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Abstract—Land cover classification with SAR images mainly fo-
cuses on the utilization of fully polarimetric SAR (PolSAR) images.
The conventional task of PolSAR classification is single-pixel-based
region-level classification using polarimetric target decomposition.
In recent years, a large number of high-resolution SAR images
have become available, most of which are single-polarization. This
article explores the potential of object-level semantic segmentation
of high-resolution single-pol SAR images, in particular tailored
for the Gaofen-3 (GF-3) sensor. First, a well-annotated GF-3 seg-
mentation dataset “FUSAR-Map” is presented for SAR semantic
segmentation. It is based on four data sources: GF-3 single-pol
SAR images, Google Earth optical remote sensing images, Google
Earth digital maps, and building footprint vector data. It consists
of 610 high-resolution GF-3 single-pol SAR images with the size
of 1024 × 1024. Second, an encoder–decoder network based on
transfer learning is employed to implement semantic segmentation
of GF-3 SAR images. For the FUSAR-Map dataset, an optical
image pretrained deep convolution neural network (DCNN) is
fine-tuned with the SAR training dataset. Experiments on the
FUSAR-Map dataset demonstrate the feasibility of object-level
semantic segmentation with high-resolution GF-3 single-pol SAR
images. Also, our algorithm obtains fourth place about the PolSAR
image semantic segmentation on the “2020 Gaofen Challenge on
Automated High-Resolution Earth Observation Image Interpre-
tation.” The new dataset and the encoder–decoder network are
intended as the benchmark data and baseline algorithm for fur-
ther development of semantic segmentation with high-resolution
SAR images. The FUSAR-Map and our algorithm are available at
github.com/fudanxu/FUSAR-Map/.

Index Terms—2020 GaoFen challenge, encoder–decoder
network, FUSAR- map dataset, GaoFen-3 (GF-3) single
-polarization SAR images, object-level semantic segmentation.

I. INTRODUCTION

SYNTHETIC Aperture Radar (SAR) can obtain rich in-
formation of earth surface under all-time and all-weather

conditions. Land cover classification or segmentation using SAR
images could be of great importance in a variety of Earth ob-
servation applications, such as urban planning, natural disasters
monitoring, and environmental resource management [1]–[3].
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In the past few decades, land cover classification with SAR
images mainly focuses on the utilization of fully polarimet-
ric SAR (PolSAR) images because the PolSAR images with
multiple polarizations reveal distinct electromagnetic scattering
characteristics of terrain surface [4]. Conventionally, single-
pixel-based land cover classification of PolSAR images takes
a single pixel as a processing unit, where the polarimetric
scattering mechanism and target decomposition theorems could
be used to extract physically plausible features of the pixel [5],
[6]. However, PolSAR feature extraction with traditional meth-
ods is often limited to the intrapixel regime [7]. In recent
years, with the rapid development of deep learning method,
region-level land cover classification of PolSAR images have
emerged, which takes one image patch as input and utilizes
convolutional neural networks (CNNs) to extract high-level
features and classify the terrain surface [8], [9]. Although these
region-level classification methods can improve the land cover
classification performance without any hand-crafted features, its
accuracy is still on the level of regional mapping applications.
Even with the improvement of SAR image resolution, it is not
tailored for semantic segmentation, where individual terrain
objects can be well segmented. To achieve object-level land
cover classification with high-resolution SAR images, which is
known as image semantic segmentation in computer vision, deep
learning-based segmentation methods have been widely studied
[3], [10]–[12].

In the last few years, more and more high-resolution SAR im-
ages are available publicly, most of which are single-polarization
(single-pol) SAR images. On the one hand, such a large number
of data provides a good basis for land cover semantic seg-
mentation using deep learning methods. On the other hand,
compared with the physical problem of land cover classification
using conventional methods with PolSAR images, the semantic
segmentation with single-pol SAR images becomes a pure visual
semantic feature extraction problem, where the interpixel spatial
pattern becomes the major source of information. Given the fact
that human interpreters can easily understand the land semantics
on single-pol grayscale SAR images, it’s a valid problem that
worth to be studied as well.

A. Motivation and Objective

In the existing literature, single-pol SAR image semantic
segmentation focuses on the segmentation of a single class of
land cover, such as oil spill segmentation [3], building segmenta-
tion [11], and road segmentation [12]. Semantic segmentation of
single-pol SAR images for multiple types of terrain categories
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is under-explored. The main reason is that there is no bench-
mark dataset available for land cover semantic segmentation of
single-pol SAR images.

Gaofen-3 (GF-3) is the first civilian C-band polarimetric SAR
imaging satellite of China for high-resolution earth observations.
The highest nominal resolution of GF-3 data is 1 m. GF-3 data
are used in [13] to construct large-scale dataset, i.e., FUSAR-
Ship for ship detection. However, the single-pol SAR images
as an important part of GF-3 are under-explored in the field
of land cover semantic segmentation. To this end, it would be
beneficial to develop land cover semantic segmentation using
high-resolution GF-3 single-pol SAR images. It could open up
a wide range of applications for the huge volume of GF-3 single-
pol SAR images.

In this article, we aim to develop a deep learning method for
land cover semantic segmentation with high-resolution GF-3
single-pol SAR images. The major objectives are as follows:

To construct a large-scale well-annotated land cover seman-
tic segmentation dataset using high-resolution GF-3 single-pol
SAR images: The classification capability of both CNN models
and FCN models depends heavily on the quantity and quality of
the training and validation datasets [14], [15]. To the best of our
knowledge, despite the increasingly available high-resolution
GF-3 single-pol SAR images, there are no large-scale well-
annotated land cover datasets in the research community. The
lack of well-annotated large-scale datasets may cause overfitting
and limit the generalization ability of deep learning models [16].
Furthermore, this situation to a certain extent will hinder the
further development of land cover semantic segmentation with
high-resolution SAR images using deep learning techniques.
To this end, it is urgent to construct a benchmark dataset for
land cover semantic segmentation using high-resolution GF-3
single-pol SAR images. Such a task not only requires profes-
sional knowledge but also needs substantial manpower.

To develop a baseline algorithm for land cover semantic
segmentation of GF-3 SAR images: For region-level land cover
mapping of PolSAR images, CNNs have been proved the high
ability to extract high-level features and classifying SAR im-
ages [8], [9]. For semantic segmentation of single-pol SAR
images, FCN models are widely used to produce pixels-to-pixels
results [3], [10]–[12]. Based on the well-annotated land cover se-
mantic segmentation dataset of GF-3 single-pol SAR images we
constructed, it is necessary to develop a baseline algorithm for
further development and evaluation. Besides, under the “2020
Gaofen Challenge on Automated High-Resolution Earth Ob-
servation Image Interpretation”[17], a supervised deep-learning
algorithm has been designed to achieve high performance of
Gaofen-3 SAR image semantic segmentation.

B. Related Works

First, for single-pixel land cover classification of PolSAR im-
ages, traditional classification methods focus on the polarimetric
scattering mechanism [5], [18], [19], statistical distributions of
the polarimetric features [20]–[22], and target decomposition
theorems [6]. These methods try to establish an accurate and
effective description of the polarimetric features of land cover.
Although these methods can preserve detailed information of
images and have obtained good results for the low-resolution

PolSAR images, they often generate the salt-and-pepper-like
result with high-resolution images because of the highintra-
class and lowinterclass variability of image pixels [7]. Also,
these conventional methods cannot deal with single-pol SAR
images.

Second, for region-level land cover classification, in [23]–
[28], several conventional methods are utilized. CNNs are also
used for region-level land cover classification of PolSAR im-
ages. Zhang et al. [8] proposed a complex-valued CNN specif-
ically for PolSAR image land cover classification, which uti-
lizes both amplitude and phase information of complex SAR
imagery. Zhou et al. [9] design a four-layer CNN to achieve
high performance without any hand-crafted features of land
cover classification with PolSAR images. These methods based
on CNNs have been proven to better performance than tradi-
tional methods. However, with the improvement of SAR image
resolution, region-level land cover classification can no longer
meet the requirements of advanced applications such as locating
individual terrain objects, such as building, road, and vegetation,
where object-level classification is necessary.

Finally, to achieve object-level land cover classification with
the pixel-wise result of high-resolution SAR images, image
semantic segmentation should be pursued. For high-resolution
PolSAR images, few works have focused on the land cover
semantic segmentation [29]. Wu et al. [10] employ FCNs to
achieve wetland semantic segmentation from fully polarimetric
RADARSAT-2 imagery. Zhang et al. [30] utilized FCNs based
on transfer learning for PolSAR image semantic segmentation
with small training sets. However, semantic segmentation us-
ing FCNs with single-pol SAR images is mainly limited to a
single class of land cover, such as the oil spill segmentation
of single-pol SAR images [3], the building segmentation of
high-resolution single-pol TerraSAR-X images [11], and the
road segmentation of high-resolution single-pol TerraSAR-X
images [12]. In the literature, semantic segmentation of single-
pol SAR images based on multiple types of land cover is under-
explored. In particular, land cover semantic segmentation using
GF-3 single-pol SAR images has not been studied.

C. Contributions

The contributions of this article are as follows.
Large-scale semantic segmentation benchmark dataset for

high-resolution GF-3 single-pol SAR images: In order to con-
struct the land cover semantic segmentation datasets, we develop
an efficient semiautomated process to annotate single-pol GF-3
SAR images. Four data sources include GF-3 single-pol SAR
data, Google Earth optical remote sensing images, Google Earth
digital maps and building footprint vector data are utilized.
We present a pixel-labeled land cover semantic segmentation
dataset of GF-3 single-pol SAR images, which is named as
FUSAR-Maps. The dataset consists of 610 high-resolution GF-3
single-pol SAR images with the size of 1024 × 1024, contains
eight different areas from six provinces, and covers areas more
than 4500 km2 in China. To the best of our knowledge, the
dataset is the first large-scale pixel-labeled land cover seman-
tic segmentation benchmark dataset with high-resolution GF-3
single-pol SAR images. The nominal resolution of these SAR
images is 3 m.
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Baseline segmentation algorithm for Gaofen-3 SAR image:
Based on the large-scale land cover semantic segmentation
dataset of GF-3 single-pol SAR images and the PolSAR training
datasets from “2020 Gaofen Challenge on Automated High-
Resolution Earth Observation Image Interpretation,” we pro-
posed a unified SAR data preprocessing method for GF-3 SAR
data, and a deep learning model using encoder–decoder struc-
ture based on transfer learning to achieve object-level semantic
segmentation for GF-3 images.

D. Organization of This Article

The remainder of this article is organized as follows. First,
land cover semantic segmentation dataset construction using
high-resolution GF-3 single-pol SAR images is introduced in
Section II. Next, Section III describes the semantic segmen-
tation algorithm for GF-3 SAR data. Then, the results of our
experiments are presented and discussed in Section IV. Finally,
Section V concludes this article.

II. FUSAR-MAP: A BENCHMARK DATASET FOR SAR
SEMANTIC SEGMENTATION

A large-scale well-annotated dataset is important for se-
mantic segmentation of single-pol SAR images using deep
learning techniques. However, manual annotation is often time-
consuming and requires professional knowledge about the SAR
characteristics of different terrain objects. To address this prob-
lem, a semiautomated annotation scheme is proposed here.
It utilizes multisource auxiliary data including aerial images,
digital maps, and building footprint vector data. In digital maps,
different types of terrain targets are labeled with different colors,
such as water, building, road, vegetation. However, only the
water and road labels are complete, the building and vegetation
labels are missing in most cities in developing countries. For
the regions studied here, we acquired the building footprint
data which can be used to complement the digital maps. As
for vegetation, we can obtain rather accurate vegetation maps
via automatic classification of optical aerial image based on
the RGB-value statistical distribution. As for other land cover
objects, it is difficult to accurately identify them from the
optical images. Therefore, in this article, only four types of
terrain objects are considered, i.e., water, road, building, and
vegetation. In the proposed semiautomated annotation scheme,
we first coregistration GF-3 SAR images with these auxiliary
data sources, and then produce merged semantic maps for each
pixel.

A. Image Coregistration

The flow-chart of image coregistration is shown in Fig. 1.
First, according to the latitude and longitude information of the
GF-3 SAR image, the corresponding area can be identified and
the optical aerial image and digital map of this area can be ob-
tained from public services such as Google Earth. The nominal
resolution of GF-3 SAR data is 3 m, while the resolution of the
obtained optical remote sensing image and the digital map is
1.02 m. The building footprint vector data can be acquired from
Geographic Information System (GIS) resources. We construct
in the source domain four different datasets, i.e., GF-3 single-pol

Fig. 1. Image registration.

SAR data, the optical remote sensing images, the digital maps,
and the building footprint vector data. To derive labels from
the heterogeneous auxiliary data, we need to first covert and
coregistration them into unified coordinates in a uniform format.
The GF-3 single-pol SAR images originally in the L1 format
are first geocoded to L2 format using the Pixel Information
Expert (PIE) [31] software which is in the latitude–longitude
format with the output resolution of 1.02 m to match the rest
data sources. Then, we implement a rasterization algorithm that
converts the building footprint vector data from shapefiles to
raster images to match with the latitude and longitude grid. Due
to the conversion errors, the four layers of different data are not
always accurately aligned. Then, we perform coregistration by
manually picking hundreds of sparse control points. Geometric
transformation is conducted to transform the auxiliary data to
match the Gf-3 SAR image. Finally, we obtain in the target
domain four corresponding layers all well-aligned in the same
latitude–longitude grid.

B. Semantic Map Generation

Fig. 2 shows the process of generating semantic maps of
GF-3 single-pol SAR images. The masks of water and road are
regarded sufficiently accurate and complete in the digital maps.
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Fig. 2. Process of generating semantic maps.

Thus, we extract the two land cover categories according to the
different RGB-value. For the vegetation category, we classify it
using the RGB-value statistical distribution of the optical remote
sensing images. The classifier is trained using manually picked
vegetation areas in the images. It contains different color features
of as many types of vegetation in the optical image as possible.
Note that one pixel may be included by more than one type of
mask. To solve this conflict in semantic map generation, a default
priority rule is enforced as, from the highest priority of water, to
the road, then building, and lowest priority of vegetation. Such
order is decided according to the confidence of the respective
mask generation method. The generated masks still have other
problems, e.g., missing building data in some areas, invalid areas
of the SAR images, etc. These regions are purposely excluded
from the final dataset. Finally, the dataset of both SAR and
optical images with semantic maps are cut into medium-sized
patches of standard size 1024 × 1024, which constructs the
benchmark dataset of FUSAR-Map. The details of the dataset
are described in Section II-C.

C. FUSAR-Map Dataset

The FUSAR-Map dataset consists of 610 high-resolution
GF-3 single-pol SAR images with the size of 1024 × 1024.

Fig. 3. Examples of the single-pol SAR images and corresponding label
images from FUSAR-Land-Cover. (a) Example of FUSAR-Map, located in
Jiujiang, Jiangxi Province. (b) Example of FUSAR-Map, located in Xiamen,
Fujian Province.

It contains eight different areas from six provinces of more than
4500 km2 in China. The annotation layer contains four terrain
types, i.e., water, road, building, and vegetation. Fig. 3 displays
two examples from the datasets.

The GF-3 has 12 observing modes to meet the multiple user
requirements. The SAR payload support operation in single-pol
(HH or VV), dual-polarization (HH+HV or VH+VV), and quad-
polarization (HH+HV+VH+VV) for the observing modes with
resolution ranging from 1 m to 500 m and the swath from 10
to 650 km. Since launched in 2016, the GF-3 has been widely
used for land and ocean monitoring, disaster mitigation, water
conservancy, and other important applications. It’s worth noting
that the GF-3 single-pol SAR images that we used to establish
FUSAR-Map are all on the Ultra-fine strip map (UFS) mode
with the nominal resolution of 3 m, the nominal swath width of
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TABLE I
INFORMATION OF THE GF-3 SINGLE-POL SAR IMAGES USED TO GENERATE FUSAR-MAP

TABLE II
DETAILED INFORMATION OF THE EXAMPLE PATCH IMAGES IN FIG. 4

30 km, and the center incident angle ranging from 20◦ to 50◦. The
time of acquisition is between August 15, 2016, and February
25, 2017. The detailed information of 8 GF-3 single-pol SAR
scenes is summarized in Table I. In Table I, the polarization mode
DH means HH polarization. ASC and DEC mean ascending and
descending trajectories, respectively. R means the right-looking
direction.

In FUSAR-Map, each class is labeled with different colors,
i.e., water in the blue, road in yellow, building in red, and
vegetation in green. Pixels of the undetermined or unknown
class are colored in black. Fig. 4 shows some patch images and
the corresponding semantic maps. The advantages of the dataset
include:

Accurate latitude and longitude coordinates are provided
for each sample: Each sample image in the FUSAR-Map are
provided with accurate latitude and longitude information, as
shown in Table II, which could be used to match with more
sources of data in the future. The bounding box of the latitude
and longitude for each sample image is provided. The min-lon

and max-lon in the Table II are the minimum longitude and
maximum longitude, respectively. The min-lat and max-lat are
that of latitude. Furthermore, all sample images contain their
coordinates in the original GF-3 scenes, which are shown in
Table II. The bounding box of the pixel location for each sample
images are represented by the min-row, max-row, and min-col,
max-col in Table II.

Accurate masks of water, road, and building: It provides
accurate masks and outline of the water, road, and building areas.
Thus, it can be used in other fields such as road segmentation,
river and land segmentation, and building segmentation with
high-resolution GF-3 single-pol SAR images. Fig. 4(a)–(d) dis-
play the accurate outline of these object types.

Difference in features of the same category in the same or
different patch images: Due to the different collection time
and geographic location with GF-3, the same types in the
FUSAR-Map show the weak or strong difference of intensity
and characterization. For example, in Fig. 4, the (a)–(c), (e)–(f),
and (g)–(h) show the feature difference of building, vegetation,
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Fig. 4. Examples of the patch images and corresponding label images.

and water, respectively. Such variety can enhance the robustness
of the trained semantic segmentation networks.

III. SEMANTIC SEGMENTATION METHOD

With the FUSAR-Map dataset, we propose a supervised
deep-learning algorithm with the encoder–decoder structure for
SAR image semantic segmentation. For the task of semantic
segmentation of RGB optical images, various CNN network
structures have been proposed with breakthroughs. Based on
these pretrained CNN network structures, a unified SAR data
preprocessing method is first proposed to deal with the L2 format
SAR data. Then, a supervised encoder–decoder network based
on the structure of DeepLabv3+ [32] is proposed to achieve
Gaofen-3 SAR image semantic segmentation with fine-tuning.

A. Unified Data Preprocessing for SAR Data

Different from RGB optical images, SAR L2 format data may
appear very different if using different preprocessing methods.
To fine-tune the pretrained DCNN network weights from the
optical image using the SAR dataset, the L2 format SAR data
needs to be uniformly preprocessed. In this article, we utilize
N times the mean of non-zero data to truncate and stretch
the original SAR data, which abbreviated as NMT, detailed
in (1). For the FUSAR-Map dataset, the single-channel SAR
data is processed by the NMT method. For the PolSAR data on
“2020 Gaofen Challenge on Automated High-Resolution Earth
Observation Image Interpretation,” NMT is individually used

for each channel

I = uint8

[
I(I ≤ N ·mean(I))

N ·mean(I)
× 255

]
∈ [0, 255]. (1)

In (1), I represents the data value of each channel, mean(I)
represents the average value of all non-zero data for each channel
I , and N is an adjustable float value belongs to [2, 3] in this
article.

Based on the NMT method, the L2 format SAR data can be
converted to a uint8 data format belonging to [0, 255]. Owing
to the pretrained DCNN network trained by the normal optical
images of ImageNet [33], the images are all RGB format with
three channels, so the SAR data needs to be transformed into
three channels to form a pseudocolor image. For FUSAR-Map
data, single-channel data is copied three times to form a three-
channel image. For PolSAR data on “2020 Gaofen Challenge
on Automated High-Resolution Earth Observation Image Inter-
pretation,” the four-channel data is fused into a three-channel
pseudocolor image. According to the reciprocity principle of
backscattering SAR, its scattering intensity satisfies

Ihv = Ivh. (2)

Empirically, the difference in intensity value of HV and VH
channels is small. Therefore, we consider fusing the HV channel
data and the VH channel data into one channel. To minimize the
noise impact of cross-polarization, we use the method of aver-
aging to merge the intensity values with HV and VH channels,
like the Im in (3)

Im =
Ihv + Ivh

2
. (3)

In the process of synthesizing the pseudocolor image, we choose
HH channel, the average Im of HV and VH channel, VV channel
as R, G, B channel, respectively.

R = uint8

[
Ihv(Ihv ≤ N ·mean(Ihv))

N ·mean(Ihv)
× 255

]
∈ [0, 255]

(4)

G = uint8

[
Im(Im ≤ N ·mean(Im))

N ·mean(Im)
× 255

]
∈ [0, 255] (5)

B = uint8

[
Ivh(Ivh ≤ N ·mean(Ivh))

N ·mean(Ivh)
× 255

]
∈ [0, 255].

(6)

Data visualization comparison based on NMT and other prepro-
cessing methods will be given in detail in Section V.

B. Encoder–Decoder Network for SAR Image Semantic
Segmentation

An encoder–decoder model based on the structure of
DeepLabv3+ [32] is designed to achieve the SAR image se-
mantic segmentation. As shown in Fig. 5, the network is divided
into two parts, which are the encoder part and decoder part.
The purpose of the encoder module is to gradually capture the
high semantic information from the input SAR images, and the
decoder module is to gradually use the spatial information from
the feature maps to classify each pixel of the input images.
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Fig. 5. Structure of the encoder-decoder network.

In the encoder part, DCNN is employed to extract low-level
and high-level features. To reduce the computational complexity
and improve the high-level feature extraction ability of the
network, we use the Xception [34] module in the DCNN. In
Xception, we employ the atrous convolution [32] to replace the
standard convolution. For atrous convolution, the output y[i] for
each location i of a 2-D input x[i] with a filter w[k] of length K
is defined as

y[i] =
K∑

k=1

x[i+ r · k]w[k]. (7)

In (7), the r corresponds to the input sample stride, which is
equivalent to convolving the input x with upsampled filters
produced by inserting r − 1 zeros between two consecutive filter
values along each spatial dimension [35]. In a DCNN, the size
of field-of-view (FOV) can roughly indicates how much we use
context information. Consider the nth convolution layer, where
the size of the convolution kernel size is Kn, the stride size is
Sn, and the receptive field size FOVn is

FOVn = (FOVn+1 − 1) · Sn +Kn. (8)

The receptive field size of the network is

FOV0 =

N∑
n=1

(
(Kn − 1)

N−1∏
n=1

Sn

)
+ 1. (9)

For atrous convolution, the kernel size Ka is

Ka = Kn + (Kn − 1) · (r − 1). (10)

Equations (9) and (10) proves that atrous convolution can effec-
tively enlarge FOV without increasing the number of parameters

or the amount of computation. We follow the DCNN with atrous
spatial pyramid pooling (ASPP) [36] module and image global
average pooling to capture multiple scales context information
and image-level features. To avoid only the center weights
effect of the 3 × 3 convolution, the convolutions of the ASPP
module have r = (3, 6, 9) with 3 × 3 convolution. Learn from
PSPNet [37], we concatenate the output feature maps of DCNN,
ASPP, and image pooling. With 1× 1 convolution, the encoder
output feature map contains 256 channels and rich semantic
information.

In the decoder part, the encoder output feature maps are bilin-
early upsampled by a factor of 4. As for the low-level features,
we choose multiscale DCNN feature maps. Empirically, using
different sizes of feature maps from low-level features can enrich
the spatial information for image semantic segmentation. To
balance the weight ratio between the low-level features and
high-level features, we choose the number of low-level features
to 32 with 1 × 1 convolution. Next, a bilinear upsampling layer
is applied to generate features with the same size of network
inputs. Finally, we use two 3 × 3 convolution layers to obtain
sharper segmentation results.

IV. EXPERIMENTS AND DISCUSSION

In this section, we present and discuss the experimental re-
sults of the encoder–decoder model on FUSAR-Map and 2020
Gaofen Challenge. There are two main purposes in our experi-
ments: one is to verify the efficacy of the FUSAR-Map dataset
we constructed, and the other is to test the performance of se-
mantic segmentation using our algorithm on GF-3 SAR images.
In order to compare the performance of the experimental results,
several baseline encoder–decoder network such as U-Net [38],
SegNet [39] and DeepLabv3+ [32] models are tested in our work.
The experimental setup is described specifically in Section IV-A.
The experimental results of GF-3 single-pol SAR images are
presented in Section IV-B. And the experimental results of the
2020 Gaofen Challenge are described in Section IV-C.

A. Experimental Setup

For object-level semantic segmentation of GF-3 single-pol
SAR images, to obtain the experimental dataset, first of all, we
implement the semiautomated process to generate a well pixel-
labeled dataset, FUSAR-Map. Next, the 610 high-resolution GF-
3 SAR images with the size of 1024 × 1024 are divided into the
training dataset with 530 patch images and the test dataset with
80 patch images. For image augmentation, the training dataset
is augmented synthesizing seven new rotations (-135, -90, -45,
45, 90, 135, 180). And flip left and right, flip up and down of
images are randomly used.

The experiment fully polSAR dataset of this article is provided
by the 2020 Gaofen Challenge. The polSAR images are collected
from the GF-3 satellite. Their resolution is from 1 to 4 m. It
should be mentioned that only the amplitude information of
the four channels (HH, HV, VH, and VV) is provided in the
polSAR images. Also, the ground truth maps are humanly an-
notated according to six land-cover types: building area, industry
area, vegetation, water, bare soil, and others. In this challenge,
500 pairs of PolSAR images with the size of 512 × 512 are
provided as the training set and the testing data is not visible
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TABLE III
SPECIFIC EXPERIMENTAL PARAMETERS FOR FUSAR-MAP DATASET

to participants. We applied the same data augmentation method
described above.

As for a semantic segmentation system, its performance must
be evaluated with standard and well-known metrics. Therefore,
in this article, two metrics of the execution time and classification
accuracy are considered. Meanwhile, the classification accuracy
is of more importance than execution time in our work.

For the execution time assessment, we employ the training
time and test time of each encoder–decoder network to provide
the conditions for the benchmark. Besides, our implementation
is built on TensorFlow1.15 [40] and our experiments are imple-
mented on a single NVIDIA GeForce RTX 2080 Ti GPU with
the memory of 10 GB in Linux system.

In the semantic segmentation accuracy aspect, we assess
the experimental results with perclass accuracy (PA), overall
accuracy (OA), and frequency weighted intersection over union
(FWIoU) in this article. To express the mathematical formulas of
these evaluation metrics, we assume pij is the amount of pixels
of class i predicted to class j and Ti is the total number of pixels
labeled to class i. And the k is the total number of the classes.
Thus, the accuracy metrics are defined as follows:

Perclass Accuracy (PA): it simply computes a ratio between
the number of properly classified pixels and the total number of
pixels for each class.

PA =
pii
Ti

(11)

where i = 1, 2,..., k.
OA: it’s a percentage of the properly classified pixels and the

total number of pixels in the entire image

OA =

∑k
i=1 pii∑k
i=1 Ti

. (12)

FWIoU: this is a standard metric to measures the similarity
between the prediction results and the ground truth.

FWIoU =
1∑N

i=1

∑N
j=1 Sij

N∑
i=1

∑N
j=1 SijSii∑N

j=1 (Sij + Sji)− Sii

.

(13)
Of all metrics described above, the FWIoU is the most used

one. The higher value of these accuracy metrics indicates the
better semantic segmentation performance.

B. Experiments on GF-3 Single-Pol SAR Images

To verify the efficacy of FUSAR-Map and test the effective-
ness of the encode–decoder model based on transfer learning, we
compare the performance using encoder–decoder models with

and without pretrained. For the compared methods, the basic
encoder–decoder models are U-Net, SegNet, and Deeplabv3+.
Furthermore, the SegNet with VGG-16 and DeepLabv3+ pre-
trained on Cityscapes [41] are fine-tuned in our experiments,
which are named as VGG-SegNet and PT-DeepLabv3+, re-
spectively. In these comparison methods, including U-Net, Seg-
Net, DeepLabv3+, and ours that use the normal distribution to
initialize network parameters randomly. Also, include VGG-
SegNet pretrained with ImageNet, DeepLabv3+ pretrained with
Cityscapes and ours pretrained with ImageNet. The specific
parameters of these models are shown in Table III. The network
optimizer is Adam with an initial learning rate of 1e-3, which
multiply by 0.93 in every two epochs. And the loss function is
weighted categorical cross-entropy [40], described in (14).

Loss = −
k∑

i=1

Wi · [yi log ȳi + (1− yi) log (1− ȳi)] (14)

where yi is the ground truth with one-hot coding for class i, ȳi is
the softmax function output for class i, k is the total number of
output class, and Wi is the balanced weights of class i. Besides,
we choose the batch size of 10 with an input size of 256× 256
because of the limitation by the GPU memory. And the specific
trainable weights of networks are presents in Table III. These
models are trained or fine-tuned on the training datasets with
17 560 patch images and validated with 4390 patch images.
In experiments, we take the other category as the vegetation
category for training to reduce the interference from the invalid
samples, as Fig. 6(c). For the generalization test, we utilize
these encoder–decoder models to classify the test image from
FUSAR-Map, as Fig. 6(a). The experimental results of these
methods are shown in Table IV.

Through the results given in the Table IV, our network
achieves the highest OA and FWIoU of 0.758 and 0.666, re-
spectively. The results of SegNet and DeepLabv3+ indicate that
the pretrained models for fine-tuning on FUSAR-Map can ef-
fectively reduce the training time and achieve better object-level
semantic segmentation performance than the raw models. Also,
from the perspective of test time consumption, the encoder–
decoder network can quickly achieve efficient pixels-to-pixels
classification from the input image. Moreover, these encoder–
decoder models all achieve high perclass classification accuracy
on the water and vegetation categories. However, the pixel-wise
classification accuracy of the road and building categories is very
low, especially the road categories. Considering the trainable pa-
rameters in Table III and the classification results in Table IV, the
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TABLE IV
COMPARISON OF DIFFERENT NETWORKS FOR SEMANTIC SEGMENTATION RESULTS ON FUSAR-MAP TEST DATASET

Fig. 6. (a) The GF-3 single-pol SAR image located in Wuhan, Hubei Province
in China. (b) Label mask base on our pixel labeling process. (c) Changed label
with vegetation. (d)–(h) Semantic segmentation results of U-Net, SegNet, VGG-
SegNet, PT-DeepLabv3+, and PT-ours.

deeper networks often can achieve better object-level semantic
segmentation performance.

To compare the segmentation performance of different models
more intuitively, we display the entire segmentation maps com-
bined with the 1280 test patch images in FUSAR-Map, as shown
in Fig. 6. Fig. 6(a) is a high-resolution GF-3 single-pol SAR

Fig. 7. The test results of our network. (a) The SAR patch images with size
of 256 × 256. (b) The ground truch. (c) The semantic segmentation results of
our network.

image with the size of 8192 × 10240, located in Wuhan, Hubei
Province in China, and obtained on February 25, 2017. Fig. 6(b)
is the corresponding label mask. And Fig. 6(c) is the changed test
label image with vegetation category from Fig. 6(b). Fig. 6(d)–
(h) are the classification results generated by U-Net, SegNet,
VGG-SegNet, pretrained DeepLabv3+ (PT-DeepLabv3+), and
pretrained ours (PT-ours). From the images of the segmentation
results, the water category can be easily identified. However, it’s
difficult to distinguish the building and vegetation categories,
not to mention the road category. Overall, compared to these
object-level semantic segmentation results, the results predicted
by our network shows a clearer distribution of building and the
main road structure.

Compared with the region-level classification, the object-level
semantic segmentation can generate more accurate edges for
targets. To verify the pixel-to-pixel capability of the encoder–
decoder network, we display several test patch images with
the size of 256 × 256 and the corresponding segmentation
results predicted by our network, which are shown in Fig. 7.
Fig. 7(a) shows the GF-3 single-pol SAR test patch images
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TABLE V
SPECIFIC EXPERIMENTAL RESULTS ON 2020 GAOFEN CHALLENGE

with size of 256 × 256. And the Fig. 7(b) contains the label
masks. Fig. 7(c) presents the semantic segmentation results.
The object-level semantic segmentation results show the clear
category boundaries of the water. However, the building seg-
mentation results illustrate inaccuracy and blurred outline. As
for the road category, the main roads can be recognized, but the
narrow roads are lost. The object-level semantic segmentation
results demonstrate that it is difficult to precisely classify the
building and road categories with the FUSAR-Map dataset.
On the one hand, only the visual information of the image is
considered, the characteristics of the building in the SAR image
are different in the position and shape of the footprints label. The
road category is closer to the background intensity information,
which is difficult to accurately segment. On the other hand, the
road category accounts for a relatively small proportion and there
are very thin roads.

C. Experiments on 2020 Gaofen Challenge

To quantitatively evaluate the improvement of our network
over the baseline method DeepLabv3+, we conduct a K-
fold cross-validation study on the Gaofen challenge’s training
dataset. The training and validation sets are randomly divided
from all available training data (500 image pairs) with the
numeric ratio of 4:1. In this way, a total of five training and
validation sets can be divided. To reduce the effects of random
factors, the K-fold cross-validation has been conducted on all
five training and validation sets. And we take the average of the
indicators of K-fold cross-validation as the performance of the
network.

Similarly, to compare different unified image preprocessing
methods, we used three different methods to preprocess SAR
data. Besides, we also evaluate the impact of DCNN on the seg-
mentation results for different pretraining structures, as shown
in Table V. For the 2020 Gaofen challenge test scores, in the
preliminary stage, an evaluation server on the official website is
provided to generate the FWIoU scores for the upload algorithms
with the unified testing dataset. In the final stage, the official
uses a different testing dataset from the preliminary stage which
scales from 512 × 512 to 1500 × 1500, based on the offline
evaluation method, considering the algorithm accuracy, and
running speed.

In the data preprocessing part, we compared three different
unified preprocessing methods. The first is to directly add the
amplitude values of the four channels of PolSAR into a gray

image with one channel, marked as gray-single in Table V. The
second is to use the median of the SAR data values to cut and
stretch to form an RGB pseudocolor image [42], marked as
RGB-median in Table V. The third is the RGB pseudocolor
image obtained by the NMT method in Section III-A, marked
as RGB-mean in Table V. For the images generated by these
different visualization methods, we have done the same normal-
ization process before entering the network, that is, the standard
normal process with the mean value of 0 and the standard
deviation of 1. In the encoder–decoder network structure, we
mainly compared the DCNN structure of different depths based
on the Xception module, specifically Xception41, Xception65,
and Xception71 [43]. Also, we compared the baseline model
DeepLabv3+ with our adjusted network. The results are reported
in Table V.

The results show that based on the unified SAR data prepro-
cessing method, whether it is the baseline model Deeplabv3+ or
our improved network structure, Xception65 as a DCNN module
can achieve slightly better results than Xception41, and both are
better than Xception71. This shows that in limited SAR data,
too deep DCNN often leads to overfitting. While keeping the
network structure unchanged, different SAR data preprocessing
methods greatly affect the network segmentation effect. Whether
it is the local K-fold cross-validation or the test results during
the 2020 Gaofen Challenge, the RGB-median and RGB-mean
method improve by about 6% compared to the gray-single.
And the RGB-mean can increase by about 2% compared with
RGB-median. This is mainly because the NMT method has
the characteristics of making the SAR data of the same source
and the same region look similar visually, but different sources
and different regions look different, as Fig. 8. From the K-fold
cross-validation results, based on the same DCNN structure and
SAR data processing method, our adjusted network structure is
better than the baseline model Deeplabv3+.

To more clearly reflect the difference in segmentation re-
sults between our network structure and the baseline model
DeepLabv3+, we use the optimal DCNN structure Xception65
as the backbone network and obtain the segmentation results
for each land-cover category through K-fold cross-validation.
Table VI shows the results in details. The experimental compar-
ison results prove that multiscale DCNN features and the skip-
connection structure can improve the classification accuracy for
the decoder structure. However, the baseline model DeepLabv3+
can obtain better PA on special categories like bare soil and
vegetation based on the RGB-mean method. In the 2020 Gaofen
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TABLE VI
COMPARISON RESULTS BASED ON XCEPTION65 BACKBONE

Fig. 8. Comparison of different unified SAR data preprocessing methods and
segmentation results by our network on two sample areas. (a) the results of
gray-single, (b) the results of RGB-median, (c) the results of rgb-mean, (d) the
ground truth.

Challenge, we have won fourth place using our encoder–decoder
network with unified SAR data preprocessing method NMT.

Fig. 8 shows the comparison of the SAR data preprocessing
method and segmentation results on several sample dataset pro-
vided by the 2020 Gaofen Challenge. In Fig. 8, the first row and
the third row are images generated by different preprocessing
methods based on PolSAR data with four channels. From left to
right are gray-single, RGB-mean, and RGB-mean, respectively.
The second and fourth row is the corresponding segmentation
results generated by our encoder–decoder network. The fourth
column is the ground truth provided by the official website.
Based on the unified SAR data preprocessing method, our
network is capable of modeling context information from the
SAR image. The segmentation results show that some confusion
areas are correctly segmented and the object boundaries are
continuous.

D. DCNN Kernel Visualization

To explain why the convolution kernel with ImageNet pre-
training weights can be used for feature extraction of SAR

Fig. 9. Comparison of DCNN kernel visualization. (a) based on ImageNet
dataset, (b) based on PolSAR dataset, and (c) based on FUSAR-Map dataset.

images through fine-tuning, we use the gradient ascent
method [44] to visualize the convolution kernel in Xception65.
Fig. 9 shows the comparison of the several convolution kernel vi-
sualization in the same DCNN layer for three different datasets.
It has a relatively clear texture structure in the convolution
kernel visualization. Through the comparison of convolution
kernel visualization, it shows that there is wavy and angular
textures structure of DCNN pretrained by ImageNet, which are
similar to fine-tuning on the FUSAR-Map dataset. For SAR
images, the convolution kernel can still extract wavy and angular
texture structures. But the texture information highlighted by
the convolution kernel is different, like color or specific texture
features. Fig. 9 also shows that the same DCNN structure has
similarities in high-dimensional features and structural differ-
ences for different datasets. The visualization of the convolution
kernel can explain to a certain extent that the use of pretraining
weights to reasonably improve the starting point of network
optimization, therefore the network takes less training time and
retains some similar texture structures for convolution kernel.

V. CONCLUSION

In this article, in the field of object-level semantic segmen-
tation with high-resolution single-pol SAR images, we em-
ploy an encoder–decoder model based on transfer learning for
fine-tuning to obtain the semantic segmentation results. To
solve the lack of well pixel-labeled land cover datasets with
single-pol SAR images, we develop a novel architecture of
a semiautomated process to label high-resolution single-pol
SAR images. Besides, we constructed a well pixel-labeled
object-level semantic segmentation dataset FUSAR-Map. This
new dataset contains 610 high-resolution GF-3 single-pol SAR
images, with detailed information on latitude and longitude.
Moreover, FUSAR-Map has an accurate outline of the water,
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road, and building categories, which provides a strong basis for
object-level semantic segmentation task. Furthermore, based on
our encoder–decoder network, our algorithm with a unified SAR
data preprocessing method can achieve high performance of
PolSAR semantic segmentation on the 2020 Gaofen Challenge.

The experimental results demonstrate an acceptable object-
level semantic segmentation performance using a deep learning
algorithm on FUSAR-Map. On the one hand, object-level se-
mantic segmentation with single-pol SAR images is difficult to
research work. On the other hand, at present, the well-annotated
datasets and excellent algorithms accumulated in this field are
rare. Also, compared with raw encoder–decoder networks, the
networks pretrained for fine-tuning can often improve the se-
mantics segmentation accuracy. Meanwhile, when training on
FUSAR-Map, they always have the advantages of less time
consumption and a more stable learning gradient.

In our future research, we hope to construct larger and
category-rich datasets for object-level semantic segmentation
of high-resolution GF-3 single-pol SAR images. Furthermore,
we consider adding prior knowledge to the encoder–decoder
network to improve the object-level semantic segmentation per-
formance of single-pol SAR images.
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