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Learning Composite Latent Structures for 3D Human
Action Representation and Recognition
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Abstract—3D human action representation and recognition are
important issues in many multimedia applications. While latent
state approaches have been widely used for action modeling,
previous works assume the latent states of actions are single
attribute. This assumption is inaccurate for representing structures
of complex actions. In this paper, we propose that latent states
have composite attributes and introduce a novel composite latent
structure (CLS) model to represent and recognize 3D human
actions with skeleton sequences. A human action is modeled with
a hierarchical graph, which represents the action sequence as
sequential atomic actions. An atomic action is represented as a
composite latent state, which is composed of a latent semantic
attribute and a latent geometric attribute. A discriminative EM-
like algorithm is proposed to learn the model parameters and
the composite latent structures of human actions. Given a 3D
skeleton sequence, a composite attribute iterative programming
algorithm is proposed to recognize the action and infer the
action’s latent temporal structure. We evaluate the proposed
method on three challenging 3D action datasets—MSR 3D Action
Dataset, Multiview 3D Event Dataset, and UTKinect-Action
3D Dataset. Extensive experimental results on these datasets
demonstrate the effectiveness and advantage of the proposed
method.

Index Terms—3D human action, action representation, action
recognition, composite latent structure.

I. INTRODUCTION

MODELING 3D human actions is of great importance in
many multimedia applications, such as content-based

information retrieval, 3D human animation, educational enter-
tainment, and multimedia learning. In addition to recognizing
the classes of actions, learning and establishing structure repre-
sentations for actions are also important but challenging issues.
For example, in an edutainment system where a human is inter-
acting with a computer, the computer needs not only to recognize
the human action but also to understand the action’s temporal
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Fig. 1. An example of 3D human action division in time axis. The colorful
segments correspond to different atomic actions, which are represented as latent
states in our model. We label them with semantic categories for illustration.

structure so that its response can precisely coordinate with the
human action.

Modeling latent temporal structures of actions is one of
the most widely-used techniques for action representation and
recognition [1]–[7]. The general idea of the latent structure
methods is that an action is composed of multiple latent sub-
structures or states in the temporal domain [1], [3], [5]. How-
ever, in most previous works, the latent states are assumed to be
single-attribute, i.e. a latent state is described by only one type
of attribute. A limitation of single-attribute latent models is that
they only use one type of latent information for action model-
ing, which is inaccurate for representing structures of complex
actions. For example, in Hidden Markov Models (HMM) [1],
[7] and Hidden Conditional Random Fields (HCRF) [2], an ac-
tion is represented as a sequence of hidden states. Each state
is interpreted by a hidden category, and the temporal window
size of each state is defined as the same constant. However, the
temporal window size of each state might be different. As the
action drink with mug shown in Fig. 1, the sub-actions fetch mug
and move mug have different durations. The different temporal
window sizes also contain useful information for action model-
ing and therefore should not be manually defined as constants
but rather mined from data as variables.

Indeed, latent states have composite attributes, which means a
latent state is interpreted by multiple types of attributes and these
attributes closely interact with each other. For example, in Fig. 1,
the action sequence drink with mug can be divided into several
temporal clips which correspond to atomic actions with the
semantic categories: fetch mug, move mug, hold mug to drink,
and put mug back. In addition to the semantic category, each
atomic action has a geometric attribute defined by the temporal
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Fig. 2. The composite latent structure model. The colorful segments correspond to the atomic actions which are described by the semantic category attributes
and the geometric interval attributes.

interval, as the colorful segments in Fig. 1. The human poses and
motions have similar characteristics in the same atomic action
interval, but present different characteristics in different atomic
action intervals. The semantic attribute indicates which category
an atomic action belongs to and the geometric attribute defines
where the atomic action is and how long it lasts in the whole
sequence.

However, it is difficult to manually define the atomic action
categories and their interval boundaries in an action sequence.
Automatically mining these attributes from data would be more
reasonable and effective since these attributes may hide signifi-
cant information of interpreting action sequences. Thus, both the
semantic and geometric attributes of atomic actions are treated
as latent variables. In this manner, an atomic action is a com-
posite latent state which includes a latent semantic attribute and
a latent geometric attribute. An action sequence is composed of
several composite latent states.

Moreover, different types of latent attributes are not indepen-
dent but rather closely interact with each other. For example,
the semantic attribute of fetch mug is constrained by its geo-
metric attribute since fetch mug is usually located in the initial
phase of the whole action and often lasts for a period with
a relatively fixed length. We believe that mining and utilizing
the composite latent structures can benefit action modeling and
recognition.

In this paper, we propose a composite latent structure (CLS)
model to represent and recognize 3D human actions, as shown
in Fig. 2. The inputs of our method are action sequences of
3D human skeletons which are estimated by the motion cap-
ture technology, such as Kinect camera [8]. A human action
sequence is divided into several sequential temporal intervals,
each of which corresponds to an atomic action. An atomic ac-
tion is represented as a composite latent state including the latent
semantic attribute and the latent geometric attribute. A hierar-
chical graph is employed to formulate the hierarchical structure
of the action, the atomic actions, and the input data.

To learn the model parameters and mine the action structures,
we propose a discriminative EM-like algorithm which carries
out the learning process under the conventional EM framework
but with discriminative optimization. Given a 3D human skele-
ton sequence, a composite attribute iterative programming al-
gorithm is proposed to infer the composite latent structure and
recognize the human action.

We evaluate the proposed method on three representative and
challenging 3D human action datasets: MSR 3D Action Dataset
[9], Multiview 3D Event Dataset [10], and UTKinect-Action3D
Dataset [11]. The extensive experimental results show that the
proposed method improves the action recognition accuracy. We
also analyze the effects of the composite attributes and the latent
state numbers on action recognition. Furthermore, we compare
the effects of pose features and motion features. Finally, we
visualize the composite latent structures in action sequences.

In comparison with previous studies, the major contribution of
our work is that it models action structures with composite latent
states. This new perspective develops the concept of latent states
from single attributes to composite attributes, which provides
new insights into video representation and modeling.

Another contribution of our method is that it can learn and
construct composite latent structure representations of human
actions which can be potentially applied to many multimedia
applications, such as content-based information retrieval and
educational entertainment.

It should be noted that our work does not use neural network
or deep learning techniques and its action recognition perfor-
mance is lower than some deep learning methods. However, our
method not only aims at recognizing actions but also construct-
ing composite latent structure representations of human actions,
which was not well addressed in other methods.

This paper is organized as follows. In Section II, we briefly
review the related work. Section III introduces the compos-
ite latent structure model and the skeleton feature representa-
tion. Section IV presents the model inference algorithm and
Section V describes how to mine the latent structures and learn
the model parameters. The experiments and evaluations are pre-
sented in Section VI.

II. RELATED WORK

We will review the previous works from three main related
streams of research.

A. 3D Action Recognition

With the rapid advance of motion capture technology, 3D
action modeling and recognition have recently received growing
attention for its significance in many applications [5], [12]–
[25]. The 3D human action data often presents as RGB-D or
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depth values of human body [26]–[29], or 3D human skeletons
representing the 3D locations of human body joints [30]–[33].

Compared to 2D human actions in images or videos, 3D hu-
man skeleton data is sparser and more sensitive to spatial noise
and temporal warping. Many approaches have been proposed to
model 3D actions with skeleton data. Ben Tanfous et al. [12] en-
coded skeleton shape trajectories with a sparse coding method
on the Kendalls shape space, which achieved impressive re-
sults on 3D skeleton action recognition. Ke et al. [13] trans-
formed a skeleton sequence to clips and learned long-term
temporal information with deep convolutional neural networks.
Wang et al. [14] represented 3D skeletons with joint location
differences and the sequences with hierarchical Fourier features.
These features are then fed to a discriminative actionlet ensem-
ble model to recognize actions. Wei et al. [15] applied wavelet
to trajectories of the joint location differences to describe a
sequence clip. Hu et al. [27] further introduced the Fourier anal-
ysis to the temporal gradient of human skeletons, and proposed
a joint heterogeneous feature learning method for action recog-
nition. Wei et al. [5] applied PCA analysis to human skeleton
joints and their motion vectors, and used the PCA parameters
to characterize 3D human action features. Yang et al. [17] gen-
erated depth motion maps by extracting motion information be-
tween successive depth frames for recognizing actions in depth
sequences. Jia and Fu [20] represented the RGB-D sequence
data with third-order tensors and learned the tensor subspace
dimension by low-rank learning. Inspired by these works, we
utilize the information in both spatial and temporal domains to
characterize the 3D human skeleton features.

Compared to the above methods which recognize actions
from sequences, our method can also learn and mine the latent
substructures from sequence samples. These substructures show
promising potential and play important roles in many multime-
dia applications, such as human-computer interaction [34] and
human animation [35].

In recent years, neural network and deep learning methods
have been extensively used in action recognition and achieved
impressive results [36]–[46]. However, most deep learning
based methods were inapplicable to establish temporal struc-
ture representations of actions. And deep learning based meth-
ods need large-scale data for training and powerful hardware
for computation, which is inapplicable to many multimedia ap-
plications such as human-computer interaction and educational
entertainment.

B. Human Action Attributes

Many previous studies analyze human actions through mod-
eling attributes and parts [47]–[52]. Yao et al. [47] used at-
tributes to represent human action properties and jointly mod-
eled attributes and parts to recognize actions in still images.
Liu et al. [51] used a group of semantic attributes to represent
human actions and learned the attribute importance to the ac-
tions with a latent SVM. Pei et al. [50] proposed a framework
integrating heterogeneous attributes to detect actions in videos.
Su et al. [49] represented part-wise and body-wise attributes as
latent states to model actions.

While these studies introduce explicit or latent attributes into
action modeling, those attributes are defined to characterize
features in the spatial domain, such as human bodies, body
parts, and scenes. They did not model nor represent the temporal
attributes of human actions, such as the atomic actions and their
intervals in action sequences. Different from them, we propose
new methods to represent and mine the latent attributes of human
actions in the temporal domain.

C. Action Structure Modeling

It has been demonstrated that modeling and mining substruc-
tures of human actions can improve the performance of action
recognition, detection, and segmentation [3], [4], [14], [20],
[27], [33], [53]–[62]. Lv and Nevatia [1] defined hidden states
and their transitions in videos for joint recognition and seg-
mentation of 3D human actions. HCRF [2] defines a condi-
tional random field over the action class and hidden states in
fixed-size intervals for action recognition. Wang and Mori [4]
proposed hidden part models to describe human pose defor-
mations in each frame. Pei et al. [63] and Wei et al. [5]
decomposed an action sequence into atomic units and used
stochastic graphs to represent human actions. Zheng et al. [64]
learned a local descriptor for action recognition in RGB
videos.

Those methods inspire us to mine temporal structures to an-
alyze actions. However, they do not characterize the composite
attributes of actions’ latent states but model the latent states
with single type of attributes. In contrast, our model represents
human actions with composite latent attributes.

III. COMPOSITE LATENT STRUCTURE MODEL

Action recognition is to predict a class label for an input video
sequence. An action is divided into several atomic actions which
represent the action’s sub-processes. For example, as shown in
Fig. 2, the action pour water from kettle can be divided into
several atomic actions, such as fetch kettle, hold kettle to pour
water to mug, and put kettle back. In the same atomic action,
the human poses and motions have similar characteristics; in
different atomic actions, the human poses and motions present
different patterns.

Let x = (x1 , x2 , . . . , xT ) be an input video sequence, where
xt (t = 1, . . . , T ) is the feature of the frame at time t and T is
the sequence length. y ∈ Y is the action class label of the input
sequence x, where Y is the set of all action class labels, such as
drink with mug, use computer, eat food, and walk.

We assume that the time boundaries s0 , s1 , . . . , sm−1 , and sm

segment the sequence x into m sub-sequences and each sub-
sequence corresponds to an atomic action, as shown in Fig. 2.
The time boundaries satisfy the following conditions:

⎧
⎨

⎩

s0 = 0, sm = T,
si ∈ {1, . . . , T − 1}, ∀i = 1, . . . ,m − 1,
si−1 < si, ∀i = 1, . . . ,m.

(1)

The ith sub-sequence starts at time si−1 + 1 and ends at si . We
define vi = [si−1 + 1, si ] as the time interval of the ith atomic
action in the the sequence x.
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Let ui ∈ U = {1, . . . , K} be the category label of the ith
atomic action in the sequence x. U is the set of all atomic action
categories such as fetch mug and move mug in the action drink
with mug. K is the number of all atomic actions. We assume the
relations between an action class and its atomic action categories
are hard constraints. For example, the sub-action hold kettle to
pour water to mug indicates the action is pour water from kettle.

The category labels and time intervals of the atomic actions
in a sequence are not manually annotated nor observed in data.
They are both latent variables. Each subsequence is described by
two latent variables (ui, vi). The category label ui describes the
semantic attribute of the subsequence and the interval variable
vi characterizes the geometric attribute. We define (ui, vi) as
the composite latent variable.

Let u = {u1 , u2 , . . . , um} and v = {v1 , v2 , . . . , vm} be the
composite latent variables of the sequence x. The score that the
sequence x is interpreted by u, v, and y is formulated as

S(x,u,v, y) =
m∑

i=1

∑

t∈vi

φ(xt, ui,ω), (2)

where φ(xt, ui,ω) is the frame score which is defined as

φ(xt, ui,ω) = log
1/(1 + e−ω T

u i
·xt )

∑K
k=1 1/(1 + e−ω T

k ·xt )
. (3)

Equation (3) describes the score of an atomic action in a
frame. ω = {ω1 , . . . , ωK } is the model parameter where ωk is
the template parameter of the atomic action k. ωui

describes
the compatibility between the atomic action category ui and the
frame feature xt . Since ωui

is related to the latent variables ui

and vi , it should be jointly learned with ui and vi from training
samples. Since the relations between an action and its atomic
actions are hard constraints, for clarity, the variable y is omitted
in the right side of Eq. (2).

In Eq. (2), u describes the semantic structure of the action
sequence and v characterizes the geometric structure of the
action sequence. They are both latent variables and should be
mined from data. On the other hand, by mining u and v, we
can obtain the semantic and geometric structure representation
of an action.

A. Feature Representation

The inputs in our work are sequences of 3D human skeletons.
A 3D human skeleton is composed of 3D positions of human
body joints, as shown in Fig. 3(a). These 3D human skeletons
are estimated by motion capture technologies, such as the Kinect
camera [8].

It has been shown that the relative difference vectors among
joints have strong discriminative ability for action recognition
[14]. Additionally, the motion information of human bodies is
also important to action recognition. As shown in Fig. 3(b) and
(c), the two similar poses have different motions, which make
them have different atomic action labels. We take advantages of
both the pose feature and the motion feature to describe human
skeletons.

Fig. 3. The illustration of 3D skeleton features. (a) 3D skeleton joints of a
frame in the action wave hands. (b) Motion vectors in the action wave hands
(up). (c) Motion vectors in the action wave hands (down). For clarity, we only
visualize the motion vectors on the arms.

xt is the feature extracted from the 3D human skeletons. It
is a concatenation of the features of the joints on the human
skeleton, i.e. xt = {xi

t |i = 1, . . . , J}, where xi
t is the feature of

the ith joint and J is the number of skeleton joints. The feature
xi

t is composed of the motion feature xi
t,mot and the pose feature

xi
t,pos ,

xi
t = (xi

t,mot , x
i
t,pos). (4)

Suppose zi
t (i = 1, . . . , J) is the 3D coordinate of the ith joint

on the human skeleton at time t. For the motion feature of the
joint i, we compute the difference vectors between the joint i at
time t and all the joints at time t − 1, i.e.

xi,j
t,mot = zi

t − zj
t−1 , j = 1, . . . , J. (5)

The motion feature xi
t,mot of the joint i is the concatenation of

all the difference vectors, i.e.

xi
t,mot = {xi,j

t,mot |j = 1, . . . , J}. (6)

We use the same method defined in the work [14] to compute
the difference vectors. The pose feature xi

t,pos of the joint i is
defined as the concatenation of all the difference vectors between
this joint and all other joints at time t.

The pose features describe the still appearance information
and the motion features characterize the changing tendency in-
formation. The combination of the pose features and motion
features can capture more discriminative information in human
skeletons for action recognition.

IV. INFERENCE

Given a sequence x, action recognition is to predict an action
class label for the sequence. The score of labeling x with an
action label y ∈ Y is

f(x, y) = S(x,u∗,v∗, y), (7)

where u∗ and v∗ are the optimal latent variables for the pair
(x, y),

(u∗,v∗) = arg max
u,v

S(x,u,v, y). (8)
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Fig. 4. An illustration of the composite attribute iterative programming algorithm. Each colorful bar in the right figure corresponds to an inner iteration step.

The optimal action label y∗ for labeling x is

y∗ = arg max
y∈Y

f(x, y). (9)

Computation of the optimal action class label y∗ involves
the optimization of the latent variables u and v as defined
in Eq. (8). However, the complexity of solving Eq. (8) is ex-
ponentially related to the space size of u and v. A sequence
may have more than a thousand frames, which means there are
a huge number of possible interval segmentation defined by
v = {v1 , v2 , . . . , vm}. We propose a composite attribute itera-
tive programming (CAIP) algorithm to solve this problem and
optimize Eq. (8).

A. Composite Attribute Iterative Programming

The composite attribute iterative programming (CAIP) algo-
rithm aims to compute the optimal composite latent variables
for a given sequence x̄ with a hypothesized label ȳ. The gen-
eral idea of CAIP algorithm is to separate the optimization of
the composite attribute vector into the iterative optimization of
each vector item step by step. As shown in Fig. 4, the iterative
optimization consists of two iteration processes: outer iterations
and inner iterations. The outer iteration process corresponds to
the optimization of the entire composite attribute vector and the
inner iteration process aims to optimize each vector item step
by step. At each step of the inner iteration, one item of the com-
posite attribute vector is optimized by fixing other items of the
vector. The process of inner-out iterative optimization is iter-
atively performed until the optimization condition is satisfied.
This inner-out iteration process is illustrated in Fig. 4.

For the given sequence x̄ with the label ȳ, v =
{v1 , v2 , . . . , vm} is uniquely determined by s1 , . . . , sm−1 . For
convenience, we introduce s = {s1 , . . . , sm−1} and define

h(u, s) = S(x̄,u,v, ȳ). (10)

The problem (8) is equivalent to solving the following
problem:

(u∗, s∗) = arg max
u,s

h(u, s). (11)

Algorithm 1: CAIP: Composite Attribute Iterative Pro-
gramming Algorithm

1: Initialization: u0 , s0 .
2: Outer iteration: set i = i + 1.

Inner iteration: sequentially perform
(ui

1 , s
i
1) = arg max

u1 ,s1

h(u1 , s1 ,ui−1\ui−1
1 , si−1\si−1

1 ),

ui−1
1 = ui

1 , si−1
1 = si

1 ,
(ui

2 , s
i
2) = arg max

u2 ,s2

h(u2 , s2 ,ui−1\ui−1
2 , si−1\si−1

2 ),

ui−1
2 = ui

2 , si−1
2 = si

2 ,
...

ui
m = arg max

um

h(um ,ui−1\ui−1
m , si−1).

3: Convergence check. If the convergence condition is
satisfied, stop and output (ui , si); else, return to step 2.

Let ui = (ui
1 , . . . , u

i
m ) and si = (si

1 , . . . , s
i
m−1) be the val-

ues in the ith outer iteration. We denote ui\ui
j as all the items of

ui except ui
j , i.e. ui\ui

j = (ui
1 , . . . , u

i
j−1 , u

i
j+1 , . . . , u

i
m ). si\si

j

is defined in the same way.
The CAIP algorithm is summarized in Algorithm 1.

It is composed of three blocks: initialization, iteration, and ter-
mination. In the initialization step, the boundary variables s0 are
initialized by setting each interval to be with the equal length,
and the semantic variables u0 are initialized by setting each
action class to be with distinct atomic action categories. The
initialization is shown as the bottom bar in Fig. 4.

The iteration block of CAIP includes the outer iteration and
the inner iteration. Each outer iteration is composed of several
inner iteration steps at which each time boundary variable is
sequentially optimized, as colorful bars shown in Fig. 4. Af-
ter an outer iteration, all the items of the time boundary vector
are optimized once. It should be noted that after each inner
iteration, the corresponding items will be updated with the opti-
mized values before the next inner iteration is performed. In the
last inner iteration, only um is optimized rather than (um , sm ),
since for a given video sequence sm equals to the sequence
length.
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In the termination block, the convergence condition is
checked. In our work, the convergence condition is defined by
the score defined in Eq. (10). If this score remains unchanged
in more than two successive outer iterations, the algorithm ter-
minates and outputs the variable values as the final results.

B. Convergence Analysis of CAIP Algorithm

We propose and prove a proposition which indicates the con-
vergence of the CAIP algorithm.

Proposition: The CAIP algorithm converges.
Proof: For a given action sequence x̄ and an action label

ȳ, we define h(ui , si) = S(x̄,ui ,vi , ȳ) as the output score af-
ter the ith outer iteration in the CAIP algorithm. Our proof is
achieved by proving two sub-propositions: 1) h(ui , si) is an
upper bounded function; 2) h(ui , si) ≥ h(ui−1 , si−1). The first
sub-proposition guarantees that the possible maximum score is
a finite value. The second one indicates that each iteration of our
algorithm will not decrease the score but rather possibly move
the score towards a bigger value.

For valid action sequences and model parameters, Eq. (3)
defines the sequence frame score given the latent variable, which
shows that the frame score is upper-bounded. Since h(ui , si) is
the summation of the score of each frame in a sequence with a
finite length, it must be an upper bounded function.

We define

h
(
ui−1

j , si−1
j

)
= max

uj ,sj

h
(
uj , sj ,ui−1\ui−1

j , si−1\si−1
j

)
(12)

as the output score after the jth inner iteration (i.e. after the jth
variable is optimized) in the CAIP algorithm.

According to Eq. (12) and the inner iterations in
Algorithm 1, we can obtain the relation:

h
(
ui−1 , si−1) ≤ h

(
ui−1

1 , si−1
1

)

...

≤ h
(
ui−1

m , si−1
m

)

= h
(
ui , si

)
. (13)

The formula (13) shows that h(ui , si) ≥ h(ui−1 , si−1). �

C. Implementation of Action Recognition

To label a sequence x with an optimal action class, we should
compute the composite latent variables for each hypothesized
action label ȳ, and then compute the labeling score with Eq. (7).
The action label is the one with the maximal score. This action
recognition algorithm is shown in Algorithm 2.

V. LEARNING

In our composite latent structure model, each atomic ac-
tion category ui ∈ U has a template parameter ωui

. ω =
{ω1 , . . . , ωK } is the set of all the template parameters.
Given the training data of n sequence-label samples D =
{(x1 , y1), (x2 , y2), . . . (xn , yn )}, the goal is to learn ω from
these samples.

Algorithm 2: Action Recognition Algorithm
Input: A 3D human skeleton sequence x;
Output: The optimal action label y∗ of x;

1: for each ȳ ∈ Y do
2: compute (u∗,v∗) = arg max

u,v
S(x,u,v, ȳ) with

CAIP;
3: compute f(x, ȳ) = S(x,u∗,v∗, ȳ);
4: end for
5: return y∗ = arg maxȳ∈Y f(x, ȳ).

Suppose (ui ,vi) are the composite latent variables of the
training sample (xi , yi). The total score Θ(ω,D) of all the
training samples is defined as

Θ(ω,D) =
n∑

i=1

S(xi ,ui ,vi , yi), (14)

where S(xi ,ui ,vi , yi) is the score of the ith sample, as defined
in Eq. (2). The learning problem is formulated as

ω∗ = arg max
ω

Θ(ω,D). (15)

One challenge of solving the learning problem (15) is that it
contains latent variables which define the division of the samples
for each atomic action category. Thus, solving Eq. (15) is related
to the optimization of these latent variables. Another challenge
is that these latent variables are composite variables rather than
single-attribute variables.

Expectation maximization (EM) methods are effective ways
to solve latent-variable involved problems [65]. However, the
above two challenges in the problem (15) make it difficult to
learn the model parameters with the conventional EM methods.

Inspired by the recent studies on the latent model learning
[5], [6], we propose a discriminative EM-like (DEML) learning
method. The DEML algorithm is performed under the general
EM framework [65] but with different techniques. In the E-like
step, DEML computes the optimal composite latent variables for
each sequence instead of computing the responsibilities as in the
E step of conventional EM. In the M-like step, DEML adopts a
discriminative learning method to update the model parameters
rather than the maximum likelihood estimation in the M step
of EM. The E-like step computes the assignments of samples
for different atomic action categories and the discriminative
learning in M-like step enhances the model’s discrimination
ability.

The DEML algorithm is presented as follows:
1) Initialization. Initialize vi by cutting each sequence xi

into m segments with equal length; initialize ui by assign-
ing each segment with different atomic action categories
of the action class yi . With the initial (ui ,vi) for each
sequence, compute initial ω with Eq. (17).

2) E-like step. With current ω, compute the optimal latent
variables (u∗

i ,v
∗
i ) for each sequence,

(u∗
i ,v

∗
i ) = arg max

u i ,v i

S(xi ,ui ,vi , yi). (16)
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3) M-like step. With current (ui ,vi) for each sequence,
compute ω by solving a series of L2-regularized logis-
tic regression problems [66],

ω∗
k = arg min

ωk

1
2
ωT

k · ωk + C

n∑

i=1

Ti∑

t=1

ln(1 + e−li , t ω
T
k ·xi , t),

(17)
where C is a weight constant. Ti is the length of the se-
quence xi . xi,t is the feature of frame at time t in the
sequence xi . li,t is a indicator variable whose value is 1
when the latent atomic action category of xi,t is k; else it
equals -1. We solve Eq. (17) with the public implementa-
tion package released in the work [66].

4) Evaluate the score Θ(ω,D) with the new parameter ω
and latent variables (ui ,vi) of each sequence. If the con-
vergence criterion is satisfied, stop and output the opti-
mization results; else, return to 2) E-like step.

With the DEML algorithm, we can learn the model parameter
ω and mine the latent semantic and geometric structures of each
video sequence.

VI. EXPERIMENT

We evaluate our method on three representative and challeng-
ing 3D action datasets - MSR 3D Action Dataset [9], Multiview
3D Event Dataset [10], and UTKinect-Action3D Dataset [11].
MSR 3D Action Dataset has a large number of action classes.
Multiview 3D Event Dataset has large number of action se-
quences and is a multiview dataset with abundant human-object
interactions. UTKinect-Action3D Dataset contains pairs of in-
verse actions and many actions have repeating sub-actions which
bring challenges to action structure learning.

In the experiments, we evaluate action recognition accuracy
of our method on the three datasets and compare the results
with other methods. We demonstrate the advantage of composite
attribute latent structures compared to the single attribute latent
structures. Also, we compare the effects of pose information
and motion information on action recognition. Furthermore,
we analyze the effects of different composite state numbers.
Finally, we visualize the latent structures of action sequences.
The extensive experimental results demonstrate the strength of
our method.

A. Action Recognition on MSR 3D Action Dataset

MSR 3D Action Dataset [9] is one of the most widely-used
datasets for 3D action analysis and recognition. It contains 20
action classes and 567 action sequences, which were performed
by 10 people and each people performed the same action two or
three times. The 20 actions classes are: high arm wave, horizon-
tal arm wave, hammer, hand catch, forward punch, high throw,
draw x, draw tick, draw circle, hand clap, two hand wave, side-
boxing, bend, forward kick, side kick, jogging, tennis swing, ten-
nis serve, golf swing, pickup and throw. Fig. 5(a) shows some
skeleton examples of the 20 action classes. This dataset contains
the data of depth image sequences and 3D skeleton sequences.
We use the 3D skeleton sequences in our experiments.

TABLE I
COMPARISON OF ACTION RECOGNITION ACCURACY ON

MSR 3D ACTION DATASET

MSR 3D Action Dataset is a challenging dataset for action
recognition. The skeleton data in this dataset is noisy. The human
motions in many actions are very subtle, such as jogging and
forward punch. Some different actions are very similar, such as
forward kick and side kick, hand catch, high arm wave, and high
throw.

Following the cross-subject setting [14], we use the samples
of half of the subjects as training data and the rest as testing data.
Table I shows the comparison of action recognition accuracy on
MSR 3D Action Dataset. The results of HMM with AdaBoost
[67], Dynamic Temporal Warping [68], and Recurrent Neural
Network [69] were reported in the work [14].

Our method achieves an accuracy of 0.872, which is bet-
ter than most of the recently reported results. The HMM with
AdaBoost method [67] uses Hidden Markov Model and the
AdaBoost strategy to recognize 3D actions, which is a represen-
tative HMM method with single-attribute hidden states. Com-
pared to the HMM with AdaBoost method, our method with
composite latent states outperforms it by a considerable margin,
which proves the advantage of the composite latent structures.
The 4DHOI with 3D Skeleton Joints method [5] uses an or-
dered expectation maximization method to learn the substruc-
tures of actions but it updates the parameters of a probability
model with maximum likelihood estimation. The performance
of our method is better than the 4DHOI with 3D Skeleton Joints
method, which proves the strength of our discriminative EM-
like learning method.

Our method only uses human skeleton features to recognize
3D actions. In Table I, the methods HMM with AdaBoost [67],
Dynamic Temporal Warping [68], Recurrent Neural Network
[69], Actionlet with Absolute Joints [14], and 4DHOI with 3D
Skeleton Joints [5] also use human skeleton features. Com-
pared these skeleton-based methods, our CLS model impres-
sively improves the action recognition accuracy. The methods
ROP (Sparse Coding) [70], HDG with FAV Features[16], Holis-
tic HOPC [71], and Local HOPC+STK-D [71] use depth or point
cloud features. Compared with these methods, our method uses
simpler features but achieves better performance, which proves
the advantage of our method.

Kendall’s Shape Bi-LSTM [12] and Kendall’s Shape FTP-
SVM [12] encode Kendall’s shape trajectories for 3D action
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Fig. 5. Some skeleton examples in the 3D action datasets. (a) MSR 3D Action Dataset. (b) Multiview 3D Event Dataset. (c) UTKinect-Action3D Dataset.

Fig. 6. Confusion matrix on MSR 3D Action Dataset.

recognition. The action recognition accuracy of our CLS is
lower than that of Kendall’s Shape FTP-SVM [12]. However, in
addition to recognizing actions, CLS can construct the compos-
ite structure representations of actions in the temporal domain,
which plays vital roles in many applications such as human-
computer interaction and human animation.

Fig. 6 shows the confusion matrix of action recognition on
MSR 3D Action Dataset. On many action classes, our method
achieves 100% accuracy. The lowest accuracy is related to the
action hammer and its most false positives lie in the action draw
x. This is because these two actions are very similar, especially
in the initial stages of the actions.

The major reasons that our CLS method outperforms other
approaches lie in two aspects. First, our CLS method models
actions with composite latent states. It jointly mines and utilizes
latent semantic attributes and latent geometric attributes to rep-
resent and recognize actions. Thus it performs better than those
single-attribute based methods, such as HMM with AdaBoost
[67]. Second, it adopts a discriminative EM-like method to learn
the composite latent structures. It can mine discriminative in-
formation and features for action recognition.

B. Action Recognition on Multiview 3D Event Dataset

Multiview 3D Event Dataset [10] is a multiview dataset with
3815 RGB-D video sequences and approximately 383,000 video
frames. It was captured by three Kinect cameras at different
viewpoints simultaneously around the events. The events were
performed by volunteers in indoor scenes with different objects.
It contains 8 event classes: drink with mug, call with cellphone,
read book, use mouse, type on keyboard, fetch water from dis-
penser, pour water from kettle, and press button, and these events
are related to 11 object classes: mug, cellphone, book, mouse,
keyboard, dispenser, kettle, button, monitor, chair, and desk. This
dataset contains RGB video sequences, depth video sequences,
and 3D skeleton sequences. In our experiment, we only use the
3D skeleton data. Fig. 5(b) shows some skeleton examples of
the eight event classes.

One major characteristic of this dataset is that it contains
abundant functional object interactions. The functional object
interactions bring two major challenges. First, the human bodies
are always occluded by the objects, which makes the skeleton
data very noisy and unstable. Second, most events are mainly
defined by the functional object information rather than the
human pose and motion information. For example, the events
drink with mug and call with cellphone are differentiated re-
lying on the objects mug and cellphone, respectively, since
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TABLE II
ACTION RECOGNITION ON MULTIVIEW 3D EVENT DATASET

the human poses and motions in these two events are highly
similar. These challenges make it very difficult to recognize
the events with skeleton information. Other characteristics of
this dataset are that it is multiview and large-scale with 3815
videos and approximately 383,000 frames. These characteristics
make Multiview 3D Event Dataset very challenging for event
recognition.

In experiments, we extract features from each view indepen-
dently and do not use the multi-view information. Table II shows
the comparison of action recognition accuracy on the Multiview
3D Event Dataset. We compare our CLS method with the Mo-
tion Templates method [68], original Hidden Markov Model
[72], and 4DHOI method [5]. The results of Motion Templates
[68] and Hidden Markov Model [72] are cited from the work
[5]. Motion Templates method [68] trains templates for events
and matches the testing sequences with dynamic temporal warp-
ing. Hidden Markov Model [72] uses human skeleton joints as
inputs and trains an HMM for each event category. 4DHOI with
3D Joints method [5] uses the 3D human skeleton joint features
to recognize events.

As shown in Table II, our method achieves much higher recog-
nition accuracy than the Motion Templates and Hidden Markov
Model methods. Compared to the 4DHOI method, when only
using 3D human skeleton joint features, our CLS model outper-
forms 4DHOI by a considerable margin in accuracy. This is a
decent result for our CLS method considering that most of the
events in the Multiview 3D Event Dataset are mainly defined by
functional object information.

The Motion Templates method [68] utilizes simple templates
to recognize actions and does not mine the temporal structures
of actions. Though the Hidden Markov Model [72] mines the
temporal structures of actions, it models the temporal structures
with single attributes. Thus, our CLS method which models tem-
poral structures of actions with composite attributes outperforms
the two comparison methods. Our CLS explicitly describes the
motion features of skeleton sequences and adopts a discrimina-
tive EM-like learning algorithm, which make CLS outperform
the 4DHOI with 3D Joints [5].

Fig. 7 shows the confusion matrix of action recognition on
Multiview 3D Event Dataset. Most of the action classes achieve
an accuracy above 90% except for one action class drink with
mug. The most false positives of drink with mug lie in the action
class make a call since the poses and motions in the action
classes drink with mug and make a call are very similar. On
the other hand, the acceptable accuracy of the action class make
a call shows most samples are differentiated from the action
drink with mug. This proves the effectiveness of our recognition
method and skeleton features.

Fig. 7. Confusion matrix on Multiview 3D Event Dataset.

TABLE III
ACTION RECOGNITION ON UTKINECT-ACTION3D DATASET

C. Action Recognition on UTKinect-Action3D Dataset

UTKinect-Action3D Dataset [11] contains 10 action classes:
walk, sit down, stand up, pick up, carry, throw, push, pull, wave
hands, clap hands. These actions were performed by 10 subjects
and each subject performed each action two times. It contains
RGB, depth, and 3D skeleton joint sequences at 15 fps. Some
frames are discontinuous due to the missing human skeletons.
Fig. 5(c) shows some skeleton examples of the 10 action classes.

Many action classes in UTKinect-Action3D Dataset contain
repeating body motion structures, such as walk, clap hands,
and carry. Such repeating motion structures make the action
structure modeling and learning very difficult. This dataset also
contains inverse action pairs, in which the actions have similar
poses but inverse motion processes, such as sit down and stand
up, push and pull. Such inverse action pairs bring challenges to
both action structure learning and action recognition.

Following the experiment setting in the work [11], we adopted
a leave one sequence out cross validation (LOOCV) to compute
the action recognition accuracy. Table III shows the comparison
of action recognition accuracy on this dataset.

On this dataset, our method achieves an accuracy of 0.955,
which outperforms most of the comparison methods in Table III.
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TABLE IV
ACTION RECOGNITION ACCURACY OF COMPOSITE-ATTRIBUTE LATENT STATE MODEL AND SINGLE-ATTRIBUTE LATENT STATE MODEL

The UTKinect-Action3D Dataset was released in the work His-
tograms of 3D Joints [11], which reported a recognition accu-
racy of 0.909. The comparison methods Hanklet-Based HMM
[73], MSD-HMM with 3D Skeletons [32], HIF 3D skeleton [74],
Spatio-Temporal Feature Chain [75], Grassmann Manifold [76],
3D Key Pose Motifs [33], Motion Trajectories on Manifold [77],
Kendall’s Shape Bi-LSTM [12], and Kendall’s Shape FTP-SVM
[12] use 3D skeleton sequences and achieve recognition accu-
racies of 0.868, 0.895, 0.940, 0.915, 0.885, 0.935, 0.915, 0.985,
and 0.975, respectively.

Our CLS method utilizes composite latent states to represent
and recognize actions, which can better characterize the latent
semantic and geometric information of actions. Therefore, our
CLS method performs better than those single-attribute based
methods, such as Hanklet-Based HMM [73] and MSD-HMM
with 3D Skeletons [32]. The UTKinect-Action3D Dataset con-
tains many actions with similar poses but inverse motions and
most previous methods did not explicitly characterize the mo-
tions features. Our CLS method explicitly combines the pose
and motion features, which is another reason why our CLS
method performs better.

For action recognition accuracy, deep learning methods out-
perform our CLS method. However, compared to deep learning
methods, CLS does not need powerful graphics processing units
for training and inference, which is an appealing characteristic
for applications on portable, mobile, or wearable devices. Fur-
thermore, CLS is used not only for action recognition but also
for action representation. CLS can construct composite struc-
ture representations of human actions, which plays essential
roles in many applications such as human-computer interaction
and human animation. Deep learning methods normally aim to
predict action classes rather than construct temporal structure
representations of actions.

Fig. 8 shows the confusion matrix of action recognition
on UTKinect-Action3D Dataset. On many action classes, our
method achieves an accuracy of 100%. On only one action class
throw, the accuracy is under 90%. The most false positives of
the action throw lie in the action classes wave hands and clap
hands since the pose and motion features are highly similar in
these action classes.

D. Comparison of Composite Attributes and Single Attributes

We compare the effects of composite-attribute latent states
and single-attribute latent states on action recognition. Two
types of single-attribute models are compared. The first one
is the random interval method, in which the latent interval vari-
ables of atomic actions are randomly set. The second one is the
uniform interval method, in which the latent interval variables

Fig. 8. Confusion matrix on UTKinect-Action3D Dataset.

of atomic actions are set to be uniform, i.e. each atomic action
in a sequence has equal length. For fair comparison, these two
types of single-attribute state models adopt the same sequence
features, learning, and inference methods. The only difference
between CLS and those two single-attribute models is that the
latent interval variables of CLS are mined and optimized while
those two methods use random or uniform interval variables.

Table IV shows the action recognition accuracy of our CLS
model and single-attribute models on three testing datasets.
On the MSR 3D Action Dataset and the UTKinect-Action3D
Dataset, the performance of our composite-attribute model is
much better than the single-attribute models. This is because
our composite-attribute model takes advantage of the latent tem-
poral structure information. These results strongly demonstrate
the advantage of the composite latent structures over the single-
attribute latent structures in action recognition.

On the Multiview 3D Event dataset, the single-attribute model
of uniform intervals achieves a comparable accuracy with our
composite-attribute model (0.904 vs 0.914). This is because
the human motions in Multiview 3D Event dataset have stable
temporal structures and procedures. The uniform intervals char-
acterize the stable temporal structures and procedures to some
extent.

Table IV also shows that for the single-attribute model the
uniform intervals outperform the random intervals on action
recognition. This phenomenon further proves the importance
and necessity of mining the atomic action’s geometric informa-
tion because the uniform intervals, at any rate, contain more
useful information than the random intervals.
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TABLE V
ACTION RECOGNITION ACCURACY WITH POSE FEATURES AND MOTION FEATURES

Fig. 9. Relations between the latent state number and the action recognition accuracy. (a) On MSR 3D Action Dataset. (b) On Multiview 3D Event Dataset.
(c) On UTKinect-Action3D Dataset.

E. Comparison of Pose Features and Motion Features

As Section III-A presented, our action features extracted from
3D skeletons consist of pose parts and motion parts. These two
types of features play different roles in actions. In this experi-
ment, we compare the effects of pose information and motion
information on action recognition. Table V shows the action
recognition accuracy of our CLS model using pose features or
motion features on the three testing datasets.

Table V shows that on all three datasets, the method using the
combined features of poses and motions outperforms the meth-
ods only using one type of features. It proves the effectiveness
of the pose-motion features. The combined features outperform
the poses features a considerable margin but outperform the
motion features a smaller margin. This proves the importance
of motion information in action recognition. It does not neces-
sarily imply that the pose information is insignificant. Indeed,
the motion features are composed of the relative differences of
each joint with other joints, which implicitly embodies the pose
information.

F. Effects of Latent State Numbers on Action Recognition

In our CLS model, a sequence is divided into m composite
latent states. The large m means a sophisticated representation
ability but low robustness to noise. In this experiment, we com-
pare the effects of the composite latent state number m on action
recognition. Fig. 9 shows the action recognition accuracy as m
varies on the three datasets.

A common observation in these three figures is that before a
state number threshold is achieved, the action recognition rises
as the latent state number increases. After that threshold, the
action recognition falls as the latent state number increases.
This phenomenon implies that there exists an optimal latent

structure division to interpret an action. Too large or too small
state numbers would lead to misleading interpretations.

Another observation is that the optimal state number thresh-
olds on these three datasets are different. They are 9, 7, and 5
on the MSR 3D Action Dataset, Multiview 3D Event Dataset,
and the UTKinect-Action3D Dataset, respectively. This phe-
nomenon reflects the different characteristics of the action struc-
tures on the three datasets. The actions in the MSR 3D Action
Dataset have more complex temporal structures while the ac-
tions in the UTKinect-Action3D Dataset have repetitive sub-
structures. The actions in the Multiview 3D Event Dataset have
normative procedures.

G. Visualization of Latent Action Structures

With our CAIP inference algorithm, we can infer the latent
structures of action sequences. As basic action units, the repre-
sentation of these latent structures can be used in many appli-
cations, such as human-computer interaction and human-robot
collaboration. Fig. 10 shows some examples of the latent struc-
tures in actions. These latent structures are obtained as byprod-
ucts in the inference of action recognition. For each latent atomic
action, we draw the average skeleton in the corresponding latent
interval.

For some actions, the mined latent structures are consistent
with humans’ semantic experience. For example, in the sixth
example, the seven latent states in the action drink with mug
represent the sequential procedures with semantic meanings.
For some actions, the mined latent structures are not necessarily
with semantic meanings, such as some of the latent states in
the tenth action example tennis serve. Whether with semantic
meanings or not, these latent structures represent the action
interpretations mined from data. They provide new perspectives
to look into human actions.
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Fig. 10. Latent structure visualization of some actions. The colorful segments
denote the time intervals of latent structures. The same color in different actions
does not necessarily mean the same latent state.

Our algorithm can also mine the duration information of the
atomic actions. For example, in the fifth example call with cell-
phone, the fourth atomic action probably denotes hold the cell-
phone to call. Its duration is much longer than other atomic
actions. The atomic action dial the number also has a long du-
ration while fetch cellphone has a short duration.

VII. CONCLUSION

In this paper, we propose a composite latent structure (CLS)
model to recognize 3D human actions and construct the latent

structures of actions. A human action sequence is divided into
several sequential temporal intervals, each of which corresponds
to an atomic action. An atomic action is a composite latent state
which includes the latent semantic attribute and the latent ge-
ometric attribute. The hierarchical structure of an action, the
atomic actions, and the sequence data is represented with a hier-
archical graph. A discriminative EM-like algorithm is proposed
to mine the composite latent structures of actions and learn
the model parameters. Given a 3D human skeleton sequence,
a composite attribute iterative programming algorithm is pro-
posed to optimize the composite latent structures and recognize
the human action.

We test the proposed method on three challenging and rep-
resentative 3D human action datasets. We compare the action
recognition accuracy of our method with other representative
methods. We also analyze the effects of the composite attributes
and the latent structure numbers on action recognition. More-
over, we compare the effects of pose features and motion fea-
tures. Finally, we visualize the composite latent structures of
action sequences.

In this work, we focus on action representation and recogni-
tion with composite latent structures. However, our CLS model
can be potentially extended to other tasks, such as object recog-
nition, scene understanding, and sequence generation.

In the future work, we will investigate the combination of
CLS with deep learning methods to represent human actions and
improve action recognition performance. We will also explore
the potential of CLS in other tasks.
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