

to [16], the secrecy outage probability at state sn under the
MRC scheme is given by

PAout,n (γth) = Fγ A
SR′M1,n

E
(γth) · Fγ A

R′′M2,n
DE
(γth) (19)

Theorem 1: The CDF of γ ASR′M1,n
E and γ AR′′M2,n

DE are respec-

tively given by

Fγ A
SR′M1,n

E
(x)

=

M1,n−1∑
s=0

M1 (s)
N1 (s)

1− PSe
−
N1(s)(x−1)

PS

PS + N1 (s) γ̄SEx

 (20)

Fγ A
R′′M ,nDE

(x)

=

∑
r0+r1+···+rND=M2,n

T 1
RD∑
s=0

(
T 1
RDs

)
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×
M2,n!

r0!r1! · · · rND !
(−1)M2,n−r0

ND∏
m=1

[0 (m)]rm

(
PR
γ̄RD

)T 1
RD PR
γ̄RE

×

(
x − 1
PR

)T 1
RD−s e−

(M2,n−r0)(x−1)
γ̄RD xss![

PR
γ̄RE
+
(M2,n−r0)PRx

γ̄RD

]s+1 (21)

Proof: See Appendix A.
Furthermore, note that for the MRC scheme, the probabil-

ities of selecting the source-to-relay and relay-to-destination
link are not equal, which is different from [12]. To make the
following analysis tractable, we denote PARD,n as the proba-
bilities to select the relay-to-destination link at state sn under
the MRC scheme. We also divide the sets of states which
can be transferred from state sn within one step into two sets,
denoted as �1

n and �
2
n. If the source-to-relay link is selected,

the buffer state will transfer from state sn to a certain state
in �1

n. Similarly, if the relay-to-destination link is chosen,
the buffer state will transfer to one of states in �2

n.
Theorem 2: The probability to select the relay-to-

destination link at state sn under the MRC scheme is
expressed as (22), as shown at the bottom of this page.

Proof: If the buffers are full or empty, i.e., M1,n = 0 or
M2,n = 0, it is clear that PARD,n = 1 and PARD,n = 0 always
holds. When M1,nM2,n 6= 0, the relay-to-destination link is
selected if the SNR of the second hop is higher than the first
hop, which can be expressed as

PARD,n = Pr
(
γ ASR′M1,n

< γ AR′′M2,n
D

)
=

∫
∞

0
FX

(
PRy
PS

)
fY (y) dy (23)

The PDF of Y can be derived by taking the derivative of
FY (y) with respect to y. Substituting (16) and the PDF of Y
into (23), the desired result can be derived as in (22).

Now, we turn our attention to the stationary distribution
probability under the MRC scheme πA. Firstly, we model
the state transition of the buffer as a Markov chain according
to [12]. Without loss of generality, we denote AA ∈N×N as the
state transition matrix of the MRC scheme, where the entry
AAv,n = Pr [T (t + 1) = sv |T (t) = sn ] is the probability of
moving from state sn at time slot t to state sv at time slot t+1,
sv represents one of the elements in �1

n or �
2
n.

Specifically, if there is no change in buffer state, i.e., sv =
sn, the data packet is not successfully received and decoded,

in other words, an outage event occurs. On the other hand,
when sv ∈ �1

n or sv ∈ �2
n, it means that the current state

changes to another state within one step, that is to say, data
transmission is completed between the corresponding nodes.
From the analysis above, AA can be further expressed as

AAv,n =



PAout,n (γth) , sv = sn(
1− PAout,n (γth)

) (
1− PARD,n

)
M1,n

, sv ∈ �1
n(

1− PAout,n (γth)
)
PARD,n

M2,n
, sv ∈ �2

n

0, else

(24)

Then, we can obtain the following key result by utilizing
the analysis above.
Theorem 3: The stationary distribution probability vector

of the MRC scheme can be represented as

πA
=

(
AA − I + Q

)−1
b. (25)

where πA
=
[
πA
1 ,π

A
2 · · · ,π

A
N

]T , b = (1, 1, · · · , 1)T , I is
the identity matrix and Q is the all-ones matrix.

Proof: The proof can be found in [12].
It is worth noting that the closed-form expression of

secrecy outage probability under the MRC scheme can be
easily derived by substituting (19) and (25) into (15) and per-
forming some mathematical manipulations, which provides
an efficient way to evaluate the system secrecy performance.

C. THE MRC/CJ SCHEME
The secrecy outage probability at state sn under the MRC/CJ
scheme is given by

PBout,n (γth) = Fγ B
SR′M1,n

E
(γth) · Fγ B

R′′M2,n
DE
(γth) (26)

Theorem 4: The CDF of γ BSR′M1,n
E and γ BR′′M2,n

DE can be

respectively expressed as

Fγ B
SR′M1,n

E
(x)

=

M1,n−1∑
s=0

M1 (s)
N1 (s)

1− PSe
−
N1(s)(x−1)

PS

PS + N1 (s) γ̄SEx

 (27)

Fγ B
R′′M2,n

DE
(x)

=

∑
r0+r1+···+rND−1=M2,n

T 2
RD∑
s=0

(
T 2
RD
s

)

PARD,n =



1, M1,n = 0

M1,n−1∑
s=0

M1(s)
N1(s)

1− ∑
r0+r1+···+rND
=M2,n−1

(M2,n−1)!M2,n(−1)
M2,n−1−r0P

T1RD
R

(
T 1
RD+ND−1

)
!

r0!r1!···rND !0(ND)
ND
5
m=1

[(0(m))]rm γ̄
T1RD
RD

[
PRN1(s)
PS
+
(M2,n−r0)PR

γ̄RD

]T1RD+ND
 , M1,nM2,n 6= 0

0, M2,n = 0

(22)
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PBRD,n=



1, M1,n = 0

M1,n−1∑
s=0

M1(s)
N1(s)

1− ∑
r0+r1+···+rND−1
=M2,n−1

(M2,n−1)!M2,n(−1)
M2,n−1−r0P

T2RD
R

(
T 2
RD+ND−2

)
!

r0!r1!···rND−1!0(ND−1)
ND−1
5
m=1

[(0(m))]rm γ̄
T2RD
RD

[
PRN1(s)
PS
+
(M2,n−r0)PR

γ̄RD

]T2RD+ND−1
,M1,nM2,n 6= 0

0, M2,n = 0

(30)

×
M2,n!

r0!r1! · · · rND−1!
(−1)M2,n−r0

ND−1∏
m=1

[0 (m)]rm

(
PR
γ̄RD

)T 2
RD

×
e−
(M2,n−r0)(x−1)

γ̄RD xss!
γ̄DE

(
x − 1
PR

)T 2
RD−s

(
γ̄RE

PRPD

)s
×3

(28)

where T 2
RD =

ND−1∑
m=1

(m− 1)rm, r0, r1 · · · rND−1 ∈{
0, 1, · · ·M2,n

}
and 3 is given by

3 =



eεκEi (−εκ) (PDε−1)+
PD
κ
, s = 0

eεκEi (−εκ) (κ−PD−PDεκ)+
1
ε
−PD, s = 1

(1−PDε)
[

s∑
k=1

(k−1)!(−κ)s−k

s!εk −
(−κ)seεκEi(−εκ)

s!

]
+PD

[
s−1∑
k=1

(k−1)!(−κ)s−k−1

(s−1)!εk
−
(−κ)s−1eεκEi(−εκ)

(s−1)!

]
, s > 1

(29)

with ε= (M2,n−r0)xγ̄RE
PDγ̄RD

+
1
PD

, κ = PD
γ̄DE

and Ei (·) being the
exponential integral function [30, eq. (8.211.1)].

Proof: See Appendix B.
Theorem 5: The probability to select the relay-to-

destination link at state sn under the MRC/CJ scheme is given
by (30), as shown at the top of this page.

Proof: The proof follows similar lines as that of
Theorem 2, hence is omitted.
Following the similar analysis as MRC, we can also obtain

the state transition matrix and stationary distribution proba-
bility vector of MRC/CJ, and they are expressed as

ABv,n =



PBout,n (γth) , sv = sn(
1− PBout,n (γth)

) (
1− PBRD,n

)
M1,n

, sv ∈ �1
n(

1− PBout,n (γth)
)
PBRD,n

M2,n
, sv ∈ �2

n

0, else

(31)

πB
=

(
AB − I + Q

)−1
b. (32)

Finally, substituting (26) and (32) into (15) and performing
some mathematical manipulations, the secrecy outage prob-
ability of the MRC/CJ scheme in closed-form is derived.

D. THE ZFB/CJ SCHEME
The secrecy outage probability at state sn under the ZFB/CJ
scheme is given by

PCout,n (γth) = Fγ C
SR′M1,n

E
(γth) · Fγ C

R′′M2,n
DE
(γth) (33)

Theorem 6 : The CDF of γ CSR′M1,n
E and γ CR′′M2,n

DE are given

by

Fγ C
SR′M1,n

E
(x)

=

M1,n−1∑
s=0

M1 (s)
N1 (s)

1− κND−2e− N1(s)(x−1)
PS ×91

(ND − 3)!PD

 (34)

Fγ C
R′′M2,n

DE
(x)

=

M2,n−1∑
s=0

M2 (s)
N2 (s)

1− κND−1e− N2(s)(x−1)
PR ×92

(ND − 2)!PD

 (35)

where β1 (s) = 1
PD
+

N1(s)γ̄SE x
PSPD

, β2 (s) = 1
PD
+

N2(s)γ̄RE x
PRPD

, 91
and 92 are given by

91=



−eβ1(s)κEi (−β1 (s) κ)

+PD
(
β1 (s) eβ1(s)κEi (−β1 (s) κ)+ 1

κ

)
,

ND = 3

(−1)ND−4 β1 (s)ND−3 eβ1(s)κEi (−β1 (s) κ)

+

ND−3∑
k=1

(k−1)! (−β1 (s))ND−3−k κ−k

+PD
[
(−1)ND−3 β1 (s)ND−2 eβ1(s)κEi (−β1 (s) κ)

+

ND−2∑
k=1

(k−1)! (−β1 (s))ND−2−k κ−k
]
, ND > 3

(36)

92=



−eβ2(s)κEi (−β2 (s) κ)

+PD
(
β2 (s) eβ2(s)κEi (−β2 (s) κ)+ 1

κ

)
,

ND = 2

(−1)ND−3 β2 (s)ND−2 eβ2(s)κEi (−β2 (s) κ)

+

ND−2∑
k=1

(k−1)! (−β2 (s))ND−2−k κ−k

+PD
[
(−1)ND−2 β2 (s)ND−1 eβ2(s)κEi (−β2 (s) κ)

+

ND−1∑
k=1

(k−1)! (−β2 (s))ND−1−k κ−k
]
, ND > 2

(37)
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Proof: See Appendix C.
For ZFB/CJ, recalling the i.i.d assumption of the main

channel, the probabilities to select the first or second
hop are equal, i.e, 1/(M1,n + M2,n), hence the probabil-
ity of data packet transmission successfully is equal to(
1− PCout,n (γth)

)
/
(
M1,n +M2,n

)
, which is the same as [12].

As such, the state transition matrix of the ZFB/CJ scheme is
given by

ACv,n =


PCout,n (γth) , sv = sn(
1− PCout,n (γth)

)
M1,n +M2,n

, sv ∈ �1
n ∪�

2
n

0, else

(38)

In addition, the stationary distribution probability vector
of ZFB/CJ πC

=
(
AC − I + Q

)−1 b, which can also be
obtained by following the similar analysis as in Theorem 3.
To this end, we can obtain the closed-form expression of
the secrecy outage probability under the ZFB/CJ scheme by
substituting (33) and πC into (15).

IV. ASYMPTOTIC SECRECY OUTAGE ANALYSIS
As can be seen, the form of exact closed-form expression is
too complicated, we present the asymptotic secrecy outage
analysis at high SNR regime to obtain more insights. Without
loss of generality, we denote γ̄ as the average SNR and we
have γ̄ = γ̄SR = γ̄RD, γ̄SE = γ̄RE . Moreover, we assume that
γ̄SR → ∞ and γ̄SE is fixed, which corresponds the scenario
that the main channel is much better than the eavesdropper’s
channel, that is to say, when the eavesdropper E is located
far away from S and D, or the eavesdropper’s channel suffers
from significant shadowing effect.

A. THE MRC SCHEME
Theorem 7 : The asymptotic secrecy outage probability of the
MRC scheme can be approximated as

PAout (γth)
γ̄→∞
≈

N∑
n=1

πA
n θ

A
1,nθ

A
2,n

(
γth

γ̄

)M1,n+NDM2,n

(39)

where

θA1,n =

M1,n∑
s=0

(
M1,n
s

)(
γth − 1
γth

)M1,n−s

γ̄ sSEs! (40)

and

θA2,n =
1

(ND!)M2,n

NDM2,n∑
s=0

(
NDM2,n

s

)

×

(
γth − 1
γth

)NDM2,n−s

γ̄ sREs! (41)

Proof: See Appendix D.
From Theorem 7, we can gather some insights exactly.

Moreover, we can also obtain more insights by analyzing
the asymptotic result on the perspective of the buffer states.
Specifically, we first denote s1 and sN as the states that all

the buffers are empty and full respectively. Then we divide
the set of the whole buffer states into three parts, i.e., 4 =
41 ∪ 42 ∪ 43, where 41 represents the set of the states
in which all the buffers are neither full nor empty, 42 is
the set of the states in which at least one buffer is either
full or empty except s1 and sN , and 43 = {s1} ∪ {sN }. The
number of elements in 41 and 42 are N1 = (L − 1)M and
N2 = N − 2− (L − 1)M .
Thenwe turn our attention to the asymptotic secrecy outage

probability derived from the division of the buffer states and
the following key result can be easily obtained.
Corollary 1: The asymptotic secrecy outage probability of

the MRC scheme can be further expressed as

PAout (γth)
γ̄→∞
≈ 8A

1 +8
A
2 +8

A
3 , (42)

where

8A
1 = πA

1 θ
A
1

(
γth

γ̄

)M
+ πA

N θ
A
2

(
γth

γ̄

)NDM
, (43)

8A
2 =

∑
sn∈41

πA
n θ

A
1 θ

A
2

(
γth

γ̄

)M(1+ND)
, (44)

8A
3 =

∑
sn∈42

πA
n θ

A
1,nθ

A
2,n

(
γth

γ̄

)M1,n+NDM2,n

, (45)

where πA
1 and πA

N represent the corresponding stationary
probability at s1 and sN under the MRC scheme, θA1 and θA2
can be obtained by substituting M1,n = M and M2,n = M
into (40) and (41) respectively.

Proof: Recalling the assumption of state s1, which
means that all the links of the first hop are available and all
the links of the second hop are not available, i.e., M1,n =

M and M2,n = 0, hence the corresponding term at s1 is
πA
1 θ

A
1 (γth/γ̄ )

M . We can also derive the corresponding term
at state sN by following the similar analysis. For the states
which belong to 41, we have M1,n = M and M2,n = M and
the corresponding term 8A

2 can be derived as (44). Similarly,
8A

3 can be expressed as (45) when the buffer states belong to
the set 42.
Note that Corollary 1 is derived based on the perspective

of the buffer states, thus, in the following analysis, we study
two special scenario according to the buffer size to analyze
the secrecy diversity gain and the secrecy coding gain: 1)
L 6→ ∞, which is a scenario that each buffer at the relays can
only store finite data packets. 2) L →∞, which is an extreme
scenario that means the whole communication process is not
limited by buffer size.

For these two scenarios under the MRC scheme, we have
the following result.
Corollary 2: The asymptotic secrecy outage probability of

the MRC scheme can be further simplified as

PAout (γth)
γ̄→∞
≈

πA
1 θ

A
1

(
γth

γ̄

)M
, L 6→ ∞

21

(
γth
γ̄

)M(1+ND)
, L →∞

(46)

where 21 = θ
A
1 θ

A
2 .
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Proof: From Corollary 1, for L 6→ ∞, we find that the
terms corresponding to state sN , 8A

2 and 8A
3 are high order

terms compared to the term corresponding to state s1 when

γ̄ → ∞, hence PAout (γth)
γ̄→∞
≈ πA

1 θ
A
1 (γth/γ̄ )

M . Moreover,
for L → ∞, the states in 42 occupy the vast majority of
all states due to the fact that lim

L→∞
(N1/N ) = 1, hence the

stationary state converges to a uniform distribution and the
sum of the stationary state probabilities equals to 1. We also
have 8A

1 + 8
A
2 ≈ 0, thus the asymptotic secrecy outage

probability of the MRC scheme can be approximated as (46).

In the following part, we turn our attention to the secrecy
diversity gain and the secrecy coding gain and we have the
following result.
Corollary 3: The secrecy diversity gain and the secrecy

coding gain under the MRC scheme are respectively given by

GAd =

{
M , L 6→ ∞
M (1+ ND) , L →∞

(47)

GAc =


(
πA
1 θ

A
1

)− 1
M

γth
, L 6→ ∞

2
−

1
M(1+ND)

1
γth

, L →∞

(48)

Proof: On the basis of [31] and [32], the asymptotic
secrecy outage probability under the MRC scheme can be

expressed as PAout (γth)
γ̄→∞
≈

(
GAc γ̄

)−GAd . Hence the secrecy
diversity gain and the secrecy coding gain of theMRC scheme
under L 6→ ∞ and L → ∞ scenarios can be easily derived
by using the expression (46).

B. THE MRC/CJ SCHEME
Theorem 8: The asymptotic secrecy outage probability of the
MRC/CJ scheme can be approximated as

PBout (γth)
γ̄→∞
≈

N∑
n=1

πB
n θ

B
1,nθ

B
2,n

(
γth

γ̄

)M1,n+(ND−1)M2,n

(49)

where

θB1,n =

M1,n∑
s=0

(
M1,n
s

)(
γth − 1
γth

)M1,n−s

γ̄ sSEs! (50)

θB2,n =
PD

[(ND − 1)!]M2,n γ̄DE

(ND−1)M2,n∑
s=0

(
(ND − 1)M2,n

s

)

×

(
γth − 1
γth

)(ND−1)M2,n−s γ̄ sREs!
PsD

11 (51)

with 11 =
∫
∞

0
e−κu(
1
PD
+u
)s du which is given by

11 =



1
κ
, s = 0

−e

κ

PD Ei
(
−
κ

PD

)
, s = 1

s−1∑
k=1

(k − 1)! (−κ)s−k−1

(s− 1)!

(
1
PD

)−k
−
(−κ)s−1

(s− 1)!
e

κ

PD Ei
(
−
κ

PD

)
,

s ≥ 2

(52)

Proof: See Appendix E.
Corollary 4: The asymptotic secrecy outage probability of the
MRC/CJ scheme can be further expressed as

PBout (γth)
γ̄→∞
≈ 8B

1 +8
B
2 +8

B
3 (53)

where

8B
1 = πB

1 θ
B
1

(
γth

γ̄

)M
+ πB

N θ
B
2

(
γth

γ̄

)(ND−1)M
, (54)

8B
2 =

∑
sn∈41

πB
n θ

B
1 θ

B
2

(
γth

γ̄

)MND
, (55)

8B
3 =

∑
sn∈42

πB
n θ

B
1,nθ

B
2,n

(
γth

γ̄

)M1,n+(ND−1)M2,n

, (56)

Proof: By following the similar analysis as in
Corollary 1, we can easily obtain the desired result after
some mathematical manipulations.
Similarly, for L 6→ ∞ and L → ∞ scenarios under the

MRC/CJ scheme, we can also obtain the following result.
Corollary 5: The asymptotic secrecy outage probability of

the MRC/CJ scheme can be further simplified as

PBout (γth)
γ̄→∞
≈

(
πB
1 θ

B
1 + πB

N θ
B
2

)(γth
γ̄

)M
, L 6→ ∞,ND = 2

πB
1 θ

B
1

(
γth

γ̄

)M
, L 6→ ∞,ND > 2

22

(
γth

γ̄

)MND
, L →∞

(57)

where 22 = θ
B
1 θ

B
2 .

Proof: Following the similar analysis as inCorollary 2,
the above result can be easily obtained.
Corollary 6 : The secrecy diversity gain and the secrecy

coding gain under the MRC/CJ scheme are respectively
given by

GBd =

{
M , L 6→ ∞
MND, L →∞

(58)
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GBc =



(
πB
1 θ

B
1 + πB

N θ
B
2

)− 1
M
/γth, L 6→ ∞,ND = 2(

πB
1 θ

B
1

)− 1
M

γth
, L 6→ ∞,ND > 2

2
−

1
MND

2

γth
, L →∞

(59)

Proof: The proof follows similar lines as that of
Corollary 3, hence is omitted.

C. THE ZFB/CJ SCHEME
Theorem 9: The asymptotic secrecy outage probability of the
ZFB/CJ scheme can be approximated as

PCout (γth)
γ̄→∞
≈

N∑
n=1

πC
n θ

C
1,nθ

C
2,n

(
γth

γ̄

)M1,n+M2,n

(60)

where

θC1,n =

(
PD
γ̄DE

)ND−2 M1,n∑
s=0

(
M1,n

s

)

×

(
γth − 1
γth

)M1,n−s γ̄ sSEs!

(ND − 3)!PsD
12 (61)

θC2,n =

(
PD
γ̄DE

)ND−1 M2,n∑
s=0

(
M2,n

s

)

×

(
γth − 1
γth

)M2,n−s γ̄ sREs!

(ND − 2)!PsD
13 (62)

with 12 =
∫
∞

0
uND−3e−κu(

1
PD
+u
)s du and 13 =

∫
∞

0
uND−2e−κu(

1
PD
+u
)s du,

which are respectively given by

12 ≈



(ND−3−s)!
κND−2−s

, ND−s−3 ≥ 0

−e

κ

PD Ei
(
−
κ

PD

)
, ND−s−3 =−1

s−ND+2∑
k=1

(k−1)! (−κ)s−ND+2−kPkD

(s−ND + 2)!

−

(−κ)s−ND+2 e

κ

PD Ei
(
−
κ

PD

)
(s−ND + 2)!

,

ND−s−3 ≤−2

(63)

13 ≈



(ND−2−s)!
κND−1−s

, ND−s−2 ≥ 0

−e

κ

PD Ei
(
−
κ

PD

)
, ND−s−2 =−1

s−ND+1∑
k=1

(k−1)! (−κ)s−ND+1−kPkD

(s−ND + 1)!

−

(−κ)s−ND+1 e

κ

PD Ei
(
−
κ

PD

)
(s−ND + 1)!

,

ND−s−2 ≤−2

(64)

Proof: See Appendix F.
Corollary 7 : The asymptotic secrecy outage probability of

the ZFB/CJ scheme can be further written as

PCout (γth)
γ̄→∞
≈ 8C

1 +8
C
2 +8

C
3 ,

(65)

where

8C
1 =

(
πC
1 θ

C
1 + πC

N θ
C
2

)(γth
γ̄

)M
, (66)

8C
2 =

∑
sn∈41

πC
n θ

C
1 θ

C
2

(
γth

γ̄

)2M

, (67)

8C
3 =

∑
sn∈42

πC
n θ

C
1,nθ

C
2,n

(
γth

γ̄

)M1,n+M2,n

, (68)

Proof: By following similar analysis as in Corollary 1,
we can easily obtain the desired result after some mathemat-
ical manipulations.
Corollary 8: The asymptotic secrecy outage probability of

the ZFB/CJ scheme can be further simplified as

PCout (γth)
γ̄→∞
≈


(

πC
1 θ

C
1 + πC

N θ
C
2

) (
γth
γ̄

)M
, L 6→ ∞

23

(
γth
γ̄

)2M
, L →∞

(69)

where 23 = θ
C
1 θ

C
2 .

Proof: Following similar analysis as in Corollary 2,
the above result can be easily obtained.
Corollary 9: The secrecy diversity gain and the secrecy

coding gain under the ZEB/CJ scheme are given by

GCd =

{
M , L 6→ ∞
2M , L →∞

(70)

GCc =


(

πC
1 θ

C
1 + πC

N θ
C
2

)− 1
M
/γth, L 6→ ∞

2
−

1
2M

3
γth

, L →∞

(71)

Proof: The proof follows similar lines as that of
Corollary 3, hence is omitted.
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FIGURE 2. Secrecy outage probability of the MRC scheme vs. the average
SNR γ̄ with different destination antenna number ND when M = 2,
γ̄SE = 10dB.

FIGURE 3. Secrecy outage probability of the MRC scheme vs. the average
SNR γ̄ with different number of relays M when ND = 3, γ̄SE = 10dB.

V. SIMULATION ANALYSIS
In this section, we present simulation results to verify the
theoretical analysis obtained in the above sections for the
three transmission schemes and investigate the impact of
different curial parameters on the secrecy outage performance
of DF buffer-aided relaying networks with a multi-antenna
destination. Without loss of generality, we assume that pre-
defined secrecy rate Rs = 1 bit/s/Hz, and all transmission
powers are normalized to unity. As indicated in these figures,
we find that the analytical results are in exact agreement with
the Monte Carlo simulations and the asymptotic curves keep
completely tight at high SNR regimes which corroborates the
accuracy of the theoretical analysis.

Fig. 2 and 3 illustrate the secrecy outage probability of
the considered system with MRC for different number of
antennasND and different number of relaysM under L 6→ ∞
and L → ∞ scenarios. It is clear that the secrecy outage
probability of the system is degraded as ND andM increases,
both in the case with L 6→ ∞ and L → ∞. This is intuitive
since increasing ND or M provides additional secrecy diver-
sity gain or secrecy coding gain. Specifically, from Fig. 2,

FIGURE 4. Secrecy outage probability of the MRC/CJ scheme vs. the
average SNR γ̄ with different destination antenna number ND when
M = 2, γ̄SE = γ̄DE = 10dB.

FIGURE 5. Secrecy outage probability of the MRC/CJ scheme vs. the
average SNR γ̄ with different number of relays M and when ND = 3,
γ̄SE = γ̄DE = 10dB.

we can see that when L 6→ ∞, the secrecy diversity gains of
ND = 2, 4, 6 are both 2, while under the scenario L → ∞
become 6, 10, 14. From Fig. 3, we can also observe that the
secrecy diversity gains of M = 1, 2, 3 are 1, 2, 3 under the
scenario L 6→ ∞ while increases to 4, 8, 12 when L → ∞.
Moreover, increasing ND and M can improve the secrecy
coding gain of the considered system and all these above
observations can be verified by (47) and (48).

Fig. 4 and 5 present the secrecy outage probability of
the considered system with MRC/CJ for different number of
antennasND and different number of relaysM under L 6→ ∞
and L → ∞ scenarios. We find a similar phenomenon as
the above figures in Fig. 4 and 5. As shown in Fig. 4, if the
number of relays is fixed, i.e., M = 2, the secrecy diversity
gain of the MRC/CJ scheme is 2 regardless of the antennas
numbers ND under the scenario L 6→ ∞. On the contrary,
the secrecy diversity gains of ND = 2, 4, 6 become 4, 8, 12,
i.e.,MND when L →∞. As can be observed in Fig. 5, when
M = 1, 2 and 3, the secrecy diversity gains are 1, 2, and
3 under the scenario L 6→ ∞ while increase linearly with
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FIGURE 6. Secrecy outage probability of the ZFB/CJ scheme vs. the
average SNR γ̄ with different destination antenna number ND when
M = 2, γ̄SE = γ̄DE = 10dB.

FIGURE 7. Secrecy outage probability of the ZFB/CJ scheme vs. the
average SNR γ̄ with different number of relays M and when ND = 5,
γ̄SE = γ̄DE = 10dB.

ND when L → ∞. In addition, it is also observed that the
secrecy coding gain improves with the increase of ND andM ,
which agrees with the theoretical asymptotic analysis.

Fig. 6 and 7 examine the impacts of different number of
antennas ND at the destination and different number of relays
M on the secrecy outage probability of the ZFB/CJ scheme,
respectively. As illustrated in Fig. 6, no matter how much ND
is, the secrecy diversity gains remain unchanged, specifically,
the secrecy diversity gain achieves M under the scenario
L 6→ ∞ while achieves 2M under the scenario L → ∞.
From Fig. 7, we can also find that the secrecy diversity gain
increases only with the increase of the number of relays M ,
which is in accordance with the result in (70). Similar to the
other schemes, a secrecy coding gain is observed when ND
and M increase.
Fig. 8 plots the secrecy outage probability versus the aver-

age SNR γ̄ for the three proposed schemes. As illustrated,
two destination jamming schemes achieve better performance
than the MRC scheme under the scenario L 6→ ∞. Specif-
ically, ZFB/CJ outperforms MRC/CJ and MRC across the

FIGURE 8. Secrecy outage probability of the proposed schemes vs. the
average SNR γ̄ when M = 2, ND = 4, γ̄SE = 15dB, γ̄DE = 5dB.

FIGURE 9. Secrecy outage probability of the proposed schemes vs.
destination antenna number ND when M = 2, γ̄SR = 10dB,
γ̄SE = γ̄DE = 6dB.

entire SNR range of interest due to a jamming signal can be
transmitted not only in the first hop but also in the second
hop, which degrades the quality of eavesdropperąŕs channel
significantly. MRC/CJ outperforms MRC in the low SNR
regime while attains similar outage performance in the high
SNR regime. It is also observed that the larger secrecy coding
gain of ZFB/CJ can be obtained than the other schemes and all
schemes achieve the same secrecy diversity gain of M when
L 6→ ∞. On the other hand, under the scenario L → ∞,
ZFB/CJ outperforms MRC/CJ and MRC in the low SNR
regime, while the opposite holds in the high SNR regime. This
is quite intuitive since MRC/CJ and MRC can achieve much
larger secrecy diversity gain than ZFB/CJ.

Fig. 9 investigates the impacts of antenna numbers ND
on the secrecy outage probability for the proposed schemes.
As can be readily observed, when L 6→ ∞, ZFB/CJ always
attains better performance than the other two schemes. More-
over, the secrecy outage probability of ZFB/CJ is constantly
degraded with increasing ofND, while an outage performance
floor occurs for MRC andMRC/CJ.While under the scenario
L → ∞, the secrecy performance of MRC and MRC/CJ
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FIGURE 10. Secrecy outage probability of the proposed schemes vs. the
buffer size L when M = 2, ND = 5, γ̄ = 20dB, γ̄SE = 12dB, γ̄DE = 10dB.

are much better than ZFB/CJ with the increase of ND, due
to the fact that when L → ∞, the states of buffer which are
neither full nor empty dominate the system, that is to say, all
of the links in the first hop and second hop are always avail-
able. Meanwhile, the reception performance and the jamming
intensity increase with the increase of ND. It is clearly that
the improvement of reception performance makes more con-
tributions to the system secrecy performance. Hence, when
L →∞ and ND is lager, the MRC/CJ scheme can obtain the
best secrecy performance than two other schemes. However,
the MRC scheme is the most appropriate scheme of the three
proposed schemes after comprehensive consideration about
complexity and system performance in practical applications.

Fig. 10 presents the secrecy outage probability versus the
buffer size L for the three proposed schemes. As can be seen,
the secrecy outage probability degrades with the increase of
the buffer size no matter which scheme is adopted. That is to
say, the secrecy performance of the considered system can be
enhanced by enlarging the buffer size L.

VI. CONCLUSION
In this paper, we investigate the secrecy outage performance
of the DF buffer-aided relaying networks with a multi-
antenna destination. To fully exploit the advantages of multi-
antenna, three transmission schemes with half-duplex and
full-duplex operations are proposed. Moreover, we adopt the
max-link relay selection scheme to enhance the secrecy per-
formance. By utilizing the Markov chain theory, exact and
asymptotic closed-form expressions for the secrecy outage
probability of all the proposed schemes are derived. Mean-
while, considering L 6→ ∞ and L → ∞ scenarios, simple
and informative asymptotic results are also presented, which
enables us to obtain further insights into the impact of key
parameters on the secrecy performance. Our findings suggest
that all of the proposed schemes achieve a secrecy diversity
gain of M under the scenario L 6→ ∞. On the other hand,
when L →∞, the secrecy diversity gain of ZFB/CJ achieves
2M while MRC and MRC/CJ achieveM (1+ ND) andMND

respectively. Secrecy coding gain of the system which also
differs from different schemes, improves with the increase
of the number of relays M and the number of destination’s
antennas ND. Furthermore, ZFB/CJ outperforms MRC and
MRC/CJ under the scenario L 6→ ∞. The same results can be
obtained in the low SNR regime, while the opposite holds in
the high SNR regime when L →∞. In this work, we assume
that perfect channel state information can be acquired, hence
the impact of imperfect channel estimates on the system
secrecy performance under three transmission schemes could
be investigated in the future work.

APPENDIX A
Without loss of generality, we first define Z1 = |hSE |2.
According to the order statistic, the CDF of γ ASR′M1,n

E is calcu-

lated as

Fγ A
SR′M1,n

E
(x) = Pr

(
1+ PSX
1+ PSZ1

< x
)

=

∫
∞

0
FX

(
x − 1
PS
+ xz

)
fZ1 (z) dz (72)

Recalling Z1 is an exponential random variable, and the PDF

of Z1 is fZ1 (z) =
PS
γ̄SE

e−
PS z
γ̄SE , then we substitute it and (16)

into (72), and the CDF of γ ASR′M1,n
E can be easily derived.

By utilizing the formula [30, eq. (3.351.3)] and following the
similar operation, we can also obtain the CDF of γ AR′′M2,n

DE .

Hence the desired results in Theorem 1 can be obtained.

APPENDIX B
Due to the fact that γ BSR′M1,n

E = γ ASR′M1,n
E , hence we turn our

attention to the proof for the CDF of the γ BR′′M2,n
DE . Let us

denote Y2 =

∥∥∥∥h2R′′M2,n
DE

∥∥∥∥2, Z2 = ∣∣hRjE ∣∣2, U1 = |hDE |2.

Considering the receiving antennas are ND − 1, according to
Lemma 2, we have

FY2 (y) =
∑

r0+r1+···+rND−1=M2,n

M2,n!

r0!r1! · · · rND−1!

×
(−1)M2,n−r0

ND−1∏
m=1

[0 (m)]rm

(
PRy
γ̄RD

)T 2
RD

e−
(M2,n−r0)PRy

γ̄RD (73)

Similarly, by utilizing order statistic, the CDF of γ BR′′M2,n
DE

can be expressed as

Fγ B
R′′M2,n

DE
(x) = Pr

(
1+ PRY2
1+ PRZ2

1+PDU1

< x

)

=

∫
∞

0

∫
∞

0
FY2

(
x − 1
PR
+

xz
1+ PDu

)
× fZ2 (z) dzfU1 (u) du (74)
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Fγ B
R′′M ,nDE

(x) =
∑

r0+r1+···+rND−1=M2,n

T 2
RD∑
s=0

(
T 2
RD
s

)
×

M2,n!

r0!r1! · · · rND−1!
(−1)M2,n−r0

ND−1∏
m=1

[0 (m)]rm

(
PR
γ̄RD

)T 2
RD e−

(M2,n−r0)(x−1)
γ̄RD xss!
γ̄DE

×

(
x − 1
PR

)T 2
RD−s

(
γ̄RE

PRPD

)s


∫
∞

0

e−
PDu
γ̄DE du[

u+ (M2,n−r0)xγ̄RE
PDγ̄RD

+
1
PD

]s+1+
︸ ︷︷ ︸

31

PD

∫
∞

0

ue−
PDu
γ̄DE du[

u+ (M2,n−r0)xγ̄RE
PDγ̄RD

+
1
PD

]s+1
︸ ︷︷ ︸

32︸ ︷︷ ︸
3


(75)

Substituting the PDF of Z2 and U1 and (73) into (74), we can
obtain the CDF of γ BR′′M2,n

DE in (75), as shown at the top of this
page.

Tomake the analysis tractable, we define ε= (M2,n−r0)xγ̄RE
PDγ̄RD

+

1
PD

and κ = PD
γ̄DE

, hence 31 and 32 can be simplified

as 31 =
∫
∞

0
e−κudu
(u+ε)s+1

and 32 =
∫
∞

0
ue−κudu
(u+ε)s+1

. For item
31, there are two cases to consider, which are s = 0 and
s ≥ 1. Utilizing the equalities [30, eq. (3.352.4)] and [30,
eq. (3.353.2)], we can derive the corresponding items under
two cases respectively. For item 32, we also consider two
cases, i.e., s = 0 and s ≥ 1. As s = 0, with the help of [30,
eq. (3.353.5)], it yields 32 = εeεκEi (−εκ)+ 1

κ
.

In order to calculate 32 as s ≥ 1, we take a change of
integral variable x + ε = t , then the calculation of 32 can be
further given by

32 =

∫
∞

ε

(t − ε) e−κ(t−ε)dt
ts+1

= eεκ
(∫
∞

ε

e−κtdt
ts
− ε

∫
∞

ε

e−κtdt
ts+1

)
, s ≥ 1 (76)

By utilizing the integral relationship [30, eq. (3.352.2)] and
[30, eq. (3.353.1)], the item32 as s ≥ 1 can be derived. With
the above analysis, the desired results inTheorem 4 are easily
derived after some mathematical manipulations.

APPENDIX C
Assuming U2 =

∣∣∣h†DEwZF ∣∣∣2, U3 = ‖hDE‖2, the PDF of U2 is
given by [33]

fU2 (u) =
(
PD
γ̄DE

)ND−2 uND−3e− PDu
γ̄DE

(ND − 3)!
, ND ≥ 3 (77)

Then, with the help of the order statistic, the CDF of
γ CSR′M1,n

E can be derived as

Fγ C
SR′M1,n

E
(x)

=

M1,n−1∑
s=0

M1 (s)
N1 (s)


1−

κND−2e−
N1(s)(x−1)

PS

(ND − 3)!PD

×


∫
∞

0

uND−3e−
PDu
γ̄DE

u+
(

1
PD
+

N1(s)γ̄SE x
PSPD

)+∫ ∞
0

PDuND−2e
−
PDu
γ̄DE

u+
(

1
PD
+

N1(s)γ̄SE x
PSPD

)
︸ ︷︷ ︸

91




(78)

Considering two cases of ND = 3 and ND > 3, and with
the help of [30, eq. (3.352.4)] and [30, eq. (3.353.5)], we can
obtain 91 as in (36) and the CDF of γ CSR′M1,n

E can be derived.

On the other hand, the CDF of U3 can be obtained when
MRT is applied, then we can obtain the PDF of U3 by taking
the derivative of the CDF of U3, which is given by

fU3 (u) =
(
PD
γ̄DE

)ND−1 uND−2e− PDu
γ̄DE

(ND − 2)!
(79)

By following similar analysis above, we can also obtain the
CDF of γ CR′′M2,n

DE , thus the desired results in Theorem 6 can

be derived.

APPENDIX D
When γ̄ →∞, with the help of ex ≈ 1+x (x → 0), the CDF

of X can be approximated as FX (x) ≈
(
PSx
γ̄SR

)M1,n
, then by

pulling the approximated CDF of X and the PDF of Z1 into
(72), we have

Fγ A
SR′M1,n

E
(x)

γ̄→∞
≈

M1,n∑
s=0

(
M1,n
s

)(
x − 1
x

)M1,n−s

× γ̄ sSEs!
(
x
γ̄

)M1,n

(80)

41362 VOLUME 7, 2019



C. Wei et al.: Secrecy Outage Performance for DF Buffer-Aided Relaying Networks With a Multi-Antenna Destination

On the other hand, utilizing theMaclaurin series expansion
of the exponential function and neglecting the higher order
terms, the CDF of Y can be approximated as FY (y) ≈

1
(ND!)

M2,n

(
PRy
γ̄RD

)NDM2,n
, by following the similar analysis

above, the CDF of γ AR′′M2,n
DE can be further approximated as

Fγ A
R′′M2,n

DE
(x)

γ̄→∞
≈

1

(ND!)M2,n

NDM2,n∑
s=0

(
NDM2,n

s

)
×

(
x − 1
x

)NDM2,n−s

γ̄ sREs!
(
x
γ̄

)NDM2,n

(81)

Substituting (80) and (81) into (15) yields to the desired
results in Theorem 7.

APPENDIX E
Recalling that the first hop of MRC/CJ is the same as the
MRC scheme, hence we have Fγ B

SR′M1,n
E
(x) = Fγ A

SR′M1,n
E
(x).

Moreover, by following similar analysis of (81), the approx-
imated CDF of γ BR′′M2,n

DE is given by

Fγ B
R′′M2,n

DE
(x)

γ̄→∞
≈

PD
[(ND − 1)!]M2,n γ̄DE

(ND−1)M2,n∑
s=0

(
(ND − 1)M2,n

s

)
×

(
x − 1
x

)(ND−1)M2,n−s γ̄ sREs!
PsD

∫
∞

0

e−κudu(
1
PD
+ u

)s
︸ ︷︷ ︸

11

×

(
x
γ̄

)(ND−1)M2,n

(82)

Now, we turn our attention to the inner integral item 11.
Considering s = 0, s = 1 and s ≥ 2 three cases, with
the help of the integral relationships [30, eq. (3.352.4)] and
[30, eq. (3.353.2)], we can obtain the closed-form expres-
sion of 11 as given in (52). Finally, the desired results in
Theorem 8 can be easily obtained after some mathematical
manipulations.

APPENDIX F
Utilizing the asymptotic CDF of X and the order statistic,
the asymptotic CDF of γ CSR′M1,n

E is given by

Fγ C
SR′M1,n

E
(x)

γ̄→∞
≈

(
PD
γ̄DE

)ND−2 M1,n∑
s=0

(
M1,n
s

)
×

(
x − 1
x

)M1,n−s γ̄ sSEs!

(ND−3)!PsD

∫
∞

0

uND−3e−κudu(
1
PD
+u
)s

︸ ︷︷ ︸
12

(
x
γ̄

)M1,n

(83)

To obtain a closed-form expression of the asymptotic CDF
of γ CSR′M1,n

E , we need to calculate the integral item 12. There

are also three cases to consider, i.e., ND − s− 3 ≥ 0, ND −
s − 3 = −1 and ND − s− 3 ≤ −2. Recalling that the main
channel SNR is high enough, meanwhile in order to make the
analysis tractable, when ND − s − 3 = −1, the item 12 can

be simplified as12 ≈
∫
∞

0

(
1
PD
+ u

)ND−3−s
e−κudu. Accord-

ing to [30, eq. (3.352.4)], we have 12 ≈ −e
κ
PD Ei

(
−

κ
PD

)
.

Similarly, as ND − s− 3 ≥ 0 or ND − s− 3 ≤ −2, the item
12 can be approximated as12 ≈

∫
∞

0 uND−3−se−κudu, hence
the desired result in (63) can be obtained using the inte-
gral relationships [30, eq. (3.351.3)] and [30, eq. (3.353.2)].
By following the similar approach, the asymptotic CDF of
γ CR′′M2,n

DE can also be derived, to this end, pulling these two

asymptotic CDFs into (15) yields the desired result.
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