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Normalizing Flow-Based Probability Distribution
Representation Detector for Hyperspectral
Anomaly Detection

Xiaorun Li"¥, Shaoqi Yu

Abstract—Due to the powerful reconstruction ability, deep learn-
ing based hyperspectral anomaly detection methods have been
prevalent in recent years. However, the capability of neural net-
works and the meaning of latent space remains unexplainable to
some extent. To address the issue, we propose a normalizing flow-
based probability distribution representation detector (NF-PDRD)
for hyperspectral anomaly detection in this article, which clarifies
the capability of the model from a probabilistic perspective. The
framework first utilizes the variational autoencoder to acquire the
probability distribution representation with the mean vector and
standard deviation vector for the original data. Subsequently, we
introduce a normalizing flow to transform the Gaussian approxi-
mate posterior to a more complex distribution, making the model
generative and expressive. We finally accomplish the detection
process with the extracted probabilistic representation data using
the strategy of Gaussian mixture model estimation to fully leverage
the spatial information. Experimental results on both synthetic
and real data sets demonstrate the outstanding performance of the
proposed NF-PDRD.

Index Terms—Anomaly detection, hyperspectral imagery
(HSI), normalizing flows, probability representation, variational
autoencoder (VAE).

1. INTRODUCTION

UE to the rich spectral knowledge about the characteristics
D of materials, hyperspectral imagery (HSI) plays an essen-
tial role in remote sensing applications [1]. The spectrum of
each pixel represents the radiance or reflectance value at the
corresponding band covering the range of wavelengths from
visible to near-infrared or short-wave infrared [2]. Relying
on these properties, HSIs have been applied in various fields,
such as material exploration [3], precise agriculture [4], civilian
rescue [5], and environmental monitoring [6]. Hyperspectral
anomaly detection can be seen as a binary classification problem
that aims to locate the pixels whose spectral signatures are
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significantly different from their local surroundings [7], which
can be regarded as a special case of hyperspectral classifica-
tion [8], [9]. Different from target detection, anomaly detection
is a very challenging and promising task without any prior
knowledge [10]. The anomalies we studied here are defined
objects in small regions whose spectral signature significantly
differs from the neighboring areas.

Over the past several decades, researchers have proposed
a lot of effective hyperspectral anomaly detection algorithms.
One of the most well-known anomaly detection methods is the
Reed-Xiaoli (RX) detector [11]. It develops from the generalized
likelihood ratio test and assumes that the background obeys a
multivariate Gaussian distribution. The RX detector has two
versions: global RX uses the global information, and local RX
uses local information to estimate the background statistics.
However, the existing noise and contamination of adjacent pixels
make it hard to satisfy the assumption in real scenarios [12].
Therefore, a series of algorithms improve the performance based
on the RX detector. The weighted RX can handle the covariance
corruption problem by reducing the weight of the anomalies or
noise and increasing the weight of the background samples [13].
By dividing the pixels into several clusters, the cluster-based
anomaly detection method detects the anomalies based on each
cluster [14]. The dual window-based eigen separation transform
detector can enhance the discrimination between the anomalies
and the background in a low-dimensional subspace [15]. In
addition, a lot of non-Gaussian models have been proposed. The
kernel RX (KRX) algorithm [16] projects the original image into
a nonlinear high-dimensional feature space, which considers
high order characteristics of different feature bands. The cluster
KRX [17] applies a clustering process before detection, which
significantly reduces the computational cost.

In recent years, various collaborative representation and ma-
trix decomposition based methods have emerged due to the
development of compressive sensing theory [18]. Li et al. [19]
present a collaborative representation detector (CRD) based
on the concept that each background pixel can be seen as
a linear combination of its adjacent pixels, while anomalies
cannot. A low-rank and sparse matrix decomposition [20]
exploits the robust principal component analysis [21] strategy
and decomposes the image into the background component
and anomaly component. The underlying hypothesis is that all
pixels lie in the same subspace, which is usually unreasonable
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in real scenes. To solve the problem, the low-rank and sparse
representation (LRASR) [22] algorithm introduces the concept
of background dictionary to project the image into multiple
subspaces. Yu et al. [23] use the local outlier factor to construct
the background dictionary and design a matched filter to enhance
the discrimination between the anomalies and the background. A
low-rank and sparse matrix decomposition based Mahalanobis
distance (LSMAD) [24] method takes the effect of noise into
consideration when extracting the anomalies from the back-
ground component. A low-rank and sparse decomposition model
with a mixture of Gaussian (LSDM-MoG) [25] characterizes the
data with multiple complex distributions by using variational
Bayes (VB). Moreover, the total variation and sparsity regular-
ized decomposition model [26] incorporates the total variation
term with sparsity-inducing regularizations to facilitate the sep-
aration and presents a novel technique to construct the dictionary
with density peak based clustering. These matrix decomposition
based detectors can achieve superior performance compared to
traditional algorithms. However, most of them only consider
the spectral properties of anomaly components but ignore their
spatial distribution features.

Nowadays, with the improvement of computational capabil-
ity, alarge number of deep learning based hyperspectral anomaly
detection methods have been proposed, including convolutional
neural network (CNN) [27], [28], deep belief network (DBN)
[29], [30], autoencoder (AE) [31], [32], variational autoencoder
(VAE) [33], adversarial autoencoder [34], [35], and generative
adversarial network (GAN) [36], [37]. Li et al. [28] train a multi-
layer CNN using pixel pairs generated from the reference image.
By introducing a suppression function, Lei et al. [29] propose
a spectral-spatial feature extraction detector that can construct
a discriminative feature space based on the DBN architecture.
In literature [32], nonlinear feature extraction based on convo-
lutional stacked autoencoder neural networks are implemented,
and the statistical properties of the segmented areas are used to
suppress the false alarms. Lei ez al. [33] propose a novel discrim-
inative reconstruction method with spectral learning that uses the
spectral error map to detect anomalies and introduces the spectral
angle distance to formulate the loss function. Xie et al. [34]
propose a spectral adversarial feature learning anomaly detector
that introduces spectral constraint loss and adversarial loss in
the network with batch normalization to extract the intrinsic fea-
tures. Jiang et al. [37] use GAN [38] to evaluate the background
statistics and acquire a spectral feature in a novel semisupervised
spectral learning. These deep learning based methods mainly
focus on enhancing the discrimination between the anomalies
and the background by using reconstruction error but hardly
concern the probability distribution characteristics in the latent
space, which may further influence the detection power and
background suppression to some extent.

Due to the excellent reconstruction ability, VAE [39] has
received considerable attention in the field of hyperspectral
anomaly detection. Moreover, vanilla VAE owns the repre-
sentation ability to extract the potential probability distribu-
tion for each training sample. The architecture assumes that
the approximate posterior distribution of the latent variable
conforms to a Gaussian distribution. However, it can be any
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complex distribution in real applications, which contradicts the
potential assumption. To address the problem, we propose a
normalizing flow-based probability distribution representation
detector (NF-PDRD), which introduces normalizing flow when
the VAE network generates the latent variable for each sample.
The encoder first extracts an initial Gaussian distribution that
serves as the basic distribution. Then, the normalizing flow
module transforms the simple distribution into an unknown
complex distribution by applying a sequence of invertible trans-
formations until an expected level of complexity is satisfied.
The decoder outputs the reconstructed data, and the network
optimizes with free energy bound loss. Finally, we exploit the
strategy of Gaussian mixture model estimation to perform the
detection process with the optimized approximate distribution
of each sample. The main contributions of this article can be
summarized as follows:

1) To the best of our knowledge, this is the first time the
normalizing flow has been adopted for anomaly detection
tasks in HSI. The normalizing flow adaptively generates
complex probability distributions for training samples to
fit real scenarios.

2) To better enhance the discrimination between the back-
ground and anomalies, the normalizing flow is incorpo-
rated with the VAE architecture to discover the intrinsic
characteristics hidden in the latent space.

3) To leverage the spatial information, we adopt the strategy
of Gaussian mixture model estimation to detect the anoma-
lies, which can better model the background statistics and
increase the detection power.

The rest of this article is organized as follows. Section II
describes the proposed NF-PDRD algorithm in detail. Exper-
imental results on four data sets are conducted in Section III.
Finally, Section IV concludes this article.

II. RELATED WORKS
A. VAE Architecture

VAE is a typical generative model that has been widely used in
recent years. It derives from Bayesian inference and aims to solve
the difficulty of computing the integral of the likelihood function
with the parameter’s prior distribution. In essence, the Bayesian
inference problem is the acquisition of posterior probability.
According to the Bayes theorem, the posterior probability can
be formulated by

P(z)P(x|z)

P ey

Pz ]x) =
where z and x denote a single sample and latent variable,
respectively. P(z) is the prior and P(x | z) is the likelihood.
The evidence P(x) can be computed by

P(x) = /P(x | z)P(z)dz. 2)

However, it is intractable in most cases due to the high dimen-
sionality of z.

To better estimate the posterior, VAE incorporates AE with
variation inference by maximizing the evidence P(x), and we
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can acquire the evidence lower bound (ELBO), which is defined
as follows:

ELBO = E, (z)x) [log po (x|2)] — KL (g4 (z%) [|pe(z)) (3)

where ¢ and 6 correspond to the encoder and decoder, respec-
tively. E[-] computes the mathematical expectation and KIL(-)
computes the Kullback-Leibler (KL) divergence. The first ex-
pectation part acts as the main optimization term that relates to
the reconstruction error. The second KL divergence term can
be regarded as a regularization term to prevent the model from
collapsing, which assesses the distinction between the approxi-
mate posterior and the prior distribution. The final loss function
L is just the opposite of ELBO, and it can unify the model’s
accuracy and robustness. From the perspective of probability
representation, VAE extracts a unique Gaussian distribution for
each sample, including the mean vector and standard deviation
vector, which potentially explores the probabilistic latent space.

Compared to ordinary AE, VAE owns excellent reconstruc-
tion ability and has been successfully used in the field of anomaly
detection for optical images [40]. The VAE architecture assumes
the approximate posterior conforms to a multivariate Gaussian
distribution. However, the approximate posterior can be any
complex form in real applications. In such cases, the generative
capability of VAE is limited. Unfortunately, the problem is often
ignored when extracting the intrinsic characteristics in the latent
space.

B. Normalizing Flows

Anormalizing flow is a sequence of invertible transformations
of probability distribution [41]. Considering a invertible map-
ping f : R — R, the initial latent variable z can be changed
to another variable z' = f(z) with the technique of change of
variables by

-1

of !
oz

det ﬁ

det 92

q(z') = q(2) ©)

=q(z)

where det(-) is the determinant of a matrix. By concatenating
several mappings, we can generate complex distributions by
applying the chain rule toward (4). Through a series of K
transformations fj, the process of transformation from the initial
variable z to the acquired distribution g (z) is given by

ZK:fKO~-~Of20f1(ZO) (5)
K o
log g (zx) = logqo (z0) — ;103 det TZ: ©)

where o represents the composition between the mapping and
the variable, and the right part of (5) is the abbreviation of
fr(fx—1(... fi(x))). The path from the initial distribution
q(z0) to q(zy) is called the flow and the transforming path
generated by the successive distributions is a normalizing
flow. With the increase of K, ¢(zx ) becomes more and more
complex and the computation of E, [g(z)]is difficult. Based on
the law of the unconscious statistician, it can be reformulated by

Egel9(z)] =Eg [9(frofr-10...0 fi(z0)] (D
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(a) (b)

Fig. 1. Visualization of the base density as well as the transformed distribution
when using normalizing flows. (a) Base distribution. (b) Transformed complex
distribution.

where g(+) can be any invertible and smooth function.

Fig. 1 depicts the visualization of the effect with normalizing
flows. Fig. 1(a) denotes the base Gaussian distribution, and
Fig. 1(b) describes the complex probability distribution after
the normalizing flows.

Although VAE has a powerful representation capability,
the independent Gaussian distribution is not generalized for
complicated scenarios to characterize the relationship between
the anomalies and background pixels. With the transformation
of distributions, the normalizing flow seeks to enhance the
sample space and acquire actual distributions for anomalies
and background pixels. As a result, discriminative features
can be extracted with the normalizing flow. Since the critical
point of anomaly detection lies in separating anomalies from
background pixels, normalizing flow is expected to achieve
good performance.

III. METHODOLOGY
A. Variational Inference With Normalizing Flows

1) Framework: Because of the powerful ability to generate
various complex probability distributions, we intend to incorpo-
rate the normalizing flow into the VAE network. Fig. 2 depicts
the architecture of the proposed method with five main mod-
ules: encoder Enco, probability representation module PR,
sampling layer Samp, normalizing flows NF, and decoder
Deco. Enco consists of three fully connected layers with
400 nodes in each layer. A layer to generate the mean vector
and the other layer to generate the standard deviation vector
jointly constitute the PR module, which is regarded as the
probability representation of the input data. Samp samples data
from the standard Gaussian distribution and acquires the initial
probability distribution with a simple transformation. NF is
a normalizing flow used to transform simple distributions into
complex distributions. The length of flow will be discussed in
the experiment section. Deco consists of six fully connected
layers with 400 nodes in each layer. In our experiments, we use
ReLu as the activation function.

The specific training procedure is as follows: Enco first
processes the input HSI and maps it into feature space. Then,
PR generates the mean vector and standard deviation vector
for each training sample. Samp combines these two vectors to
produce an initial Gaussian distribution. Next, NF transforms
the simple Gaussian distribution into complex distribution with a
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Normalizing Flow
Decoder

Gaussian Mixture Model
Estimation for Detection

Fig. 2.  Architecture of the proposed NF-PDRD.

sequence of flows by computing the determinant of the Jacobian
matrix. Finally, Deco decodes the latent representation from
the distribution obtained by normalizing flow and outputs the
reconstructed image.

2) Loss Function of the Proposed Method: For the input
HSI X = {z;}¥; € RB*N (N denotes the number of samples
and B denotes the number of bands), we can extract the mean
vector @ and the standard deviation vector o. By sampling
from a normal distribution, we obtain the latent variable via
z = p + o © &, which serves as the initial distribution ¢o(zp).
With a sequence of finite flows, the NF module transforms
qo(z0) into complex distribution, which is capable of charac-
terizing the intrinsic features of the model. We evaluate the
approximate posterior distribution with a sequence of flows, i.e.,
44(z|x) := gk (zK ), the total loss function of our model can be
expressed by

F(x) = —Eq, (z1x) log po (x[2)] + KL (g4 (2|x) lpe(2))
= Ey,(z/a) [log g4(2]x) — log p(x, 2)]
Eygo(20) log qx (zx) —logp (x,2x)]

- ]EQO(ZO) [1ng (X’ ZK)]

0|
8Zk

qo(Zo [log qo (ZO)]
Z log det
k=1
= qu(zo) [IOg qo0 (ZO)] - ]qu(zo

- ]Eq()(Z()) [1ng (X‘ZK)}

MK
Z log det %
Lk=1
(3)

aZk
where K denotes the length of normalizing flows, and the last
term —E ., [log p(x|z )] in (8)is related to the reconstruction
error.

3) Invertible Finite Flow: The change of variable theorem
demonstrates the fact that the transformation determines the
complexity of the obtained distribution. Specifically, there are
two kinds of invertible finite flows which are classified according
to the mapping function: planar flows and radical flows.

—E

q0(z0)
) [10gp (ZK)]

—E

qo0(z0)

Planar flows transform the variable via the mapping

f(z)=z+ug(w'z+0b) )

where A = {w € R% u € R% b € R} are the parameters, d de-
notes the dimensionality of latent space, and ¢(-) is a smooth
nonlinear mapping with derivative ¢'(-). To compute the logdet-
Jacobian of f(z), we introduce an intermediate function ¢ (z)
that is characterized by

U(z) =g (W'z+b)w (10)
Thus, the logdet-Jacobian term can be computed by
f‘ |det (I+up(z)" )| = [1+u'v(z)|. 1D

Consequently, normalizing flows transform the initial distribu-
tion ¢o(2g) into the complex distribution ¢k (25 ) by

Ingx (zx) = Ingo(z (12)

Zln|1+uk¢k(zk)y

k=1

Furthermore, a series of transformations corresponding to
radial flows can be defined as

f(2) = 2+ Pg(a,r) (z - 20)

where r = |z — zg|,g(a,7) = 1/(a+71), A = {zp € R%,a €
R, 3 € R} are the free parameters, z is the reference point.
Then, the logdet-Jacobian is computed by

13)

det |52 =1+ gt I 11+ Bgtar) + i)
(14)
Theoretically, different flows yield different mathematical
explanations. By comparing (13) with (9), we observe that
planar flows impose several contractions and expansions in the
direction perpendicular to the hyperplane w'z + b = 0, while
radial flows transform the latent space around the reference
point. Therefore, the choice of normalizing flows can lead to
totally different transformations with different properties. In real
detection applications, we should first evaluate the complexity

of target components and select the appropriate kind of flow.
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B. Detection With Gaussian Mixture Model Estimation

By virtue of normalizing flows, we train a probability repre-
sentation model with powerful generative and expressive capa-
bility. Consequently, the latent characteristics can better reflect
the intrinsic properties of the original data. Thus, we seek to use
the latent characteristics to accomplish the detection task.

Aseach pixel owns a unique Gaussian probability distribution,
the background pixel can approximately be characterized by
a Gaussian mixture model of its local neighborhood due to
the sparseness of the anomalies, whereas anomalies cannot.
Therefore, the background pixel t; can be modeled by

L
p(ts) = Y mN (to | p, 1)

=1

L
S.t Zﬂ'g =1
=1

where 7; denotes the mixture coefficient, L denotes the number
of Gaussian components, and p; and 3; represent the mean
value and variance, respectively.

Considering the mean value of the probability representation
of HSTY = {y;} Y, € RN foreachtest pixel t € R%, we try
to estimate the intensity from its local neighborhood. To elimi-
nate the effect of the distribution of the anomalies, we employ the
dual-window strategy with outer window size of wgy X Wy and
inner window size of wj, X wy, to select background Gaussian
components. Thus, the adjacent area Y = {y;}2, € R is
constructed for the following detection process (I denotes the
number of chosen pixels; L = Woyt X Wout — Win X Win). As Y
is adaptive for each test pixel, we attempt to discover a excellent
represent for t by

15)

arg min ||t — Y73
™

L
S.t Zﬂ'l =1
=1

where 7 = [7r1, 72, ..., 7] is mixture coefficient vector. No-
tably, the term ||t — Y47r||3 estimates the reconstruction error
between the test pixel t and its local surroundings. When t
belongs to the background, it can be characterized by a Gaussian
mixture model with its local Gaussian components. Therefore,
the term ||t — Y 7r||3 approaches 0. On the contrary, when t
is a background pixel, ||t — Y 7|3 can yield a large value.
In this way, the discrimination between the anomalies and the
background pixels are underlined to some extent.

To acquire an expected mixture coefficient, we insert a
Tikhonov regularization term to the optimization goal, which
is shown as follows:

(16)

-~ 2
argmin [€ — Yo7 ||+ | Te (17)
™
where £ = [t; 1], S?S =[Y,;1], 1is a 1 x L unit vector, and
A is a tradeoff parameter. The added dimension is to solve the
sum-to-one constraint on 7. I'y is used to adjust the weight
according to the distinction between the test pixel and each pixel
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Algorithm 1: Framework of the Proposed Algorithm.

Input: hyperspectral data set X € RZ*Y window size

(Wout, win ), length of flow r, dimensionality of latent
space d, and the category of flow.

Output: Anomaly detection map.

1:  Construct a appropriate normalizing flow by (5) and
(6);

2:  Train a VAE architecture with normalizing flow by (8)
and acquire mean value Y = {y;}¥., € RN of the
latent representation for the original data;

3:  Compute the mixture coefficient vector 7r through
Gaussian mixture model estimation by (17) and (19);

4: Compute the anomalous degree for each pixel by (20)
and obtain the final detection map.

in the neighborhood, which is represented by

lt—yill, 0

'y = (18)

0 =yl
Intuitively, if the distribution of the test pixel t is similar to a
Gaussian component y; in its neighborhood, the distance ||t —
y;||2 will be very small. Therefore, the corresponding mixture
coefficient 7r; in (17) is allowed to hold a large value as expected.

Taking derivative with regard to 7v and (17) has a analytical
solution:

SO -1
7= (YSTYS +arT rt) YTt (19)
Therefore, the anomalous degree of the test pixel ¢ can be
characterized by

n =t =Y. (20)

When 7 is larger than a threshold, y can be considered an
anomaly. The overall procedure of the proposed method is shown
in Algorithm 1.

IV. EXPERIMENTAL RESULTS

To verify the effectiveness and superiority of the proposed
method, we conducted our experiments on two real data sets
and two synthetic data sets.

A. Hyperspectral Data Sets

In this section, we introduce the data sets we used for the
experiments. Figs. 3 and 4 depict the pseudocolor image and
ground truth maps of different data sets, respectively.

1) Real Data Sets: The San Diego data set is widely used
for hyperspectral anomaly detection, which is acquired by the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over
the San Diego airport area, CA, USA. The spectral resolution
is 10 nm, along with the spatial resolution of 20 m. With the
removal of water absorption, low signal-to-noise ratio, and bad
quality bands (1-6, 33-35, 94-97, 107-113, 153-166, and 221—
224), we employ a subimage with the size of 100 x 100 x 189
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(@)

Fig. 3.

(a)

Fig. 4.

for the experiments. In the scene, three airplanes are considered
anomalous targets. The image mainly consists of soil, parking
aprons, and hangars.

The Pavia City data set is captured by the reflective optics
system imaging spectrometer over the city center of Pavia in
northern Italy, with a wavelength range of 430-860 nm, 205
spectral bands, and spatial size of 150 x 150. The ground resolu-
tion of each pixel is 1.3 m. The materials in the main background
scene are bridge, water, and shadow.

2) Synthetic Data Sets: The image scene to simulate the
synthetic images was collected by the AVIRIS over the Cuprite
mining site, Nevada, in 1997. The data set contains 200 x 200
pixels and 189 spectral bands with the elimination of bad bands
(1-3, 105-115, and 150-170). A total of 100 pixels that are
regarded as anomalies are simulated in the data by five mineral
endmembers [42]. Furthermore, two types of target insertion are
designed to generate the data set.

Target implantation (TT): The background pixels are removed
and replaced with clean target panels.

Target embeddedness (TE): The target panels are embedded
into the clean background pixels with additive Gaussian noise.

B. Competitors

To thoroughly estimate the performance of the proposed
method, we select six state-of-the-art hyperspectral anomaly
methods for comparison.

1y

2)

3)

4)

5)

0)

(b) (© (d)

Pseudocolor image of different data sets. (a) San Diego. (b) Pavia City. (c) TIL. (d) TE.

(b) ©) (d)

Ground truth maps of different data sets. (a) San Diego. (b) Pavia City. (c) TI. (d) TE.

RX [11] is a benchmark detector that employs the local
statistics of the image with dual sliding windows, which
assumes the background pixels obey a multivariate Gaus-
sian distribution. The Mahalanobis distance between the
test pixel and its adjacent pixels in the sliding windows is
computed to estimate the anomalous degree.

LRASR [22] implements a matrix decomposition process
and obtains a low-rank component corresponding to back-
ground pixels and a sparse component corresponding to
anomalies. The band average map of the sparse component
is considered as the detection result.

LSMAD [24] decomposes the HSTinto a background com-
ponent, an anomaly component, and a noise component.
Then, the Mahalanobis distance is computed using the
low-rank component to acquire the detection map.
LSDM-MoG [25] integrates a mixture of Gaussian dis-
tributions with matrix decomposition to construct com-
plex priors, where the low-rank component is imposed
a Gamma prior, and the sparse component is imposed
a multinomial. The detection process can be solved by
using VB.

AE [31] tries to reconstruct original data by the architec-
ture of NN. Anomalies yield large reconstruction errors,
while background pixels hold small reconstruction errors.
CRD [19] assumes the background pixel can be lin-
early represented by their adjacent pixels, while anoma-
lies cannot. The representation residual of an anomaly
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(I-a) (I-b) (I-c)

(II-a) (II-b) (II-c)

(I1l-a) (II-b) (IT-c)

(IV-a)

(IV-b) (IV-¢c)

Fig. 5.

I-d)

(11-d)

(IT1-d)

(IV-d)
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(I-e)

(Il-e) (II-f)

(Ill-e) (I11-)

(I-g)

(-g)

(Il-g)

(IV-¢) (IV-f)

(IV-g)

Detection results of four data sets. I is the results using San Diego. II is the results using Pavia City. III is the results using TI. IV is the results using TE.

(a) RX. (b) LRASR. (¢) LSMAD. (d) LSDM-MoG. (e) AE. (f) CRD. (g) Proposed.

is significantly larger than a background pixel, which
is used to separate the anomalies from the background
pixels.

C. Evaluation Criteria

The receiver operating characteristic (ROC) curve is a widely
used performance evaluation metric in hyperspectral anomaly
detection. Therefore, we employ the ROC curve to estimate the
detection performance of our proposed method qualitatively. For
a given threshold 7, we can compute the probability of detection
P; and false alarm rate Py according to the detection map. By
setting different thresholds, we can plot continuous ROC curve
with different values of P; and P;.

Moreover, the area under ROC curve (AUC) scores of
(P4, Py) and (Py,T) are used to evaluate the detection perfor-
mance quantitatively. The AUC score of (Pg, Py) reflects the
detection power of the detector, and AUC score of (Py, T) eval-
uates the performance of background suppression with different
algorithms. The background-anomaly separation map are also
plotted to further describe the range of intensity of anomalies
and background pixels.

D. Detection Performance

1) Results of San Diego Data: The visualization of detection
results on the San Diego data set is shown in Fig. 5(I). Among
these methods, LSDM-MoG yields the worst detection result
due to the high intensity of background pixels. We can observe
that the number of detected anomalies of LRASR and LSMAD is

relatively small. Thus, both LRASR and LSMAD have a low de-
tection rate. Compared to LRASR, LSMAD, and LSDM-MoG,
RX can detect more anomalies and reduce the miss detection
rate to a certain degree. The background suppression AE is not
adequate, as the background pixels in the bottom-left corner of
the data set own high intensity. CRD can detect most anomalies,
but the detection power and background suppression effect are
not comparable to the proposed method.

ROC curves are displayed in Fig. 6(a) to evaluate the detection
performance qualitatively. When the false alarm rate is less
than 10~2, the ROC curve of our proposed method stays above
the other curves by a large margin, indicating the prominent
detection power. Specifically, the detection probability of the
proposed method is 0.2 at the beginning, while others are almost
0. When the false alarm rate is more than 10~2, there are many
crossovers among all methods.

AUC scores of (P, Py) and (Py,7) are listed in Tables I
and II, respectively. For the San Diego data set, the AUC score
of (Py, Py) of the proposed method is 0.9903, which precedes
other detectors to a large extent. The proposed NF-PDRD
holds the lowest AUC score of (P, ) among these methods,
which demonstrate the powerful detection ability and excellent
background suppression effect. As Fig. 7(a) displays, most of the
background pixels of NF-PDRD are suppressed to a low level
compared with other detectors. Moreover, almost all anomalies
are brighter than the background points, suggesting an excellent
separation between the anomalies and the background pixels.

2) Results of Pavia City Data: Fig. 5(I) shows the visual-
ization of detection results on the Pavia City data set. For the
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TABLE I
AUC SCORES OF (Fg, Py) ON DIFFERENT DATA SETS

Data sets RX LRASR LSMAD LSDM-MoG AE CRD Proposed
San Diego 0.9623 0.9602 0.9748 0.9208 0.9566 0.9893 0.9903
Pavia City 0.9955 0.9945 0.9949 0.9807 0.9849 0.9979 0.9990
TI 0.9860 0.9775 0.9996 0.9281 0.9951 0.9946 1
TE 0.9916 0.9999 1 0.9180 1 1 1
Average 0.9839 0.9832 0.9923 0.9369 0.9835 0.9955 0.9973
The bold values indicate the best performance of the corresponding method on a particular dataset.
TABLE 11
AUC SCORES OF (Pf, T) ON DIFFERENT DATA SETS
Data sets RX LRASR LSMAD LSDM-MoG AE CRD Proposed
San Diego 0.0394 0.0419 0.0107 0.0464 0.0598 0.0377 0.0023
Pavia City 0.0177 0.0600 0.0087 0.0573 0.0272 0.0270 0.0038
TI 0.0321 0.1451 0.0010 0.0277 0.0009 0.0316 0.0001
TE 0.0331 0.1397 0.0015 0.1823 0.0024 0.0100 0.0013
Average 0.0306 0.0967 0.0055 0.0784 0.0226 0.0190 0.0020

The bold values indicate the best performance of the corresponding method on a particular dataset.
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LSDM-MoG detector, there are many false alarms in the bottom-
left of the image, causing a bad detection performance. The
total intensity of RX is high, leading to a large false alarm rate.
LRASR, LSMAD, AE, and CRD can achieve better detection
results than RX and LSDM-MoG, but the intensity of anomalies
is not significant. Our proposed method can separate anomalies
from a large number of background pixels. Most anomalies pre-
serve high intensity, and the discrimination between anomalies
and background pixels is considerable.

To make a further comparison, we plot the ROC curves for
the Pavia City data set as shown in Fig. 6(b). Compared to
other methods, the ROC curve of the proposed method always
lies in the upper-left corner of the image, which indicates the
superiority of the proposed method. At the beginning of the
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Fig. 7. Background-anomaly separation map for different data sets. (a) San
Diego. (b) Pavia City. (c) TI. (d) TE.

ROC curve, the proposed NF-PDRD yields a detection rate over
0.5, which is significantly larger than other detectors.

The AUC score of (Py, Py) is 0.9990, which is also the largest
among these methods. Furthermore, the AUC score of (Py,7)
obtained by the proposed method owns the value 0.0038, which
is close to the ideal value 0. It can be observed from Fig. 7(b) that
many anomalies yield high intensity and most background pixels
hold low values. Due to this fact, the background suppression
effect of NF-PDRD is satisfactory on this data set.

3) Results of TI Data: For the TI data set, Fig. 5(IIT) depicts
the visual detection results. The overall background suppression
effect of LSDM-MoG is bad since most of the background
pixels have high values. RX misses several anomalies, and the
detection rate is rather low. The proposed method is slightly
better than LRASR, LSMAD, AE, and CRD, as we can see that
the anomalies located in the central row are more significant,
and the background pixels are well suppressed.
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TABLE III
OPTIMAL PARAMETERS OF DIFFERENT DETECTORS ON FOUR DATA SETS

Data sets RX LSMAD LSDM-MoG CRD

San Diego Wout = 19, win =9 r=>5 lo=10,K =4 Wout = 27, Wiy, = 11

Pavia City Wout = 17, wip = 11 r=4 lo=12,K =4 Wout = 15, win =9
TI Wout = 17, wijp =9 r=4 lo=6,K =4 Wout = 17, wiy, =7
TE Wout = 17, win =9 r=>5 lo=12, K =4 Wout = 15, win =7

Fig. 6(c) depicts the ROC curves of these algorithms. The
RX and LSDM-MoG stay below other methods, and they only
intersect with other detectors when the detection probability is 1.
The ROC curves of other methods are similar; so it is necessary
to compute the AUC scores to evaluate the performance of our
proposed method.

As Tables I and II display, the proposed method acquires the
best AUC score of (Py, Py) and (Py, 7). It is worth mentioning
that the AUC score of (Py, Py) is 1 and (Py, T) is very close
to 0, manifesting the effectiveness of background suppression
and powerful detection ability. Furthermore, we can know from
Fig. 7(c) that nearly all anomalies hold larger values than
background pixels for NF-PDRD. Therefore, the discrimination
between the anomalies and the background pixels is evident.

4) Results of TE Data: Fig. 5(IV) illustrates the visualization
of detection results for the TE data set. More than half of the
anomalies are not detected in the results of the LSDM-MoG
detector since the imposed complex prior distribution may not
make a difference. As we can see, RX, LRASR, and LSMAD fail
to detect a certain number of anomalies. Therefore, the detection
performance is not excellent to some extent. The detection map
of the proposed method is similar to that of AE and CRD because
all anomalies can be detected in these algorithms.

ROC curves for the TE data are displayed as shown in
Fig. 6(d). Notably, except for RX, LSDM-MoG, and LRASR,
the ROC curves of several methods overlap, causing it hard to
further discriminate the differences.

As for the AUC score of (P, Py), LSDM-MoG is the lowest
among these methods. The distinctions between the proposed
NF-PDRD and other methods are trivial, as the values are nearly
1. Moreover, the proposed method achieves the lowest AUC
score of (Py,7), which verifies the background suppression
ability. Fig. 7(d) demonstrates that the anomaly with the smallest
value is brighter than the background pixel with the largest value
by a large margin, indicating a complete separation between the
anomalies and the background pixels and the anomalies. Thus,
the NF-PDRD achieves excellent detection performance.

The NF-PDRD and low rank based algorithms such as
LRASR yield discriminative and representative powers. LRASR
transforms the data from image space to background space with
distinctive features. The selection of the background dictionary
is critical to the detection performance, and it remains optimized
to adapt to real situations continuously. NF-PDRD tries to
generate expressive latent representation with the consideration
of original distribution. With the incorporation of normalizing
flows, the decoder generates the reconstructed sample from a
more generalized distribution, which enhances the sample space
and makes the difference between the anomalies and background
more discriminative.

100%

—e—SinDiegs —8—PaviaCity —w—TI ——TE

AUC of (PyP)
AUCof (Py0)

Fig. 8. Parametric analysis of the length of flow. (a) AUC of (Pg, Py).
(b) AUC of (Py, 7).

E. Parametric Analysis

To acquire the optimal parameters of these detectors, we
conduct extensive experiments with the guidance of correspond-
ing parameter selecting strategies. Table III shows the optimal
parameters of these methods. Specifically, wo, and wj, represent
the outer and inner window sizes of RX and CRD. 3 and A denote
the tradeoff terms of low-rankness and sparsity of the LRASR
algorithm. r indicates the low-rank degree of LSMAD. [j and
K signify the initial rank and the number of mixture Gaussian
noise, respectively. Furthermore, the parameters’ impacts on the
experimental results, including the length of flow, the dimen-
sionality of latent space, and the category of flow, are analyzed
comprehensively.

The length of flow r controls the scale of architecture. It is
a vital parameter concerning the generative capability of the
model. If it is too large, we will suffer expensive computational
costs. While it is too small, the effectiveness of the model cannot
be guaranteed. With thorough consideration, we set the value
range of this parameter to [5, 10, 20, 30, 40, 50, 100]. The AUC
scores of (P4, Py) and (Py, 7) with the change of r are depicted
in Fig. 8. Since the curves are not monotonically increasing or
decreasing, there is no explicit principle of how the parameter
r affects the AUC scores. On the other hand, the computational
cost will increase as r rises. Therefore, the optimal 7 are 20,
10, 10, and 10 for San Diego, Pavia City, TI, and TE data sets,
respectively.

The dimensionality of latent space d is a crucial parameter for
the proposed method, which controls the reconstruction ability
and the separability of anomalies and background pixels. The
range of d we set in the experiment is [1, 5, 10, 20, 40, 50,
100]. As we can observe from Fig. 9, although the optimal
parameters of d are different for different data sets, the proposed
detector can achieve good performance when d is set to an
intermediate value. From the perspective of interpretability, the
phenomenon is reasonable as a proper value of d guarantees
effective probabilistic representation for the intrinsic structure
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TABLE IV
EXECUTION TIME (IN SECONDS) FOR DIFFERENT DATA SETS

Data sets RX LRASR LSMAD LSDM-MoG AE CRD Proposed
San Diego 40.06 24.33 8.62 11.78 51.28 571.62 44.32
Pavia City 54.72 139.21 10.83 39.42 56.11 71.80 54.25
TI 182.74 57.61 46.63 19.10 3.67 329.16 295.94
TE 173.56 136.31 36.64 41.64 7.11 172.60 310.82
Average 112.77 89.37 25.68 27.99 29.54 286.30 176.33

The bold values indicate the best performance of the corresponding method on a particular dataset.
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of the original data. Specifically, the optimal values of d are 40,
20,20, and 20 for San Diego, Pavia City, TI, and TE, respectively.

The category of flow determines how we formulate the net-
work. As we know, normalizing flows include planar flows and
radical flows. Thus, we evaluate the performance of these two
kinds of flows. As shown in Fig. 10, we can get higher AUC
score of (P4, Py) and lower AUC score of (P, T) with the use
of planar flow. Theoretically, radical flow can generate more
complicated distributions than planar flow with more computa-
tional time. The prior distribution of these four scenes is not so
complex. Therefore, we exploit the planar flow for the four data
sets.

F. Execution Time

The execution time of the above detectors on the four data
sets are listed in Table IV. All experiments were performed on a
computer with a 64-b Intel 17-8700 CPU of 3.2 GHz on Windows
10. In total, local methods take much more time than matrix
decomposition based methods. Specifically, CRD has the highest
execution time among these methods. Our proposed algorithm
is slightly faster than CRD due to the probability distribution
representation.

- @ background
. o anomaly .

»  background
® anomaly

(@) (b)

Fig. 11.  2-D visualization of the distribution of anomalies and background of
the latent features on TI data set. (a) NF-PDRD without NF. (b) NF-PDRD.

TABLE V
AUC SCORES OF (Fg, Py) WITH DIFFERENT COMPONENTS OR DETECTORS
ON FOUR DATA SETS

San Diego  Pavia City TI TE
PDRD 0.9847 0.9993 0.9847 1
VAE with RX 0.9426 0.9658 09125  0.9759
NF-PDRD without NF 0.9814 0.9962 0.9473 1
NF-PDRD 0.9903 0.9990 1 1

The bold values indicate the best performance of the corresponding method on a
particular dataset.

TABLE VI
AUC SCORES OF (P, 7) WITH DIFFERENT COMPONENTS OR DETECTORS
ON FOUR DATA SETS

San Diego  Pavia City TI TE
PDRD 0.0606 0.0213 0.0874  0.0165
VAE with RX 0.0607 0.0480 0.0973  0.0345
NF-PDRD without NF 0.0203 0.0694 0.0983  0.0053
NF-PDRD 0.0023 0.0038 0.0001  0.0013

G. Ablation Study

To verify the effectiveness of normalizing flow, we conduct
component analysis through extensive experiments with visual
and quantitative comparisons. We keep the VAE architecture and
the Gaussian mixture model estimation detector identical with
the elimination of the normalizing flow component, and it is
termed NF-PDRD without NF. Fig. 11 shows the distribution of
anomalies and background in the latent space for the TI data set
with the technique of t-SNE [43]. The anomalies are separated
from the background pixels with the normalizing flow, and the
discrimination between the anomalies and background pixels is
significantly enhanced. Moreover, the quantitative comparisons
are listed in Tables V and VI. The AUC scores of both (P, Py)
and (Py,7) illustrate that the normalizing flow can increase the
detection power and background suppression effect.
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Furthermore, we compare the proposed method with the
other two VAE-based detectors. To make a fair comparison,
the VAE architecture of these methods yield identical network
and parameters. The difference lies in the anomaly detector.
PDRD [44] adopts a Wasserstein distance based detector, while
VAE with RX employs a Mahalanobis distance based anomaly
detector. The experimental results manifest that NF-PDRD has
the best background suppression effect among these methods.
The (Py, 7) of the proposed method on four data sets are all
near 0. The detection power of NF-PDRD is also excellent, and
we can see the (P, Py) of the proposed method leads other
detectors by a large margin on San Diego and TI. From the
above analysis, we can conclude that the normalizing flow can
enhance the detection power and background suppression effect
of the model.

V. CONCLUSION

Itis still challenging for deep learning based models to convey
a theoretical explanation of their powerful capability in the task
of hyperspectral anomaly detection. In this article, we present
a novel NF-PDRD framework for hyperspectral anomaly de-
tection, which first introduce a normalizing flow into the VAE
model. Subsequently, the Gaussian approximate posterior can
be transformed into a much more complex distribution used to
generate the output data. This process makes the whole net-
work generative and expressive, which can simulate the various
real scenarios. Finally, the strategy of Gaussian mixture model
estimation is used to detect the anomalies by fully utilizing
spatial knowledge. Experiments on both synthetic and real data
sets verify the superiority and effectiveness of the proposed
NF-PDRD algorithm. However, it also needs to be highlighted
that the consuming time of the proposed method is relatively
high, where there is still much room to optimize. In future
works, we can introduce the local similarity constraint into the
optimization process as an extra loss term and incorporate sev-
eral global architectures to reduce time complexity. Therefore,
the local detector can be replaced by a global detector without
loss of spatial characteristics. Moreover, we intend to add more
generative models and background suppression techniques to
the framework.
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