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Cross-Modal Complementary Network with Hierarchical Fusion for
Multimodal Sentiment Classification

Cheng Peng, Chunxia Zhang�, Xiaojun Xue, Jiameng Gao, Hongjian Liang, and Zhengdong Niu

Abstract: Multimodal Sentiment Classification (MSC) uses multimodal data, such as images and texts, to identify the

users’ sentiment polarities from the information posted by users on the Internet. MSC has attracted considerable

attention because of its wide applications in social computing and opinion mining. However, improper correlation

strategies can cause erroneous fusion as the texts and the images that are unrelated to each other may integrate.

Moreover, simply concatenating them modal by modal, even with true correlation, cannot fully capture the features

within and between modals. To solve these problems, this paper proposes a Cross-Modal Complementary Network

(CMCN) with hierarchical fusion for MSC. The CMCN is designed as a hierarchical structure with three key modules,

namely, the feature extraction module to extract features from texts and images, the feature attention module to

learn both text and image attention features generated by an image-text correlation generator, and the cross-modal

hierarchical fusion module to fuse features within and between modals. Such a CMCN provides a hierarchical fusion

framework that can fully integrate different modal features and helps reduce the risk of integrating unrelated modal

features. Extensive experimental results on three public datasets show that the proposed approach significantly

outperforms the state-of-the-art methods.

Key words: multimodal sentiment analysis; multimodal fusion; Cross-Modal Complementary Network (CMCN);

hierarchical fusion; joint optimization

1 Introduction

In the current age, more users post emotional content
and opinions on social platforms, such as Weibo and
Twitter. Sentiment classification with multimodal data
(i.e., texts, images, and/or videos) plays an important role
in the tasks of public opinion monitoring, advertisement
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recommendation, and hot event detection.
Multimodal Sentiment Classification (MSC) is a

fundamental issue in the fields of social computing
and sentiment analysis. The MSC approaches can
be roughly divided into two kinds, namely, methods
with interactions between multiple modalities[1–3] and
methods without interactions when extracting feature
vectors[4–6]. For instance, Xu et al.[1] utilized two
interactive networks to learn both interactive influences
between cross-modality data and the influences
themselves in single-modality data simultaneously.
Moreover, Yu et al.[2, 3] designed the multimodal
factorized bilinear pooling approach to fuse multimodal
features and constructed the co-attention mechanism to
learn the text and image attentions. In parallel, Hazarika
et al.[4] and Hu and Flaxman[5] directly concatenated
multiple features, including text, image, and audio
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features, and performed sentiment classification on the
concatenated features. Furthermore, Anderson et al.[6]

transformed the text and image features into vectors with
the same dimensions and dealt with feature fusion with
the dot product.

However, some recent works on MSC utilize
erroneous correlations between different modalities
and relatively simple feature fusion methods, such as
dot product and concatenation[7, 8]. For instance, after
Obama won the 2012 presidential election, he posted
the textual content “Four more years” on his official
Twitter. The auxiliary image is a big hug of him and
his wife. Within this tweet, people can understand
that the president’s successful election for four more
years is related to the happy embrace. However, the
features of the period “four years” and the features
of a hug are not necessarily related to each other.
For such a pair of samples, the degree of fusion
between modalities with cross-modal attention needs
to be reduced. Moreover, previous approaches seldom
consider utilizing the interaction information within a
single modality and between modalities at the same time.
Actually, different modalities can benefit from each
other when capturing implicit semantic features because
complementary relationships exist between different
modalities[7].

To solve the aforementioned problems, this paper
proposes a Cross-Modal Complementary Network
(CMCN) with hierarchical fusion for MSC. The main
contributions can be summarized as follows:

(1) A CMCN with hierarchical fusion is developed for
the MSC task. The CMCN is designed as a hierarchical
structure with three key modules, namely, the Feature
Extraction Module (FEM), Feature Attention Module
(FAM), and Cross-Modal Hierarchical Fusion module
(CMHF). With the help of an image-text correlation
generator, the CMCN can avoid the fusion of irrelevant
images and texts mutual-modal correlations.

(2) The image-text correlation generator is constructed
to measure the similarity between images and texts for
learning image attention features. To this end, a Visual
Geometry Group Network (VGGNet) is employed to
learn image features, whereas a Bidirectional Encoder
Representation from Transformers (BERT) is used
to learn text features. Moreover, an image caption
generation strategy is utilized to convert the images
into descriptive texts. Furthermore, the image-text
correlation generator computes the correlation degree
between original texts and descriptive texts of images

as image-text correlations. Typically, the image-text
correlations are fused with the text attention features
and the image features to generate the image attention
features, which can reduce the influences caused by
erroneous image-text correlations.

(3) A CMHF is proposed to fuse four kinds of features
(i.e., text features, image features, text attention features,
and image attention features) within a single modality
and between multiple modalities hierarchically. This
module consists of four layers, namely, feature sampling,
cross-modal fusion, global fusion, and classification
layers. The feature sampling layer upsamples those four
kinds of features to the same dimension. The cross-
modal fusion layer implements fusion between original
features of images and texts, between attention features
of images and texts, and between original and attention
features within a single modality. Furthermore, the
global fusion layer integrates all of the fused features
outputted by the cross-modal fusion layer. The loss of
each layer is used for joint optimization of the global
model. The CMHF provides a hierarchical mechanism
to fuse those four types of features with the joint
optimization method, which can capture the implicit
features within a single modality and the complementary
features between multiple modalities.

(4) Extensive experiments are conducted on three
public datasets, namely, MVSA-single, MVSA-
multiple[9], and Multi-ZOL[1] datasets. The experimental
results show that the performance of our method is
superior to those of other related works, and the ablation
experiments indicate that each component of our model
contributes to the sentiment classification results.

The rest of this paper is organized as follows.
Section 2 introduces the related works of MSC. Section 3
presents the proposed CMCN model. Section 4 gives the
experimental results. Section 5 concludes this paper.

2 Related Work

Preliminary works on the MSC task extracted suitable
features for sentiment classification[7, 8]. Recently, most
works employ Convolutional Neural Networks (CNN)
or their variants to extract image features and use the
output of the hidden layers of those networks as image
features for subsequent neural network input[10–12]. The
majority of works utilized BERT[13] for text feature
extraction and Long Short-Term Memory (LSTM)[5, 6]

for feature extraction. BERT can learn distributed
feature representation for words by running a self-
supervised learning method on a large-scale corpus.
Furthermore, some works extracted the features of a
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single modality with the aid of other modal data. For
example, Xu and Mao[14] built the MultiSentiNet neural
network, which uses visual features to guide the attention
LSTM model to extract text features, and classified the
concatenated vectors of visual and text features. Then,
Xu et al.[15] proposed a co-memory network to achieve
interactive sentiment classification between texts and
images iteratively.

In the early stage, text-based methods are usually
designed for sentiment classification. These methods can
be classified into three kinds[7], namely, document-level,
sentence-level, and aspect-level sentiment classification.
The three related works on these three kinds of methods
are as follows: Xu et al.[16] obtained the overall semantic
information for the entire document using the cached
LSTM model. Then, they used the memory groups with
low forgetting rates to build the global features and the
memory groups with high forgetting rates to obtain the
local features. Moreover, Mishra et al.[17] learned the
eye movement features from human reading behavior
by utilizing the CNN and analyzed the sentiment from
the eye movement and textual features. Ma et al.[18]

proposed an interactive attention network for aspect-
level sentiment classification. They used two different
LSTMs to learn the important words from the target
and full texts interactively and concatenate them for
sentiment classification. Furthermore, Zhao et al.[8]

introduced other unimodal sentiment analysis methods,
such as AlexNet, for sentiment analysis of images
and mid-level perceptual musical feature modeling for
sentiment analysis of music.

Recently, many users publish their daily content on the
Internet in various forms, such as texts and images. Thus,
the existing MSC works mainly focus on two kinds of
datasets, namely, text-image and video datasets. For the
text-image datasets, Gaspar and Alexandre[19] segmented
the content that was posted on social media into texts,
images, and image contents for sentiment classification
to reduce the dependency of text analysis. Truong
and Lauw[20] proposed VistaNet to analyze textual and
visual components. The texts were divided into multiple
granularities, i.e., word, sentence, and document levels,
and the images were divided into multiple aspects, such
as objects or entities. Moreover, Liu et al.[21] proposed
CASA for performing context-aware user sentiment
analysis, which involves the semantic correlation and the
effects of context information. For the video datasets,
many works initially extracted the images, audios, and
texts from the videos[4, 22–26]. Furthermore, Majumder

et al.[25] utilized hierarchical fusion to fully integrate
features of images, audios, and texts. To introduce
the interpersonal influences, Hazarika et al.[4] proposed
an interactive conversational memory network that can
model the emotional impact of self-speaker and inter-
speaker to obtain global memories. Then, the contextual
summaries generated by the global memories helped
sentiment prediction.

The performance of sentiment analysis on multiple
modalities (i.e., texts, images, videos, and audios) was
better than that on a single modality as multimodal data
provide more information than single-modality data,
such as visual or auditory information[7]. The key to
MSC is how to design the feature fusion method within
a single modality and between multiple modalities.
The fusion strategies of multiple modalities can be
divided into two types of methods, namely, ones with
the interaction between multiple modalities and ones
without the interaction between multiple modalities.
Yu et al.[2, 3] first introduced the multimodal factorized
bilinear pooling approach to integrating image and text
features and then used the co-attention mechanism to
jointly learn the image and text attentions. Moreover,
Zhang et al.[27] developed semi-supervised variational
autoencoders to extract independent knowledge from
single-modality data and interactive knowledge from
different modalities. Furthermore, Wang et al.[28]

proposed an end-to-end fusion method to perform the
MSC task. The method employed a transformer for
modal conversion and fusion, and the fused features
contained the source and target modality information at
the same time.

The works without the interaction between two
modalities include the methods of Cambria et al.[26]

and Gaspar and Alexandre[19]. Gaspar and Alexandre[19]

performed a weighted summation of the classification
results of two modalities. Cambria et al.[26] directly
concatenated the extracted text, image, and audio
features into the fusion features. Yang et al.[29] developed
common space learning, which can decrease fusion and
disagreement problems, to analyze the sentiment tags
of micro-videos. The features extracted from visual,
acoustic, and textual data are mapped into a common
space by MultiLayer Perceptron (MLP) to obtain
multimodal features. The Attention-based Modal Gated
Network (AMGN) was proposed by Huang et al.[30] to
classify sentiments. To fuse text and image information,
the AMGN utilized modality-gated LSTM to adaptively
choose modal features with strong sentiments.
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3 Method

3.1 Problem formulation

The definition of MSC is expressed as follows: the
dataset is D D f.s1; I1/; .s2; I2/; : : : ; .sn; In/g. Here
Ij D fij;1; ij;2; : : : ; ij;mg is the image set, ij;m is the
m-th image of the j -th tweet or review. Let T D
fs1; s2; : : : ; sng be the set of text data of tweets or
reviews, where sj denotes a tweet or review including
only textual data, and I D I1[ I2[� � �[ In is the set of
images. Here, n denotes the number of text-image pairs
in the datasets. When a tweet or review does not contain
images, we use zero vectors to replace image features.

This paper aims to design a function f D G.T; I /,
which can be used to classify the sentiment of
multimodal data based on the set T of texts and the
set I of images. Here f is the sentiment classification
result that we predict and G.�/ is a function from the
multimodal data to the sentiment classification result.
This paper learns the text features Ft , image features
Fi , text attention features Ftatt

, and image attention
features Fiatt

to classify the sentiments of multimodal
data and perform joint optimization, such that the loss
of sentiment prediction is minimized.

3.2 Technical overview

Figure 1 shows the overall architecture of the CMCN
with hierarchical fusion for MSC. The CMCN is a
hierarchical structure with three key modules, namely,
FEM, FAM, and CMHF. (1) The FEM extracts the
original features from texts and images and the
descriptive textual features from images. (2) The FAM
learns both text and image attention features from
texts and images. The soft attention mechanism is
utilized to learn text attention features. Specifically,
the image attention features are semantically generated
by the image features, text attention features, and
image-text correlation generator. Here, the image-text
correlation generator is used to measure the image-
text correlations based on the cosine similarity. (3)
The CMHF aims to fuse the text features, image
features, text attention features, and image attention
features within a single modality and between multiple
modalities hierarchically. The CMHF consists of four
layers, namely, feature sampling, cross-modal fusion,
global fusion, and classification layers. The features
in each of the first three layers can be concatenated
into the vector as the feature of this layer. Finally,
the classification layer performs sentiment classification
based on the feature vectors of the first three layers

Fig. 1 Overall architecture of the CMCN with hierarchical
fusion for multimodal sentiment classification.

in the CMHF to obtain three classification results, i.e.,
ypre1; ypre2, and ypre3. Furthermore, the concatenation
of the three classification results ypre1; ypre2, and ypre3 is
utilized for classification to obtain the final result ypreall

by softmax, and the losses of the four classification
results ypre1; ypre2; ypre3, and ypreall are used for joint
optimization.

3.3 Feature extraction module

In the FEM, the CMCN model generates the original text
feature vector Ft from the texts, original image feature
vector Fi from the images, and descriptive text feature
vector Fti from the descriptive texts of images.

First, the pretraining model BERT[13] is used to extract
the text feature vector Ft from the original text T ,

Ft D BERT .T / (1)

Second, we utilize VGGNet[10] to build the image
feature vector Fi from image I ,

Fi D VGGNet.I / (2)

Third, the image caption generation method which
is designed by Xu et al.[31] is employed to convert
image I into the descriptive text Ti of the images. This
method can automatically learn how to describe the
contents of the images, visually show how the attention is
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distributed on the objects within the images, and generate
corresponding words at the same time. Then, the CMCN
model uses BERT to build the descriptive text feature
vector Fti from the descriptive text Ti ,

Ti D ImageCaption.I / (3)

Fti D BERT .Ti / (4)

3.4 Feature attention module

In contrast to images formatted with pixels that are only
related to low-level physical features, text information
contains high-level semantic features, and text attention
features are more discriminative and semantic for
sentiment classification. Thus, the texts are considered
as the main modality and are employed to help guide
the learning of the attention features of the images. The
FAM first builds the attention feature vectors of the texts,
and then generates the image attention feature vectors
using the image features, text attention features, and
image-text correlation generator.

3.4.1 Text attention feature learning
In the sentences, not all words contribute equally to
sentiment classification, and some words have more
distinct features for sentiment detection. Therefore,
different weights need to be assigned to each word
when inferring the sentiment polarity of the texts. A
soft attention mechanism was introduced by Xu et al.[1]

to learn the weights of words,

hk D ReLU .Wktk C bk/ ; tk 2 Ft (5)

˛k D
exp.hk/X

p

exp.hp/
(6)

Ftatt
D

X
k

˛ktk (7)

In Eq. (5), a neuron layer with a nonlinear activation
function ReLU is used to project each word embedding
tk in hk in the sentence. Wk and bk are the weight
matrix and bias vector, respectively. Then, the softmax
is utilized to generate the attention weight ˛k in Eq. (6).

Finally, the word embedding tk of each word in
the sentence is weighted and summed according to its
attention weight ˛k to obtain the text attention feature
vector Ftatt

in Eq. (7).

3.4.2 Image attention feature learning
The CMCN model introduces the image-text correlation
generator to learn the importance of text attention feature
vectors in the generation process of image attention
feature vectors. Notably, the erroneous correlations

between different modalities may cause the fusion
of unrelated images and texts. Hence, the image-text
correlation is introduced to measure the influence of
text attention feature vectors in the generation process
of image attention feature vectors. The text attention
feature vector Ftatt

, image feature vector Fi , and their
correlation c are fused to generate the image transition
vector Fitrans

,

Fitrans
D Fi C � � �.Ftatt

; c/ (8)

c D cos.Ft ; Fti / (9)

� .Ftatt
; c/ D Ftatt

� .norm .c/C 0:5/ (10)

In Eq. (8), � is a hyperparameter, which determines
the degree of influence of the text attention feature
vectors on the image feature vectors. When the text
and image information is equally important, the � value
is set as 1, and the larger � , the more important the text
information. The correlation c in Eq. (9) is obtained
based on the cosine similarity between the original text
feature vector Ft and the descriptive text feature vector
Fti . The reason that we choose to use two kinds of text
features (Ft , Fti ) to calculate the correlation c in Eq.(9)
is that the correlation calculated from the features within
the same modal with the same model is more reliable.
Moreover, the correlation calculated by Ft and Fti has
better experimental results than the correlation calculated
by the text feature Ft learned by BERT and image
feature Fi learned by VGGNet. In Eq. (10), norm.�/
is the zero-mean normalization.

The soft attention mechanism[1] is also employed to
generate the image attention feature vector Fiatt

based
on

hl D ReLU .Wl tl C bl/ ; tl 2 Fitrans
(11)

˛l D
exp.hl/X

q

exp.hq/
(12)

Fiatt
D

X
l

˛l � tl (13)

3.5 CMHF module

To fuse the features within a single modality and between
multiple modalities, the CMHF is composed of four
layers, namely, feature sampling, cross-modal fusion,
global fusion, and classification layers.

The feature sampling layer upsamples the four kinds
of feature vectors Ft ; Fi ; Ftatt

, and Fiatt
to the same

dimension to ensure that these feature vectors can be
integrated more accurately. The formulas are expressed
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as follows:
F 0t D Relu.WtFt C bt / (14)

F 0i D Relu.WiFi C bi / (15)

F 0tatt
D Relu.Wtatt

Ftatt
C btatt

/ (16)

F 0iatt
D Relu.Wiatt

Fiatt
C biatt

/ (17)

The cross-modal fusion layer conducts four
fusion operations, namely, g.F 0t ; F

0
i /; g.F

0
tatt
; F 0iatt

/;

g.F 0i ; F
0
iatt
/, and g.F 0tatt

; F 0iatt
/, as expressed in

Eqs. (18)–(21), respectively,
Ft;i D g.F

0
t ; F

0
i / (18)

Ftatt ;iatt
D g.F 0tatt

F 0iatt
/ (19)

Ft;tatt
D g.F 0t ; F

0
tatt
/ (20)

Fi;iatt
D g.F 0i ; F

0
iatt
/ (21)

where Ft;i is obtained by the fusion of F 0t and F 0i using
the way of dot product, whereas Ftatt ;iatt

is constructed
by the fusion of F 0tatt

and F 0iatt
. Typically, Ft;tatt

can be
obtained through the integration operation between F 0t
and F 0tatt

, whereas Fi;iatt
is acquired by fusing F 0i and

F 0iatt
.

The global fusion layer is used to fuse all of the
fused feature vectors outputted by the cross-modal fusion
layer,

Fglobal D g.Ft;i ; Ftatt ;iatt
; Ft;tatt

; Fi;iatt
/ (22)

where g.Ft;i ; Ftatt ;iatt
; Ft;tatt

; Fi;iatt
/ means that Ft;i ;

Ftatt ;iatt
; Ft;tatt

; and Fi;iatt
are integrated by the dot

product.
Finally, the CMCN model concatenates the feature

vectors of each of the first three layers of CMHF and
utilizes softmax for classification. Thus, we obtain
three classification results, i.e., ypre1; ypre2, and ypre3.
Then, the CMCN model concatenates and classifies
ypre1; ypre2; ypre3 to obtain ypreall

,
ypre1 Dsof tmax.Relu.W1ŒF

0
t ; F

0
i ;

F 0tatt
; F 0iatt

�C b1// (23)

ypre2 Dsof tmax.Relu.W2Œ.Ft;i ; Ftatt ;iatt
;

Ft;tatt
; Fi;iatt

�C b2// (24)

ypre3 Dsof tmax.Relu.W3Fglobal C b3// (25)

ypreall
Dsof tmax.Relu.W4Œypre1; ypre2;

ypre3�C b4// (26)

Then, the losses of the classification results (i.e.,
(ypre1; ypre2; ypre3, and ypreall

)) and the expected
results y are calculated using the cross-entropy error
function,

L.Fi /DCrossEntropyLoss.yprei ; y/; i 2 Œ1; 2; 3�

(27)

L.F4/DCrossEntropyLoss.ypreall
; y/ (28)

Furthermore, the joint optimization method is
employed to optimize the losses of the classification
results. Through the joint optimization method, the
proposed model can train the features of different
granularities of the first three layers of CMHF and obtain
better experimental results,
L D L.F1/CL.F2/CL.F3/CL.F4/C�jj� jj2 (29)

The proposed model is trained by minimizing the
total loss L with the Adam optimization algorithm. The
regularization parameter � is set as 0.0001. Finally, our
model uses ypreall

as the classification result for the
calculation of accuracy and the F1 measure.

4 Experimental Setting

4.1 Datasets

The CMCN model in this paper is evaluated on
three public datasets, namely, MVSA-single, MVSA-
multiple�, and Multi-ZOL� datasets. The MVSA-single
and MVSA-multiple datasets were used in the work of
Niu et al.[9], and the Multi-ZOL dataset was constructed
by Xu et al.[1]. Table 1 shows the details of the three
datasets, and Tables 2 and 3 shows the distribution
of sentiment polarity labels in each dataset. The
experimental task of this paper is to classify the

Table 1 Overall statistics of the datasets.

Dataset
Number of

original text-
image pairs

Number of
processed text-

image pairs

Number of
sentiment
polarities

MVSA-single 5129 4511 3
MVSA-multiple 19 600 17 024 3

Multi-ZOL 5288 28 469 10

Table 2 Number of text-image pairs for each sentiment
polarity in the MVSA-single and MVSA-multiple datasets.

Sentiment polarity
Number of text-image pairs

MVSA-single MVSA-multiple
Positive 2683 11 318
Negative 1358 1298
Neutral 470 4408
Total 4511 17 024

�http://mcrlab.net/research/mvsa-sentiment-analysis-on-
multi-view-social-data/.

�https://github.com/xunan0812/MIMN.



670 Tsinghua Science and Technology, August 2022, 27(4): 664–679

Table 3 Number of text-image pairs for each sentiment
polarity in the Multi-ZOL dataset.

Sentiment polarity Number of text-image pairs
1 6
2 1434
3 4
4 1491
5 3
6 4355
7 0
8 8695
9 0
10 12 481

Total 28 469

sentiment polarity of multimodal data. Specifically, the
number of sentiment polarity classification labels of the
three datasets are 3, 3, and 10, as shown in Table 1.

The MVSA-single dataset is composed of 5129
text-image pairs on Twitter. Each text-image pair has text
and image labels that were annotated by an annotator[9].
When the sentiment polarity of the text label is opposite
to that of the image label, the text-image pair is
eliminated. Finally, the MVSA-single dataset is left
with 4511 text-image pairs.

The MVSA-multiple dataset consists of 19 600 text-
image pairs, and each text-image pair is annotated by
three annotators[8]. Finally, after eliminating the text-
image pairs with opposite text and image labels, the
MVSA-multiple dataset is left with 17 024 text-image
pairs.

The Multi-ZOL dataset is composed of popular mobile
phone reviews crawled from ZOL.com[1], with a total of
5288 multimodal reviews. Each multimodal comment
comprises one text content, some images, and one to
six aspects. Each aspect of the review can be scored
1–10 points. According to each aspect, each multimodal
review is divided into a set of triples (i.e., aspect,
the corresponding text, and the corresponding images).
Finally, we obtain a total of 28 469 triples. In this paper,
the three datasets are randomly divided into 80% training
set, 10% validation set, and 10% test set.

All experiments are conducted under the framework
of the development environment PyTorch 1.3.1.

4.2 Baseline methods

To demonstrate the effectiveness of the proposed CMCN
model, we compare the performance of the CMCN
model with those of the multimodal sentiment analysis
baseline and the state-of-the-art methods in Tables 4
and 5. On the MSVA-single and MVSA-multiple

Table 4 Comparison of methods on the MVSA dataset.
(%)

Method
MVSA-single MVSA-multiple

Accuracy Weighted-F1 Accuracy Weighted-F1
SentiBank+

SentiStrength
52.05 50.08 65.62 55.36

CBOW+DA+
LR

63.86 63.52 64.22 63.73

CNN-Multi 61.20 58.37 66.39 64.19
DNN-LR 61.42 61.03 67.86 66.33

HSAN 66.83 66.90 68.16 67.76
MultiSentiNet 69.84 69.63 68.86 68.11
MN-Hop2+

img2text
68.07 65.19 67.92 67.16

CoMN-Hop4 69.18 68.29 69.92 69.83
CoMN-Hop6 70.51 70.01 68.92 68.83

CFF-ATT 71.44 71.06 69.62 69.35
MVAN-M 72.98 72.98 72.36 72.30

Concatenation 64.30 65.78 66.22 67.50
GMU 64.52 69.52 65.92 73.45
MFB 71.62 72.98 69.68 72.56

CMCN 73.61 75.03 70.45 74.77

Table 5 Comparison of methods on the Multi-ZOL dataset.
(%)

Method Accuracy Macro-F1
ATAE-LSTM 59.58 58.95

MemNet 59.51 58.73
IAN 60.08 59.47

RAM 60.18 59.68
Co-MN + Aspect 60.43 59.74

MIMN 61.59 60.51
Concatenation 61.42 47.02

GMU 61.64 42.87
MFB 60.75 37.56

CMCN 74.28 71.51

datasets, we compare our model with SentiBank +
SentiStrength[32], CBOW + DA + LR[33], CNN-Multi[34],
DNN-LR[35], HSAN[36], MultiSentiNet[14], MN-Hop2 +
img2text[15], CoMN-Hop4[15], CoMN-Hop6[15], CFF-
ATT[37], MVAN-M[38], Concatenation[39], GMU[40], and
MFB[2], as shown in Table 4.
� SentiBank + SentiStrength[32] uses SentiBank to

extract multiple adjective-noun pairs from images and
SentiStrength to determine the sentiment polarity of the
text.
� CBOW + DA + LR[33] obtains visual information

from a large-scale corpus through unsupervised learning
and combines that information with the language model
based on neural networks for multimodal sentiment
analysis.
� CNN-Multi[34] utilizes two CNN models to extract
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text and image features and uses those features to analyze
the sentiment.
� DNN-LR[35] employs two CNN models to extract

text and image features and utilizes those features to
analyze the sentiment by logistic regression.
� HSAN[36] obtains the captions of the images and

adopts the attention network to deal with the texts and
captions together.
� MultiSentiNet[14] extracts visual information, such

as the scene and object features, of the images and uses
this visual information to guide the extraction of text
features.
� MN-Hop[15] adopts the attention mechanism to

interactively model the relationship between text and
visual memories. MN-Hop2 + img2text is a variant of
MN-Hop. Based on MN-Hop, a co-memory network
(such as CoMN-Hop4 and CoMN-Hop6) is proposed to
iterate the interaction between texts and images to learn
the mutual influence.
� CFF-ATT[37] removes the influence of noise in texts

using a denoizing autoencoder, extracts image features
using an attention-based variational autoencoder, and
learns the internal features of texts and images from
each other symmetrically.
� MVAN-M[38] uses the constantly updated memory

network to obtain the deep semantic information of texts
and images.
� Concatenation[39] simply concatenates the

features of two modalities and uses MLP for
sentiment classification, and its effectiveness has
been demonstrated in a variety of applications[5, 39, 40].
� GMU[40] learns how modalities affect the activation

of the unit by multiplicative gates and finds an
intermediate representation of the data of different
modalities.
� MFB[2] uses a multimodal factorized bilinear

pooling approach to combine multimodal features and a
co-attention mechanism to jointly learn both the image
and question attentions.

On the Multi-ZOL dataset, we compare our model
with ATAE-LSTM[41], MemNet[42], IAN[18], RAM[43],
Co-MN + Aspect[15], MIMN[1], Concatenation[39],
GMU[40], and MFB[2], as shown in Table 5.
� ATAE-LSTM[41] uses LSTM to extract text context

information, adds aspect embedding to each word, and
fuses the word embedding and aspect embedding in the
attention layer to learn the sentiment polarity.
� MemNet[42] utilizes the aspect embedding for query

and uses a multiple attention mechanism to stack the

word embedding memory into deep memory. The
sentiment polarity is classified based on the output of the
attention layer.
� IAN[18] adopts two different LSTMs to learn the

aspect and text attention features and concatenates these
features for sentiment classification.
� RAM[43] establishes the memory and generates the

aspect embedding based on Bi-LSTM. The multiple
attention layer is combined with RNN nonlinearly to
enhance the expressive capability.
� Co-MN + Aspect[15] adds the average value of the

aspect embedding to the input of the original text and
the image network.
� MIMN[1] contains two interactive memory

networks, which calculate the texts and images, and
learns the mutual influence of cross-modal data and the
self-influence of single-modality data at the same time.

4.3 Experimental results

In our experiments, the performance of the CMCN
model is compared with that of other state-of-the-
art models using accuracy, weighted-F1 measure, and
macro-F1 measure.

Table 4 shows the experimental results of our CMCN
model and the baseline and state-of-the-art methods on
the MVSA-single and MVSA-multiple datasets. On
the MVSA-singe dataset, the CMCN model achieves an
accuracy of 73.61%, weighted-F1 of 75.03%, and macro-
F1 of 60.51%. On the MVSA-multiple dataset, the
CMCN model obtains the accuracy of 70.45%, weighted-
F1 of 74.77%, and macro-F1 of 50.58%. Table 4
shows that the CMCN model achieves the best sentiment
classification performances on the MVSA-single and
MVSA-multiple datasets.

Therefore, we have the following assertions: (1)
the baseline SentimentBank + SentiStrength has the
worst performance. This finding shows that the usage
of deep neural networks can effectively improve the
performance of the models. (2) CNN-Multi and DNN-
LR use CNN for feature extraction and classification,
and their experimental performances are better than
that of CBOW + DA + LR. (3) Moreover, HSAN,
MultiSentiNet, MN-Hop2 + img2text, CoMN-Hop4,
CoMN-Hop6, CFF-ATT, and MVAN-M all introduce
the attention mechanism to extract features, and their
experimental performances are better than those of the
first four methods in Table 4.

For the Multi-ZOL dataset, Table 5 shows the
classification performances of other methods and the
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CMCN model. The CMCN model achieves the accuracy
of 74.28%, weighted-F1 of 74.53%, and macro-F1 of
71.51%. Table 5 also shows that the accuracy of the
CMCN model is higher than that of the state-of-the-art
method MIMN by 12.69%. Moreover, the macro-F1 of
the CMCN model is higher than that of the MIMN by 11%.

Accordingly, we draw the following conclusions: (1)
the AEAT-LSTM, MemNet, IAN, and RAM models
only analyze text and aspect data; thus, the experimental
results of these models are not as good as those of
the Co-MN + Aspect, MIMN, and CMCN models that
use texts, images, and aspects for analysis. (2) The
performance of the CMCN model is significantly better
than those of other models because the CMCN model
introduces the correlation measure between multiple
modalities and a hierarchical fusion mechanism to fully
integrate multimodal features within a single modality
and between modalities.

4.4 Ablation experiments

4.4.1 Parameter experiments
Figure 2 illustrates the performance of the CMCN
model under different parameter values to analyze
parameter sensitivity. Experiments are conducted to
analyze the hyperparameter sensitivity of our CMCN
model, including dropout, learning rate, hidden size, and
fusion rate. In the experimental setup for the MVSA-
single dataset, the model parameters dropout, learning
rate, hidden size, and fusion rate are set as (0.5, 0.0003,
256, 1.25). In the experimental setup for the MVSA-
multiple and Multi-ZOL datasets, the corresponding
model parameters are set as (0.7, 0.000 03, 128, 0.75)
and (0.3, 0.000 03, 2048, 0.75), respectively.

The dropout value is set as f0.1, 0.3, 0.5, 0.7, 0.9g.
Figure 2a shows that, when the dropout is equal to
0.7, we obtain the highest accuracy of 73.17% on the
MVSA-single dataset. On the MVSA-multiple dataset,
the highest accuracy is 70.45% when the dropout is
0.7. On the Multi-ZOL dataset, the highest accuracy
is 74.28%, when the dropout is 0.3.

In Fig. 2b, the learning rate is selected from f0.000 01,
0.000 02, 0.000 03, 0.000 05, 0.0001g. We observe that
all of the three accuracy curves first increase and then
decrease. The highest accuracy of 72.73% is obtained
when the learning rate equals 0.000 03 and 0.000 05 on
the MVSA-single dataset. The CMCN model exhibits
the highest accuracy of 70.45% when the learning rate
is 0.000 03 on the MVSA-multiple dataset. On the
Multi-ZOL dataset, the difference between the highest

(a)

(b)

(c)

(d)

Fig. 2 Parameter experiments on the MVSA-single, MVSA-
multiple, and Multi-ZOL datasets.
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accuracy of 74.28% and the lowest accuracy of 70.98%
on different learning rates is 3.30%.

In Fig. 2c, the size of the hidden layer of the MLP
is set as f128, 256, 512, 1024, 2048g to analyze the
sensitivity of that hyperparameter. We obtain the best
result of 72.73% when the hidden layer size equals 256
on the MVSA-single dataset. The best experimental
result of 70.45% is achieved on the MVSA-multiple
dataset when the hidden layer size is 128. However, as
the hidden layer size increases, the accuracy decreases
to 69.39%. When the hidden layer size is equal to 2048,
the Multi-ZOL dataset obtains the highest accuracy of
74.28%.

In Fig. 2d, our model learns the fusion ratio f0.5,
0.75, 1.0, 1.25, 1.5g of texts and images during image
attention feature extraction. We found that the MVSA-
multiple and Multi-ZOL datasets can achieve the best
results when the fusion ratio is equal to 0.75. The result
of the MVSA-single dataset is the best at 73.61% when
the fusion ratio is set as 1.25.

We can conclude from Fig. 2 that the CMCN model
is not sensitive to the learning rate, hidden layer, and
fusion rate but slightly sensitive to dropout.

4.4.2 Ablation experiments on components
To investigate the contribution of each component to our

CMCN model, we conducted an ablation analysis of each
component. The experimental results are summarized in
Table 6.
� “Only text” indicates that only text data are used for

sentiment classification, whereas “only image” indicates
that CNN is used for sentiment classification of image
data.
� “Without text-att” indicates that the extracted text

attention feature Ftatt
is not used in the CMHF module.

� “Without img-att” indicates that the extracted
image attention feature Fiatt

is not utilized in the CMHF
module.
� “Without cross-modal fusion layer” and “Without

global fusion layer” indicate that we use the CMHF
module, which removes the cross-modal fusion or global
fusion layer to fuse features.
� “Without CMHF” discards the first three layers

in the CMHF module, directly classifies the sentiment
polarity by linear regression for each kind of features
(i.e., text features, image features, text attention
features, and image attention features), concatenates the
classification results, and identifies sentiment polarity on
the concatenated classification results.
� “Without fusion rate” indicates that the dot product

method is used directly to integrate the images and texts
instead of using the hyperparameter � to adjust the ratio

Table 6 Ablation experiments.
(%)

Method
MVSA-single MVSA-multiple Multi-ZOL

Accuracy Weighted-F1 Macro-F1 Accuracy Weighted-F1 Macro-F1 Accuracy Weighted-F1 Macro-F1
Only text 70.07 71.26 56.82 68.16 68.87 40.06 63.60 64.31 56.55

Only image 67.41 72.40 49.80 67.57 70.69 32.26 54.99 57.77 43.87
Without text-att 70.51 70.87 58.94 68.27 71.77 49.72 74.03 74.05 70.76
Without img-att 72.06 73.74 57.81 68.21 71.03 51.15 73.37 73.45 71.01

Without cross-modal
fusion layer

68.74 70.47 53.76 69.33 73.13 50.66 73.16 73.63 69.84

Without global fusion layer 71.18 71.68 58.36 66.75 68.68 49.84 73.54 73.66 70.28
Without CMHF 71.40 74.06 54.04 68.27 69.14 52.64 71.64 71.69 67.34

Without fusion rate 72.73 73.84 59.43 68.57 71.24 49.94 73.09 73.27 69.95
Without corr 72.95 74.45 59.51 68.33 72.88 48.30 72.73 72.80 69.42
Corr by using

features directly
72.06 73.16 59.67 68.45 73.14 47.43 73.16 73.36 69.30

Without CMFH + without
fusion rate + without corr

72.51 73.43 60.54 67.57 73.71 43.05 69.89 70.16 64.18

Output of feature
sampling layer

71.40 73.83 54.87 66.86 68.11 50.98 72.49 72.72 69.18

Output of cross-modal
fusion layer

68.96 69.33 59.44 67.63 69.05 52.26 72.91 72.90 69.07

Output of global fusion layer 66.30 66.63 51.70 66.92 68.76 50.00 73.09 73.25 70.60
Final output 43.46 41.76 35.82 54.52 53.36 39.03 73.33 73.65 70.79

CMCN 73.61 75.03 60.51 70.45 74.77 50.58 74.28 74.53 71.51
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of image and text fusion.
� “Without corr” indicates that the image-text

correlation c is not used for classification, and “Corr
by using features directly” indicates that the model
uses the text features extracted by BERT and the
image features extracted by VGGNet to calculate the
correlation directly.
� “Without CMHF + without fusion rate + without

corr” indicates that the first three layers in the CMHF
module and image-text correlation c are not used, and
the dot product is used to fuse the image and text directly.
� “Output of feature sampling layer”, “Output of

cross-modal fusion layer”, “Output of global fusion
layer”, and “Final output” indicate that we take
ypre1; ypre2; ypre3, and ypreall

in the classification
layer as the sentiment polarity for optimization,
and analysis. Here, ypre1; ypre2, and ypre3 are the
classification results of the feature sampling, cross-
modal fusion, and global fusion layers in the CMHF
module. ypreall

is the final classification result of the
CMCN model.

These results of the ablation experiments show that
each component of our CMCN model contributes to its
performance.

Table 6 shows that the performance of “Without text-
att” or “Without img-att” is lower than that of the
CMCN model, which indicates the necessity of using
the attention mechanism. Moreover, “Without cross-
modal fusion layer”, “Without global fusion layer”, and
“Without CMHF” perform worse than the CMCN model,
which illustrates the importance of hierarchical fusion
for features within a single modality and between two
modalities. “Without corr” or “Without fusion rate” also
performs worse than the CMCN model. This finding
shows that the introduction of image-text correlation
can improve classification performance. Furthermore,
“Without CMHF + without fusion rate + without corr”
has a worse classification result than “Without CMFH”,
“Without fusion rate”, and “Without corr”, which
demonstrates that these modules can assist each other in
optimizing the model.

The CMCN model employs joint optimization, and its
performance is better than those of “Output of feature
sampling layer”, “Output of cross-model fusion layer”,
“Output of global fusion layer”, and “Final output”.
We observe the superiority of the joint optimization
method from Table 6. This finding indicates that the
joint optimization approach can effectively improve the
performance of the CMCN model.

In our CMHF model, the pretraining model BERT
and the image feature extraction method VGGNet are
only used for feature extraction; they are not involved
in the entire model training process. Accordingly,
these two parts are not included when calculating
the time complexity of the CMHF model. To analyse
model complexity, the commonly used image sentiment
classification models VGGNet19[10] and Resnet101[44]

are compared. The parameter amount of VGGNet19 is
approximately 1.44�108, and the parameter amount of
Resnet101 is about 4�107��. By contrast, the parameter
amount of our CMHF model is only approximately
3.3�106. Thus, our CMHF model is lightweight.
Moreover, if the running time of the CMHF model is
calculated based on the average of 500 epochs running
time on the CPU “i7-9750H”, then the total running time
of training and testing for each epoch is about 18 s.

In summary, the carefully designed CMCN technically
helps enhance the classification performance, which is
hindered by the problem that the correlation between
modalities is erroneous or the fusion between modalities
is insufficient when learning multimodal data. Extensive
experimental results on the three public datasets
also show that the proposed approach significantly
outperforms the state-of-the-art methods. However, the
main disadvantage of the proposed CMCN model is that
it needs an image caption generation method to support
it. However, currently, image captioning is not a well-
solved task in the field of computer vision. In some cases,
the descriptive text of the image extracted by the image
caption generation method is somewhat not accurate
enough. That is, its accuracy may affect the performance
of the proposed CMCN model.

4.5 Case study

We selected two cases in each of the three datasets for
a case study to demonstrate the effectiveness of our
CMCN model.

4.5.1 Cases about tweets in the MVSA-single and
MVSA-multiple datasets

Table 7 shows four cases of multimodal data in the
MVSA-single and MVSA-multiple datasets. The feature
vectors can be extracted from the texts, images, and
descriptive texts, and the image-text correlations can be
measured using the text features and descriptive text
features.

��https://paperswithcode.com/sota/image-classification-on-
imagenet.
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Table 7 Four cases of multimodal data from the MVSA-single and MVSA-multiple datasets.
Case (a) from MVSA-single Case (b) from MVSA-single Case (c) from MVSA-

multiple
Case (d) from MVSA-
multiple

Text

RT@CBC: #LoveBirds.
Learn about romance in
the wild with @cbcdocs
#lifestory: #ValentineDay

Quantum of the seas under
dramatic clouds. Notice the empty
pool– too cold and windy today.
Tomorrow Florida.

The Madame Lois - come in
and giver a try before it sells
out! #jamesnorth #hamont
#diner #brunch

Max stands tall for
@jeromeyyc and
#RealChange in #Canada
#elxn2015 #elxn42
@JustinTrudeau #lpc2015

Image

Describe
text

A couple of birds sitting on
top of a rock

A view of a boat in the water
A close up of some food on
a table

A small white dog wearing
a red bow tie

Without
CMFH

Positive Negative Neutral Neutral

Without corr Positive Negative Positive Positive
CMCN Positive Negative Neutral Positive
Label Positive Negative Neutral Positive

Cases (a) and (b) are from the MVSA-single
dataset. For Case (a), both the text and image are
analyzed to obtain positive sentiments. Thus, the three
models “CMCN”, “Without CMHF” and “Without
corr” distinguish the sentiment polarity of this tweet as
positive. Similar to Case (a), the text and image of Case
(b) tend to have negative sentiments. Thus, the three
models distinguish the sentiment polarity of this tweet
as negative.

Cases (c) and (d) are selected from the MVSA-
multiple dataset. In Case (c), the text information does
not clearly show the polarity of sentiment, but the
image may be detected as having a positive sentiment.
Our CMCN model classifies the sentiment of this case
as neutral, which is the same as its label. However,
“Without corr” does not introduce the relevance of the
image and text. Thus, the sentiment polarity of this tweet
is judged positive. In Case (d), the classification results
of CMCN and “Without corr” are correct, whereas the
classification result of “Without CMHF” is incorrect.
This incorrect classification result of “Without CMHF”
can be attributed to the fact that the neutral features
extracted from the text are not fully integrated with the
positive features extracted from the image.

4.5.2 Cases about reviews in the Multi-ZOL
dataset

Cases (e) and (f) in Table 8 are the reviews of multimodal
data in the Multi-ZOL dataset, in which the title and

comment are combined as the original text to extract
the original text features. The features extracted from
the images are concatenated as the image features.
The reviews in the Multi-ZOL dataset contain six
aspects, which are “Cost performance”, “Performance
configuration”, “Battery life”, “Appearance and feel”,
“Camera performance”, and “Screen performance”. In
both Cases (e) and (f), only the first five aspects and their
corresponding (1–10 points) scores are included in the
reviews.

The sentiments in the images of these two cases are
not clearly expressed. For Case (e), “Battery life” and
“Performance configuration” are highly rated, “Camera
performance” is moderately rated, and “Appearance and
feel” is poorly rated. Therefore, the result of the CMCN
model is accurate in those aspects. For Case (f), “Without
CMHF” gives high scores for “Cost performance”
and “Battery life”, because it simply concatenates the
classification results of the texts and images, with the
texts embodying a strong sentimental tendency. “Without
corr” does not introduce the association between images
and texts, resulting in errors in the aspects “Battery life”
and “Appearance and feel”, which are not mentioned in
the text. The classification result of our CMCN model
is better than those of “Without CMHF” and “Without
corr”. Furthermore, our CMCN model improves the
two problems of the fusion method, i.e., insufficient and
erroneous image-text correlation.
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5 Conclusion and Future Work

People’s comments or reviews on the Internet may
contain more than one modal data, and some existing
works only consider learning from single-modality
data. Moreover, when learning multimodal data, the
correlation between modalities could be erroneous, or
the fusion between modalities could be insufficient. In
this paper, we propose a CMCN with hierarchical fusion
for multimodal data of images and texts. Our CMCN
model utilizes the image-text correlation generator to
reduce the errors caused by integrating images and texts
with erroneous correlations. Moreover, the proposed
CMHF can integrate the features within a single
modality and between two modalities hierarchically.
Extensive experimental results show the superiority of
this model. In the future, we aim to use graph neural
networks combined with hierarchical fusion to address
the problem of multimodal sentiment reasoning.
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