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Abstract—Retrieving pictures from large collections according
to a specific criterion is an increasingly relevant task. An
important, but so far overlooked, such criterion is the retrieval
of pictures acquired by a specific camera. Instead of relying on
metadata, which can be absent or easily manipulated, a forensic
tool is exploited, namely the photo response non-uniformity
(PRNU) of the camera sensor. Recent works showed that random
projections can be used to significantly compress the PRNU,
enabling operation on very large scales, previously impossible due
to the size of the PRNU and to the complexity of the matching
operations. In this paper, we propose efficient techniques for
management and retrieval of images employing the PRNU, and
test them on a database of 1174 cameras and half a million pictures
downloaded from the Internet.

Index Terms—Image forensics, image search and retrieval,
photo response non-uniformity (PRNU), random projections.

I. INTRODUCTION

E VERY day, millions of pictures are uploaded, shared, and
browsed by Internet users, resulting in very large collec-

tions of images that call for efficient solutions for their man-
agement. An important task is the retrieval of pictures matching
a specific criterion, that can be used for searching pictures of
interest or for classifying similar photos. In this sense, con-
tent-based image retrieval is a technology that has received a
lot of attention in recent years [1]. In a nutshell, it consists in
extracting a set of representative features that allow to find pic-
tures having similar content with respect to a query image.
However, the content of a picture is not the sole criterion for

performing image retrieval. Another very interesting task con-
sists in looking for pictures that have been acquired by a spe-
cific device. Let us imagine a search engine that, given a specific
camera as a query, returns all the web pages containing photos
acquired by that camera. Such a technology could be very useful
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for detecting improper usage of images. For example, profes-
sional photographers could use it to prevent improper diffusion
of their photos, large web sites could avoid being sued for re-
distributing unlicensed pictures, police investigators who have
come across a digital camera or even just pictures linked to
an unlawful act, e.g., child pornography, could look for other
pictures taken by the same camera in either public databases
(e.g., social networks) or large internal databases managed by
the police.
To this day, a similar technology has not yet been developed,

at least on a large scale. A simple solution could be to rely on
metadata, such as Exif data. However, this information can be
easily removed from the image file, as it happens, e.g., when
sharing images on Facebook, or altered by an image editing soft-
ware. In order to have a reliable camera-based retrieval tech-
nique, it is essential that the acquisition device information be
indissolubly linked to the picture.
When a picture is acquired by a digital sensor, slight im-

perfections in the manufacturing of individual detectors pro-
duce a unique fingerprint, usually referred to as photo-response
non-uniformity (PRNU) [2]. The PRNU can be considered as a
noise-like, yet deterministic, pattern affecting every image taken
by a sensor, and can be used to determine if a picture has been
acquired by a given sensor, or if two or more pictures have been
taken by the same camera. Several works demonstrate that the
PRNU is a robust fingerprint, usually surviving processing like
lossy compression and image resizing [3], [4].
The use of PRNU as a fingerprint for camera identification

has so far focused on forensic tasks involving a small number of
cameras or photographs, as it is the case when it has to be used as
evidence in a trial. In such scenarios, one has to verify whether
a picture, or a small set of pictures, has been taken by a specific
camera and the main requirements are high matching accuracy
and low probability of false alarm. Another interesting scenario
that has received some attention in recent literature is using the
PRNU to classify a set of images according to the device that ac-
quired them [5]–[7]. However, the proposed technologies have
not been applied to very large databases so far [8].
Using the PRNU for large-scale image retrieval is an ex-

tremely challenging task that, to the best of our knowledge,
has not yet been addressed in the literature. A large-scale data-
base could contain several millions of fingerprints, and PRNU
patterns have the same size as the imaging sensor, which typ-
ically counts tens of millions of pixels. Moreover, due to the
specific properties of PRNU patterns, namely the fact that they
are noise-like, traditional approaches, e.g., based on color and
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Fig. 1. High-level block diagram of the proposed system.

texture [9] or feature descriptors [10] do not work for the pre-
sented problem.
In this paper, we address the following problem of large-scale

image retrieval based on PRNU fingerprints. A large collection
of pictures is obtained by scanning portions of the web, using a
crawler software that downloads photos from publicly available
repositories. From this collection, a large fingerprint database is
automatically generated by extracting the PRNU pattern of each
individual photo. A query is presented to the system in the form
of a camera fingerprint, and the goal is to retrieve all the photos
acquired by the same device. The proposed system, visualized
in Fig. 1, is a realistic example of the envisioned search engine,
and can be used to demonstrate that the above task is indeed
feasible. Notice that this image retrieval problem is significantly
different from the problems addressed by the well-researched
area of content-based image retrieval where the content of an
image is the query and the user searches for images with similar
content.
Due to the characteristics of PRNU, a technique for ob-

taining a compact representation of PRNU fingerprints is es-
sential to deal with such a big data scenario. For example, as-
suming a collection of 6 billion photos, which is the number
of photos hosted by Flickr in 2011 [11], and an average sensor
resolution of 12 megapixels, the whole uncompressed finger-
print database, represented in single precision, would require
about 250 petabytes of storage. In this paper, we propose to
solve the above problem by using compressed fingerprints ob-
tained via proper quantization of random projections. A recent
work [12] has shown that random projections permit to ob-
tain very compact representations with limited performance
loss in terms of matching accuracy. Moreover, this scheme
is flexible, meaning that the number of projections can be
tuned according to the desired trade-off between compression
and accuracy. Hence, this technique appears to be one of the
best candidates for performing camera-based image retrieval
in very large scale scenarios.
In this paper we propose technical solutions for the large-

scale PRNU problem based on compressed fingerprints. The
performance of random projections in comparison to other state-
of-the-art methods for PRNU compression was investigated in
[12]. On the other hand, the focus of this paper is the opti-
mization of such method to address the retrieval problem on
large scales. In particular, several techniques for solving the re-
trieval problem are proposed and compared in terms of speed
and matching accuracy. We first consider to perform a linear
search, comparing the compressed query fingerprint with all the
compressed fingerprints in the database. Then, we propose an al-
ternative solution based on a two-step approach, in which a first

search is performed over the entire database using a coarse ver-
sion of the compressed fingerprint returning a subset of the data-
base; a second search is then performed on this subset using a re-
fined fingerprint. An improved version of the above technique is
then considered, in which the coarse version of the compressed
fingerprint is obtained by adaptively choosing the random pro-
jections with the largest magnitude.
The paper is organized as follows. Section II introduces the

notation and provides background material on PRNU patterns.
Section III describes the proposed image retrieval problem and
discusses in detail how different efficient implementations can
be achieved using fingerprints compressed via random projec-
tions. Section IV focuses on numerical experiments and com-
parisons, while Section V draws some conclusions.

II. BACKGROUND

A. Notation and Definitions
We denote (column-) vectors and matrices by lowercase and

uppercase boldface characters, respectively. The -th element of
column vector is . The -th column of the matrix is .
The notation denotes the elementwise product between

matrices and , while denotes elementwise division.
The notation denotes the scalar product between vec-

tors and , and .
The notation denotes the Hamming distance be-

tween , where and
denotes the XOR operator.
The notation means that the random vector

is Gaussian distributed, its mean is , and its covariance matrix
is .

B. PRNU and Compression via Random Projections
The PRNU of a digital imaging sensor is a noise-like pattern

of the same size as the sensor, generated by imperfections in its
manufacturing process. Such imperfections cause slight varia-
tions in the properties of individual pixels, which hence respond
in a different manner to the incident light field, thus causing
pixel-dependent gain variations. These random imperfections
are peculiar to each manufactured sensor, therefore making the
PRNU a highly informative pattern, able to uniquely identify a
photographic device. Although this pattern is deterministic, it
shows noise-like characteristics and it is unique to each sensor.
Indeed, its entries are often modeled as realizations of i.i.d.
Gaussian random variables. It is proved to be a robust finger-
print, thanks of its stability in time, and resilience to standard
processing operations like image compression, resizing, or
many enhancement operations.
The PRNU pattern of a particular sensor can be extracted

from one or more photos taken by that sensor. In formulas, an
acquired image can be modeled as

(1)

where is the ideal sensor output, is the PRNU term and
collects other sources of noise. Calling a denoised version
of obtained through proper filtering, this can be used as an
approximation of the ideal sensor output and subtracted from
each side of (1) to obtain the so-called noise residual, which
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can be modeled as

(2)

where accounts for and for other non-idealities of the model.
The interested reader can refer to [13] for more details on the
model. It can be noticed that the noise residual is a modulated
version of the PRNU, where the modulating term is the current
image. For this reason, an estimate of the fingerprint can be
obtained by pixel-wise dividing the noise residual by the image.
Supposing that photos acquired by the same camera are avail-
able, the maximum likelihood estimate can be obtained as

(3)

PRNU patterns are often used in forensic tasks such as deter-
mining whether a photo has been acquired by a specific camera.
Recently, variants of this problem have been studied in terms
of classification or clustering problems, such as associating
photos to cameras. As an example, a system is presented with
photos of unknown origin and it is told they come form

cameras, so that the task is determining the clusters of photos
according to the similarity of their PRNU patterns [5], [7], [8].
The main drawback of PRNU patterns is their size. In fact,

due to their noise-like nature, they are hard to compress using
standard image compression techniques. This problem arises
especially when it is required to build a large database of fin-
gerprints. Recently, a certain number of works started consid-
ering the problem of compression of PRNU fingerprints. In [14],
[15], the authors introduced a so-called fingerprint digest ob-
tained by keeping only a fixed number of the largest fingerprint
values, along with their positions, which enables a fast search
strategy with constant size fingerprints [16]. On the other hand,
in [17] the authors proposed to represent sensor fingerprints in
binary-quantized form: even though the size of binary finger-
prints scales with sensor resolution, binarization can consider-
ably speed-up the fingerprint matching process and reduce the
storage requirements.
A novel compression strategy was adopted in [12]. Based on

the Johnson-Lindenstrauss (JL) lemma [18], in fact, the authors
proposed a compact representation of PRNU fingerprints based
on a fixed number of random projections. In particular, a collec-
tion of –dimensional fingerprints, , is reduced
to a –dimensional subspace by

(4)

A single query fingerprint to be matched with the data-
base can be first compressed using the same sensing matrix
used to compress the database, namely

(5)

Then, the compressed query fingerprint is compared to each
column of the compressed database to find the most corre-
lated by computing the correlation coefficient. Several technical
problems may arise in this framework. The first issue is the
complexity related to the generation and storage of a fully

random sensing matrix. The second is the complexity related
to the matrix-matrix product of (4). Both can be mitigated
by using a partial circulant sensing matrix, which allows to
generate a lower number of random coefficients and to effi-
ciently perform the product using the FFT, maintaining the
distance-preserving properties in the compressed domain [19],
[20]. Moreover, further compression and complexity reduction
can be obtained with binary quantization of the compressed
database, i.e., reducing the compressed database to the matrix
of its signs only

(6)

In the case of binary measurements the correlation coefficient is
replaced by the Hamming distance as test metric.
Results in [12] indicate that randomly-projected compressed

fingerprints achieve identification performance close to the
uncompressed fingerprints at a fraction of the storage space
and considerably reduced computational cost for the matching
operation, outperforming both the digest and the binarization
methods. Moreover, they offer a very flexible scheme, in the
sense that they allow to tune the number of projections to the
desired tradeoff between speed and accuracy, and can also be
adapted to deal with image resizing [21]. They are thus the
most promising technique to handle large scale scenarios.
The retrieval problem presented in this paper is essentially

an approximate nearest neighbor problem on a large dataset.
Some works such as Locality Sensitive Hashing (LSH) [22],
[23] focused on avoiding exhaustive search over the points
in a database. LSH uses locality sensitive hash functions and
multiple hash tables to achieve a retrieval complexity,
being the ratio between the radius of the ball enclosing the
true neighbors and the distance beyond which the other points
are supposed to lie. The peculiar characteristics of PRNU pat-
terns do not allow an effective use of LSH and call for other
techniques. In fact, fingerprint estimates extracted from one or
even multiple photos acquired by the same device present very
low correlation [17], thus making the factor very close to 1,
and allowing LSH to have only a marginal gain with respect
to linear complexity. In this paper, we use random projections
for dimensionality reduction purposes, with the aim of relaxing
the storage requirements. Thanks to reduced dimensionality, the
matching process is indeed faster than using uncompressed fin-
gerprints, but it still requires exhaustive search over the en-
tries. Moreover, we propose novel techniques, with respect to
the methods in the LSH literature, to avoid exhaustive search
and increase search speed by specifically tailoring them to the
low correlation between fingerprints.

III. PROPOSED TECHNIQUE

This section discusses techniques to address the image re-
trieval problem using PRNU fingerprints compressed with a
fixed number of random projections.
The system is modeled as in Fig. 1. A collection of photos

is gathered, e.g., by means of an automatic web crawler, and an
estimate of the fingerprint is extracted from each photo. This
estimate is compressed by means of binary random projections
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and stored (additional steps are required for the method pre-
sented in III-C). We refer to this collection as the fingerprint
database, namely the set

(7)

being the fingerprint estimate of photo , the sensingmatrix
and .
A query to the system is composed by a camera identity,

which is a fingerprint estimate extracted from multiple
photos of the same camera, as detailed in (3).1 Its random
projections are and their binary-quantized version
is .
This scenario well models a camera search engine, in which

a camera owner queries the system in order to find webpages
containing photos acquired by the presented device. In the fol-
lowing, we address methods to retrieve the photos matching the
query, discussing in detail their complexity in terms of storage
requirements and matching speed. The ultimate goal is to de-
sign a system that can respond to a query in real time, requiring
modest hardware resources, even for large values of , and pro-
viding scalability to huge data collections.

A. Linear Search

A straightforward technique to solve the retrieval problem is
linear search, consisting in comparing the compressed query
fingerprint with all compressed fingerprint estimates in .
When binary random projections are used to compress the fin-
gerprints, this amounts to evaluating Hamming distances be-
tween binary vectors with entries. A threshold is used for
detection purposes, so that the retrieved pictures are those whose
Hamming distance is lower than .
The threshold can be set according to various criteria. A typ-

ical criterion is to model the distribution of the Hamming dis-
tance for non-matching fingerprints, and set to achieve a pre-
defined false alarm rate. In other words, this method presets a
desired average precision, i.e., the average number of photos
from a different camera that are erroneously retrieved. As an
example, if we model two non-matching compressed finger-
prints as realizations of two independent Bernoulli processes
with equiprobable outcomes, then their Hamming distance fol-
lows a binomial distribution, well approximated by a Gaussian
with mean and variance . Hence, the false-alarm proba-
bility is readily obtained as a function of the threshold

(8)

Another method that can be used to set the threshold is to de-
termine which threshold yields the best F-score in order to bal-
ance precision and recall. Calling the recall (the ratio between
the number of retrieved photos acquired by the same camera of
the query fingerprint and the overall number of photos of that
camera in the database), and the precision (the ratio between
the number of retrieved photos acquired by the same camera of

1A lower quality fingerprint extracted from a single photo may be used as
well, with an inevitable degradation in the system performance.

the query fingerprint and the total number of retrieved photos),
the F-score is defined as

(9)

The choice of a suitable threshold to maximize the F-score can
be performed in a system design phase by means of cross-val-
idation techniques. A reference dataset with available ground
truth is partitioned into a training set to extract the high quality
fingerprints, a test set of photos used to extract fingerprint es-
timates from single images to create the database, and a cross-
validation set also made of fingerprint estimates but used ex-
clusively to optimize the threshold according to the F-score
achieved on it.
Even though random projections are extremely efficient at

compressing PRNU patterns, outperforming other methods as
shown in [12], it has been observed that a significant number of
projections (typically ) is required for reliable detection
performance. This implies that for a big data scenario, where
can be in excess of hundreds of millions, this kind of exhaustive
search is still too complex in terms of number of XOR opera-
tions to be performed and in terms of RAM requirements. For
example, for a 6 billion database the number of XOR operations
is about , while the required RAM is about 350 TiB.

B. Hierarchical Search
As a first improvement over linear search we propose the fol-

lowing two-step matching process. A first matching operation
selects a small set of candidate entries by means of a coarse but
very fast operation. This set of candidates is then analyzed in
detail during the second stage. This strategy is inspired by in-
dexing mechanisms used in content-based image retrieval prob-
lems (see for example [24]). However, in this case we exploit
the scalability of compressed fingerprints [12], since classical
indexing techniques are not efficient due to low fingerprint cor-
relation. The first stage of the hierarchical search essentially
implements a linear search, using a threshold , over the full
database of entries, but with a compact descriptor made by a
reduced number of binary random projections ( ). The
second stage works on the reduced subset of fingerprints pro-
duced by the first stage ( ) but using all the random
projections. This system reduces the number of matching oper-
ations to be performed and also relaxes the RAM requirements
since it does not require all the database bits to be eventu-
ally loaded in main memory, but only . However,
its detection performance will typically be suboptimal with re-
spect to linear search, and, in fact, it hinges on the ability to
create a meaningful compact descriptor of measurements.
In the following, we propose two strategies to create such com-
pact descriptor.
1) Non-adaptive hierarchical search: A first strategy to

create such compact descriptors would be to simply retain
measurements out of in fixed positions of (e.g., and

without loss of generality, the first ). This method has the
advantage of requiring no overhead to encode locations, since
the descriptor is generated from fixed positions in the original
measurement vectors, thus allowing to preload such descriptors
in RAM. Unfortunately, as will be shown in Section IV-C2, this
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method is not robust enough and requires a very high number of
measurements in order to have detection performance close to
linear search, thus being only marginally faster and marginally
less RAM-demanding.
2) Adaptive hierarchical search: A second strategy is to

create the descriptors adaptively in order to have better di-
mensionality reduction properties. When a query fingerprint is
presented to the system, its random projections are computed.
Before quantizing them to the binary format, outliers, i.e.,
the entries with largest magnitude, are identified. The short
descriptors are generated by the binary-quantized outliers of
the query, to be matched with the measurements in the database
in the corresponding locations. This method can better preserve
the distances between the fingerprints, achieving better perfor-
mance than the non-adaptive method with smaller , hence
with faster matching speed.
An intuitive explanation of why the adaptive descriptor is

more robust than the non-adaptive one is that, under the assump-
tion of zero-mean noise affecting an ideal measurement, the
probability that the corrupted measurement is quantized to the
opposite bit is given by the tail of the noise distribution, which
is smaller if the measurement is far from zero. More formally,
suppose that a test measurement is modeled as ,
where is the query measurement and is the
additive Gaussian noise. Then, the probability of a bit flip after
binary quantization is

(10)

which is clearly minimized by choosing the largest available
.
The main drawback of this method is that the locations of

the outliers are only known once the query has been presented.
This implies that, if the database cannot be entirely loaded in
RAM, bits need to be loaded from disk at each query, thus
possibly creating a significant delay which contrasts with our
goal of providing real-time responses. In the following sections,
we propose two possible strategies to face this problem.
Finally, note that the adaptive method resembles in some way

the digest method described in [25], that can be used for com-
pression of the fingerprints. However, if outliers are used for
storage purposes, one faces the problem of storing location in-
formation as well, which causes a significant overhead. It was
shown in [12] that random projections outperform the digest
method for this very reason.

C. Fast Adaptive Hierarchical Search
In this section, we generalize the adaptive hierarchical

method presented in the previous section, in order to provide
a flexible framework that can be optimized by a system de-
signer, according to the specific constraints on RAM usage and
read throughput from disk. In the following, we assume that
the database is too large to be entirely loaded into the main
memory.
As previously mentioned, the main drawback of creating

short descriptors using locations selected from the outliers
of the query is that the bits of the descriptors from the
database must be loaded from disk at query-time, causing a

Fig. 2. First-stage matching employs short descriptors created from outliers or
group-outliers of the query and of the database entries according to the desired
tradeoff between RAM usage and disk load.

delay in the response. The alternative could be keeping in RAM
the outliers of the database entries together with their positions,
so that the corresponding locations in the query can be chosen
accordingly. In this case, no load from disk is needed, but the
overhead due to location information may be significant and
enforce very large RAM requirements.
A whole spectrum of choices lies between these two ex-

tremes, by considering that short descriptors may use some
locations derived from outliers of database fingerprints and
some other locations derived from outliers of the query, thus
creating several trade-offs between how many data are to be
read from disk and how many can be stored in RAM.
Furthermore, an additional technique can be used in order to

reduce the overhead of location information when using data-
base outliers. Fig. 2 graphically summarizes how the short de-
scriptors are assembled. Instead of selecting single measure-
ments as outliers, we can select group outliers, i.e., groups of
measurements likely to contain outliers. This can be done in

multiple ways, e.g., choosing the groups with higher variance or
using higher order moments like kurtosis. The grouping can be
predefined (e.g., groups of contiguous and non-overlapping en-
tries) so that bits are needed to identify a group using
a trivial code. Moreover, since each group contains measure-
ments, we need fewer groups to reach a predefined quota of mea-
surements to be used in the descriptors.
Let us describe the proposed method more formally. Short

descriptors are vectors of binary measurements. The Ham-
ming distance between the short descriptor of the query and the
short descriptor of each and every fingerprint in the database
is computed for the first stage of matching. A percentage

of the measurements in a short descriptor is obtained from
group-outliers of a database fingerprint, thus mea-
surements. Each group contains measurements, which means
that groups are chosen in order to obtain measure-
ments. The remaining measurements of the short de-
scriptor are obtained from the locations of the outliers of the
query. Overall, the first stage of matching requires to persis-
tently store in RAM

(11)
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bits and to load from disk at each query

(12)

bits. Additionally, the second stage of matching requires to load
the full compressed fingerprints for the candidates selected
by the first stage, thus requiring to load from disk

(13)
bits.

D. Index Compression
In the previous section, we remarked that preloading database

outliers or group-outliers in RAM has a significant overhead due
to the need to store the locations of such outliers. A trivial code
requires a total of bits per fingerprint to store lo-
cation information. Such trivial code is fast in the sense that it
immediately gives the position of the outliers in the vector, but
it is quite inefficient in terms of space. The entropy of the lo-
cation information is in fact much lower. When outliers (

) have to be identified and their locations stored, we have
a total of equiprobable ways of selecting them. General-
izing to the use of group-outliers, if the grouping is predefined
(e.g., groups of contiguous measurements) there are
equiprobable ways of selecting them. Thus, the entropy of loca-
tion information is

(14)

bits, which is significantly smaller than . How-
ever, reaching such entropy could be complicated and would
require a decoding operation for every fingerprint in the data-
base. Such decoding operation could significantly slow the
matching down, so that it might not be worth the savings in
memory. Nevertheless, we studied a simple code that gets quite
close to the entropy and has a rather fast implementation. The
idea is to sort the locations vector by increasing values, encode
the first value using a trivial code ( bits) and then
compute the difference between successive location values.
Finally, a universal code such as the Exp-Golomb code of order
[26] is used to encode the differences. Notice that decoding

the Exp-Golomb code could be done via a lookup table, so
it is rather fast, although additions are still required to
unwrap the differential code. We tested the method on mea-
surements of synthetic Gaussian fingerprints, using ,

, various values of and an Exp-Golomb code of
order 6. Table I shows the number of bits needed to encode
location information for one fingerprint and compares the
value obtained by differential Exp-Golomb coding against the
entropy and against the bits needed by the trivial fixed length
code. We notice that this simple and rather fast scheme achieves
values quite close to the entropy. The good performance can be
qualitatively explained by the fact that the distribution of the
differences between the sorted locations (normalized by ) is
well approximated by a Beta distribution Beta (this is a
known result on the spacings of order statistics of a continuous
uniform distribution, refer to [27]), which has a power law

TABLE I
INDEX OVERHEAD (BITS)

decay well suited for the implicit distribution assumed by
universal codes.

E. Scaling to Billion-Entry Datasets
The scalability of the proposed techniques to huge databases

of photos, where potentially billions of fingerprints have
to be stored, is crucial. We emphasize that the retrieval
problem solved by the fast hierarchical search scheme of
Section III-C still admits a high degree of parallelization, and
is suitable for implementation with standard frameworks for
distributed computing on big data, such as MapReduce [28]. In
MapReduce, aMap function splits a complex task into many in-
dividual smaller tasksworking in parellel on subproblems. Then,
the results of those tasks are gathered and jointly processed by a
Reduce function. Algorithm 1 reports a high-level pseudocode
to implement the photo retrieval problem with the proposed fast
hierarchical search using MapReduce. Essentially, the database
of fingerprints is partitioned into chunks of fingerprints,
which can be stored locally on cluster nodes. The search
problem is independently solved for each chunk in parallel by
returning lists of retrieved photos. The final response to the
query is provided by simply collating the lists.

Algorithm 1: Hierarchical Search using MapReduce

procedure MAP
Input: database chunk identifier ; query fingerprint
Find entries of with largest magnitude and

their locations
Quantize and keep them in
for do

Read locations of group-outliers in RAM
Quantize at locations and append to
Load at locations and keep them in
Append the group outliers to
Compute

end for
Find set of candidates
for do

Compute
end for

return ,
end procedure

procedure REDUCE
Input: ,
for do

end for
return Set of matching fingerprints
end procedure
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IV. EXPERIMENTAL RESULTS
The goal of this section is to test the presented techniques to

solve the retrieval problem on a large scale database of photos.
In the retrieval scenario a large number of photos is avail-
able without any prior knowledge about them (it is not known
if some of the photos are from the same camera). A user queries
the system with a known fingerprint (e.g., because they own the
camera and can extract a high quality fingerprint). The goal of
the system is to present to the user all the photos among the ones
in the database acquired by the same device as the one having
the fingerprint presented by the user. To do it, a fingerprint es-
timate is independently extracted from each of the photos
and stored in a compressed way. Matching uses the techniques
presented in Section III. We also remark that comparisons with
other state-of-the-art techniques for fingerprint compression are
not present in this paper but can be found in [12], where ex-
haustive tests show that random projections achieve the best
performance.

A. The Flickr Database
A database of cameras and test photos has been assembled by

downloading publicly available photos from the photo-sharing
website Flickr.2 A similar experiment [29] also used Flickr to
provide source material, but the objective was different. In fact,
the article by Goljan et al. was mainly concerned with proving
that PRNU is an effective fingerprint for camera identification.
Thus, a large-scale experiment was needed in order to ascertain
the robustness of the fingerprint across a wide range of commer-
cially-available cameras and ordinary photos instead of photos
acquired in a lab. Their results showed that in most of the cases
non-unique artifacts (i.e., artifacts in the PRNU estimate that
are common to all cameras of a particular model) can be effec-
tively suppressed and that the PRNU survives JPEG compres-
sion. They also tested a fingerprint matching scenario in which a
given photo has to be tested against a database of known finger-
prints. Notice that this scenario is exactly dual to the retrieval
problem we address in this paper, where the database is com-
posed of a large number of images (and relative fingerprint es-
timates) while the query is a high-quality fingerprint.
In order to have some control over the type of material, we

only selected photos tagged to be at their original resolution and
in landscape format. Notice that the landscape format assump-
tion is just for convenience of testing. In fact, ongoing research
[21] suggests that random projections can efficiently deal with
scale and rotation transformations as well. Whenever Exif data
reported the ISO speed, we capped it to 800 to avoid excessively
noisy photos. Finally, we assumed that a user only possessed a
single camera of a specific model. A total of 549135 images,
shot by 1174 cameras, have been processed. The photos from
each camera are partitioned into two sets. A first set typically
contains between 50 and 100 photos per camera and is used
to extract a “high quality” fingerprint estimate, which will be
used to simulate a query. We remark that here, with the term
“high quality” we mean that the fingerprint is extracted from
a set of pictures rather than from a single one. However, there
is no guarantee that the content of those pictures is ideal for

2[Online]. Available: www.flickr.com

extracting a fingerprint (e.g., uniform content with unsaturated
pixels). The remaining photos constitute the database which has
size .
Even if this test database is smaller than the expected size

of a real system, which can be in excess of fingerprints,
its management is already a big data problem that would be
hard to solve without compression, or with other PRNU com-
pression methods not based on random projections. In fact, the
database would require approximately 15 TiB of storage if the
fingerprints were kept uncompressed and responding to a query
would take a very long time to perform the exhaustive matching.
Among other proposed compression techniques, the binariza-
tion method of Bayram et al. [17] would need about 500 GiB
and the matching complexity would still scale with the number
of pixels of the sensor. Finally, the digest method [25] is quite
efficient, but based on the results in [12] we expect about a
10% penalty in terms of memory requirements with respect to
random projections. Binary random projections ( ,
64 KiB per fingerprint) require about 25 GiB of storage for the
database. The costs in terms of RAM occupation and amount
of data to be loaded from secondary storage are detailed in the
following, depending on the matching technique that is used.
Finally, we remark that the size of our Flickr dataset is signif-
icantly larger than what is typically used in the literature (e.g.,
[17] uses 3 cameras and 300 images; [30] studies 70 cameras
and 13696 photos; [14] has about 3000 cameras and 200000
images but only some of them are used for tests; the aforemen-
tioned [29] is an exception with about one million photos). In-
deed, previous works did not consider the retrieval problem,
but since we want to scale the use of PRNU fingerprints up
to address photo retrieval on large scales, it would not make
sense to use just a few cameras and a few hundreds of pic-
tures. Half a million photos are easily managed by a non-op-
timized implementation of the presented methods and allow ex-
perimenting with several choices of system parameters. Since
previous works have not studied the retrieval problem, the con-
tributions of this paper are twofold: experimental verification
that the problem can be solved at all in a robust manner by using
a large real dataset, and that it admits an efficient solution thanks
to the proposed techniques.

B. Test Methodology
Each of the 1174 cameras has a training set of approximately

50 pictures. Those pictures are used jointly to extract a high-
quality fingerprint according to (3). This fingerprint is then com-
pressed using random projections calculated using a cir-
culant sensing matrix. Both the real-valued measurements and
their binary-quantized versions are kept in order to be able to
test the methods that require detection of the outliers. The

test photos are used to assemble the fingerprint data-
base. The noise residual [see (2)] is extracted from each of them
and compressed using random projections. Notice that we ac-
tually use the noise residual instead of the fingerprint estimate
since it was shown in [12] that this choice has practically no im-
pact on the final performance while it allows to save one com-
putation. Camera fingerprints are extracted using the Camera
Fingerprint toolbox [29], [31] and all the tests are performed in
MATLAB, on an implementation not optimized for speed.
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Fig. 3. Recall and Precision of linear search as function of the camera under test. Best F-score threshold: . (a) Recall per camera. (b) Precision per
camera.

C. System Performance

In this section we analyze the performance of the proposed
compression and matching techniques presented in the previous
sections. The chosen performance metrics are recall and preci-
sion. The recall is the number of retrieved photos acquired by
the same camera of the query fingerprint, divided by the total
number of photos of that camera stored in the database. The pre-
cision is the number of retrieved photos acquired by the same
camera of the query fingerprint, divided by the total number of
retrieved photos. Furthermore, we study the impact of the var-
ious system parameters introduced in Section III in terms of pri-
mary and secondary storage requirements, as well as their im-
pact on recall and precision. Index compression is not included
in the following results because its fast implementation is the
subject of future work.
1) Performance of linear search: Linear search has the

highest complexity in terms of RAM requirements (the whole
database of 25 GiB has to be loaded in RAM at some point),
and in terms of amount of calculations ( XOR operations).
However, it offers the best performance in terms of recall and
precision. Fig. 3 shows the recall and precision obtained by
linear search as a function of the camera used for the query.
The threshold is selected as the threshold yielding the best
F-score. It can be noticed that the system retrieves a very
large percentage of photos for most of the query cameras
and returning very few false positives. Few cameras display
rather low recall and precision. Upon closer inspection of the
corresponding photos, they typically present heavy post pro-
cessing which likely degrades the PRNU estimate. It should be
remarked that the database was assembled in an unsupervised
way (except for the few rules explained in the previous section),
so some troublesome photos were expected. Moreover, it has
to be stressed that the “high-quality” query fingerprints are also
collected in an unsupervised way from ordinary pictures, pos-
sibly heavily post-processed too. It is also possible that some of
the cameras exhibiting low performance might be affected by
uncommon non-unique artifacts such as the ones discovered in
[32]. Nevertheless, the median recall and precision are around

Fig. 4. F-score as function of first stage descriptor length. Non-adap-
tive chooses first entries. Adaptive uses .

to ensure retained entries are less than 1%.

95% meaning that the system is able to achieve such high
performance half of the time.
2) Non-adaptive versus adaptive hierarchical search: A two-

stage search was introduced to speed up the matching operation.
We are now assessing two methods to create the short descrip-
tors used in the first stage to generate a short list of candidate
fingerprints. We compare a non-adaptive method choosing
measurements from fixed predefined locations, and an adaptive
method that chooses the locations from the outliers of the
query fingerprint. The first stage threshold is chosen to let at
most of the database through. Fig. 4 plots the final F-score
as a function of and shows that the non-adaptive method
fails to generate descriptors that are short and effective. On the
other hand, adaptively choosing the measurements provides a
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TABLE II
TOTAL RAM OCCUPATION (MIB)

TABLE III
DATA LOADED FROM DISK AT FIRST STAGE (MIB)

superior way of dimensionality reduction, quickly reaching per-
formance close to linear search. Notice that the performance of
linear search is actually slightly exceeded for some choices of

. This is due to the robust embedding properties of adaptively
chosen measurements which allow to slightly improve preci-
sion by discarding some non-matching fingerprints at the first
stage. Once established the importance of an adaptive selection
of measurements, we can investigate the problems mentioned in
Section III-C of excessive delay due to disk load or excessive
RAM consumption.
3) Trading off primary and secondary storage: Using outlier

locations from the query fingerprint requires to load part of the
database from disk at query-time, because such locations are not
known in advance and the full database does not typically fit the
main memory. On the other hand, using outliers (or group out-
liers) of the database fingerprints (found before storing them in
binary-quantized form) allows to preload them in RAM, but re-
quires to store their locations as well, which can be a significant
overhead. The parameter trades off the two solutions by spec-
ifying that measurements are kept in RAM together with
their locations (or group locations if ), while
measurements are loaded from disk at query-time depending on
the outliers of the query.
For the following experiments, we fixed , a value

that we deemed satisfactory from the experiment of Fig. 4, a
first stage threshold and a second stage threshold of

.
Table II shows the total RAM usage for the Flickr database,

for various choices of and . The figures include both persis-
tent data, such as the quantized measurements at database group
outlier locations, as well as dynamic data, such as the quantized
measurements at query outlier locations and the full fingerprints,
loaded from disk during the first stage and second stage, respec-
tively. Referring to equations (11), (12) and (13), the figures in
Table II show (the maximum is due to the fact
that the bits loaded for the first stage are not needed anymore
for the second and can be overwritten).
Table III reports only the amount of data to be loaded

from disk at first stage, i.e., . The choice we made for the
threshold implies an average disk load at the second stage

Fig. 5. F-score as function of the first stage threshold .

Fig. 6. Size of disk load (no. of retained fingerprints KiB) for the second
stage.

MiB. Notice that the difference between the figures
in Table III and may seem small (suggesting that loading
from disk at first stage is not a big penalty), but this is only
due to the relatively small size of the Flick dataset we use for
testing. In fact, it has to be considered that if is chosen to
retain a fixed maximum number of photos, then would be
constant, while the figures in Table III would scale as .
The importance of first-stage threshold is highlighted in
Figs. 5 and 6, where we report the dependence of F-score and of

on . Notice that should be chosen to yield an F-score as
close as possible to the one of linear search, under a constraint
on the value of . We also observe the same phenomenon as
in Fig. 4 that the F-score of the hierarchical system slightly
exceeds that of linear search for a small range of for certain
values of and . This is due to a small improvement in
precision allowed by the robustness of the short descriptors
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TABLE IV
MEAN/MEDIAN RECALL

TABLE V
MEAN/MEDIAN PRECISION

which discard some non-matching fingerprints at the first stage.
Finally, Tables IV and V show the mean and median values of
precision and recall for various choices of and .

D. System Design Example
In this section, we briefly show how the reported tables can

help a system designer in choosing the appropriate values of the
parameters. The design objective will be the maximization of
the system F-score, under a constraint on the total RAM occu-
pation and on the delay between the submitted user query and
the response. For the sake of simplicity, we assume that disk
load time significantly exceeds computation time, so that the
latter can be considered negligible. For example, let us suppose
that our Flickr database is used for a retrieval service hosted on
a system with 4 GiB of RAM and 250 MiB/s read throughput
from disk and we want a maximum response time of 2 seconds.
We can determine the admissible values of and depending
on the 4 GiB RAM constraint using Table II, while Table III and

MiB allow to determine the admissible values sub-
ject to the 2 sec. delay constraint, which in turn means that

MiB. The choice maximizing the F-score is there-
fore , providing a median recall of 90% and
a median precision of 100%. As a rule of thumb, once deter-
mined which values of and are admitted by the constraints,
seeking smaller groups and few measurements in RAM typi-
cally provides better F-score.

V. CONCLUSION
In this paper, we addressed an image retrieval problem where

the user wants to find all the photos in a collection acquired by
a specific device. PRNU fingerprints are an established method
for robust camera identification, but their size makes them
impractical to use on large scales. We showed how random
projections can effectively compress the fingerprints and enable
fast matching techniques that are suitable for huge collections
of photos at a small cost in terms of detection performance.
Moreover, the matching techniques presented in this paper are
very flexible and allow several tradeoffs in terms of primary
and secondary storage as well as computational complexity. All
the techniques were validated with real data on a test dataset
of half a million photos from 1174 cameras, assembled in an

highly unsupervised way by downloading pictures from the
image sharing website Flickr. The experimental results are
interesting and novel by themselves, because they show for
the first time that the retrieval problem can indeed be solved
with good precision and recall on a database of non-trivial size
composed by real photos, so that the experiment effectively
studies a realistic use case. Moreover, the results suggest
that the proposed techniques enable image retrieval based on
camera identities on unprecedented scales, effectively paving
the way to the realization of a camera search engine spanning
huge image collections available on the Internet.
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