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ABSTRACT In various disciplines, hierarchical clustering (HC) has been an effective tool for data analysis
due to its ability to summarize hierarchical structures of data in an intuitive and interpretable manner. A run
of HC requires multiple iterations, each of which needs to compute and update the pairwise distances
between all intermediate clusters. This makes the exact algorithm for HC inevitably suffer from quadratic
time and space complexities. To address large-scale data, various approximate/parallel algorithms have been
proposed to reduce the computational cost of HC. However, such algorithms still rely on conventional linkage
methods (such as single, centroid, average, complete, or Ward’s) for defining pairwise distances, mostly
focusing on the approximation/parallelization of linkage computations. Given that the choice of linkage
profoundly affects not only the quality but also the efficiency of HC, we propose a new linkagemethod named
NC-link and design an exact algorithm for NC-link-based HC. To guarantee the exactness, the proposed
algorithm maintains the quadratic nature in time complexity but exhibits only linear space complexity,
thereby allowing us to address million-object data on a personal computer. To underpin the extensibility of
our approach, we show that the algorithmic nature of NC-link enables single instructionmultiple data (SIMD)
parallelization and subquadratic-time approximation of HC. To verify our proposal, we thoroughly tested it
with a number of large-scale real and synthetic data sets. In terms of efficiency, NC-link allowed us to
performHC substantially more space efficiently or faster than conventional methods: compared with average
and complete linkages, using NC-link incurred only 0.7%–1.75% of the memory usage, and the NC-link-
based implementation delivered speedups of approximately 3.5 times over the centroid andWard’s linkages.
With regard to clustering quality, the proposed method was able to retrieve hierarchical structures from input
data as faithfully as in the popular average and centroid linkage methods. We anticipate that the existing
approximation/parallel algorithms will be able to benefit from adopting NC-link as their linkage method for
obtaining better clustering results and reduced time and space demands.

INDEX TERMS Clustering algorithm, data mining, machine learning.

I. INTRODUCTION
Clustering, or cluster analysis, refers to a computational
technique that can group similar objects and separate dis-
similar objects. Clustering has been very popular in many
fields as a tool for discovering new knowledge hidden in
collected data. Types of existing clustering methods include
the following [1], [2]: Partitioning algorithms divide input
data into non-overlapping partitions and typically require
the user to specify the number of clusters. Hierarchical
methods discover hierarchical structures appearing in input

data by gradually merging or splitting intermediate clusters.
Density-based techniques search regions of high population
density and can find arbitrarily shaped clusters. Grid-based
approaches examine a number of cells forming a grid and
perform clustering using the grid. Model-based algorithms
build a model for each cluster and aim at finding the best fit
for the model. Two-way clustering (or biclustering) considers
both the rows and columns of a matrix to find meaningful
submatrices. Subspace clustering focuses only on parts of the
input data space and is useful for analyzing high-dimensional
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data. Further details on clustering methods can be found
in [1]–[10].

FIGURE 1. Hierarchical clustering. (a) Overview (see Section IV-B for
details). (b) The frequency of cluster distance updates (Step 3) critically
affects the efficiency of hierarchical clustering.

Among the numerous available clustering techniques, hier-
archical clustering (HC; [2]–[4], [6]) is one of the most
popular methods due to its ability to summarize hierarchical
structures of data in an intuitive and interpretable manner.
Starting with singleton clusters, HC repeatedly searches the
two closest groups and then merges them until every object is
grouped into one cluster, as informally shown in Fig. 1(a).1

In the context of HC, a linkage method should be defined
to calculate the distance between two clusters (see Fig. 4).
The trace of the entire clustering process is usually recorded
into a graphical representation called a dendrogram [2], [3],
fromwhich information on individual clusters can be derived.
A dendrogram consists of many u-shaped lines connecting
objects in a hierarchical binary tree, as shown in Fig. 2(b).
The leaves of a dendrogram correspond to individual objects,
and a merge of two clusters is represented by an internal
node, which is denoted by a dot in Fig. 2(b). The height of
an internal node indicates the distance/dissimilarity at which
the corresponding merge occurs. To complete the clustering
of n objects, n − 1 merges should occur, and the resulting
dendrogram will have n − 1 internal nodes. Note that flat
clusters can be derived from a dendrogram by cutting it at
a certain height [3].

As sketched above, a run of HC requires multiple itera-
tions, each ofwhich needs to compute and update the pairwise
distances between all intermediate clusters. This makes the
exact algorithm for HC require quadratic time and space com-
plexity. To reduce the cost of HC, various approximate and/or
parallel algorithms thus have been proposed [10]–[14]. How-
ever, these algorithms still rely on conventional linkage meth-
ods (such as single, centroid, average, complete, or Ward’s)

1This bottom-up method is called agglomerative HC. We do not consider
its top-down alternative called devisive HC in this paper.

FIGURE 2. An example. (a) A hypothetical hierarchy of clusters existing
among six objects. Any HC algorithm needs five merges to cluster these
six objects. (b) The corresponding dendrogram, where each merge is
represented by a dot.

for defining pairwise distances and mostly focus on the
approximation and/or parallelization of linkage computation.
With regard to enhancing clustering quality, multi-phase clus-
tering algorithms have been designed on top of HC, including
BIRCH [15], ROCK [16], and Chameleon [17]. However,
the focus of these methods is on the integration of HC with
other clustering methods for discovering complex clusters
rather than on the improvement of the quality of HC itself.

FIGURE 3. In NC-link, the distance between two clusters is defined as the
distance between two points, each of which is the closest to the centroid
of each cluster. x∗ , NC-point(X ) and y∗ , NC-point(Y ).

The choice of the linkage method profoundly affects not
only the quality but also the efficiency of HC. To reach
the root of the problem and derive a better solution there-
from, we propose in this paper a new linkage method termed
NC-link (NC stands for nearest to centroid) and present an
efficient implementation of the HC that uses NC-link as
its linkage method. In NC-link, the distance between two
clusters is defined as the distance between two data points,
each of which is the closest to the centroid of each cluster (see
Fig. 3 and Definitions 1–2 in Section III-A for more details).
This linkage definition allows the proposed NC-link-based
algorithm2 to employ some key techniques for reducing space
usage and response time. For instance, the distance update
action is not needed after every merge when NC-link is
used, as informally shown in Fig. 1(b); more details will
follow shortly. To guarantee the exactness, the proposed algo-
rithm maintains the quadratic nature in the time complexity,
although it exhibits only a linear space complexity, which

2Where no confusion arises, we also refer to the proposed NC-link-based
HC algorithm as NC-link for convenience.
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is crucial for ensuring scalability. To underpin our method’s
extensibility to approximation and parallelization, we will
show that the algorithmic nature of NC-link enables SIMD
parallelization and subquadratic-time approximation for HC.

To verify our proposal, we thoroughly tested it with a
number of large-scale real and synthetic data sets. According
to our experiments, the proposed algorithm ran as fast as the
average and complete linkage methods, therein only using
0.7–1.75% of thememory required by thesemethods. In addi-
tion, our method achieved up to 3.54 and 3.36 times speed up
over the centroid and Ward’s linkage methods, respectively,
despite using a similar amount of memory. Furthermore,
the in-memory processing of multiple millions of objects on
a personal computer was possible by NC-link. In addition
to the evaluation of the speed and scalability of NC-link,
we also confirmed its clustering quality through a quantitative
evaluation of clustering results by the cophenetic correlation
coefficient [3], the Silhouette Index [18], and the measure of
concordance (MoC) [19]. The results confirm that NC-link
can retrieve the hierarchical structure as effectively as can the
popular average and centroid linkages.

The remainder of this paper is organized as follows:
Section II reviews the fundamentals of HC, including the
conventional linkage methods. Section III presents our
NC-link algorithm at length. The complexity analysis of the
proposed method is given in Section IV, along with in-depth
comparisons with existing techniques. Section V demon-
strates the effectiveness of our NC-link methodology through
experimental results, followed by a discussion in Section VI.
Section VII concludes the paper.

FIGURE 4. Conventional linkage methods. (a) Single. (b) Complete.
(c) Average (UPGMA). (d) Centroid (UPGMC).

II. BACKGROUND
In HC, the closest pair of clusters is merged iteratively, and
the measure of the distance between two clusters should
thus be defined. Fig. 4 compares four common methods for
this. One of the earliest measures proposed was the nearest-
neighbor or single linkage method, which defines the cluster
distance as the distance between the two closest objects, one
from each cluster, as presented in Fig. 4(a). Fig. 4(b) shows
the farthest-neighbor or complete linkage method, in which
the cluster distance is defined as the distance between the
two most distant objects. The average linkage or unweighted

pair-group method using arithmetic averages (UPGMA)
shown in Fig. 4(c) utilizes the group average, that is, the aver-
age pairwise distance among all pairs of points in the different
clusters. In the centroid linkage or unweighted pair-group
method using centroids (UPGMC), the cluster distance is
defined as the distance between the centroids of two clusters,
as depicted in Fig. 4(d). Other linkage methods not presented
in Fig. 4 include the median linkage or weighted pair-group
method using centroids (WPGMC), which uses the weighted
centroid of clusters, and Ward’s linkage method, which
defines the distance between two clusters as the increase in
the error sum of squares resulting from merging them [3].

The linkage method used by an HC algorithm not only
determines the clustering result produced by the algorithm
but also critically affects the time and space complexity of
the algorithm. After two clusters are merged into a new
cluster, the distances between this new cluster and the other
unchanged clusters need to be updated before the next
merge. Since this update occurs in every iteration of the
conventional HC, the update time accounts for a major por-
tion of the entire running time. If single linkage is used,
the update can be omitted entirely by pre-calculating the
distance between every pair of objects. Sibson exploited this
property and proposed an algorithm called SLINK [20] that
is time optimal for single-linkage-based HC. However, sin-
gle linkage has an obvious disadvantage called the chaining
effect [21], [22], which results in long strings of objects being
assigned to the same cluster. Thus, despite its efficiency,
the single-linkage method is of limited value for cluster-
ing [4]. All other linkage methods mentioned above require
distance updates at every iteration and are generally less
efficient than the single-linkage-based approach, although
they are typically more robust.

The worst-case time complexity of a naïve implementation
of the conventional HC algorithmwould be O(n3) since there
are O(n) iterations, each of which involves O(n2) operations
to find the closest pair in the distance matrix. The naïve
method can be improved with priority queues by reducing
the search space to detect the closest pair. Retrieving only the
fronts of the queues takesO(n), resulting in a time complexity
of O(n2 log n). The log n is the operation cost of a prior-
ity queue [23]. It has been proven that the worst-case time
complexity of the agglomerative HC algorithm is O(n2) for
the single, centroid, complete, average, and Ward’s linkage
methods [20], [23], [24]. See Section IV-B for more details.

III. PROPOSED NC-LINK METHOD
A. PRELIMINARIES
We assume that the input data are given as a real matrix
D ∈ Rn×m, where n and m are the numbers of objects
and dimensions (or features) of the input data, respectively.
A cluster is defined as an m-dimensional submatrix of D and
is denoted by X = {x1, x2, . . . , xk}, where xi ∈ Rm for
1 ≤ i ≤ k . The centroid of X is denoted by µX ∈ Rm.
As a distance measure, we use the Euclidean distance or the
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L2 norm denoted by || · || in this paper; depending on the
application, a different type of distance may be employed.
In NC-link, we define the distance between two clusters using
the concept of the NC-point of a cluster:
Definition 1: For cluster X , its element nearest to

the centroid of X is called NC-point(X ). Specifically,
NC-point(X ) = argmin

x∈X
||x− µX ||.

Definition 2: For two clusters X and Y , the distance
between X and Y is defined as ||x∗ − y∗||, where x∗ =
NC-point(X ) and y∗ = NC-point(Y ).

Algorithm 1 NC-Link

input: Data matrix D ∈ Rn×m
F n objects; m dimensions

input: Parameter δ (0 < δ � n) F Control space usage
output: Cluster information represented by a dendrogram

1: procedure NC-link(D, δ)
2: Initialize GQ and LQ (priority queues) and T (a

dendrogram);
3: FillQueues(D, δ, GQ, LQ); F Algorithm 2
4: while TRUE do
5: (v,w)← GQ.Dequeue();
6: if each of v and w is the NC-point of a certain

cluster then
7: Merge the two clusters v and w;
8: Add a node to T reflecting this merge;
9: break if T has n− 1 nonleaf nodes;
10: r ← the NC-point of the merged cluster;
11: if ((r 6= v) ∧ (r 6= w)) then
12: UpdateQueue(D, r , δ, GQ, LQ); F

Algorithm 3
13: else if r == v then
14: if LQ[v].IsEmpty() then
15: UpdateQueue(D, v, δ, GQ, LQ); F

Algorithm 3
16: else
17: GQ.Enqueue(LQ[v].Dequeue());
18: else if v is a NC-point then
19: if LQ[v].IsEmpty() then
20: UpdateQueue(D, v, δ, GQ, LQ); F

Algorithm 3
21: else
22: GQ.Enqueue(LQ[v].Dequeue());
23: return T ;

B. ALGORITHM DESCRIPTION
The pseudocode of NC-link is given in Algorithms 1–3. The
input consists of a data matrix D, and δ ∈ Z, a user-defined
parameter specifying the number of the nearest neighbors
of each object that the algorithm will store during its run.
The δ parameter thus controls the size of the space that the
algorithm utilizes (0 < δ � n). Of note is that the value
of δ is irrelevant to the accuracy of the algorithm, meaning
that invoking Algorithm 1 with different values of δ would

Algorithm 2 FillQueues
1: procedure FillQueues(D, δ, GQ, LQ)
2: for each object v in D do
3: for each object w(6= v) in D do
4: ifw is one of the δ-nearest neighbors of v then
5: LQ[v].Enqueue((v,w), ||v− w||);
6: for each object v in D do
7: GQ.Enqueue(LQ[v].Dequeue());

Algorithm 3 UpdateQueue
1: procedure UpdateQueue(D, r , δ, GQ, LQ)
2: LQ[r].Clear();
3: for each existing cluster K do
4: k ← NC-point(K );
5: if k (6= r) is one of the δ-nearest neighbors of r

then
6: LQ[r].Enqueue((r, k), ||r − k||);
7: GQ.Enqueue(LQ[r].Dequeue());

produce the same set of clusters; δ only affects the execution
time and space usage of the algorithm.

FIGURE 5. An illustration of the concept of the global queue (GQ) and the
local queues (LQs). Assume that the number of objects is 7, with the
user-specified parameter δ = 3. In the proposed algorithm, there exists a
unique GQ, whereas one distinct LQ is allocated to each object (with the
maximum queue size of δ elements). The δ-nearest neighbors (δ-NN) of
each object are found and stored in the LQ dedicated to that object. The
first entries of all pairs in an LQ are filled with the owner object of that
LQ. After that, the information on the closest neighbor of each object is
moved to GQ. Throughout the algorithm, GQ holds the pairs including
each NC-Point as its first (and unique) entry. Each of the priority queues is
implemented with a binary heap, and the computational cost of each
heap operation is listed in the table shown above.

Line 2:The algorithm initializes its internal data structures.
A dendrogram denoted by T is maintained to record the clus-
tering procedure, the centroid of each of the merged clusters,
and their membership. In addition, the algorithm utilizes two
types of priority queues [25]: a global queue (GQ) and a
local queue (LQ). When the algorithm runs, it creates and
maintains only oneGQ, whereas each object in the input data
is associated with its own instance of LQ that can hold up to δ
elements. The roles of GQ and LQ will be explained shortly;
refer to the caption for Fig. 5 for an example with additional
details. In this paper, we implement each instance of GQ and
LQ using a binary heap [25] and assume that the following
operations are supported:
• Enqueue((v,w), ||v − w||): For two distinct objects
v,w ∈ D, this function inserts the pair (v,w) into the
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priority queue, with ||v−w|| as its priority. The elements
in the priority queue are stored in ascending order with
respect to the pairwise distance.

• Dequeue(): This function returns the pair at the front
of the priority queue (i.e., the pair with the smallest
distance in the queue) and removes the pair from the
priority queue.

• IsEmpty(): This is to check whether the priority queue
is empty.

• Clear(): This function removes all the pairs from the
priority queue.

Line 3 (Algorithm 2): This line invokes Algorithm 2 to
fill up the priority queues with the initial pairwise dis-
tance information. Specifically, for each object in the input
data, the algorithm first searches for the δ-nearest neighbors
(δ-NN) of the object and inserts them into the LQ dedicated
to the object (lines 2–5 of Algorithm 2). After the search
is completed for all the objects, the ‘‘closest pair’’ of each
object (i.e., the pair formed by an object and its nearest
neighbor) is dequeued from the LQ of that object and then
enqueued to theGQ (lines 6–7 of Algorithm 2). Although the
distance between every pair of objects inD is computed, only
(δ · n) pairs of objects are inserted into the priority queues in
the end. The effect of δ on the running time will be discussed
in Section V-B. Note that each object can be considered as
a singleton cluster, and every object initially becomes the
NC-point of the singleton cluster.
Line 4: The main loop starts and is repeated until all

(n − 1) merges required for completing the HC of n objects
have occurred.
Line 5: The pair at the front of the GQ is popped out.

This pair is denoted by (v,w) and represents the most closely
located pair among all the pairs currently residing in the GQ.
Line 6: The algorithm checks if v is the NC-point of its

cluster. After the same test on w, the algorithm proceeds to
the next line if each of v and w is the NC-point of a cluster.
Otherwise, the algorithm proceeds to line 18.
Lines 7–9: The two clusters represented by v and w are

merged into a new cluster, and the centroid of the newly
created cluster is computed, which can be done in constant
time by using the two existing clusters’ centroids and their
membership. A new node corresponding to this merge is
inserted into the dendrogram T along with the centroid and
the membership information. Having (n − 1) nonleaf nodes
in T indicates the completion of clustering. If that is the case,
the main loop finishes to terminate the algorithm in line 23;
otherwise, it proceeds to the next step.
Line 10: The NC-point of the newly created cluster is

computed and denoted by r .
Lines 11–12: When r is neither v nor w, LQ[r] (i.e.,

the local priority queue dedicated to r) may have outdated
values, and the algorithm needs to clear and update LQ[r].
Algorithm 3 performs the update of LQ[r] as follows: All
pairs in LQ[r] are dropped (line 2 of Algorithm 3). The
distance between r and the NC-point of each of the existing
clusters is computed, and only δ-NN of r are inserted into

LQ[r] (lines 3–6 of Algorithm 3). This is to ensure that
the space usage is linear in n. Then, the closest pair of the
object r is dequeued from the LQ[r] and then enqueued to
the GQ (line 7 of Algorithm 3).
Lines 13–17: If r is v, the pair whose first entry is v should

be moved to GQ. LQ[v] needs to be updated by invoking
Algorithm 3 if it is empty; otherwise, the front element of
LQ[v] is removed and inserted into theGQ. Note that the pair
(v,w) popped out from theGQ indicates that the pair is moved
to theGQ via the LQ of v (which is the first entry of the pair).
Therefore, if v is an NC-point, the pair whose first entry is
v have to be moved to the GQ to ensure the correctness of
the algorithm. It is unnecessary to check if r is w since the
algorithm guarantees that the pair whose first entry is w is
already stored in the GQ.
Lines 18–22: This is for the situation in which v is an

NC-point but where w is not. These lines execute the code
to maintain the pair whose first entry is v, an NC-point in the
GQ as in lines 14–17.
Line 23: The algorithm terminates, returning the

completed T .

C. CORRECTNESS OF THE PROPOSED ALGORITHM
The proposed algorithm maintains correctness by guarantee-
ing that the pair including eachNC-point as its first entrymust
exist uniquely in the GQ. Should there be no pair whose first
entry is either v or w in theGQ, where v and w are NC-points,
then the pair (v,w) or (w, v) could not be computed in the
algorithm, and the correctness would be compromised.

If an object r , which was not an NC-point previously,
becomes an NC-point of the newly created cluster, then the
nearest neighbors information of the other clusters can be
changed. However, this does not affect the correctness of our
algorithm since this information is inserted into LQ[r] as it is
updated, and the order in theGQ is adjusted by the algorithm.

IV. ANALYSIS
The worst-case time and space complexities of the proposed
method as described in Algorithms 1–3 are O(n2) and O(n),
respectively, where n is the number of objects in the input.
In this section, we highlight some of the key design principles
and present the details of deriving the worst-case complexity
of our NC-link algorithm; then, we compare it with conven-
tional HC methods. In particular, we theoretically prove an
important property of NC-link, which states that the probabil-
ity of having multiple NC-points in a cluster becomes prac-
tically zero if the cluster has more than two members. This
property is crucial to keep the worst-case time complexity of
the NC-link algorithm quadratic in n. Finally, we define the
performance metrics used for evaluating experimental results
in Section V.

A. DESIGN PRINCIPLES OF NC-LINK ALGORITHM
As previously explained, NC-link does not need to update
the distances between a newly merged cluster and all the
other clusters after every merge, unlike most conventional
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linkage methods. This can greatly accelerate the HC proce-
dure, as will be demonstrated in Section V.

Another key principle of designing our algorithm was to
keep the space usage linear in n to ensure its scalability
to massive data. Some implementations of conventional HC
precalculate the distances between every pair of objects and
store the information in memory to achieve fast lookup;
however, this approach results in limited scalability due to
its quadratic space requirements. For in-memory processing
of large-scale data, it is crucial for a mining algorithm to have
linear space complexity. The proposed algorithm achieves
this by selectively storing distance information: Only the
distances of at most (δ · n) pairs are stored in the priority
queue, as explained in Section III-B. Note that δ (� n) is
a user-specified parameter and is independent of n.

In a similar manner, we could implement a conventional
HC method using the priority queues and maintaining the
linear space. In this case, however, the computational cost
would increase to O(n3) (e.g., for the average or complete
linkage), or the acceleration effect will be marginal (e.g., for
the centroid linkage).

B. COMPLEXITY ANALYSIS AND COMPARISON
As stated in Section II, a naïve implementation of the
HC algorithm would incur an O(n3) worst-case time com-
plexity. However, various techniques have been proposed to
reduce the complexity to O(n2), as will be explained below.
To facilitate further explanations, we first review the core
operations involved in HC. As seen in Fig. 1(a), a typical
HC algorithm consists of three steps:
• Step 1: The algorithm computes the pairwise distances
between singleton clusters (i.e., data objects). Many
algorithmsmaintain a priority queue to store the distance
information and to support rapid lookup operations per-
formed later.

• Step 2 (iterative): The algorithm finds the closest pair
of clusters from the list of intermediate clusters that have
been found so far. The pair of clusters is merged into
a new cluster, and depending on the linkage method
used, some statistic (e.g., for Ward’s linkage, the sum
of squared deviations from point to centroids) is calcu-
lated, or the representative point (e.g., the centroid) of
the new cluster is appointed.

• Step 3 (iterative): Merging two clusters in Step 2 may
change the distance between some clusters. The algo-
rithm thus updates the pairwise distances between the
affected clusters, including the newly created cluster.

Note that Step 1 is performed only once, whereas
Steps 2 and 3 are repeated until the clustering is completed.
Certain types of linkage methods allow us to optimize the
HC algorithm so that it can omit Steps 1 and 3 (e.g., single
and Ward’s linkages; see Table 1). Recall that n and m denote
the number of objects and the number of dimensions in the
input data.

We start with the complexity analysis of the centroid
linkage method, given its similarity to NC-link (in a sense,

NC-link can be considered an enhanced version of the cen-
troid linkage by reducing the frequency of updates of the
distance information during HC). For the centroid linkage,
Step 1 requires O(n2 m) time for computing pairwise dis-
tances, and constructing a priority queue with the NN pair
of each singleton demands additional O(n) time (assuming
the use of a binary heap and the makeHeap operation shown
in Fig. 5). In Step 2, the pair of closest clusters is retrieved by
the dequeue operations and can be merged if the pair is valid.
The overall time complexity of Step 2 then can be denoted as
O((n−1)(α+1) log n), where the first factor (n−1) represents
the number of merges, and the remaining part indicates the
maximum number of dequeue operations. In this setting, α
denotes the maximum number of NN pairs invalidated by
merging two clusters [23], and such pairs need to be updated
to find new NNs. The upper bound of α is 2(3m − 2), which
depends only on m (the number of dimensions), not n (the
number of objects) [23]. In Step 3, the nearest neighbors of at
most (α+1) clusters need to be updated at every merge. In the
end, the overall worst-case time complexity of the centroid
linkage method becomes O((n− 1)(α + 1)nm).

In NC-link, the δ-nearest neighbors of each singleton are
stored in its own priority queue during the process of com-
puting the pairwise distance in Step 1. This takes O(n2 m +
n2 log δ), where the second term n2 log δ comes from the
priority queue operations used to find δ-NN (Algorithm 2).
The cost of Step 2 is O(αn log (δn)) + O(n2m). The first
term is similar to that in the centroid linkage (the cost for
local queue management is newly added). The need to find
NC-points for (n − 1) clusters incurs the additional O(n2m)
term. The worst-case time complexity for performing Step 3
is O((n − 1)(α + 1)nm log δ), which is on the same order as
the cost of Step 3 in the centroid linkage. In the best case,
however, we can reduce the cost of Step 3 in NC-link to O(1)
by storing the δ-nearest neighbors of each cluster, whereas
the best-case complexity of the centroid linkage for Stage 3 is
�(n2 m).
We can implement the average, complete, single, and

Ward’s linkage methods based on the nearest-neighbor
chain (NN-chain) algorithm [14]. Its worst-case time and
space complexities are both O(n2), except for the single and
Ward’s linkage methods, each of which has a worst-case
space complexity of O(n). Wards’s linkage completes the
computation of inter-cluster distances in constant time by
utilizing the information on cluster centroids and their mem-
bership [10], [14], [23], [26]. The time-optimal version of the
single linkage was reported in the SLINK [20] method, which
has a worst-case time and space complexity of O(n2) and
O(n), respectively. More details of the NN-chain algorithm
can be found in [14].

Table 1 summarizes the worst-case time complexity of
various linkagemethods. Note that the worst-case complexity
of each step of the NC-link algorithm is expressed with more
terms than those of the alternatives, and the overall complex-
ities seem to present no differences between methods. How-
ever, this only shows the theoretical worst-case complexities,
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TABLE 1. Comparison of best-known worst-case time complexities of different methods.

and the proposed method shows competitive performance in
practice, as will be shown in Section V.

C. PROOF OF THE UNIQUENESS OF NC-POINT
Proving the uniqueness of NC-point is important for keeping
the worst-case time complexity of the NC-link algorithm
quadratic in n. If there are multiple NC-points for every inter-
mediate cluster created during a run of the NC-link algorithm,
it will have a cubic worst-case time complexity since each
iteration now needs O(n2) operations for updating the cluster
distances, not O(n) as previously explained.

For a cluster with two members, it is axiomatic that the
NC-point of this cluster is not unique since both of the objects
are placed at the same distance from the centroid. However,
for a cluster with more than two objects, we show in this
section that it is implausible for the cluster to have multiple
NC-points in practice.

According to measure theory [27], events that are impossi-
ble have zero probability, but the converse is not true in gen-
eral. Specifically, a zero-probability event can indeed happen.
This is because it is possible to have a non-empty set with zero
volume, the probability being a measure of the volume. In the
present context, we can paraphrase this theoretical state-
ment as follows: It is possible for a cluster to have multiple
NC-points, e.g., if all the members of the cluster are sym-
metrically placed on the surface of a sphere whose center is
located at the centroid of the members. However, encounter-
ing such a configuration of points from a non-trivial dataset
is implausible, and we can claim that the cluster has a unique
NC-point in practice. The following theorem formalizes this
idea:
Theorem 1: For a cluster that consists of more than two

real-valued vectors, the probability that the NC-point of the
cluster is not unique is zero.

Proof: Consider a cluster X = {x1, x2, . . . , xk}, where
xi ∈ Rm for 1 ≤ i ≤ k . The centroid of X is denoted by
µX ∈ Rm. Let A denote the event whereby the cluster X
has more than one NC-point. Specifically, if we let x∗ =
argmin x∈X ||x − µX ||, then A indicates the event whereby
x∗ is not unique.

Let us introduce an indicator variable for the event A:

1A =

{
1 if event A occurs;
0 otherwise.

(1)

Then, the probability of the event A is given by

P(A) =
∫
x1
· · ·

∫
xk
1AP(x1, . . . , xk )dx1 · · · dxk (2)

=

∫
x1
P(x1)

∫
x2
P(x2|x1) · · ·

×

∫
xk
1AP(xk |x1, . . . , xk−1)dxk · · · dx1 (3)

It is clear that P(A) will be zero if the innermost part of the
integration (Eq. 3), namely,∫

xk
1AP(xk |x1, . . . , xk−1)dxk (4)

is zero for any x1, . . . , xk−1 since the following always holds:

0 ≤ P(A) ≤ max
x1,...,xk−1

∫
xk
1AP(xk |x1, . . . , xk−1)dxk . (5)

Consequently, to prove that P(A) is zero, it suffices to show
that the quantity in Eq. 4 equals zero. In this regard, suppose
that we have fixed the k − 1 points {x1, . . . , xk−1} , X ′ and
that we are about to add the last k-th point xk to complete
the cluster X , as informally shown in Fig. 6. We can then
interpret the integration in Eq. 4 as computing the probability
of placing xk such that the event A occurs.
Note that µX is affine with respect to xk :

µX =
x1 + · · · + xk

k
=
k − 1
k

x1 + · · · + xk−1
k − 1

+
xk
k

(6)

=
k − 1
k

µX ′ +
xk
k

(7)

where µX ′ is the centroid of the partial cluster X ′. Based
on this fact, the proof will focus on exploring the possible
location of µX (in lieu of xk ) in Rm and estimating the
associated probability of the event A.

If the event A occurs, then the point represented by µX will
have multiple nearest neighbors. The point xk may or may not
be one of these nearest neighbors. We can thus represent the
probability of A by the sum of the probabilities of two disjoint
events Ain and Aout as follows:

P(A) = P(Ain)+ P(Aout) (8)

where the event Ain represents the case in which xk is one
of the nearest neighbors of µX and the event Aout represents
the case in which xk is not one of these nearest neighbors.
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FIGURE 6. Illustration of the proof idea. For a cluster X = {x1, x2, . . . , xk },
the centroid of X is denoted by µX . Assume that X ′ , a partial cluster of
(k − 1) points X = {x1, x2, . . . , xk−1}, is given (fixed) and that we can only
control the location of xk . Since µX is affine with respect to xk ,
as explained in the main text, we instead focus on exploring the possible
locations of µX . In order for the event A whereby X has multiple
NC-points to occur, µX must lie on one of the

(k−1
2

)
lines determined by

xi and xj for i 6= j, i 6= k, j 6= k (an example of such a line is shown in the
figure) or on one of the k − 1 circles of Apollonius defined by µX ′ and xi
for 1 ≤ i < k . The proof in the main text shows that the event A
corresponds to a set that has measure zero, implying that X will have a
unique NC-point in practice.

In the following, we prove that P(A) = 0 by showing that
P(Ain) = P(Aout) = 0.
We first prove that P(Aout) = 0. Assume that the centroid

µX has two nearest points, xi and xj (note that i 6= j, i 6= k ,
and j 6= k). Let9i,j denote the hyperplane (in Rm) composed
of the points that have the same distance to xi and xj, i.e.,

9i,j =
{
x | x ∈ Rm and ||x− xi|| = ||x− xj||

}
. (9)

Then, the probability of Aout must be upper bounded by the
probability of the union of the following events: µX ∈ 9i,j
(for 1 ≤ i < k, 1 ≤ j < k, i 6= j). Specifically,

P(Aout) <
k−1∑

i,j=1,i 6=j

P(µX ∈ 9i,j). (10)

Note in Eq. 9 that the hyperplane corresponds to a set that has
measure zero [27] and zero probability. Since the summation
in Eq. 10 is countable, the upper bound of P(Aout) given in
Eq. 10 must be zero, and thus, P(Aout) = 0.

Next, we show that P(Ain) = 0. In this case, xk is assumed
to be an NC-point of the cluster X . In order for the event Ain
to occur, there must exist xi ∈ X such that

||µX − xk || = ||µX − xi|| (11)

for 1 ≤ i < k . Given that

µX − µX ′ =
x1 + · · · + xk

k
−

x1 + · · · + xk−1
k − 1

(12)

=
1

k − 1
(xk − µX ) , (13)

we can rewrite Eq. 11 as

(k − 1)||µX − µX ′ || = ||µX − xi|| (14)

and define 8i, a set of the points in Rm that are an identical
distance to xi ∈ X ′ and the fixed point µX ′ , as

8i =

{
x | x ∈ Rm and ||x− µX ′ || =

||x− xi||
k − 1

}
(15)

for 1 ≤ i ≤ k − 1. Then, the probability of Ain must be
upper bounded by the probability of the union of the events
µX ∈ 8i, i.e.,

P(Ain) <
k−1∑
i=1

P (µX ∈ 8i) . (16)

Notice that the set 8i describes an Apollonius circle [28] in
Rm since the ratio ||x−µX ′ ||/||x− xi|| is fixed. The set8i is
thus a sub-hyperplane in Rm and has measure zero. Since the
summation in Eq. 16 is countable, the upper bound of P(Ain)
must be zero; we can thus conclude that P(Ain) = 0.
Since both of the probabilities P(Ain) and P(Aout) are zero,

we have proved that P(A) = 0.

D. PERFORMANCE METRICS
To facilitate our analysis of the experimental results in
Section V, we define two performance metrics, both of
which are counters that count how many times we need to
update the distance information during HC. More specifi-
cally, in NC-link, these metrics count how many times we
perform δ-NN search. Depending on the reason for initiating
a search, we categorize these update counters as follows (see
Section VI-A for more discussion on these performance
metrics):
• Unew : The number of δ-NN searches that occur since
the NC-point of a newly created cluster is neither of the
NC-points of the two merged clusters.

• Uempty The number of δ-NN searches started because the
queue is empty.

Note that the events that increase any of these counters are
disjoint, and we define the total count Utotal as follows:

Utotal = Unew + Uempty. (17)

The value of Utotal for a run of HC depends on the value
of δ, and adjusting δ can achieve a significant gain in effi-
ciency, as demonstrated in Fig. 7 and Fig. 8.

V. EXPERIMENTAL RESULTS
A. SETUP
We tested the proposed method with the data sets listed
in Table 2. Although NC-link is not limited to certain
data types, we mostly used biological data for our experi-
ments. HC is one of the most popular clustering methods in
biomedicine. Biological data sets are typically not sparse, and
algorithms that are optimized for sparse data should show
poor performance. In addition, there are several biological
data repositories in which a large amount of large-scale data
is freely available.

The data sets used in our experiments can be classi-
fied as follows: First, we downloaded 20 gene expres-
sion data sets (DT1–20) from the Stanford Microarray
Database (SMD) [29]. On average, these data sets have
40,957 objects with 34 dimensions. Second, we utilized the
three-dimensional protein structural data (DT21) produced
by [30]. This data set is a collection of FEATURE vectors,
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TABLE 2. Datasets used for our experiments.

FIGURE 7. The effect of δ on Utotal. (a) DT1–20 (avg. obj. = 40957; avg.
dim. = 34). (b) DT21 (100,000× 264).

which can characterize local environments around protein
residues by counting physicochemical properties within con-
centric shells around a center. Third, we used the Pfam
repository [31] to generate a million-object dataset (DT22)
to be used for scalability tests. Finally, although not shown
in Table 2, we synthesized some matrices of random integers
to use to generate baseline results in some of the experi-
ments (see Section V-E.1).

We implemented the proposed NC-link method in C++,
compiled it using Intel ICC (version 16.0), and conducted
experiments on a 2 GHz Linux machine (Intel E5-2650,
CentOS 6.6) with 128 GB of main memory without any

FIGURE 8. The effect of δ on running time and memory usage. (a) DT1–20
(avg. obj. = 40957; avg. dim. = 34). (b) DT21 (100,000× 264).

parallelization but with the user-mandated vectorization sup-
ported by the Intel architecture. For comparison, we used
Fastcluster [26], which includes NN-chain-based implemen-
tations of the average, complete, andWard’s linkagemethods.
For the single linkage method, we utilized the SLINK pro-
gram included in Cluster 3.0 [32]. The centroid linkage was
implemented using the NC-link implementation. To ensure
fair comparison, we revised all the above alternative methods
so that they can also benefit from the user-mandated paral-
lelization in the same manner as NC-link.

B. EFFECTS OF THE δ PARAMETER
As described in Section III, the NC-link algorithm takes a
user-defined parameter denoted by δ. This parameter speci-
fies how much space should be allocated for clustering—out
of
(n
2

)
possibilities, only the distances of the (δ · n) closest

pairs are stored. Recall that the value of δ is independent
of accuracy and only affects the running time and space
requirements of the algorithm. Here, we analyze the effect
of δ.

Fig. 7 shows how Utotal varies with different values of δ.
For both types of datasets, Utotal drastically decreased from
δ = 1 to δ = 5. For larger values of δ, the decrease in Utotal
was negligible. This is a positive observation and implies
that we do not need to use large values of δ (which would
incur massive use of memory) to reduce Utotal, which will
eventually accelerate the whole run.

More specifically, for the DT1–20 datasets, the average
Utotal was approximately 79, 000 for δ = 1 but decreased to
approximately 19, 000 for δ = 10 and to 2, 236 for δ = 100.
The value of Unew averaged over DT1–20 was 754.65 and
did not vary with different values of δ, as expected from the
fact that Unew is independent of the value of δ. We made
similar observations from the DT21 data. Most of Utotal was
due to Uempty when δ = 1, and Uempty quickly decreased
for larger values of δ, which justifies our idea of utilizing
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δ-NN information to reduce the number of updates on dis-
tance information during HC.

Note that the instance of NC-link with δ = 1 corresponds
to the case where the number of updates cannot be reduced
because the extra nearest neighbors are not stored in the local
queues (e.g., HC using the centroid linkage). We will use this
instance with δ = 1 as the baseline for comparison in this
section.

To confirm the effect of reducingUtotal on the running time,
we measured the running time and memory usage with the
same values of δ, as in Fig. 7. We measured the running time
of each of the three HC steps (see Section IV-B) separately
so that we could analyze the effect of δ more closely.
As shown in Fig. 8, the running time decreased in the same

manner as Utotal as we increased δ. In particular, the running
time of Step 3 was most significantly affected by δ. This is
because the value of δ controls the frequency of the δ-NN
search in Step 3, whereas Steps 1 and 2 are not significantly
dependent on δ. As expected, the space demand grew linearly
as we increased δ, but the slope of the line was moder-
ate: For both data types (DT1-20 and DT21), amplifying δ
100 times (going from δ = 1 to δ = 100) only increased the
memory usage by less than 3.5 times.

Based on the results shown in Fig. 8, we determined the
values of δ that would be used for the other experiments. For
DT1–20, δ = 75 gave the shortest average running time,
whereas δ = 10 achieved the best balance3 between time and
space requirements. For DT21, δ = 100 and δ = 20 resulted
in the best running time and balance, respectively. We thus
used these values in the other experiments presented in this
section.

C. COMPARISON WITH CENTROID LINKAGE
In Fig. 9, we compare NC-link with the centroid linkage in
terms of the running time, memory usage, Unew, and Utotal
values measured over DT1-21. Given that NC-link can be
considered as an improved version of the centroid, our aim
was to identify where and how the performance gain of
NC-link over the centroid was achieved.

In Step 1, NC-link ran slightly slower than the centroid
linkage due to the need for storing more (δ vs one) elements
in the queue (this extra cost is represented by the (O log δ)
term in Table 1). In Step 2, the running time of both methods
was similar. In Step 3, we observed substantial decreases
in running time for NC-link. Leveraged by the performance
advantages in Step 3, NC-link significantly outperformed
the centroid linkage in terms of overall running time. This
expedited runtime can be accredited to the decreased Unew
and Utotal for NC-link. In particular, Unew was negligible for
NC-link, whereas it accounted for a significant portion of
Utotal for the centroid.

The price for the speedup of NC-link over the centroid
was the increased memory usage, but the level of the extra

3measured as speedup (decrease ratio in runtime)
increase ratio in memory usage with respect to the δ = 1

case

FIGURE 9. Comparison: NC-link and centroid linkage. (a) DT1–20 (avg.
obj. = 40957; avg. dim. = 34). (b) DT21 (100,000× 264).

memory required was reasonable, especially for the high-
dimensional DT21 data. Using 1.28–3.4 times more memory,
NC-link reduced the running time by 2.05–3.54 times (over-
all) and by 6.66-42.08 times (Step 3).

D. SPEED AND SCALABILITY
We compared the efficiency of NC-link with the alternative
methods in terms of running time, memory usage, and time-
space trade-off.

Fig. 10 shows the running time of different methods. For
DT1-20, theNC-link instanceswith δ = 75were competitive,
showing similar running time to the single linkage, which is
known to be the fastest HC method. For DT21, four meth-
ods (NC-link, average, complete, and single linkagemethods)
outperformed the centroid and Ward’s linkage. The result
from DT22 shown in Fig. 10(c) is to demonstrate the ability
of NC-link to handle million-scale data on a PC. For DT1-21,
the running time of the average and complete linkagemethods
is similar to that of NC-link, but their space complexity is
quadratic, as is the case for the time complexity (reducing the
space complexity of these two linkages is possible, but the
time complexity increases to cubic), limiting their scalability.

To further analyze this space-time trade-off, Fig. 11 shows
the running time (the same information as shown in Fig. 10(b)
and (c)) and the memory usage simultaneously. As previously
stated, the average and complete linkages are fast but require
a large amount of memory. The centroid and Ward’s linkages
are space efficient, but their running time is unsatisfactory.

In the same line of analysis, Fig. 12 shows the values of
1/(normalized time · normalized space) that can be used to
quantify the time-space balance.We canmore clearly observe
the limitations of the average and complete linkages. Only the
proposed NC-link and the single linkage gives competitive
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FIGURE 10. Running time comparison. (a) DT1–20 (avg. obj. = 40957; avg.
dim. = 34). (b) DT21 (100,000× 264). (c) DT22 (1,000,000× 265).

TABLE 3. Comparison of cophenetic correlation coefficients (CPCCs) [3]
for different methods and data.

results in terms of both time and space. However, as will be
shown shortly (see Table III and Fig. 14), it is well known that
the single linkage often suffers from the chaining problem,
which often limits its practical applicability.

Taken together, our experimental results suggest that
NC-link can outperform all the alternatives in terms of speed,
memory usage, and quality of clustering results. To convince
the readers of the third advantage of NC-link (clustering
quality), we proceed to Section V-E.

E. EVALUATING QUALITY OF CLUSTERING RESULTS
To evaluate how well NC-link fits input data and retrieves the
hierarchical structures therein in comparison to conventional
methods, we carried out three types of experiments.

1) COPHENETIC CORRELATION COEFFICIENT
First, we used the cophenetic correlation coefficient (CPCC),
a standard measure of how well a hierarchical cluster fits
input data [3]. For two objects, their cophenetic distance is

FIGURE 11. Simultaneous comparison of running time and memory
usage. (a) DT1–20 (avg. obj. = 40957; avg. dim. = 34). (b) DT21
(100,000× 264).

FIGURE 12. Quantitative comparison of the time-space trade off shown
in Fig. 11 using a metric defined as 1/(normalizedtime · normalizedspace).
(a) DT1–20. (b) DT21.

defined as the distance at which they are grouped together for
the first time during HC. The CPCC then corresponds to the
correlation between a cophenetic distance matrix and a pair-
wise distance matrix. The higher the quality of a clustering
method, the closer to 1 the magnitude of this value.

Table 3 lists the CPCC values calculated from the cluster-
ing results obtained by running six different linkage methods
on DT1–21 and 21 random datasets whose sizes match those
of DT1–21 (the elements of the random matrices were ran-
domly selected from a uniform distribution). As random data
does not contain structure, the score obtained for the random
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FIGURE 13. The average silhouette value of the flat clusters obtained from the dendrograms by decreasing cutoff heights (data: DT21).

data can serve as the baseline score to which the scores shown
can be compared.

In this experiment, the values from NC-link were as high
as those from the average and centroid linkage methods,
indicating that NC-link fits the input data as faithfully as the
average and centroid linkages do. It is intriguing to observe
that the single linkage method gave the highest value for the
random data, although it was not noticeably effective for the
real data. The chaining effect (the main disadvantage of the
single linkage) may have caused false patterns to be captured.

2) SILHOUETTE VALUE
Given a clustering result, we can use the silhouette method
to measure how similar an object is to the objects in its
own cluster (i.e., cohesion) in comparison with those in other
clusters (i.e., separation) [18]. The silhouette value ranges
between −1 and 1. One silhouette values is computed for
each object, and if many objects in a clustering result present
high values, then the clustering method used is considered
appropriate. In practice, clusters with an average silhouette
value of 0.71 or higher are considered successful in finding
strong structures in the input data [33].

The dendrogram of the HC algorithm returns does not
directly represent a group of clusters. To generate flat clus-
ters from a dendrogram, we can conceptually cut it with a
horizontal line [14, Fig. 1]. The height of the line determines
the (dis)similarity threshold.

In our experiment, we gradually lowered the cutoff line
from top to bottom, generating increasingly clusters, until the
average silhouette value of the generated clusters remained
above 0.71. In this way, we generated 46 (‘‘strongly struc-
tured’’) clusters from the dendrogram producedwhen running
NC-link on DT21. In the same setting, the alternative meth-
ods produced fewer clusters: 42 (average), 28 (complete),
36 (single), 12 (Ward’s), and 44 (centroid) clusters.

Fig. 13 shows how the average silhouette value of the flat
clusters changes for decreasing cutoff heights (due to space
limitations, we only show cases with 2- to 25-clusters). The
NC-link method showed a similar tendency for the silhouette
value under the average and centroid linkage methods. This
suggests that using NC-link in lieu of the average or cen-
troid linkage will not prevent us from discovering important
patterns.

3) MEASURE OF CONCORDANCE (MoC)
The measure of concordance (MoC) [19] is used to com-
pare two clustering results quantitatively. The value of MoC
ranges between 0 and 1 (a value closer to 1 indicates two

clustering results that are more similar). Based on the
flat clusters produced from the experiments presented in
Section V-E.2, we compared the clusters found by NC-link
with those found by the alternative methods, therein measur-
ing the MOC value for each pair of clustering results. Note
that there are

(6
2

)
= 15 combinations since we compared

NC-linkwith five differentmethods.4 This experiment should
be complementary to the experiment in Section V-E.2 in
that the latter is regarding the quality of individual meth-
ods, whereas the former is regarding the similarity of results
between different methods.

Fig. 14 shows the result, where each box plot was generated
from a pair of clustering results by varying the number of
clusters from 2 to 50 (Fig. 14(a): DT1–20 and Fig. 14(b):
DT21). In terms of the median MoC values, NC-link gave
the most similar results to the centroid and average linkages
in both of the plots. The similarity between theWard’s linkage
and the other methods was the lowest. Although the similarity
between the results from the single linkage and those from the
other methods (except the Ward’s linkage) remained reason-
ably high, outliers were consistently observed for the com-
parisons involving the single linkage, which is clearly seen
in Fig. 14(b). This suggests the existence of odd-structured
clusters in the results from the single linkage, probably due
to the chaining problem that frequently occurs in the single
linkage method.

VI. DISCUSSION
A. COMPARISON WITH CENTROID LINKAGE
Among the three steps of HC explained in Section IV-B, a key
contribution of NC-link lies in making Step 3 efficient by
introducing the concept of NC-point and managing δ-nearest
neighbors of intermediate clusters. As shown through the
various experimental results in Section V, this scheme allows
the user to achieve a trade-off between time and memory, and
typically, we can gain a significant reduction in running time
with only a moderate increase in memory usage.

Note that 0 ≤ Unew ≤ n− 1 for NC-link, whereas Unew =

n − 1 for the centroid linkage. For the centroid linkage,
the centroid of a new cluster is in general different from any
of the centroids of the two clusters that have beenmerged, and
there is no point in retaining more than one NN in the queue.
This makes every merge trigger an NN search. By contrast,
the NC-point of a new cluster often coincides with either

4As a baseline, we also tested a dummy clustering algorithm that randomly
clusters data. The MoC values for this dummy method and all other methods
were nearly zero, and we did not include this baseline result in the plot.
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FIGURE 14. The measure of concordance (MoC). There are
(6
2
)
= 15

combinations since we compared NC-link with five different
methods. (a) DT1–20. (b) DT21.

NC-point of the two merged clusters, and storing multi-
ple NNs in advance effectively reduces the number of NN
searches.

B. OPTIMIZING δ-NEAREST NEIGHBOR SEARCH
One of the key ideas behind the NC-link algorithm is the
use of the δ-nearest neighbors of a cluster to reduce the
number of clusters that requires updates of the distance infor-
mation after a merge in each iteration. This search scheme
corresponds to an instance of the k-nearest neighbor (k-NN)
search problem, for which various effective solution methods
exists [34]–[44].

In the present version of the NC-link algorithm, we use a
simple linear search for finding the δ-NNs, which results in
an O(n2) total time complexity for all iterations of HC. For
moderate values ofm (the number of dimensions), we will be
able to accelerate the δ-NN search by employing one of the
existing k-NN searchmethods. For example, we can construct

a k–d tree of n elements in O(n log n) average time and
perform a k-NN search inO(k log n) average time, which will
lead to an improved O(kn log n) time complexity for all iter-
ations. However, using a k-d tree becomes inefficient as the
number of dimensions increases. As a general rule, we need
to have n� 2m for am-dimensional k-d tree to deliver better
performance compared to exhaustive search [38].

For high-dimensional data, we may thus have to use other
techniques, including [37]–[39]. For instance, we may devise
an algorithm using a ball tree [37], which often shows sat-
isfactory performance for high-dimensional data. The k-NN
search operation on the ball tree normally runs in O(m log n),
which will allow the NC-link algorithm to have subquadratic
complexity. However, if the value of m becomes extremely
large, the ball-tree-based algorithm will not maintain its
efficiency, thus losing its performance edge over the linear
search.

If we can sacrifice exactness for efficiency, we may
employ approximation algorithms for k-NN search [40]–[44].
Replacing the current algorithm for δ-NN search with an
approximation algorithm will be a part of our future work,
and it remains to be seen how effective approximate nearest
neighbors will be in the context of HC.

C. EXPEDITING HIERARCHICAL CLUSTERING
In various applications, HC presents advantages over alter-
native clustering techniques because of its ability to discover
hierarchical patterns globally and summarize them in a for-
mat that is convenient for downstream analyses. However,
such a property of HC poses a challenge for parallelization
due to the difficulty in handling global dependence from
one iteration to another [14]. Distributed implementations
of HC algorithms are relatively rare, and most methods to
accelerate HC thus focus on either devising approximate HC
algorithms or parallelizing the pairwise distance calculation,
which presents abundant opportunity for the single instruc-
tion multiple data (SIMD) type of parallelization.

As an alternative solution to the challenge of accelerating
HC by parallelization, we propose to enhance the linkage
method, which plays a key role in HC. All linkage meth-
ods have been around for a while, and to the best of the
authors’ knowledge, there has been no recent attempt to
devise a new linkage method, particularly with the purpose of
expediting HC. As demonstrated by our experimental results,
the proposed NC-link suggests an effective alternative to the
conventional linkages for accelerating HC.

VII. CONCLUSION
We have proposed a new linkage method called NC-link and
an efficient implementation of HC based on this linkage.
According to our experimental results, the proposed method-
ology was effective and often outperformed alternative meth-
ods in terms of the quality of the clustering results and the
time and space efficiency. We believe that we can further
enhance the efficiency of the proposed algorithm by expedit-
ing its components using optimized neighbor search schemes.
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Given the effectiveness of our approach, we anticipate that
it will make an attractive tool for researchers who want a
scalable and robust solution to large-scale clustering.
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