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ABSTRACT Due to the lack of pre-judgment of fingerprints, fingerprint authentication systems are
frequently vulnerable to artificial replicas. Anonymous people can impersonate authorized users to complete
various authentication operations, thereby disrupting the order of life and causing tremendous economic
losses to society. Therefore, to ensure that authorized users’ fingerprint information is not used illegally, one
possible anti-spoofing technique, called fingerprint liveness detection (FLD), has been exploited. Compared
with the hand-crafted feature methods, the deep convolutional neural network (DCNN) can automatically
learn the high-level semantic detail via supervised learning algorithm without any professional background
knowledge. However, one disadvantage of most CNNs models is that fixed scale images (e.g., 227 × 227)
are essential in the input layer. Although the scale problem can be handled by cropping or scaling operations
via transforming an image of any scale into a fixed scale, they can easily cause some key texture information
loss and image resolution degradation, which will weaken the generalization performance of the classifier
model. In this paper, a novel FLDmethod called an improved DCNNwith image scale equalization, has been
proposed to preserve texture information and maintain image resolution. Besides, an adaptive learning rate
method has been used in this paper. In the performance evaluation, the confusion matrix is applied into FLD
for the first time as a performance indicator. The amounts of the experimental results based on the LivDet
2011 and LivDet 2013 data sets also verify that the detection performance of our method is superior to other
methods.

INDEX TERMS Fingerprint liveness detection, supervised learning, biometrics, spoof detection, adaptive
learning rate.

I. INTRODUCTION
With the rapid development of multimedia technology, it is
possible for us to capture amounts of high quality images with
the aid of some sophisticated high-resolution images acquisi-
tion devices, meanwhile we frequently use diverse biomet-
rics to login or confirm users’ information. Among them,
because of the characteristics of rapidity and convenience,
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authentication systems based on fingerprints are widely
exercised in fingerprint quick payment, fingerprint boot,
fingerprint attendance, etc. Trouble is that these personal
fingerprints are not always stable and safe, that is to say,
authorized users’ fingerprints could be copied under the
users’ cooperation. Except the collaborative approach, real
fingerprints are able to be imitated by illegal attackers
using fingerprint membranes of authorized users left on
the surface of the object. Both above methods can imper-
sonate the identity of authorized users and realize diverse

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

26953

https://orcid.org/0000-0002-5323-1297
https://orcid.org/0000-0002-5208-7975
https://orcid.org/0000-0001-6860-647X


C. Yuan et al.: FLD Using an Improved CNNISE

authentication operation that only authorized users can per-
form. Thus, how to protect our biometrics and distinguish cor-
rectly live or fake fingerprint samples has become an urgent
demand in fingerprint recognition application. For those tra-
ditional knowledge-based authentication methods, users have
to remember or use some relevant passwords, secret questions
or tokens to login or access to personal accounts [1]. How-
ever, it is easy for us to forget these knowledge after long
periods of no use. The biometric based authentication meth-
ods solve the deficiency of traditional schema, and they are
getting more and more popular. Common biometrics include
face, fingerprint, vein, palm print, pupil, iris, etc., and finger-
print is one of the oldest and most mature biological features
among them. Advocates of fingerprinting technology believe
that fingerprint recognition technology can provide higher
security and simplicity than techniques that use identification
codes to identify identity information. However, in recent
years, with the emergence of various emerging scam tech-
nologies, these systems confront many severe safety problem
and new challenges. Such as, they are easily spoofed by
artificial replicas [2], [3] produced using common materials
such as silicone, latex and wood glue with the help of cooper-
ative or non-cooperative devices, and amounts of studies and
literatures have also confirmed this problem. In summary, one
outstanding fingerprint authentication system can not only
verify the user’s identity, but also correctly differentiate the
activity of fingerprints. Based on the overhead analysis, how
to protect fingerprint information of authorized users and
prevent artificial replicas attacking fingerprint authentication
systems has become a research hotspot.

FIGURE 1. Sweat samples (live fingerprints). (a) Original fingerprint.
(b) Sweat fingerprint. (c) Magnified Sweat fingerprint. (d) Captured sweat
fingerprint using sensor.

In recent years, scholars have devoted considerable effort
to put forward various reliable ways to counter spoof attacks,
and fingerprint liveness detection (FLD) is one of these
countermeasures [14]–[20].

As shown in Figure 1, fingerprint image consists of some
alternating ridges and valleys. There are such a characteristic
for ridges that pattern of each individual is all different,
unique and constant throughout life. Figure 1 (a) shows a
live fingerprint, and we can notice that sweat goes through

the pores of sweat glands with the help of microscope in
Figure 1 (b) as well as Figure 1 (c) is a magnified finger.
Finger has many pores on the ridges, which are actually small
openings in the skin from sweat glands, hair follicles, and
sebaceous glands deep within the dermis. Those phenomena
described only appear in live fingerprints, however, there are
no such similar features in those artificial replicas. Hereby,
FLD techniques are proposed based on above phenomenon.
Especially since 2009, for global scholars, a fingerprint live-
ness detection competition is held every two years, and it
has been successfully held for 5 sessions so far. The purpose
of this competition is to encourage more scholars to partici-
pate in the study of FLD, to further enhance the security of
personal identity information and minimize social losses.

After the research and analysis of the existing FLD
methods, they are broadly categorized into two main stream
anti-spoofing methods: hardware-based and software-based
methods. The previous methods need to measure inherent
properties of the given fingerprints utilizing some auxiliary
sensor devices [4]–[7], such as skin distortion, oxygen satu-
ration or odor. Although they can discriminate the real and
spoof fingerprints, these auxiliary devices add to the cost
of the authentication systems [8]. Moreover, the stability
of the hardware-based method is relatively weak, since fin-
gerprints are highly susceptible to interference of external
environment, thus, the detection performance based on hard-
ware method is still not applicable to the detection of harsh
environment. Meanwhile, stains, breakage and dryness on
the fingers can also weaken the detection performance of
the measurement devices. To save the cost and enhance the
detection performance, software-based detection methods,
differentiating live and fake fingerprints only using image
processing technology without any extra sensor devices, are
applied to FLD. Fake fingerprints, for example, are distin-
guished from authentic ones by analyzing and extracting a
better dynamic or static features of the fingerprint samples.
Compared with hardware-based methods, only a single fin-
gerprint rather than fingerprints sequences [9] are used to
detect the fingerprint liveness. As mentioned at the beginning
of this paper, the patterns of real and fake fingerprint images
are different, thus, texture patterns based features extraction
algorithms are the most common methods to distinguish live
from fake fingerprints in software-based approaches.

Texture properties of live fingerprints in continuity, clarity
and ridge strength are better than artificial replicas, so we
can differentiate the live fingerprints from the specified fin-
gerprint images sets. Over the years, many texture descriptor
algorithms are generated in FLD, such as LBP, SIFT, LPQ,
etc. Meanwhile, some improved algorithms based on this
basis have been proposed. Different from those basis meth-
ods, the improved algorithms have better detection perfor-
mance and stronger robustness. Local Binary Pattern (LBP)
is a gray-scale and rotation invariant texture descriptors [10],
and it has been widely utilized in image segmentation [11],
camera identification [12], or image retrieval [18], etc. LBP is
first used in the FLD [13], in which energy of wavelet-domain
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transformation is complemented by the LBP descriptor. After
that, many improved LBP algorithms, such as LBP with
wavelets [27], uniform LBP coding schemes, are all applied
to FLD, meanwhile those methods can obtain some satis-
factory results. Gragnaniello et al. [24] constructed a dis-
criminative texture descriptors via calculating the orientation
component and differential excitation of each pixel block,
and their method was called Weber Local Descriptor (WLD).
It is noteworthy that WLD is a robust to illumination change
and powerful texture descriptor, and it is more adapted for
high-contrast patterns. Eventually, training model based on
statistical joint histograms of orientation components and
differential excitation is obtained with the help of SVM
classifier with a linear kernel function. A new local fea-
ture representation associated with fingerprints is extracted
in [25], and a bi-dimensional contrast-phase histogram is
formed by calculating information on the phase (frequency
domain) and the local amplitude contrast (spatial domain).
The local phase for the purpose of FLD is used in [22]–[28],
which is similar to LBP. Reference [7] proposed a novel
fingerprint liveness detection based on Binarized statistical
image features (BSIF), representing those texture descriptors
using the statistics of fingerprint patches and maximizing the
statistical independence of the filter responses rather than
a fixed set of filters. Feature fusion based fingerprint live-
ness detection method has been proposed in [8], in which
two features based on convolutional neural networks (CNN)
with random weights and Local Binary Patterns (LBP) are
extracted respectively. Features of a set of filters are automat-
ically extracted using independent component analysis (ICA)
in [7], and then, these features are fed into a support vector
machine (SVM).

Until now, most of the aforementioned algorithms are all
based on handcrafted features representations. Thus, the key
to FLD is how to extract better feature representations of
given images, while handcrafted feature extraction mainly
relies on the experience and professional knowledge. More-
over, due to loss of spatial location information and lack
of considerations for the details of live fingerprint images,
it is difficult to achieve a balance between discrimination
and robustness of methods. Recently, however, deep learning
strategies for object classification and analysis of big data
achieved great success and attracted widespread concern in
the field of pattern recognition and computer vision. On one
hand, because of different types of fingerprint sensors, it is
possible to collect fingerprint samples of different scales.
On the other hand, different strengths pressed against the sur-
face of fingerprint sensor will eventually yield different sizes
of fingerprint images. Existing CNNs methods can achieve
a better object classification or detection task via extracting
the high-level semantic features of images, but they [22] all
are based on a fixed scale image and do not make full use
of image scale information. As we all know, in the CNN,
convolution and pooling operations have no restriction on the
sizes of input images, and while they only affect the scales
of features maps of each convolution and pooling layers.

FIGURE 2. Fingerprints of cropping and scaling operations.

However, the full connection layer has strict limits on the
scale of the output image of the previous convolution layer
or pooling layer. That is, the neurons of the full connection
layer are fully connected to each neuron of the output layer.
Since the number of neurons is constant, the input image
scale of the full connection layer are fixed. To solve the
problem of different scales in CNN, cropping and scaling
are two most common operations. But the question is that
the cropping is easy lose some texture information, present-
ing the red window in Figure 2(a) (The size of the whole
image is 312 × 372). After cropping, the area inside the red
border is preserved, while the outside texture information is
discarded. Figure 2(d) also denotes that fingerprint image
is not complete after cropping. And the spatial structures
after scaling operation are very susceptible to image defor-
mation and resolution, shown in Figure 2(b) (The size of
image is 156 × 186). To satisfy the requirements of the
fixed scale of the input image, the image scaling is another
executable operation. After scaling, the resolution of the
image is reduced obviously. If you rescale the image once,
the resolution of the image will be further reduced. As shown
in Figure 2(c) (The size of image is 78× 93), it has been
difficult to visually observe adjacent ridges and valleys in the
fingerprint image. As we all know, human eye structure is
a complex and powerful neural network. If the human eye
hardly distinguish fingerprints, neither will computers. Thus,
classification performance is compromised due to lack of
effective discriminant information.

As discussed above, the full connection layers have strict
limits on the scale of the input image. Inspired by this con-
straint, could we design a new structure of CNN that diverse
images scales can be converted to fixed length represen-
tations before entering the full connection layer? Hereby,
to eliminate image scale limitations, in this paper, we propose
a novel fingerprint liveness detection method based on an
improved convolutional neural network with Image Scale
Equalization. Finally, images of any size can be expressed
in fixed length vectors without any cropping or scaling oper-
ations. Moreover, our method is also robust to fingerprint
image deformation without scaling operation [27], [32], [33].
The flowchart of this paper is shown in Figure 3. In the
training phase of the model, fine-tune the model parame-
ters based on two fingerprint samples sets, testing based on
learning rate adaptive adjustment and testing based on model
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FIGURE 3. Flowchart of our network model structure.

weight initialization have been implemented in this paper.
To improve the generalization performance of the training
model, many experiments based on multi-scale Equalization
have also been done. It is noteworthy that the proposed model
structure in this paper is a supervised learning. That is to say,
in the forward propagation, the output will be compared with
the corresponding real label, and the parameters of the model
are continually modified by the reverse retransmission of the
gradient derivation. When the difference between the output
value and the predicted value is less than a given threshold,
the trained model will be the optimal model classifier at
that time. In addition, data augmentation of training sets
is necessary to prevent over-fitting. Specifically, the major
contributions of this paper can be summarized as follows:

1) The input to most of DCNN models requires a fixed-
scale image, and the scales of samples are diverse
affected by any causes. Hereby, cropping or scaling
operation for images is two most common methods of
converting images of different scales into fixed-scale
images. Whereas the cropping operation will cause the
image to lose some key information, making the orig-
inal image no longer complete. Similarly, the scaling
operation compresses the image, causing the original
image to produce geometric distortion and reduce the
resolution of the image. This will eventually lead to
erroneous judgments. In this paper, a novel fingerprint
liveness detection based on an improved DCNN with
image scale equalization has been proposed to elim-
inate the restrictions on fixed scale in CNNs without
cropping and scaling operations.

2) The most of CNN models use a fixed learning rate to
adjust model parameters when learning. In this paper,
a method based on a learning rate adaptive adjustment
has been proposed to prevent the weight learned from
falling into local optimum. Besides, we perform multi-
scale equalization operations on high-level features,
and thus, our method has scale invariance as well as
more robust to image geometric deformation.

3) In this paper, we use the confusion matrix into FLD
for the first time as an indicator of FLD. In addition,
a number of experiments have been done to evaluate

the performance of our method. Such as, fine-tuneing
the model parameters based on fingerprint sample sets,
testing based on optimal training model, testing based
on learning rate adaptive adjustment and testing based
on model weight initialization.

The remainder of this paper is organized as follows.
In Section II, the Methodology is introduced, including our
model structure and the basic theory of ISE. The experimental
results and analysis are reported in Section III. Conclusions
are finally drawn in Section IV.

II. METHODOLOGY
The main goal of FLD is to eliminate the interference
of artificial replicas before identity recognition. Currently,
most FLD algorithms are based on texture descriptors, thus,
the extracted features play a crucial role in FLD. Deep
learning can automatically learn high-level semantic features
without experience and professional knowledge of image
processing, however, the problem is that the most network
models have strict limits on the scale of the image, and the
task of this paper is to solve it.

A. CONVOLUTIONAL NEURAL NETWORK WITH
LEARNING RATE ADAPTIVE ADJUSTMENT
Different from traditional handcrafted based feature extrac-
tion algorithm, each convolutional operation can automati-
cally extract different level features, such as vertical edges,
horizontal edges, colors, textures, etc. During each convo-
lutional operation, weights of each neuron connected data
window are fixed, and each neuron focuses on only one
characteristic. Note that the output of the convolution also
needs to go through an excitation function, that is, making
the feature do a nonlinear projection. The pooling layer is
sandwiched between successive convolutional layers to com-
press the amount of data and parameters, reducing overfit-
ting. In short, if the input is an image, then the primary
role of the pooling layer is to compress the image. The
features processed by the pooling layer are invariant, that is,
the scale invariance of the features we often mention in image
processing. The pooling operation can be regarded as the
resize of the image. The information removed during image
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compression is only irrelevant. The information, while the
information retained has scale invariance and is the most
characteristic of the image. At the same time, we all know
that the amount of information contained in an image is very
large, and there are many features, but some information
does not have much use or repetition for our image clas-
sification [6]. In CNN, the convolution layer is responsible
for extracting features [6], [21], [22], and the pooling layer
can be seen as a feature selection operation that removes
unimportant features from the feature map extracted by the
previous convolution operation. Finally, the features after the
n-layer convolution and pooling operations are fed input to
the full connection layer, and the full connection layers are
responsible for classification. In Figure 5, we visualize a
feature map using a convolutional operation and the pooling
operation. Convolutional features are represented through
computing the inner product of original fingerprint image
and filters, and the process of convolution is considered as
the process of feature extraction. Next, ReLU is used as
the activation function to compute feature maps. After the
convolution operation, max-pooling operation is conducted to
reduce the dimensionality of feature maps and prevent over-
fitting. The principle of max-pooling counts the maximum
in the sliding windows. Such as the green solid line window
in Figure 5, the size of green solid line window is 2× 2, and
the value of window is calculated as a new value (it is the
maximum in the green solid line window) after max-pooling
operation. The advantage of the convolutional neural network
is that the weights of the convolution kernel are shared, and
the processing speed of the high-dimensional data is fast
and the precision is high. Meanwhile, it is not necessary to
manually select features, and the feature classification effect
is good after training the weights. But the drawback is that
you must train a model classifier based on big data samples,
while adjusting a large number of parameters. Currently,
another most important problem is about the learning rate
α selection when the gradient derivative updates the model
parameters. The learning rate α is a fixed value when weight
is updated in most convolutional neural network models, and
the calculation of weights update is shown in formula (1).
In formula (1), J is an error function about w, and we need to
reach positionwt+1 from current positionwt point.We should
be aware that learning rate α shouldn’t be set too large or too
small. If it is too small, it may lead to delay to the lowest
point, as shown in Figure 4.(a). But if it is too big, it will be
easy to miss the lowest point, as shown in Figure 4.(b).

wt+1 = wt − α ∗ OJ (w) (1)

Different from the most model structure based on fixed
learning rate, we propose an adaptive learning rate algorithm,
which can be chosen by using formula (2), In formula (2),
α denotes learning rate, and f is learning rate reduction factor.
In our method, we will monitor the evaluation metrics in
program. If we find the evaluation index no longer promo-
tion, the learning rate and weights will be updated using
formula (1) (2). Then, continue to learn the model parameters

FIGURE 4. Examples of steps to minimize weight at different learning
rates. (a) Small learning rate needs lots of setps. (b) Bigger learning rate
misses the minimum.

FIGURE 5. The visualization diagram of the single layer convolutional
neural network feature extraction.

using the new learning rate α until the adaptive adjustment
learning rate is less than the given threshold T . Finally, record
the model parameters when the evaluation indexes keep
constant during training.

α =

{
(1− f ) ∗ α, f ∈ [0.2, 1], α ∈ [min lr, 1]
α, α ∈ [0,min lr]

(2)

B. IMAGE SCALE EQUALIZATION
The input to the CNN model all need a fixed scale image,
however, the scales of the captured fingerprint image are
diversified because of various fingerprint sensors or human
factors. Hereby, two most common operations are necessary
to obtain fixed scale input images: one is cropping operation,
another is scaling operation. We all know that the cropping
operation can preserve the cropped or interest area, and the
vast majority of uncut parts will be discarded. As a result,
a lot of important texture information will be lost. While
scaling operation will reduce the resolution of the image due
to scaled image scale. Finally, it will weaken the detection
performance of training model. Our goal is to propose a con-
volutional neural network model structure that is not limited
by fingerprint image scale, and a new layer, called image scale
equalization (ISE) layer, has been added to our model in this
paper. Our proposed ISE layer is next to the last convolutional
layer, between the last convolutional layer and the full con-
catenation layer, as shown in Figure 3. In Figure 3, eight basic
layers, which are one input layer, four convolutional layers,
one pooling layer, one proposed ISE layer, one full connec-
tion layer and one output layer, make up our model frame.
Except ISE layer, the specific role of each of the other layers
has been detailed in subsection 2.1. Next, we will elaborate
in detail the definition and implementation of ISE layer.
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As shown in Figure 3, after a series of convolution and
pooling operations in the first six layers, we can extract a
number of images describing the high-level semantic infor-
mation of the original image, which we call them feature
maps. Following, all features maps of the last convolutional
layers are fed into our designed ISE layer. In this paper,
the number of feature maps for the last convolutional opera-
tion layer is 64. In order to better convert the image of any
scale into a fixed-length vector after ISE layer operation,
we first need to assume that the size of the feature map
of the last convolutional layer output is a × a. If we want
to divide the feature maps into n2 parts, where n = 2i−1,
i ∈ [1,+∞). At the same time, the size of each sub-area
window is winSize = da/ne. Since it is not guaranteed that
every a/n is an integer, d•e is an up rounding operation. In this
paper, n is set to 1, 2, 4, 8, 16, · · · , 2i−1. When n is 1, 2, 4,
8, 16,· · · , 2i−1, the total number of sub-blocks is 1, 5, 21, 85,
341, · · · , (4m+1 − 1)/3 = (4i − 1)/3, respectively, where
m∈ N or i∈ N+( or N*). Then, the maximum value of each
sub-block is calculated as a feature of the current sub-block.
That is, how many sub-blocks an image is divided into, and
how many features each image has. In our experiment, n is
1, 2, 4, 8, 16, respectively, and the number of features of the
corresponding n is 1, 5, 21, 85, 341, respectively, After ISE
operation, all the sub-areas are spliced into one dimensional
features vectors, and images (or feature maps) of arbitrary
scales are transformed into a vector of a fixed length. Finally,
the fixed length vectors are fed into the full connection layer.

C. WEIGHTS INITIALIZATION AND
PARAMETERS FINE-TUNING
If the image data set is small, the trained model is prone
to over-fitting. That is to say, the precision of the training
set is very high. After 5 iterations, the test accuracy is close
to 100%. The verification results on the validation set and the
test set are very poor. The reason is that the performance of the
convolutional neural network model has a great relationship
with the amount of data in the image. Thus, we implement
three kinds of operations to solve over-fitting problem. The
first one is data augmentation operation. Four image expan-
sion techniques are performed in this paper, including image
rotation, image scaling, image flip and image brightness
enhancement. The second one is weights initialization, that is,
in our fingerprint liveness detection model, we will train
on the expanded fingerprint set. Suppose that the number
of model training iterations is n, the training accuracy is
observed by setting the corresponding monitoring program.
When the training accuracy is less than 5 times, we think
that the model training is completed and the program stops
running. There are two possibilities in the model training
process: one is that the model may be trained n times to end,
and the other is that the model training ends just 5 times
of training. The parameters of the training at this time are
the training results of our model, and the trained model
parameters are used to verify on the test set. The third one
is the training based on parameters fine-tuning. First, we will

randomly select a batch of fingerprint images in the expanded
fingerprint training set and train them as input to the model.
After the training is completed, the trained parameters are
saved. Next, load the above trained parameters into themodel,
and then use the training set to fine tune our model. The fine
tuning ends well, and the trained model parameters are saved
again and used as the final training model parameters.

III. EXPERIMENTAL RESULTS AND ANALYSIS
To verify the detection performance of our proposed
DCNNISE, the experiments have been implemented on the
fingerprint data sets of LivDet 2011 [1] and LivDet 2013 [29].
Two data sets are respectively from 2011 and 2013 Finger-
print Liveness Detection Competition, and final experimental
results are compared with the results of other references
in recent years. In this subsection, we first give a brief
introduction on the two public data sets, and then we will
also introduce the needs of our experimental environment.
In addition, performance evaluation criteria will be given in
this subsection. Finally, some numerical experiments on two
data sets are reported to illustrate the effectiveness of our
algorithm, and the experimental results are comparedwith the
state-of-the art methods.

A. LIVDET 2011, 2013 AND OPERATION ENVIRONMENT
Attackers attempt to use artificial replicas of a biomet-
ric, a type of presentation attack, to circumvent finger-
print authentication system, so many FLD methods have
been proposed so far to recognize a presentation attack and
avoid artificial replicas bypassing the authentication sys-
tem. The fingerprint liveness detection competition promoted
by Dr. Gian Luca Marcialis of the Department of Electrical
and Electronic Engineering of the University of Cagliari
(Italy) [29] and Prof. Stephanie Schuckers of the Department
of Electrical and Computer Engineering of Clarkson Uni-
versity (USA) has attracted the attention of many academic
and industrial institutions. The goal of Liveness Detection
(LivDet) Competition is to compare different FLD algorithms
using standardized evaluation protocol and sample set, and
the LivDet competitions have been hosted in 2009, 2011,
2013, 2015 and 2017. And after each competition is com-
pleted, the competition organizing committee will release
live and spoof fingerprint data set. After registration, we can
download for free the fingerprint data set for the corre-
sponding year from the competition website via the link
‘‘livdet.org/registration.php’’. Since most of the algorithms
are based on two data sets, LivDet 2011 and LivDet 2013,
hereby, all the experiments in this paper utilize the above two
fingerprint data sets. Below we will introduce the above two
fingerprint data sets in detail.

The LivDet 2011 data set, releasing in LivDet 2011 com-
petition, collected 16056 samples of both live and spoof
fingerprints using four different flat optical sensors, and a
detailed description of the LivDet 2011 data set has been
reported in Table 1, including the image size and resolution,
the number of different fingerprint types, etc. In Table 1,
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TABLE 1. The samples distribution of the LivDet2011 and LivDet2013 data sets.

FIGURE 6. Llive (above) and spoof (below) fingerprints captured via
4 different sensors. (a) Biometrika. (b) Crossmatch. (c) Italdata. (d) Swipe.

each fingerprint sensor contains two types of fingerprint data
sets: Training set with 8020 fingerprint samples and Testing
set with 8036 samples. Besides, these samples are collected
via four different optical sensors, for example, Biometrika,
Italdata, Digital and Sagem. Whether it is Training data
set or Testing data set, they are all divided into two parts:
Live samples and spoof samples, and we should know that
they have no overlap with each other. The live samples are
captured via above four different optical sensors, and the
spoof artificial replicas are generated using some common
fingerprint materials under the cooperation of testers.

The LivDet 2013 [29] data set, releasing in LivDet
2013 competition, consists of 16853 live and spoof finger-
prints also captured by means of four different flat opti-
cal sensors, which are Biometrika, CrossMatch, Italdata and
Swipe, respectively. Figure 6 lists some fingerprint samples
from four different optical sensors. Note that it is difficult to
observe the slight difference between the real fingerprints and
the fake ones by the naked eyes. Similar to the description in
LivDet 2011, two types of fingerprint samples datasets are
included: Training data set with 8450 samples and Testing
data set with 8403 samples. The goal of Training data set
is used to obtain a classifier model, and the performance
evaluation of the model is verified by using Testing samples.

The detailed distribution of the LivDet 2013 has also been
reported in Table 1. In addition, we can observe that the
ratio of live or spoof samples in each data set is 1:1 approx-
imately. The scales of the given samples are diverse from
315 × 372 to 1500 × 208. Generally speaking, two most
common methods, the cropping and scaling operations, will
be operated when encountering images of different scales.
However, the above two operations may result in loss of
image texture information or reduce the resolution of the
original image, which ultimately affects the performance of
the algorithm. Therefore, a novel network model framework
using an improved Deep Convolutional Neural Network with
Image Scale Equalization ( DCNNISE ) has been proposed in
this paper to protect texture information and maintain image
resolution invariant.

B. PERFORMANCE EVALUATION AND
EXPERIMENTAL ENVIRONMENT
Average Classification Error (ACE), which is a standard per-
formance indicator [8], [30], is used to evaluate detection per-
formance, and the calculation formula of evaluation metrics
of ACE is defined in Equation (3):

ACE =
FAR+ FRR

2
, (3)

where in equation (1),FAR (False Accept Rate) is the percent-
age of misclassified live samples and FRR (False Reject Rate)
denotes the percentage of misclassified as spoof samples.
For FAR and FRR, two calculation equations are defined
separately as:

FAR =
misclassified real images

total real images
∗ 100, (4)

FRR =
misclassified fake images

total fake images
∗ 100, (5)

The ACE is able to be represented by any number between
0 and 100. The smaller the ACE , the better the perfor-
mance of the proposed method. All experiments are oper-
ated using python 3.5.2 programming on a single GeForce
GTX 1080 GPU (64G memory) with two weeks. About the
operational environment, two conditions are vital hardware
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FIGURE 7. Training and validation sets precision change trend with the number of iterations in LivDet 2013 datasets.

FIGURE 8. Training and validation sets loss change trend with the number of iterations in LivDet 2013 datasets.

condition and software condition. The detailed descrip-
tion about our experimental environment has been reported
in Table 3.

In addition to using generic ACE to evaluate the per-
formance of FLD, the paper for the first time applies the
confusion matrix to FLD as a performance indicator. We per-
formed performance verification on model fine-tune, and
four parameters, FRR (False Reject Rate, which shows the

percentage of live samples that were incorrectly marked as
spoof samples), FPR (False Positive Rate, which shows the
percentage of spoof samples that were incorrectly marked
as live samples), Recall (which shows the probability that
live samples are predicted correctly) and F1-Score (which
is a weighted average of the precision and recall rates in
the binary model), are calculated as performance evaluation
indicators. The confusion matrix, also called the error matrix,
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FIGURE 9. Training and validation sets precision change trend with the number of iterations in LivDet 2011 datasets.

TABLE 2. Confusion matrix of live or spoof fingerprints.

TABLE 3. Computer software and hardware configuration.

is a standard format for the accuracy evaluation. The con-
fusion matrix of the two-category image used in this paper
is shown in Table 2. In Table 2, 0 denotes the number of
live samples categories, 1 indicates the number of spoof
samples categories, and A denotes the TP (True Positive,
which shows that live samples that were correctly classified
as live samples), B denotes the FN (False Negative, which
shows that live samples that were incorrectly marked as spoof
samples), C denotes the FP (False Positive, which shows that
spoof samples that were incorrectly marked as live samples),
D denotes the TN (True Negative, which shows that spoof
samples that were correctly classified as spoof samples),
E denotes the number of actual live samples, F denotes the
number of actual spoof samples, G denotes the number of

predicted live samples, and H denotes the number of pre-
dicted spoof samples. For the four paramaters values, the cal-
culation formulas of FRR, FPR, Recall and F1-Score are
FRR =B/(A+B), FPR = C/(C+D), Reacll = A/(A+B) and
F1-Score = 2A/(2A+B+C), respectively.

C. EXPERIMENTAL PROCESS AND RESULTS
In this paper, several different types of experiments have
been implemented to prevent presentation attack bypassing
the authentication systems. Firstly, in image preprocessing
stage, region of interest of each fingerprint sample has been
extracted to eliminate the interference in blank areas. Then,
to solve the problem of insufficient fingerprint samples,
we use four different image processing techniques, including
image rotation, image scaling, image flip and image bright-
ness enhancement, to extend the given fingerprint data set.
After all image preprocessing operations, fingerprint samples
are imported into our built model. Since our fingerprint image
set is limited, in our experiment, and the number of epochs
is 100, batch size is set to 32, the number of batch is 313, and
Iteration per epoch is set to 313. The number of convolution
kernels of the first convolutional layer and the second convo-
lutional layer is 32, and the number of convolution kernels of
the third convolutional layer to the fifth convolutional layer
is 64, and the sizes of the convolution kernel of the five layers
is 3×3. Additionally, the training samples of each batch need
to be scrambled before entering the convolutional layer.

In our experiments, we used three different methods to
conduct experiments separately. First, we directly input the
processed training and testing sample set into the built
model. This experiment does not perform any model param-
eter initialization. Because our algorithm is a supervised
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FIGURE 10. Training and validation sets loss change trend with the number of iterationsl in LivDet 2011 datasets.

learning process, each sample and its corresponding label are
required. The labeling of the label is done, determined by us
according to the liveness of each fingerprint sample, by us in
the image preprocessing stage, that is, the label corresponding
to the live fingerprint is 1, and the label corresponding to the
spoof sample is -1. During the training phase of our model,
convolution or pooling operations are first performed layer-
wise from the input to output. Unlike most CNN models,
the last convolutional layer is followed by a full connection
operation. However, its shortcoming is that there are strict
restrictions on the input scale of images, and this is also
one of the problems that our paper has to solve. As shown
in Figure 3, a new scale equalization layer is added to the end
of the last convolutional layer. That is, the output of the last
convolutional layer will be the input to our scale equalization
layer. After our method proposed in this paper, images of
any scale will be transformed into fixed-length feature vec-
tors. Below we will give a concrete example to illustrate the
process of scale equalization operation. Next, the output of
scale equalization layer will be used as the input to the next
layer of full connection layer. It should be emphasized that
we only utilize a full connection layer in this paper. Finally,
the output of scale equalization layer is used as the input
of softmax layer, and the final output, called the predicted
value, will be compared with the label of the image, called
the actual value. If the difference between them is less than
a threshold value, the model parameter of the learning is the
learned parameter, and then the next operation is performed.
If the difference between the predicted value and the actual
value is larger than the given threshold, the gradient is derived
and the weight obtained from the training is fine-tuned. Since
the learning rate is a certain value in the process of deriving

the error gradient of the predicted value and the actual value,
the learned weights are easily caught in the local optimum
or difficult to converge to the optimal value. Based on this,
this paper improves on the basis of the traditional CNNmodel
and proposes a CNNbased on adaptive adjustment of learning
rate. The implementation of this operation has been described
in detail in Section 2.2, and the framework of the process
implementation is shown in Figure 3. When the gradient is
derived to the first convolutional layer, the pre-propagation is
performed again with the fine-tuned weights. And the error
between the predicted value and the actual value is calculated
again, at this time, if the minimum error is smaller than
the given threshold, the first learning process is terminated.
Otherwise repeat the previous process again. According to
the above operation, all the images in the training sample set
are operated once and the final training model parameters are
obtained. In our experiments, the total number of trainable
parameters is 102564. Wherein, the number of parameters of
the first convolutional layer is 320, the number of the second
convolutional layer is 9248, the number of parameters of
the third convolutional layer is 18496, and the number of
parameters of the fourth convolutional layer is 36928, and
the number of parameters for the five convolutional layers
is 36928. Since the scale normalization layer does not involve
convolution operations, the learning parameter of this layer is
zero, and the number of parameters of the last fully connected
layer is 642. In addition, the number of classification is 2,
which is either a live fingerprint or a spoof fingerprint.

The second experiment is about maximizing the training
weight model. The training process is exactly the same as the
first experiment. The difference is that we will set a threshold
during the running process, that is, the training accuracy of
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TABLE 4. The ACEs of different methods in LivDet 2013.

TABLE 5. The ACEs of different methods in LivDet 2011.

the trained model will not increase 5 times, then the training
is terminated, and the training parameters are learned at this
time. The weights of the optimal model are preserved. Next,
the performance detection of the model is been performed
based on the optimal training model. The third experiment is

the fine tuning of the model parameters. That is, at the begin-
ning, any part of the image is selected from the training set
and trained. This process is the same as in the first experiment
until the selected image is trained, until the conditions similar
to first experiment are met, we can learn a model parameter.
The trained model will be used as the pre-trained model for
our next stage.We then fine-tune the training set using LivDet
2011 and LivDet 2013 fingerprint samples to get the final
training model, and the pre-training process will end.

For the sake of simplicity, convolutional, pooling, scale
equalization and full connection layers are abbreviated as
conv, pl, SE and fc, respectively. For instance, conv2 indicates
that the second layer is a convolution layer; Mp3 indicates
that the third layer is a max pooling layer; SE6 indicates that
the sixth layer is a scale equalization layer; fc7 indicates
that the seventh layer is a full connection layer. Supposed
that the scale of original input fingerprint sample is 200×200,
and the size and sliding step of the convolutional kernel of
the conv1 layer are 3 and 1, respectively. Thus, the scale
of feature map of the conv1 layer is ((200 − 3)/1 + 1) ×
((200 − 3)/1 + 1) = 198 × 198. In this paper, the pooling
operation uses the maximum value in the given window as
the output value of the step operation, and the size of the
pooling window is 2 and stride is 1. After pooling operation,
the scale of the Mp3 layer output is 98 × 98. Supposed
that (86-3)/2 indivisible, then the edge of the window will
be filled with 0. The parameters of conv2 layer are the size
of convolutional kernel 3 and sliding step 1, so the size of
conv2 output image is 196 × 196. According to the above
calculation process, the sizes of conv4 and conv5 are 96× 96
and 94 × 94, and the total number of feature maps is 64.
Next, all the feature maps are fed into SE6 layer, and we have
already talked about the definition and calculation process of
ISE in part 2. In this example, we divide each feature map
into n2 blocks, where n is set to 16 and the total number of
sub-areas is 341. After convolution and pooling operation,
the scale of output of the last convolutional layer is 94× 94,

TABLE 6. Average classification accuracy under different image scales and different block combinations in LivDet 2013.
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TABLE 7. Average classification accuracy under different image scales and different block combinations in LivDet 2011.

and the scale of each sub- block is 5 × 5. The maximum
value of each block is then calculated as a feature of the sub-
block. Finally, we concatenate these features of all the sub-
blocks and use them as the final feature of the image. That is,
the final output is a fixed-length feature vector, whose size
is Km = 96 × 341, where m = 341 denotes the number of
features and K = 96 is the number of the features maps of in
the last convolutional layers. The fixed length vectors are fed
into the input of the full connection layer, and we can obtain
the final predicted value.

To evaluate the detection performance of our proposed
algorithm, our experimental results are comparedwith several
state-of-the-art approaches, including ULBP [16], HOG [33],
MSDCM [9], Winner LCP [29], LLF and HIGMC [30].
Tables 4 and 5 respectively list the newly proposed algorithms
on the two data sets LivDet 2013 and LivDet 2011, andwe can
observe that theACEs of our method are 1.57 and 0.185 lower
than the second place respectively, which are highlighted in
bold. And in the single performance evaluation, our algorithm
has higher detection accuracy in Swipe, Italdata-2013, Sagem
and Digital. The reason why the other single items are irra-
tional is that: 1. The image training set is not large enough;
2. The quality of the image itself is relatively poor.

Figure 7 and Figure 9 denote the precision change trend
of training set and validating set with the number of itera-
tions in LivDet 2013 and LivDet 2011 two datasets, and in
each Figure, the first row indicates the trend of classification
accuracy as different iterations increase with different data
acquisition equipment under the same image scale operation.
The first column shows the trend of classification accuracy
as the number of iterations increases under different scale
operations under the same acquisition equipment. Generally
speaking, we find that the overall classification accuracy will
increase until it tends to level as the number of iterations
increases, and all of them can achieve satisfactory detection
accuracies. By contrast, Figure 8 and Figure 10 denote the

TABLE 8. Performance evaluation of fine-tuning operation under
different scale combinations when the number of sub-blocks
is 1, 4, 16 in LivDet 2011.

loss change trend of training set and validating set with the
number of iterations in LivDet 2013 and LivDet 2011 two
datasets, andwe can observe that the overall loss will decrease
until it tends to level as the number of iterations increases,
which also matches the reality.

All the experimental results, based on three different
experiments, No operation, Weights Init. and Fine-tune, are
reported in Table 6 and Table 7. Moreover, we have also
shown the results of newly proposed performance evaluation
in Table 8 and Table 9, and we can see that, basically the
detection performance is the best when the scale of samples
is 112 × 112. By observing Table 10, we found that the
testing time of a sample on two different fingerprint data sets
is acceptable. After learning these model parameters, classi-
fication performance based on testing samples is performed.
And the testing time of a fingerprint image is satisfactory in
practical application.
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TABLE 9. Performance evaluation of fine-tuning operation under
different scale combinations when the number of sub-blocks
is 1, 4, 16 in LivDet 2013.

TABLE 10. Total training and testing time under three different scale
pre-training.

IV. CONCLUSIONS
In 2012, it made a huge breakthrough in solving the ImageNet
challenge and was widely regarded as the beginning of the
deep learning (DL) revolution in 2010. Since then, more
and more scholars and research institutes turned to DL tech-
niques to solve problems related to computer vision, pattern
recognition, etc. However, most previous CNNs models are
constrained by the size of input images, that is to say, they
need the fixed dimension of input (e.g., the VGG16 takes
input with the dimension of 224×224×3).We can process the
problem of image scale via two common operations: cropping
and scaling, but these two operations also yield some new
problems. For instance, the former one can easily crop out
important texture information that distinguish the live and
spoof fingerprints, so that the learned feature descriptors do
not have the ability to distinguish between true and false
fingerprints; the latter forcibly changes the scale of the image,
thereby reducing the resolution of the image. Both of them
all affect the final the detection performance. In this paper,
we propose a new FLD based on an improved CNNISE to
eliminate the limitation of the image scale. On one hand, our
method solves the problem of image scale, and images of
any scale can be used as input to our model. On the other
hand, an adaptive learning rate method has been added to
the DCNNISE, and it prevents the weights from falling into
a local minimum and makes the weights converge to global
optimum during the gradient back derivation. Through many
comparative experiments, the results show that our method is

superior to other methods and is suitable for FLD to prevent
presentation attack. In addition, we applied the confusion
matrix to FLD for the first time, and the results in Table 8 and
Table 9 show that our algorithm can achieve high accuracy on
the whole. From the perspective of testing time in Table 10,
2.2 milliseconds or so is very ideal in practical applica-
tion, which basically completes the identification of live and
spoof fingerprints without being noticed by people. However,
the main problem we face is still the shortage of fingerprint
image set, and how to expand and produce a high resolution
fingerprint set is the first problem we need to consider.

As we all know, in DL, to learn a better model classifier,
we need as many training samples as possible. In the case
where the data set is limited and cannot be collected, the con-
ventional operation is to increase the amount of data of the
training samples by image processing techniques. Inspired by
this, how can I automatically learn more training sample sets
based on the characteristics of fingerprint samples without
image processing technology? The current popular genera-
tive adversarial network (GAN) is to generate a new image
through continuous generation and judgment. Therefore, how
to use the GAN [31] to produce high-resolution and extended
live and spoof fingerprint training sets is the focus of our
next study. In addition, the convolutional neural network can
extract high-level semantic features. Theoretically, the fea-
tures of the last layer of learning are the best, but whether it
is absolute or not, we need to conduct further study. All these
works will be done in our next phase of this research.
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