
TSINGHUA SCIENCE AND TECHNOLOGY
ISSNll1007-0214ll09/11llpp 92–103
Volume 22, Number 1, February 2017

Design and Efficient Hardware Implementation Schemes
for Non-Quasi-Cyclic LDPC Codes

Baihong Lin, Yukui Pei�, Liuguo Yin, and Jianhua Lu

Abstract: The design of a high-speed decoder using traditional partly parallel architecture for Non-Quasi-Cyclic

(NQC) Low-Density Parity-Check (LDPC) codes is a challenging problem due to its high memory-block cost and

low hardware utilization efficiency. In this paper, we present efficient hardware implementation schemes for NQC-

LDPC codes. First, we propose an implementation-oriented construction scheme for NQC-LDPC codes to avoid

memory-access conflict in the partly parallel decoder. Then, we propose a Modified Overlapped Message-Passing

(MOMP) algorithm for the hardware implementation of NQC-LDPC codes. This algorithm doubles the hardware

utilization efficiency and supports a higher degree of parallelism than that used in the Overlapped Message Passing

(OMP) technique proposed in previous works. We also present single-core and multi-core decoder architectures

in the proposed MOMP algorithm to reduce memory cost and improve circuit efficiency. Moreover, we introduce a

technique called the cycle bus to further reduce the number of block RAMs in multi-core decoders. Using numerical

examples, we show that, for a rate-2/3, length-15360 NQC-LDPC code with 8.43-dB coding gain for Binary Phase-

Shift Keying (BPSK) in an Additive White Gaussian Noise (AWGN) channel, the decoder with the proposed scheme

achieves a 23.8%–52.6% reduction in logic utilization per Mbps and a 29.0%–90.0% reduction in message-memory

bits per Mbps.

Key words: Non-Quasi-Cyclic (NQC); Low-Density Parity-Check (LDPC) codes; decoder design; Modified

Overlapped Message Passing (MOMP) algorithm; hardware utilization efficiency

1 Introduction

Low-Density Parity-Check (LDPC) codes, first
discovered by Gallager[1] in 1962 and then reintroduced
by Mackay and Neal[2] in 1996, are excellent channel
codes with near-Shannon-limit error-correcting

�Baihong Lin, Yukui Pei, and Jianhua Lu are with
Department of Electronic Engineering, Tsinghua University,
Beijing 100084, China. E-mail: linbaihong111@126.com;
peiyk@tsinghua.edu.cn.
� Liuguo Yin is with School of Aerospace, Tsinghua University,

Beijing 100084, and with the EDA Laboratory, Research
Institute of Tsinghua University in Shenzhen, Shenzhen
518057, China. E-mail: yinlg@tsinghua.edu.cn.
�To whom correspondence should be addressed.

Manuscript received: 2016-03-11; accepted: 2016-05-23

capability[3]. Quasi-Cyclic (QC) LDPC codes, the most
popular class of the LDPC codes, have been widely
considered and well implemented. These codes have
acceptable hardware implementation complexity[4–6]

and have been adopted by many standards, including
the DVB-S2, IEEE 802.16e (WiMax), and CCSDS
deep-space and near-Earth data communications.
However, QC-LDPC codes are not the best coding
schemes when approaching channel capacity, because
they only provide a solution for making a trade-off
between performance and implementation. Therefore,
many researchers have turned to the construction of
implementation-oriented Non-Quasi-Cyclic (NQC)
LDPC codes, of which the efficient code scheme
proposed in Refs. [7, 8] is an example.

Although the NQC-LDPC code in Refs. [7, 8] was



Baihong Lin et al.: Design and Efficient Hardware Implementation Schemes for Non-Quasi-Cyclic LDPC Codes 93

reported to have low implementation complexity, two
challenging problems arise in the high-speed decoder
design. First, although the scheme with multiple
decoder cores can enhance the decoder’s throughput,
it also sacrifices logic cells and the number of block
RAMs. Second, the traditional partially parallel decoder
using the Belief-Propagation (BP) algorithm has low
hardware efficiency because of its serially iterative
decoding scheme between the Variable-Node updating
Processing (VNP) and the Check-Node updating
Processing (CNP).

To overcome these problems, researchers have
proposed several techniques including the modified
Sum-Product Algorithm (SPA) and Overlapped
Message Passing (OMP)[9–14]. The modified SPA and
OMP algorithms are designed to improve the hardware
utility efficiency (HUE). The former combines
Variable-Node updating Units (VNUs) and Check-
Node updating Units (CNUs) in the same hardware
by changing the SPA formation[9, 10], while the latter
overlaps variable-node updates and check-node updates
by taking advantage of the concurrency between these
two processes. Obviously, the OMP technique greatly
improves the architecture by enhancing the HUE and
bringing in nearly double decoder throughput. But
unfortunately, these techniques cannot be adopted for
the code proposed in Refs. [7, 8], because the code
construction method of the latter differs from those for
which the techniques were proposed.

In this paper, we focus on a high-speed decoder
design of the codes proposed in Refs. [7, 8]. To facilitate
the implementation of the high-speed decoder, we
first propose a code construction scheme that imposes
mathematical constraints on the generated parameters
to avoid memory-access conflict in the partly parallel
decoder. Then, we propose a Modified Overlapped
Message-Passing (MOMP) algorithm that overcomes
the shortcoming of the OMP technique by doubling the
hardware utilization efficiency and supporting a higher
degree of parallelism than does the OMP algorithm.
Furthermore, on the basis of the modified algorithm,
we present architectures of single-core and multi-
core decoders to reduce memory cost and improve
circuit efficiency. We also introduce a technique called
the cycle bus to further reduce the number of block
RAMs in multi-core decoders. Finally, we provide
numerical examples to demonstrate the effectiveness of

our proposed solutions.
The rest of this paper is organized as follows.

In Section 2, we present a class of irregular semi-
random LDPC codes as well as a corresponding BP-
based partially parallel decoder. Then, on the basis of
the NQC semi-random LDPC codes, we propose an
implementation-oriented code construction scheme in
Section 3. In Section 4, we review the OMP technique
and propose a modified algorithm. In Sections 5 and 6,
we discuss the architectures of single-core and multi-
core decoders, respectively, based on the proposed
MOMP algorithm. In Section 7, we provide numerical
examples to demonstrate the effectiveness of our
proposed solutions. Finally, we draw our conclusions
in Section 8.

2 Irregular Semi-random LDPC Codes
and the Corresponding Partially Parallel
Decoder

2.1 Irregular semi-random LDPC codes

There exists a class of semi-random LDPC codes, as
proposed in Refs. [7, 8], the H-matrix of which can be
represented as follows:

H D

0B@ J Π1;MbC1 � � � Π1;Nb

: : :
:::

: : :
:::

J ΠMb;MbC1 � � � ΠMb;Nb

1CA ;

wherein J D

0BBBB@
1 0 � � � 0

1 1 � � � 0

0
: : :

: : : 0

0 � � � 1 1

1CCCCA and Π i;j denotes

an L � L permutation matrix or a zero matrix. If we
replace the square sub-matrix Π i;j by an element, the
Mb �Nb matrix is called a basic matrix. The row of the
basic matrix is called the macro row while the column
of the basic matrix is called the macro column.

In this paper, let L D 2n, where n is a positive
integer. We determine Π i;j by a row parameter vector
.�i;j ; �i;j / as follows:

col D .�i;j C �i;j � row/ mod L (1)

wherein .col, row/ denotes that the none-zero element
ranks at the row-th row and col-th column and
0 6 x; y; �i;j ; �i;j < L; 0 6 i < Mb; 0 6 j < Nb; �i;j

mod 2 D 1. Equation (1) is also equivalent to the
following:



94 Tsinghua Science and Technology, February 2017, 22(1): 92–103

8̂̂̂<̂
ˆ̂:

row D .� 0i;j C �
0
i;j � col/ mod L;

.�i;j C �i;j � �
0
i;j / mod L D 0;

.� 0i;j � �i;j / mod L D 1;
0 6 � 0i;j ; �

0
i;j ; �i;j ; �i;j < L

(2)

wherein .� 0i;j ; �
0
i;j / denotes another parameter vector,

called a column parameter vector.
Obviously, this is a class of QC-LDPC codes for

� 0i;j D 1. But in this paper, the � 0i;j parameters of
the two sub-matrices are random and different, which
make a class of NQC semi-random LDPC codes
instead.

2.2 Partially parallel decoder

Figure 1 shows the partially parallel decoder of NQC
semi-random LDPC codes. Messages transferred to the
edge of the Tanner graph are stored in region A. We use
the Nb VNUs in region C and the Mb CNUs in region
B to calculate variable-to-check and check-to-variable
messages, respectively. (Variable-to-check and check-
to-variable messages are known as intra-messages).
Their respective operations are called column and row
operations.

To facilitate the implementation, matrix J is
decomposed as follows:

J D IC I0;

wherein I0 D

0BBBB@
0 0 � � � 0

1 0 � � � 0

0
: : :

: : : 0

0 � � � 1 0

1CCCCA and I is an identity

matrix. Hence, sub-matrix messages can be packaged
into a RAM.

Fig. 1 The partially parallel decoder of the NQC semi-
random LDPC codes[15].

When the BP-based decoder is working, the timing
diagrams involve two alternative processes—variable-
node and check-node updating processes. As noted
above, these diagrams are inefficient because of their
separate VNP and CNP[11, 12]. Furthermore, too many
block RAMs are requested by the multi-core decoder.
Many studies have been conducted to develop ways to
offset the shortcomings of this architecture[11, 12, 15, 16].

3 Implementation-Oriented Code
Construction Scheme

3.1 Code construction method

Our implementation-oriented code construction scheme
is as follows:

(1) Construct a basic matrix as follows:

Hb D

0B@ 1 ˘1;MbC1 � � � ˘1;Nb

: : :
::: � � �

:::

1 ˘Mb;MbC1 � � � ˘Mb;Nb

1CA ;
wherein ˘i;j denotes zero or one. The weight of each
row is � � 1 as the same.

(2) Generate a random sequence as follows:
fYi j 0 6 i < Mb; Yi D 2nC 1;

n is a nonnegative integer, 0 6 Yi < �g;

wherein � D 2m, m D dlog2 �e. As shown, the
sequence above contains Mb elements.

(3) Generate a sequence for the i -th row as follows:
fˇi;k j ˇi;k is a nonnegative integer;

0 6 k < �; 0 6 ˇi;k < �; ˇi;1 D .ˇi;0 C 1/ mod �g:
The above sequence contains � elements that differ
from each other.

(4) Generate the column-parameter-vectors-allowed
set ˝i;jk for each none-zero sub-matrix Π i;jk by the
following equations:
˝i;jk D f.�

0
i;jk
;� 0i;jk / j ˇi;kC2 D �

0
i;jk

mod �;

Yi D �
0
i;jk

mod �; k D 0; 1; : : : ; � � 3;

i D 0; 1; 2; : : : ;Mb � 1g:

(5) Search the column parameter vectors in the
allowed set ˝i;jk to expand the basic matrix so that the
parity matrix has no girth-4. The expanding method is
as follows:

(a) Expand the non-zero element on the i -th .0 6
i < Mb/ column of the basic matrix as the matrix
J.

(b) Expand the non-zero element on the other column
as the matrix Π i;j , which is generated by the
column parameter vector in the allowed set.



Baihong Lin et al.: Design and Efficient Hardware Implementation Schemes for Non-Quasi-Cyclic LDPC Codes 95

3.2 Property of the constructed codes

Before discussing the property of the constructed codes,
we give several new mathematical concepts for the
matrices as follows.

Definition 1 Let B to be a binary square matrix
with size ofL, in which there are �i none-zero elements
on the i -th row whose column positions are labeled as
ci;j , 0 6 j < �i , 0 6 ci;j < L.

If 9 � > max
i
�i , 8i , 0 6 i < L, elements in the i -th

sequence fi;j j i;j D ci;j mod �; 0 6 j < �ig are
different from each other, then B is defined as a standard
�-block-divided matrix and i;j are its divided factors.

Definition 2 Matrix X D .xi;j /L�L and matrix
Y D .yi;j /L�L are two binary matrices. “_” denotes
an operation defined as: Z D X _ Y D .max.xi;j ;
yi;j //L�L:

Definition 3 There are � none-zero binary square
sub-matrices in a macro row of the parity-check matrix,
which are denoted as Xi;jk , 0 6 k < �, 0 6 jk < Nb.
If there exist permutation matrices Pj0 , Pj1 , : : : , Pj��1
such that

A D .Xi;j0Pj0/ _ .Xi;j1Pj1/ _ � � � _ .Xi;j��1Pj��1/;
wherein AT is a standard �-block-divided matrix (� >
�), the macro row is defined as a�-block-divided macro
row Pjk (0 6 k < �) are defined as the Row-divided
Permutation (RP) matrices.

On the basis of the concepts above, we can easily
find that each macro row of the constructed parity-check
matrix is �-block-divided. The proof is given in the
following paragraph.

Assume that J, Π i;j1 , Π i;j2 , ..., Π i;j��2 are the
none-zero sub-matrices in the i -th macro row. Let Bi
denote an L � L binary permutation matrix generated
by the row parameter vector .ˇi;0; Yi / and Pi D JBi .
Obviously, Pi D Bi _ .I0Bi /. I0Bi is generated by the
column parameter vector .ˇi;1; Yi /. We denote the
column parameter vector of Π i;jk by .� 0i;jk ; �

0
i;jk
/,

wherein � 0i;jkmod � D ˇi;kC2 and � 0i;jkmod � D Yi .
.row.i;jk/; col.i;jk// denotes that a none-zero element in
the Π i;jk ranks at the row.i;jk/-th row and col.i;jk/-th
column. � is a factor of L, thus8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

i;jkC2 D row.i;jk/mod � D
.� 0i;jk C �

0
i;jk
� col.i;jk//mod L mod � D

.ˇi;jkC2 C Yi � .col.i;jk/ mod �//mod �;
i;j0 D .ˇi;j0 C Yi � col.i;j0//mod �;
i;j1 D .ˇi;j1 C Yi � col.i;j0//mod �;
0 6 k < � � 2

(3)

Elements in the sequence fˇi;jk ; 0 6 k < �g differ
from each other, so do elements in fi;jk ; 0 6 k < �g

when col.i;jk/ (0 6 k < � � 2) of different matrices are
as the same. Thus, the i -th macro row is �-block-
divided and its corresponding RP matrices are Bi , Ii;j1 ,
..., Ii;j��2 .

Using the algorithm proposed in the next section, we
can use the property of constructed codes to reduce the
number of memory blocks in the decoder design.

4 OMP Technique and the Modified OMP
Algorithm

4.1 Overlapped message passing schedule

To adopt the OMP algorithm for NQC semi-random
LDPC codes, let us first review this technique. As is
well known, the BP algorithm consists of two decoding
processes: the VNP and the CNP. In general, these two
processes may not overlap because they offer updated
data to each other. However, studies have found that
the effect of this data dependency could be reduced
if the row and column operations followed proper
sequences[11–13]. If these operation sequences are taken
as a kind of matrix permutation, the schedule finds a
permutation that could transform the square sub-matrix
into an H-matrix or the H-matrix into a standard matrix
(See Fig. 2), in which the bottom-left and top-right
corners are the zero regions. Moreover, the VNP and
CNP could be completely overlapped if the H-matrix is
reconstructed in a specific mathematical pattern[11].

However, these proposed methods are meaningless

11 1 1 11

11 11 11

11 1 1 1 1

1 1 111 1

1 11 1 11

1 1 11 11

1 11 11 1

83 4 95 7 10 13116 141 122

7

2

6

4

1

5

3

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

8 3 4 9 5 7 10 13 11 6 14 1 12 2

7

2

6

4

1

5

3

The zero 

region

Fig. 2 OMP technique for a parity-check matrix H: matrix
H (top) and permuted standard matrix (bottom).



96 Tsinghua Science and Technology, February 2017, 22(1): 92–103

when applied to NQC semi-random LDPC codes. As
the � 0i;j parameters are random in each sub-matrix, there
are several problems, as follows:
� First, a compatible permutation may be hard to

describe mathematically, so ROM is needed to store
the permutation for implementation, which would
increase hardware complexity.
� Second, even if a permutation matrix could be found,

the OMP technique may not result in any significant
hardware improvement because the zero region may
be too small for the VNP and CNP to overlap to any
great extent.

4.2 Modified overlapped message passing
algorithm

To solve the above problems, we propose a modified
OMP algorithm. We suppose that old message data
will be used for decoding when the VNP and CNP
overlap. Cj denotes the Log-Likelihood Ratio (LLR)
channel information of the j -th variable node. N.vk/
denotes a set of check nodes connected to the k-th
variable nodes, while N.ck/ denotes a set of variable
nodes connected to the k-th check nodes. P denotes
a parallelism parameter, and P D 2m, m 2 N, P < L.
Rc!v denotes the check-to-variable message whereas
Qv!c denotes the variable-to-check message. The
modified OMP algorithm is shown in Algorithm 1.

In this algorithm, Steps 7 and 16 compute Qnew
vk!ca

and Rnew
ck!vb

with the same formulation as the offset
min-sum algorithm[17] or the BP algorithm[4], but with
a different message-passing schedule. The message
passing of each square sub-matrix can be divided into
three regions (see Fig. 3). In the first region, the message
passing is the same as that of the BP algorithm. In the
second region, check-to-variable messages updated in
the n-th iteration are used to calculate the variable-to-
check messages in the n-th iteration, whereas variable-
to-check messages updated in the .n � 1/-th iteration
are used to calculate check-to-variable messages in the
n-th iteration. In the third region, variable-to-check
messages in the n-th iteration are calculated using the
check-to-variable messages updated in the .n � 2/-th
iteration, whereas check-to-variable messages in the
n-th iteration are calculated using the variable-to-check
messages updated in the .nC 1/-th iteration.

Compared to the OMP technique, the modified
OMP algorithm completely overlaps the VNP and
CNP without introducing any constraints on code
construction. Furthermore, the parameter P can
adjust the parallelism of the single-core decoder

Algorithm 1 Modified OMP Algorithm
1: Initialize all Rold

c!v D 0, Qold
vj!ci

D Cj ;
2: for i D 0 to L=P � 1 do
3: for j D 0 to Nb � 1 do
4: for h D 0 to P � 1 do
5: k D j � LC i � P C h;
6: for ca 2 N.vk/ do
7: compute Qnew

vk!ca
with Rold

c!vk
;

8: end for
9: end for

10: end for
11: if it’s not the first iteration or i > L=.2P / then
12: for j D 0 to Mb � 1 do
13: for h D 0 to P � 1 do
14: k D j � LC .i � P C hC L=2/ mod L;
15: for vb 2 N.ck/ do
16: compute Rnew

ck!vb
with Qold

v!ck
;

17: Rold
ck!vb

D Rnew
ck!vb

;
18: end for
19: end for
20: end for
21: end if
22: for j D 0 to Nb � 1 do
23: for h D 0 to P � 1 do
24: k D j � LC i � P C h;
25: for ca 2 N.vk/ do
26: Qold

vk!ca
D Qnew

vk!ca
;

27: end for
28: end for
29: end for
30: end for
31: if Stopping rule is not satisfied then
32: Position=2;
33: end if

architecture. However, these message-passing
tasks have different degrees of efficiency in their
corresponding Tanner graphs. Moreover, when
the variable-to-check messages are updated, old
variable-to-check messages are used to calculate the
check-to-variable messages, which implies that the
variable-to-check and check-to-variable messages must
be stored separately in simple two-port RAMs. In
contrast to the BP vector partially parallel decoder,
double memories are needed for intra-message storage.

5 Single-Core Decoder Architecture
Implementation Analysis

In this section, we analyze the implementation of the
single-core decoder architecture for the modified OMP
algorithm. The first question is what is the single-core



Baihong Lin et al.: Design and Efficient Hardware Implementation Schemes for Non-Quasi-Cyclic LDPC Codes 97

(a)

(b)

Fig. 3 The message passing process of modified OMP
algorithm and its corresponding timing diagram: (a) The
message passing process of modified OMP algorithm (top)
and (b) the timing diagram of the single-core modified OMP
decoder architecture (bottom).

decoder architecture? If the message memory capacity
is designed specifically for a Tanner graph of LDPC
codes, the corresponding decoder architecture is called
a single-core decoder architecture. Otherwise, it is
called a multi-core decoder architecture.

For the modified OMP algorithm, we implement
the single-core decoder architecture based on the
partially parallel decoder and the timing diagram of the
modified OMP decoder architecture shown in Fig. 3b. In
the timing diagram, T denotes the iteration of the
algorithm. Dc and Dv denote the delay of the check-
node updating process and the delay of the variable-
node updating process, respectively. They have no
effect on the message-passing algorithm because of the
symmetry in the diagram. In contrast to the parameters
in the timing diagram proposed in Ref. [11], Dc and
Dv are determined by the message storage designs

the VNU, and the CNU, which have no relation to
the expanding parameter and are instead related to the
degree of check nodes and variable nodes.

This implementation process is influenced by
parameter P . In the following analysis, we discuss the
architectures of P D 1 and P > 1.

5.1 Low-memory-cost decoder architecture when
P=1

In Section 4, we explained that the modified OMP
algorithm requires double memories to store intra-
messages, in contrast to the vector BP decoder[16].
However, we know that in the offset min-sum
algorithm, check-to-variable messages from a check
node can be replaced by sign bits and three numbers,
including the minimum number of variable-to-check
messages, the second minimum number of variable-to-
check messages, and the position of the minimum[6, 17].
These three numbers comprise a row vector. To simplify
the check node updating process, if we adopt the offset
min-sum algorithm in the modified OMP algorithm, it
is possible to reduce the memory required for the intra-
messages.

However, another problem remains. How can we
design RAMs for row vectors without reducing the
throughput of the decoder? When P D 1, the Nb

column operation is carried out at the same time in
a clock cycle. During this time, � check-to-variable
messages are read from each macro row. For the LDPC
codes proposed in Section 3, the i -th macro row of
the given parity-check matrix is p-block-divided and
its corresponding RP matrices are Bi , Ii;j1 , ... , Ii;j��2 .
If column operations in the i -th (0 6 i < Mb) macro
column are carried out in the sequence fpl ; bk;pl D 1;
Bi D .bi;j /L�L; 0 6 k < Lg and column operations
in the other macro columns are executed in the
same sequence f0; 1; :::; L � 1g, the � check-to-variable
messages will come from different rows in a macro
row and their corresponding row labels will be different
modulo �. Hence, in general, row vectors in a macro
row could be stored averagely in � simple two-port
RAMs with the sizeL=��Q� (L=� is the RAM depth
and Q� is the width of the data bus). Q� denotes the
number of quantization bits for a row vector.

On the above basis, the row message unit is designed
to store row vectors in the i -th macro row (see Fig. 4).
In the structure, a row vector of the j -th row in
the macro row output from the CNU will be stored
in the .j mod �/-th simple two-port RAM. Thus, a



98 Tsinghua Science and Technology, February 2017, 22(1): 92–103

Fig. 4 The structure of row message unit.

multiplexer is needed to choose which RAM will be
written. � sign bits from a CNU are stored in � simple
L�1 two-port RAMs, and will be read at the same time
as the row vectors. In the intercross network, there are
� kinds of state for the state machine, which is denoted
as col mod �. With the state machine, the k-th output
port transfers row vectors from the i;jk -th RAM, 0 6
k < �. Finally, the message converter transforms row
vectors and sign bits into check-to-variable messages,
based on the position of the minimum. (If the current
port is at the minimum position, the second minimum
will be output. Otherwise the minimum will be output.)

Suppose that the number of quantization bits is
the same (Q) for check-to-variable and variable-to-
check messages. Then, the number of quantization bits
for a row vector is 2Q � 1C log2 � (log2 � bits are
for the minimum position). Compared to the vector
BP decoder[18], (in the vector BP decoder, check-to-
variable and variable-to-check messages share the same
memory unit, thus the corresponding memory totals
Mb�QL, which is just half of the total storage space
required for check-to-variable and variable-to-check
messages.), the memory for intra-messages, after being
reduced, totals:

�m D
Memorynow

MemoryBP
D

Mb�QLCMbL.2Q � 1C log2 �/CMb�L

Mb�QL
�

1C
2

�
C
1

Q
(4)

This memory is about 1C
2

�
C
1

Q
times more

than that of the vector BP decoder. With respect to
throughput, to simplify the control logic, we let the
initialization of the VNP and CNP take the same
clock cycle as each iteration. In BP architecture, each

iteration cycle totals 2LCDvCDc and in our proposed
architecture it totals L C Dv C Dc . We assume that
the iterations of the BP algorithm equal those of our
proposed algorithm. Then, the total throughput is as
follows:

�t D
Throughputnow

ThroughputBP
D
.2LCDv CDc/T

.LCDv CDc/T
D

1C
L

LCDv CDc
(5)

When L� Dv CDc , typically �t � 2 and �t > �m,
which indicates that the throughput has doubled with
only a slight increase in memory cost. Thus, compared
to the vector BP decoder, our proposed low-memory-
cost decoder architecture has a higher throughput
memory ratio in the same iteration conditions.

5.2 High parallel decoder architecture (P > 1)

To further enhance the decoder throughput, we propose
a high-parallel decoder architecture based on the
modified OMP algorithm.

Obviously, NbP VNUs and MbP CNUs are needed
to carry out the simultaneous NbP column and
MbP row operations. A memory schedule in the
low-memory-cost architecture is irrelevant in this
circumstance. As such, a new memory distribution must
be considered.

Let variable-to-check messages of a sub-matrix be
stored generally in P simple two-port RAMs with the
size L=P � Q. These RAM groups are called V2C
RAMs and the number of quantization bits (Q) for
check-to-variable and variable-to-check messages are
the same. The variable-to-check message in the i -th
column of the sub-matrix is stored at the .i div P /-th
address of the .i mod P /-th RAM. Similarly, check-to-
variable messages are stored in C2V RAMs. However,
the check-to-variable message on the j -th row of the
sub-matrix is stored at the .j div P /-th address of the
.j mod P /-th RAM. This memory distribution does not
cause memory-access conflicts. We present a detailed
analysis of this issue in the following paragraphs.

In the VNP, P column operations are carried out
in the j -th macro column and their corresponding
columns can be labeled with the addresses fnP; nP C
1; nP C 2; :::; nP CP � 1g, n 2 N, 0 6 n < L=P � 1.
We assume that one of the non-zero sub-matrices in the
macro column is on the i -th macro row. Thus, P check-
to-variable messages are read from the i -th macro row.
Let .� 0i;j ; �

0
i;j / denote the column parameter vector for

the non-zero sub-matrix and Rk , k D 0; 1; :::; P � 1,



Baihong Lin et al.: Design and Efficient Hardware Implementation Schemes for Non-Quasi-Cyclic LDPC Codes 99

denote the label of the RAM from which the P check-
to-variable messages are read. P is a factor of L. Then
Rk D .�

0
i;j C �

0
i;j � .nP C k// mod L mod P D

.� 0i;j C �
0
i;j � k/ mod P (6)

As is evident, Rx ¤ Ry if x ¤ y. Rk has no relation
to n. Thus, P check-to-variable messages are certainly
from different RAMs and their corresponding RAMs
do not change with n. The situation is similar for the
variable-to-check messages.

From the above proof, we also find that 2Mb�P

simple two-port RAMs are required for the check-
to-variable and variable-to-check messages. Although
total memory is not increased with P , the number of
block RAMs, VNUs, and CNUs are P times more than
that of the P D 1 architecture and the throughput totals
are as follows:

�0t D
.LCDv CDc/

.L=P CDv CDc/
DP �

P.P � 1/.Dv CDc/

LC P.Dc CDv/

(7)
Equation (7) shows that the throughput increases

more slowly than P , but the VNU and CNU
costs increase proportionally with P . Thus, when P
increases, the VNU and CNU costs do not bring a
correspondingly equal increase in the throughput. This
means that the logic utility efficiency increases with P
at first but then reduces when P becomes large.

6 Implementation Analysis of the Multi-
core Decoder Architecture

The single-core decoder architecture described in
Section 5 above serves as a basis for designing a
high-speed decoder. However, we must keep in mind
that this architecture has low logic-utility efficiency
when P is large, despite the fact that memory is
fully used. Furthermore, in some case such as FPGA
implementation, there are not enough small block
RAMs for the single-core decoder architecture. To
solve these two problems, we propose a multi-core
decoder architecture, which is classified into one of
two categories, non-cooperative decoding architecture
or cooperative decoding architecture, depending on
whether the architecture adopts a cycle bus. In the
following, we describe these two architectures in detail.

6.1 Non-cooperative decoding architecture

Figure 5 shows a non-cooperative decoding
architecture, in which the received data streams
are divided into M equal-sized chunks of code words

(a)

(b)

Fig. 5 Non-cooperative decoding architecture implemen-
tation: (a) Non-cooperative decoding architecture (top) and
(b) Timing diagrams (bottom).

by the multiplexer. Each chunk is independently
decoded by its corresponding single-core decoder. As
such, the timing diagrams of the decoder cores are
non-cooperative. In general, the rate of input data flow
is faster than the throughput of the decoder core. Thus,
a FIFO is needed to buffer the code words.

From the structure in Fig. 5, it is clear that this
architecture is simple and that the single-core decoders
do not influence each other, which improves the
reliability of the implementation. However, the source
cost is M times greater than that of the single-
core architecture, despite the increase in throughput
M times. The hardware efficiency remains the same
as the increase in M . Although this is a popular
engineering solution, it is not applicable in some FPGA
implementation cases where block RAM resources are
scarce.

6.2 Cycle bus and cooperative decoding
architecture

To reduce the block RAMs, we introduce a cycle bus
to the multi-core architecture. As shown in Fig. 6a,
the data bus through the VNU groups, the message
storage groups, and the CNU groups are called the cycle
bus. In this architecture, the LLR storage groups, VNU
groups, and CNU groups are simple units of the LLR
storages, the VNUs, and the CNUs in different single-
core decoders, respectively. However, the situation is
different for message storage groups, in which the
cycle bus combines RAMs from the same submatrix in
different single-core decoders by enlarging the width of
the RAM data port. For example, RAMs of size L �Q



100 Tsinghua Science and Technology, February 2017, 22(1): 92–103

(a)

(b)

Fig. 6 Cooperative decoding architecture implementation:
(a) Cooperative decoding architecture (top) and (b) Timing
diagrams (bottom).

in M single-core decoders are combined with a RAM
of size L �MQ.

After this combination, the M message storage
groups share an address-generating logic set for
the parity-check matrix. Thus, different single-core
decoders must operate in the same column and row in
a submatrix when decoding, and the timing diagram
becomes cooperative, as illustrated in the diagram in
Fig. 6b. Even when a code word is prepared for a
single-core decoder, it must wait to be decoded until
the beginning of the next iteration. In the worst case, it
will have to wait for a complete iteration cycle. So, a
FIFO is required for each single-core decoder to buffer
received code words during waiting periods.

This architecture greatly reduces the number of
block RAMs. M single-core decoders feature the same
block RAMs for message storage as those of single-
core decoders. Furthermore, the logic cost is reduced
by sharing address generators. On the other hand,
the combined message storage increases the design
difficulty and memory utility efficiency is not enhanced
with the increase of M .

7 Numerical Examples

In this section, we give numerical examples to
demonstrate the validity of our proposed methods.

First, we constructed a rate-2/3, length-15360 LDPC
code based on the construction scheme described in
Section 3. Its basic matrix has a size of 10 � 30, in
which the weight of each row is 11 and the weight of
each column ranges from 2 to 5. We generated the
parity matrix by replacing each element in the basic
matrix with a 512�512 square matrix. For the purposes

of comparison, we also constructed the LDPC code
proposed in Ref. [8] with a similar basic matrix. We
refer to this second code as the original code.

Next, we simulated a performance evaluation with
the modified OMP algorithm, and the BP algorithm
over an Additive White Gaussian Noise (AWGN)
channel with Binary Phase-Shift Keying (BPSK)
modulations. We examined 1 000 000 code words in
each simulation and set the number of decoding
iterations to 19. The P values were 1, 2, 4, 8,
and 16, respectively. There were six quantization bits
for both the check-to-variable and variable-to-check
messages. We designated 15 bits for a quantified row
vector, in which five bits were for the minimum,
five were for the second minimum, one was for the
sum of all the input sign bits, and four were for the
minimum position. Figure 7 shows the Bit-Error-Ratio
(BER) simulation results, from which we find that
our proposed code performs the same as the original
code, which indicates an 8.43 dB coding gain for the
BPSK in the AWGN channel compared to un-encoded
circumstance. However, as shown above, our code
is more beneficial for hardware implementation. In
addition, Eb=N0 increases with P under the same
BER conditions, whereas P ranges from 1 to 16
and Eb=N0 ranges from 2.33 dB to 2.4 dB at the
output BER of 1�10�7. We attribute this performance
reduction to the expanding region of low-efficiency
massage passing. Nevertheless, the MOMP algorithm
sustained roughly a 0.2 dB performance reduction
compared to the unquantified BP algorithm and the
0.07 dB reduction due to P is acceptable, considering
its associated increases in throughput and hardware
efficiency.

Fig. 7 Simulation result for the constructed code.



Baihong Lin et al.: Design and Efficient Hardware Implementation Schemes for Non-Quasi-Cyclic LDPC Codes 101

Third, we designed the single-core and multi-core
decoders based on the modified OMP algorithm, which
apply the above finite precision solution. To compare
the different architectures, we set P and M to take
different values. We synthesized the implementations
on an Altera 5SGXMA7N2F40C2 FPGA, the results of
which are shown in Tables 1 and 2.

We can identify five features from Tables 1 and 2,
which can be summarized as follows:

(1) Compared to the traditional architecture in
Ref. [8], our proposed architectures feature a 23.8%–
52.6% reduction in logic utilization per Mbps.
Furthermore, the reduction in the memory throughput
ratio in single-core architectures ranges from 29.0%
to 90.0%, which indicates better message memory
utilization.

(2) In single-core architectures, the number of
message memory bits of P D 1 is 30.3% lower than
that of P > 1. Moreover, compared to the traditional
architecture, the message-memory throughput ratio of
P D 1 shows a 29.0% reduction.

(3) If we let � denote the ratio of the total message
memory bits (�) and the throughput (�), the following
equation shows that � decreases with P and is not
related to M :

�.P / D
�

�
D

�

NbLFclock

�
512

P
C 21

�
T D

˛

�
512

P
C 21

�
(8)

wherein ˛ D
�

NbLFclock
T . For example, when P D 1,

˛ D 5:83 and when P > 1, ˛ D 8:36.
(4) For the same maximal throughput, the logic

utilization per Mbps of the cooperative multicore
architecture is lower than that of the non-cooperative
architecture, and the reduction ranges from 8.9%
to 19.9%. The logic utilization per Mbps of the
cooperative multi-core architecture is also lower than
that of the single-core architecture with the same
parameter P , and the corresponding reduction ranges
from 5.5% to 16.1%.

(5) In the single-core architecture, the connection
between the number of message memory RAMs (")
and P can be expressed as " D 220P . In the multi-core
non-cooperative architecture, " D 220MP , whereas in
multi-core cooperative architecture, " D 220P .

The first of the five above features demonstrates
the overall benefits of our proposed algorithm and
architectures. In the second, we compare the P D 1
single-core architecture with traditional architectures.
We attribute the relative reduction in the message-
memory bits and message-memory throughput ratio to
the memory storage schedule proposed in Section 5.
The third feature highlights the fact that an increase in
P can enhance memory utility efficiency. As � 0.P / D
�512˛=P 2, � 0.P / reduces correspondingly with the
increase in P . Thus, message memory efficiency
increases more slowly with P when P is large. The
fourth and fifth features prove the advantage of the
cycle bus technique. The former shows that cooperative
architecture has higher logic utility efficiency, while the
latter confirms that the number of message-memory

Table 1 FPGA implementation results for single-core architectures (Clock: 100 MHz, Iteration: 19, M=1).

Architecture P
Maximal

throughput (Mbps)
Logic utilization

(in ALMs)
Total

registers
Memory bits

for message storage
Logic utilization

per Mbps
Message memory

bits per Mbps
Number of message

memory RAMs
Traditional — 77.36 9463 22 128 337 920 122.32 4368.15 110

Single-core

1 151.96 14 105 22 451 471 040 92.82 3099.76 270
2 292.91 22 736 40 147 675 840 77.62 2307.33 440
4 546.23 35 662 72 181 675 840 65.29 1237.28 880
8 962.41 59 061 131 395 675 840 61.37 702.24 1760
16 1554.66 106 475 236 374 675 840 68.49 434.72 3520

Table 2 FPGA implementation results for multi-core architectures (Clock: 100 MHz, Iteration: 19).

Architecture P M
Maximal

throughput (Mbps)
Logic utilization

(in ALMs)
Total

registers
Memory bits

for message storage
Logic utilization

per Mbps
Message memory

bits per Mbps
Number of message

memory RAMs

Cooperative

1 2 303.92 23 666 39 037 1 351 680 77.87 4447.49 270
4 2 1092.46 65 236 131 372 1 351 680 59.71 1237.28 880
2 4 1171.64 77 549 132 585 2 703 360 66.19 2307.33 440
8 2 1924.82 111 612 247 632 1 351 680 57.99 702.24 1760

Non-cooperative

1 2 303.92 28 325 44 823 1 351 680 93.20 4447.49 540
4 2 1092.46 71 615 144 271 1 351 680 65.55 1237.28 1760
2 4 1171.64 91 649 159 752 2 703 360 78.22 2307.33 1760
8 2 1924.82 139 297 254 676 1 351 680 72.37 702.24 3520



102 Tsinghua Science and Technology, February 2017, 22(1): 92–103

block RAMs in the multi-core architecture can be
reduced by the application of our proposed technique
and its minimum is equal to that of single-core
architecture with the same P . In general, P and
M should be taken into account when designing
decoder architecture, based on the fact that an FPGA
and a cooperative architecture are superior to a non-
cooperative architecture despite the complexity of its
design.

8 Conclusion

In this paper, we presented efficient hardware
implementation schemes for NQC LDPC codes. First,
we proposed an implementation-oriented construction
scheme for NQC-LDPC codes to avoid memory-
access conflict in the partly parallel decoder. Then,
we proposed an overlapped message-passing algorithm,
which can double the throughput and enhance the
hardware utility efficiency. On the basis of this
algorithm, we proposed a single-core architecture with
configurable parallelism and a multi-core architecture.
We also introduced a technique, called the cycle bus,
to reduce the number of block RAMs in the multi-
core architecture, based on the classification of the
multi-core architecture as either cooperative or non-
cooperative. We used numerical examples to show that,
for a rate-2/3, length-15360 NQC-LDPC code with an
8.43 dB coding gain for BPSK in an AWGN channel,
the decoder with the proposed scheme achieves a
23.8%–52.6% reduction in logic utilization per Mbps
and a 29.0%–90.0% reduction in message-memory bits
per Mbps.

Acknowledgment

This work was supported in part by the National
Natural Science Foundation of China (Nos. 61101072
and 61132002), the new strategic industries
development projects of Shenzhen city (No.
ZDSY20120616141333842), and Tsinghua University
Initiative Scientific Research Program (No.
2012Z10132).

References

[1] R. G. Gallager, Low-density parity-check codes, IRE
Transactions on Information Theory, vol. 8, no. 1, pp. 21–
28, 1962.

[2] D. J. C. MacKay and R. M. Neal, Near shannon limit
performance of low density parity check codes, Electronics
Letters, vol. 32, no. 18, pp. 1645–1646, 1996.

[3] C. Sandu, I. Florescu, and C. Rotaru, Software
simulation of ldpc codes and performance analysis,

in Proc. 37th International Convention on Information
and Communication Technology, Electronics and
Microelectronics (MIPRO), Beijing, China, 2014, pp.
162–165.

[4] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, Factor
graphs and the sum-product algorithm, IEEE Transactions
on Information Theory, vol. 47, no. 2, pp. 498–519, 2001.

[5] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke,
Design of capacity-approaching irregular low-density
parity-check codes, IEEE Transactions on Information
Theory, vol. 47, no. 2, pp. 619–637, 2001.

[6] Z. Wang, Z. Cui, and J. Sha, VLSI design for low-
density parity-check code decoding, Circuits and Systems
Magazine, vol. 11, no. 1, pp. 52–69, 2011.

[7] P. Li, W. K. Leung, and N. Phamdo, Low density
parity check codes with semi-random parity check matrix,
Electronics Letters, vol. 35, no. 1, pp. 38–39, 1999.

[8] Y. Pei, L. Yin, and J. Lu, Design of irregular ldpc codec
on a single chip FPGA, in Proc. 6th Int. Circuits and
Systems Symposium on Emerging Technologies: Frontiers
of Mobile and Wireless Communication, Beijing, China,
2004, pp. 221–224.

[9] Z. Wang, Y. Chen, and K. K. Parhi, Area efficient
decoding of quasi-cyclic low density parity check codes,
in Proc. 2004 Int. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP’04), 2004.

[10] Z. Wang and Z. Cui, Low-complexity high-speed decoder
design for quasi-cyclic LDPC codes, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 15, no.
1, pp. 104–114, 2007.

[11] Y. Dai, Z. Yan, and N. Chen, Optimal overlapped
message passing decoding of quasi-cyclic ldpc codes,
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 16, no. 5, pp. 565–578, 2008.

[12] Y. Chen and K. K. Parhi, Overlapped message passing
for quasi-cyclic low-density parity check codes, IEEE
Transactions on Circuits and Systems I: Regular Papers,
vol. 51, no. 6, pp. 1106–1113, 2004.

[13] I. C. Park and S. H. Kang, Scheduling algorithm for
partially parallel architecture of ldpc decoder by matrix
permutation, in Proc. 10th Int. Symposium on Circuits and
Systems, 2005, pp. 5778–5781.

[14] J. Y. Park and K. S. Chung, Overlapped message
passing technique with resource sharing for high speed
CMMB LDPC decoder, IEEE Transactions on Consumer
Electronics, vol. 57, no. 4, pp. 1564–1570, 2011.

[15] B. Lin, Q. Li, Y. Pei, and L. Yin, High speed ldpc
decoder design based on general overlapped message-
passing architecture, in Proc. 6th Int. Conf. on Ubiquitous
and Future Networks, Beijing, China, 2014, pp. 454–459.

[16] X. Chen, J. Kang, S. Lin, and V. Akella, Memory
system optimization for fpga-based implementation of
quasi-cyclic ldpc codes decoders, IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 58, no. 1, pp.
98–111, 2011.

[17] J. Chen, A. Dholakia, E. Eleftheriou, M. P. Fossorier, and
X. Y. Hu, Reduced-complexity decoding of ldpc codes,
IEEE Transactions on Communications, vol. 53, no. 8, pp.
1288–1299, 2005.



Baihong Lin et al.: Design and Efficient Hardware Implementation Schemes for Non-Quasi-Cyclic LDPC Codes 103

[18] M. Rovini, N. E. L. Insalata, F. Rossi, and L. Fanucci, VLSI
design of a high-throughput multi-rate decoder for

structured LDPC codes, in Proc. 8th Euromicro Conf. on
Digital System Design, 2005, pp. 202–209.

Baihong Lin received the BE degree
from Beijing University of Aeronautics
and Astronautics, China, in 2009. He
is currently pursuing the PhD degree in
Tsinghua University. His major research
interests include LDPC encoders and
decoders, image processing, medical
imaging, computer vision, and machine

learning.

Jianhua Lu received the BEng and MEng
degrees from Tsinghua University, China,
in 1986 and 1989, respectively, and the
PhD degree in electrical and electronic
engineering from Hong Kong University of
Science and Technology. He has been with
the Department of Electronic Engineering,
Tsinghua University, since 1989, where

he is currently a professor. He has published more than
180 technical papers in international journals and conference
proceedings. His current research interests include broadband
wireless communication, multimedia signal processing, satellite
communication, and wireless networking. Dr. Lu has been
an active member of several professional societies. He was
a recipient of the Best Paper Award at the International
Conference on Communications, Circuits and Systems in 2002
and ChinaCom in 2006, and received the National Distinguished
Young Scholar Fund from the NSF Committee of China in 2006.
He has served in numerous IEEE conferences as a member of
Technical Program Committees and served as a Lead Chair of the
General Symposium of IEEE ICC in 2008, as well as a Program
Committee Co-Chair of the 9th IEEE International Conference
on Cognitive Informatics. He is now an IEEE fellow.

Yukui Pei received the BEng and PhD
degrees from Tsinghua University in
2002 and 2008, respectively. Now he is
an associate professor with Department
of Electronic Engineering, Tsinghua
University. His research interests include
channel coding, UWB, and wireless
security.

Liuguo Yin is an associate professor in the
School of Aerospace, Tsinghua University,
China. He received the MEng and PhD
degrees from Tsinghua University, China,
in 2002 and 2005, respectively. From
March 2005 to March 2007, he was a
research assistant with the School of
Aerospace, Tsinghua University. From

April 2007 to March 2008, he was an ERCIM postdoctoral
fellow with the Norwegian University of Science and Technology
(NTNU), Trondheim, Norway. His research interests include
channel coding, joint source-channel coding, aerospace
communications, and wireless multimedia communication
systems. He is a member of IEICE communications society and
engineering sciences society.


