
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020 533

Emphasizing Functional Relevance Over State
Restoration in Post-Silicon Signal Tracing

Debjit Pal , Student Member, IEEE, Sai Ma, and Shobha Vasudevan , Senior Member, IEEE

Abstract—The state restoration ratio (SRR) has been a de facto
standard for evaluating the quality of signals selected for post-
silicon tracing and debug. In this paper, we establish that SRR
is intrinsically unsuitable as a metric for evaluating trace signal
quality, as it captures neither the higher-level functionality of the
design nor the constraints and requirements on trace signals. We
present an algorithm, based on PageRank [PageRank on Netlist
(PRoN)], for post-silicon trace signal selection. PageRank is not
designed to maximize SRR and is applied to the circuit netlist.
We demonstrate that optimizing for SRR typically generates sig-
nals that are functionally irrelevant to the design and unusable
for debug, for a comprehensive set of SRR-based techniques. We
assess the scalability of different signal selection algorithms by
applying them to an industrial scale OpenSPARC T2 design. Our
results show that our PRoN algorithm consistently outperformed
other techniques with respect to scalability and functional rele-
vance of signals selected. It also has higher restorability than the
other algorithms, despite not being optimized for that metric.

Index Terms—Behavioral coverage, OpenSPARC T2 system-
on-chip (SoC), PageRank, signal selection, state restoration ratio
(SRR).

I. INTRODUCTION

POST-SILICON validation is a critically important [30]
and expensive activity, accounting for the majority of

the validation expense in modern system-on-chip (SoC)
designs [37].

A fundamental problem of post-silicon validation is lim-
ited observability and control. Only a few hundred among
millions of internal signals can be traced or controlled dur-
ing silicon execution. These signals must be selected a-priori
through analysis of pre-silicon design collateral, so that the
design can be instrumented with hardware to route them to
an observation point (e.g., pins and trace buffers). If criti-
cal signals are missed, their omission can be identified only
during post-silicon validation, as an inability to root-cause an
observed failure. At that point, rectifying the omission would
require a significant change in the observability architecture
together with silicon respin, which is not feasible.

Manuscript received March 16, 2018; revised August 14, 2018 and
October 15, 2018; accepted December 5, 2018. Date of publication
December 14, 2018; date of current version January 18, 2020. This paper
was recommended by Associate Editor S. Gao. (Corresponding author:
Debjit Pal.)

The authors are with the Electrical and Computer Engineering Department,
University of Illinois at Urbana–Champaign, Urbana, IL 61801 USA (e-mail:
dpal2@illinois.edu; saima1@illinois.edu; shobhav@illinois.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2018.2887047

Given the severity of the impact of missing observ-
ability, there has been significant research in the “sig-
nal selection problem,” or maximizing design visibility
as necessary for post-silicon debug under observability
restrictions [10], [16], [17], [20], [21], [25]. While there are
significant differences in the specific approaches proposed,
virtually all related work uses the same metric, called the
state restoration ratio (SRR), for evaluating approaches. The
SRR measures the number of design states reconstructed from
the signals observed; a set S of signals is considered supe-
rior to another set S′ if more design states can be inferred
from observing S than S′ (Section II-C). Most signal selection
algorithms include heuristics to efficiently identify signals that
maximize SRRs.

In this paper, we establish that despite its wide use as a de
facto standard in signal selection research, SRR is, in fact, a
poor metric for determining the quality of post-silicon trace
signals.

Why is SRR a poor metric for qualifying post-silicon trace
signals? Post-silicon validation exercises deep and interesting
functional behaviors of the design, e.g., booting of an oper-
ating system, running of target user-level applications, and
execution of different power-management mode. For each
such behavior, certain specific design states are critical, while
others might be irrelevant. A metric for post-silicon trace sig-
nals should reward (or highly favor) the selection of signals
that facilitate understanding, interpretation, and validation of
such high-level functionality during silicon execution. On the
other hand, restorability as a metric takes a “myopic” view
of state reconstruction, attempting to maximize restoration of
gate-level states without proper prioritization.

An attempt to maximize SRR frequently results in ignoring
the natural design structure and context/conditions of moni-
toring signals, causing the selected signals to be functionally
irrelevant to the design.

In previous work [26], we endeavored to increase the func-
tional relevance of selected signals by departing from the SRR
optimizing strategy of prior art. Instead, our approach was to
let the design structure indicate importance of signals. Our
algorithm is based on the Google PageRank algorithm [5],
as applied to the circuit netlist. The algorithm gives us a
rank ordering among important signals for tracing. We com-
pared the signals selected by our method with the signals
from SRR-based techniques. We used pre-silicon simulation
coverage metrics to establish functional relevance of selected
signals. We performed signal selection experiments on a USB
design [8], which has substantially more complex behavior

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3722-5126
https://orcid.org/0000-0002-6995-3219

534 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

than ISCAS89 benchmarks used in the literature until then.
Our results showed that compared to SRR-based methods,
our method selected signals with high functional relevance.
Further, we plotted SRR against the behavioral coverage
achieved by the signals selected by SRR optimizing meth-
ods [10] and our method. We found that high SRR values do
not correlate to high behavioral coverage.

Scalability is an important concern in automatic post-silicon
trace signal selection as its methods work on a fine-grained
netlist level. A modern SoC contains hundreds of different
intellectual property (IP) blocks [1] with millions of logic
elements such as flip-flops (see Fig. 6). SRR-based meth-
ods [10], [16], [22], [33] update the rate of restorability of
each flip-flop in the design in each iteration based on the cur-
rently selected trace signals. For a large-scale design such as
a modern SoC, this iterative update is computationally expen-
sive and has a chance to run out of time and/or memory. This
considerably limits the scalability of the state-of-the-art algo-
rithms. On the other hand, our PageRank-based algorithm as
applied to netlist (PRoN) avoids the restorability computation
altogether, relying on design structure and connectedness as
the guideline for signal selection. This is a cheaper operation.

In this paper, we focus on scalability, and demonstrate
experiments at an industrial scale. We show results on
the publicly available multi-core SoC design, OpenSPARC
T2 [4]. OpenSPARC T2 contains several heterogeneous IPs
and reflects many of the complex features of an industrial
SoC design. We selected several large and complex modules
from OpenSPARC T2 that contain up to 14,000 flip-flops
and up to 74,000 logic elements for our experiment. The
scale and complexity of these design modules are several
orders of magnitude greater than those of the traditional
ISCAS89 benchmarks used in signal selection literature. This
added complexity helps to illustrate the divergence between
gate-level state restorability and functional behavior.

Our experiments on OpenSPARC T2 design mod-
ules showed that state-of-the-art signal selection tech-
niques [10], [16], [22], [33] could not finish signal selection
for designs consisting of no more than 2800 flip-flops due to
timeout and large peak memory usage (up to 30 GB). Our
PRoN algorithm was able to select trace signals for designs
containing approximately 14,000 flip-flops within 13 s with a
peak memory usage of up to 1.5 GB. Our results showed that
PRoN has much better scalability than other state-of-the-art
signal selection algorithms for industrial scale designs.

While the original PageRank was sufficiently accurate for
our ISCAS, and USB experiments in [26], application of
this algorithm to the large scale OpenSPARC T2 introduced
problems that needed to be addressed at scale. Complex
interconnections such as feedback and feed-forward loop
structures among flip-flops and deep hierarchical signal con-
nections from instantiated modules to the top module exposed
issues in the original PageRank algorithm. The density and
complexity of connections in the real design caused PageRank
to infer that the outputs were the most important. For our pur-
pose, tracing an output signal does not add any value, since
it is observable anyway. In this paper, therefore, we modify
PageRank to correctly rank internal signals for large, complex

designs. We will refer to this modified PageRank as PageRank
on netlist (PRoN) hereafter.

In this paper, we also provide a more comprehensive
experimental study to compare the quality of the selected
trace signals in terms of behavioral coverage by using total
restorability-based [10], [26], hybrid-analysis-based [22], ILP-
based [31], [33], and simulation-based [16] signal selection
algorithms.

Our experimental results, when we applied the algorithms
to OpenSPARC T2, were in conformance with the results
presented in our previous work [26]. We compared our
PRoN method with the only two SRR-based techniques
that could finish for at least some of the OpenSPARC T2
design modules. The behavioral coverage of the signals
selected by our PRoN method consistently outperformed (up to
50.94% more) the signals selected by SRR optimizing meth-
ods [10], [22]. Further, we showed that signals selected by
PRoN executed up to 4.59% more design paths than did
signals selected by SRR-optimizing methods on large-scale
designs. PRoN achieves higher path coverage for the sig-
nals than selected by the SRR-optimizing methods due to
enhanced PageRank metric as it prefers flip-flops that are
highly connected and part of many design paths.

For completeness, we determined the extent of restorability
achieved by all the algorithms, including PRoN. Interestingly,
the signals selected by PRoN although not optimized for SRR,
often achieve up to 7.3× (on an average 3.15×) higher restora-
bility on large scale designs compared to signals selected by
SRR-optimizing methods.

Our contributions over [26] are as follows. First, we demon-
strate the scalability and viability of our PRoN signal selection
algorithm on the OpenSPARC T2 SoC design modules con-
taining up to 14,000 flip-flops and up to 74,000 logic elements.
To the best of our knowledge, this is the largest scale applica-
tion of netlist level signal selection approaches demonstrated
in literature. Second, we enhance the PageRank algorithm so it
can select high quality tracing signals at scale. Third, we pro-
vide a comprehensive comparison of our PRoN technique with
all the signal selection-based techniques (and tools) available
in the public domain. This provides conclusive empirical evi-
dence for the typical functional irrelevance of signals selected
by state-of-the-art SRR-based methods.

II. PRELIMINARIES

A. PageRank Algorithm

Google PageRank algorithm ranks a Web page as important
if it is hyperlinked from many important Web pages. This
ensures that not all hyperlinks have equal weights. PageRank
computes an importance score for each Web page based on
its incoming hyperlinks. Let p denote a Web page. Let B(p)
denote the set of pages that have an outgoing link to p, and
let F(p) denote the set of pages to which p has outgoing links.
Let ε be a constant between 0 and 1.0 and let n be the number
of Web pages. The PageRank PR(p) of p is defined as

PR(p) = (1− ε)
∑

pi∈B(p)

PR(pi)

|F(pi)| +
ε

n
. (1)

PAL et al.: EMPHASIZING FUNCTIONAL RELEVANCE OVER STATE RESTORATION IN POST-SILICON SIGNAL TRACING 535

The first term in (1) represents the probability that a random
surfer will navigate to a Web page. If the surfer is caught in
a cycle of Web pages, then it is unlikely that he or she will
continue in the cycle forever. The second term accounts for
the surfer’s eventual departure from the cycle and navigation
to a random Web page.

B. Hardware Signal Tracing

Hardware tracing is one among many different design-for-
debug architectures that are used to address the observability
limitation during post-silicon debug. The basic idea is to trace
a set of signals during post-silicon execution and store them in
on-chip memory called the trace buffer. Trace signal selection
needs to maintain various design constraints of which trace
buffer size directly translates to the area, power, and routing
congestion. As a result, only a few hundred among millions
of signals can be traced for a few thousand cycles.

A trace buffer has two parameters.
1) Width, i.e., the number of bits of signals that can be

traced simultaneously.
2) Depth, i.e., the number of cycles for which signals values

can be traced.
In post-silicon debug, unknown signal values can be recon-
structed from the traced values in two ways—forward restora-
tion and backward justification [19].

C. Signal Reconstruction and SRR Calculation

A metric used frequently to measure quality of the selected
signals is the SRR [10]. SRR is defined as the sum total
of the number of signals traced and the number of signals
restored expressed as a fraction of the number of signals
traced, i.e., SRR = (total number of signals traced + total
number of signals restored)/(total number of signals traced).

We calculate SRR for the simple circuit shown in Fig. 1.
Let us assume that the trace buffer can record values of two
signals. The restored values of the other signal states that use
the method of [10] are shown in Table I. The signals that are
chosen via total restorability computations are A and C. The
selected signals are shown in gray. Since ten signal values are
traced and 22 values are restored, the SRR with this selection
is 3.2.

D. Simulation-Based Coverage Metrics

In this section, we define several simulation-based coverage
metrics that we use in our experimental results.

Line coverage is defined as the fraction of total design
statements (like blocking, nonblocking, and assign statements)
that are executed in a design simulation. Branch coverage
is defined as the fraction of total branches (like if-else and
case statements) that are executed in a design simulation.
Condition coverage is defined as the fraction of conditions
of all branches that are executed in a design simulation. Path
coverage is defined as the fraction of total design paths that are
executed in a design simulation. Toggle coverage is defined
as the fraction of total bits of a wire/register that change from
a value of zero (1’b0) to one (1’b1) and back from one (1’b1)

Fig. 1. Example circuit [10].

TABLE I
STATE RESTORATION FOR CIRCUIT SHOWN IN FIG. 1

APPLYING ALGORITHM OF [10]

to zero (1’b0) in a design simulation. A bit is said to be fully
covered when it toggles back and forth at least once.

III. INADEQUACY OF SRR AS METRIC

A. Motivating Example

In this example we provide a comparison of selected sig-
nals corresponding to interesting high-level behavior between
SRR-based signal selection methods and our proposed
PRoN method. We show that using LC3B [2], a 16-bit
academic processor in which we attempt to reconstruct the
micro-architectural state.

We applied the SRR-based signal selection technique
SigSeT_1 [10] that is designed to maximize the SRR [10].
It selects the complete ISDU finite state machine (FSM) of
LC3B state registers, some bits of the program counter (PC),
and some bits of the instruction register (IR) at the top of
the list. With this set of signals, we can recreate a few con-
trol states, but not the rest of the processor state. Without the
complete PC and IR, it is not possible to determine which
instruction will be processed and fetched from memory next.

As a point of contrast with the above results, consider
the performance of our PRoN algorithm that does not seek
to maximize SRR (see Section IV) on the same example.
PageRank selects all of the ISDU FSM state registers, all 16
bits of PC and IR as complete words, and NZP branching reg-
isters. This is sufficient to check the sequence of states in the
design, the opcode and operands fetched, all transitions in the
control state machine, and branching behavior. PRoN ranks all
of the control signals with high priority, while ranking eight
16-bit data registers lower. This helps in reconstructing the
micro-architectural state of LC3B.

The above example suggests a key problem with the util-
ity of SRR as a metric: it treats all gate-level design states

536 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

Fig. 2. Circuit network G for the example circuit of Fig. 1. Each node in G
is a logic element and each edge in G follows the connectivity in the circuit.
Each edge of G is annotated with importance contributions from each node.

as “equals.” Reconstructing any specific design state is not
considered more valuable than reconstructing any other state.
However, practical debugging experience suggests that some
signals are inherently more valuable for validation and debug
than others. Also, some signals can provide useful state
information only in the presence of some other signals as well.
For example, reconstructing only the lower-order bit of a PC
provides little information on program behavior or execution
flow, while reconstructing all bits of the PC can provide signif-
icant insight. Consequently, signals selected to optimize SRR
do not necessarily facilitate debug.

B. Deconstructing SRR Inadequacies

We find that SRR is not useful for signal selection for
designs with the following features.

1) Large arrays, where SRR tends to reconstruct individ-
ual array element values.

2) On-chip instrumentation, since SRR selects signals
insufficient to validate instrumentation.

3) Complex SoC protocols, since SRR favors signals in
larger IP blocks and misses smaller ones, routers and
other important signals.

IV. PAGERANK-BASED TRACE SIGNAL SELECTION

ALGORITHM

We apply the PageRank algorithm [5], [13] to the cir-
cuit netlist. Algorithm 1 details the PRoN algorithm. In this
section, we apply it on the example circuit shown in Fig. 1.

1) Network Construction: We parse the synthesized netlist
of an RTL design to construct a directed graph G =
(V, E) representing the connectivity between different
logic elements, where every v ∈ V represents a logic
element and every directed edge (vi, vj) ∈ E repre-
sents a connection between the logic elements vi and vj.
Fig. 2 shows the directed graph for the example circuit
in Fig. 1.

2) PageRank Value Calculation: After constructing the
directed graph for the circuit, we apply PageRank algo-
rithm to compute the importance of each node. The
directed graph in Fig. 2 has 14 logic elements (eight
sequential elements and six logic gates). Each node
transfers its importance equally to the nodes to which it
links. For example, node A has three out-links, so it will
transfer 1/3 of its importance to each of the nodes OR1,

Fig. 3. Nodes of G of Fig. 2 annotated with importance values in successive
iterations and the final importance value as calculated by PRoN. PRoN selects
flip-flop F and C (shown in double circle) to trace as trace buffer width is 2.

Algorithm 1 Pseudo-Code of PRoN Algorithm

1: procedure PRoN(G, G′, error, ε)
2: G = (V, E),G′ = (V, E ′) {if (vi, vj) ∈ E , then

(vj, vi) ∈ E ′}
3: error: error bound for rank matrix convergence
4: ε: damping factor
5: prank1 ← PageRank(G, error, ε)
6: prank2 ← PageRank(G′, error, ε)
7: for v in G do
8: prankhm(v) ← HM(prank1(v), prank2(v)) {HM:

Harmonic Mean}
9: end for

AND1, and AND3. In general, if a node has n out-links,
it will pass on 1/n of its importance to each of the nodes
to which it is linked. Following this importance transi-
tion rule, we annotate every edge of the graph in Fig. 2
with the corresponding importance value.

Initially, we assume an equal rank for each of the nodes,
i.e., if there are n nodes in the network, every node will have
a rank of 1/n. In Fig. 2, each node has a rank of 1/14. As each
incoming link increases the rank of a node, we update the rank
of each node by adding the importance of the incoming links.
We continue this until the rank of all of the nodes stabilizes.
We use a standard error tolerance value in the PageRank algo-
rithm, which is 1e-6, to check for convergence in the power
iteration process. If the PageRank values across two iterations
is within this error tolerance, the rank of nodes is assumed to
have stabilized and is returned. In the example network, nodes
G and H do not have any outgoing links, and PageRank refers
to them as dangling nodes.

Dangling nodes would cause the final rank of each node
to converge to 0, and the importance of these nodes cannot
be propagated further. Since dangling nodes and disconnected
components are quite common in the Internet as well as in
common circuits, a positive constant between 0 and 1.0 (typi-
cally 0.15) is introduced, which is the damping factor ε [27].
We add a virtual directed edge from G and H to every other
node in the network and assign ε to every outgoing edge from
G and H.

After adjustment of the dangling nodes, we recalculate the
rank of each of the nodes in the graph until the PageRank value
stabilizes. For our example, the initial value, intermediate

PAL et al.: EMPHASIZING FUNCTIONAL RELEVANCE OVER STATE RESTORATION IN POST-SILICON SIGNAL TRACING 537

value, and final value of the PageRank of each node is shown
in Fig. 3.

Let 0 < ε < 1 be a constant source of importance. Let rk

denote r in the k-th iteration of the rank computation. Let A be
the adjacency matrix of size n× n where each A(ai, aj) is the
ratio between the number of right references to variable i in
all assignments to variable j to the number of right references
to variable i in all assignments. Let r0

i = (1/n). We compute
the importance score of each of the variables according to the
following equation:

rk+1 = (1− ε)Ark + ε

n
. (2)

A. Enhancing the Ranking Metric of Selected Signals

PageRank algorithm implicitly adjusts for the in-degree of
each node. When the same principle applied on a circuit netlist
graph with loop structures among flops, PageRank algorithm
tends to select output signals from the IP modules as high-
ranking signals. Since output signals are connected to many
internal signals, they inherit their importance values from these
signals. This gives the PageRank algorithm a false sense of
importance. For the signal selection application, selecting out-
put signals is not useful, since these are already observable.
Our objective in signal selection is to select important internal
signals for observation.

To resolve that concern, we enhance the signal-ranking
metric of the PageRank algorithm. We calculate a reverse
PageRank for each of the nodes in the circuit graph. We cre-
ate a graph G′ = (V, E ′) for the original circuit graph G. For
each directed edge e ∈ E connecting a pair of nodes (vi, vj)
in the original circuit netlist graph G, we create a directed
edge e′ ∈ E ′ connecting the same pair of nodes (vj, vi) in the
graph G′. Then we calculate a PageRank score for each of the
graph nodes in G′. We use prank1(v) to denote the PageRank
of a node in G, and prank2(v) to denote the PageRank of a
node in G′. Intuitively, we see that PageRank algorithm will
assign high importance values to the nodes in G′ that have
high in-degrees from other important nodes. The in-degree of
a node in G′ maps to the out-degree of the same node in the
G. To combine prank1(v) and prank2(v), we calculate their
harmonic mean (HM) following the idea of the importance
metric in [23]. We use prankhm to denote this metric

prankhm(v) = 1
1

prank1(v)
+ 1

prank2(v)

.

By virtue of HM, prankhm will assign high ranks to the
flip-flops that have high values for both prank1 and prank2.
Intuitively, this means that prankhm selects flip-flop nodes that
are connected to many other important flip-flop nodes via
incoming edges and can propagate their values to many other
flip-flops via outgoing edges. This indeed resolves our original
concern about PageRank algorithm’s selection of output nodes
for tracing. For the output nodes of a circuit netlist, the in-
degree is very high but the out-degree is very low. On the other
hand, for the input nodes of a circuit netlist, the out-degree is
very high but the in-degree is zero. Therefore, prankhm will
not select either outputs or inputs for tracing. Instead, it prefers

Fig. 4. Block diagram of OpenSPARC T2 processor. NCU: non-cacheable
unit and MCU: memory controller unit [4].

Fig. 5. Details of each of the OpenSPARC T2 design modules used in our
experiment. NoS: no. of submodules in the design module excluding standard
library cells. LoC: total lines of code excluding standard library cells.

important internal nodes of the design. In our running example,
PRoN selects flip-flop F and C (see Fig. 3) to trace which are
neither outputs nor inputs of the design rather they are internal
to the design. Our SRR results for OpenSPARC T2 IP modules
given in Section VI-B. Table V supports that conclusion.

B. Functionally Relevant Signal Selection by PRoN

The PRoN algorithm analyzes the structure of the circuit
netlist and selects a signal that is important in the design,
based on which other important signals that signal is con-
nected to. If a variable is well-connected to other connected
variables, it is highly likely that variable forms an impor-
tant part of the design function. In a well-designed hardware,
design structure should be closely related to functionality, for
optimal performance of the design implementation. We believe
variable importance is a metric that transitions quite faithfully
between the structure and the function of a design, thereby
capturing how a design structure, does in fact, correspond to
the functionality. Our results in Tables VI–VIII support this
intuition.

V. EXPERIMENTAL SETUP

A. Design Testbed

We primarily use the publicly available USB 2.0 [8],
ISCAS89 benchmarks, and multi-core OpenSPARC T2
SoC [4] to demonstrate our results. Comparing the testbeds,
we observe that the ISCAS89 benchmarks have no more than
1700 flops, and the USB despite being more complex, synthe-
sizes to around 1800 flops. In contrast, the OpenSPARC T2 is a
large, industry scale design with high complexity. We describe

538 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

Fig. 6. Comparison of number of different logic elements in ISCAS89 benchmarks, USB 2.0, and OpenSPARC T2 modules.

the experimental setup with respect to the OpenSPARC T2 in
the rest of this section.

OpenSPARC T21 is a multi-core SoC containing several
heterogeneous IPs and many of the complex design features
of an industrial SoC design. Fig. 4 shows an IP-level block
diagram of OpenSPARC T2. For these experiments, we used
several larger and complex IP modules of the OpenSPARC
T2 design. Fig. 5 details number of submodules and the total
number of line of codes of each of the T2 design modules that
we used in our experiment. Details of the ISCAS89 bench-
marks, USB 2.0, and several large and complex modules of
OpenSPARC T2 in terms of the total number of flip-flops and
the logic elements are shown in Fig 6. ISCAS89 benchmarks
contain up to 1728 flip-flops and 23 815 total logic elements
whereas the OpenSPARC T2 design modules contain up to
13 746 flip-flops and 74 350 total logic elements. The pres-
ence of a several orders of magnitude more flip-flops and logic
elements in the different design modules of OpenSPARC T2
make these modules functionally complex and larger than the
three largest designs of the ISCAS89 benchmark and the USB
design.

B. Testbenches

To simulate and collect trace signal values from
each of the OpenSPARC T2 design modules, we used
our own constrained-random testbenches [6] written in
SystemVerilog [7] as per the design specification. We could not
use any tests that are included in the OpenSPARC T2 regres-
sion suites, since those tests were meant to simulate the whole
SoC. We used SystemVerilog monitors during simulation and
recorded trace signal values into an output trace file.

C. Tools Used for Comparison

We compared the scalability and quality of the selected
trace signals of our PRoN method against those of sev-
eral other state-of-the-art algorithms. We used SigSeT_1 [10],

1OpenSPARC T2 source: http://www.oracle.com/technetwork/systems/open
sparc/opensparc-t2-page-1446157.html.

TABLE II
RUNTIME AND MAXIMUM MEMORY USAGE OF SIGSET_1 [10],

HYBRSEL [22], AND PRON DURING THE SIGNAL SELECTION PHASE ON

ISCAS89 BENCHMARKS AND USB. THE BENCHMARKS ARE ARRANGED

IN INCREASING ORDER OF TOTAL NUMBER OF LOGIC ELEMENTS.
T: RUNTIME IN SECONDS AND MEM: PEAK MEMORY USAGE IN MB

SigSeT_2 [33], HybrSel [22], and AASR [16]. Since
SigSeT_1, SigSeT_2, HybrSel, and PRoN accept designs in
ISCAS89 format, we converted the USB and OpenSPARC
T2 design modules into ISCAS89 netlist format for com-
parison among these algorithms. We synthesized the USB
and OpenSPARC T2 design modules by using the Synopsys
Design Compiler with the NanGate 45-nm library [3], and
constrained the library such that the synthesized DC netlist
contained only basic logic gates like AND, OR, NOT,
NAND, NOR, and D flip-flop (DFF). We then converted
the DC netlist into the ISCAS89 format. For AASR [15],
we used the GTECH 180 nm library that is included in
the Synopsys Design Compiler package, since AASR can
only parse design netlists consisting of GTECH library logic
elements.

D. Execution Platform

All experiments on the ISCAS89 designs and USB were
run on an AMD Opteron 8-core 22xx processor with 15 GB
of RAM. All experiments on the OpenSPARC T2 design
modules were run on an Intel Xeon CPU E3-1240 8-core pro-
cessor running at 3.4 GHz with 16-GB RAM. In most of our
experiments, we used simulation-based coverage metrics for
behavioral coverage, including line coverage, condition cov-
erage, branch coverage, toggle coverage, FSM coverage, and
path coverage.

PAL et al.: EMPHASIZING FUNCTIONAL RELEVANCE OVER STATE RESTORATION IN POST-SILICON SIGNAL TRACING 539

TABLE III
RUNTIME AND PEAK MEMORY USAGE OF SIGSET_1 [10], HYBRSEL [22], AASR [16], SIGSET_2 [33], AND PRON DURING THE SIGNAL SELECTION

PHASE ON OPENSPARC T2 DESIGN MODULES. OPENSPARC T2 DESIGN MODULES ARE ARRANGED IN INCREASING ORDER OF TOTAL NUMBER OF

LOGIC ELEMENTS. DFF: TOTAL NUMBER OF D FLIP-FLOPS IN A DESIGN MODULE, TOTAL: TOTAL NUMBER OF LOGIC ELEMENTS IN A DESIGN

MODULE; T: RUNTIME IN SECONDS; MEM: PEAK MEMORY USAGE IN MB; �: SIGNAL SELECTION FAILURE DUE TO EXCESSIVE PEAK

MEMORY USAGE (30 GB OR MORE); �: SIGNAL SELECTION FAILURE DUE TO AN ERROR; ∗ : SIGNAL SELECTION

FAILURE DUE TO TIMEOUT (1800 S); AND �: SIGNAL SELECTION FAILURE DUE TO TIMEOUT (7200 S)

VI. EXPERIMENTAL RESULTS

A. Scalability of Different Signal Selection Algorithms

In this experiment, we show scalability in terms of runtime
and peak memory usage of different signal selection algo-
rithms based on SRR including SigSeT_1 [10], SigSeT_2 [33],
HybrSel [22], and AASR [16]. We compare these algorithms
to our PRoN algorithm.

For this experiment we use the three biggest designs of the
ISCAS89 benchmark (namely s3592, s38417, and s38584),
and USB 2.0 design, we compare SigSeT_1, HybrSel, and
our PRoN algorithm (Table II). On the OpenSPARC T2, we
compare many more SRR-based signal selection tools with our
PRoN algorithm. The tools under comparison are SigSeT_1,
SigSeT_2, AASR, HybrSel, and PRoN. We run experiments
on 11 large and complex design modules of the OpenSPARC
T2 and compare runtime and peak memory usage [Table III
and Fig. 7(a)–(c)].

We consider a trace buffer width of 256 bits and trace buffer
depth of 512 cycles. To record the maximum memory usage
for ISCAS89 benchmarks and USB, we used the Massif tool
in Valgrind [9]. For OpenSPARC T2 design module, we use
the datetime package of Python to measure runtime. We
use a virtual memory monitor written in Python to monitor
the peak virtual memory usage of each algorithm during sig-
nal selection for OpenSPARC T2 design modules. We iterate
PageRank until the values of the ranking matrix are stabi-
lized. For each algorithm we set a timeout limit of 7200 s.
HybrSel, and AASR iteratively updates the restorability rate
of each state element based on the current signal selection, a
computationally intensive approach that is time consuming.

Note that in Table II, PRoN uses considerably large peak
memory usage for USB due to large fanouts of most of the
logic elements (often more than five) causing high outdegree
for many nodes in the G for USB. PageRank of a node thus
propagates to many other connecting nodes requiring large
number of iterations to converge. This causes high memory
usage for PRoN for USB design.

We make the following observations from Tables II and III,
and Fig. 7(a)–(c). From Fig. 7(a), we find that SigSet_1 could

not complete signal selection for designs consisting of more
than 2800 flip-flops because of its large peak memory usage
of 30 GB or more. In Fig. 7(b), we note that HybrSel failed
to complete signal selection for any design containing more
than 2900 flip-flops when the allowed time limit was varied
up to 7200 s in steps of 1800 s. Hence, in Table III, we report
the timeout value for HybrSel as 1800 s. Both SigSeT_2 and
AASR failed to complete signal selection for any OpenSPARC
T2 designs within the allowed time limit of 7200 s. None of
the SRR-based signal selection algorithms finished for designs
greater than 17 743 logic elements.

In contrast, our PRoN algorithm was able to complete sig-
nal selection within 13 s and with a peak memory usage of
up to 1.5 GB for the largest OpenSPARC T2 design module
consisting of 13 746 flip-flops.

HybrSel, AASR, and SigSeT_2 update the rate of restora-
bility of each flip-flop in the design in each iteration based on
currently selected signals. For a large number of flip-flops of
T2 design modules, this iterative update was computationally
intensive and took more time and memory, and often failed
to complete signal selection in a reasonable amount of time.
PRoN is able to scale because it analyzes topography of the
design identifying important variables.

Since two of the tools, namely AASR and SigSeT_2 do
not complete signal selection on any of the OpenSPARC T2
design modules, our comparison of selected signals in forth-
coming experiments is limited to the two SRR-based tools
that completed. Among them, since SigSeT_1 and HybrSel
do not complete for any modules larger than the dmu_clu,
we limit comparisons to the top six modules listed
in Table III.

This experiment shows that PRoN signal selection
algorithm scales to industry standard large-scale designs
compared to the state-of-the-art SRR-based signal selection
techniques.

B. Comparison of Algorithms With Respect to Restorability

In this experiment, we compare the restorability (measured
by SRR) achieved by algorithms designed to optimize the

540 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

(a) (b) (c)

Fig. 7. Scalability of different signal selection algorithms in terms of runtime (in seconds) and peak memory usage (in MB) for 11 different OpenSPARC
T2 design modules using (a) SigSeT_1 [10], (b) HybrSel [22], and (c) PRoN.

TABLE IV
COMPARATIVE ANALYSIS OF SRR USING SIGSET_1 [10],

HYBRSEL [22], AND PRON ON ISCAS89
BENCHMARKS AND USB 2.0

TABLE V
COMPARATIVE ANALYSIS OF SRR FOR SIGNALS SELECTED IN TABLE III

ON OPENSPARC T2 DESIGN MODULES. M1: PMU. M2:
MCU_RDPCTL_CTL. M3: DMU_DSN. M4: DMU_ILU. M5: NCU_FCD_CTL.

M6: DMU_CLU. RAND: SRR CALCULATED USING TRACE VALUES

OBTAINED FROM DESIGN SIMULATION USING RANDOM STIMULUS;
SIM: SRR CALCULATED USING TRACE VALUES OBTAINED FROM

DESIGN SIMULATION USING CONSTRAINED RANDOM STIMULUS;
⊗: NO SRR VALUES AS SIGSET_1 FAILS TO SELECT SIGNALS

FOR DMU_ILU (TABLE III); �: SRR CALCULATION

FAILED USING RANDOM STIMULUS FOR NCU_FCD_CTL;
§: HIGHEST SRR ACHIEVED USING RANDOM

STIMULUS; AND : HIGHEST SRR ACHIEVED USING

CONSTRAINED RANDOM STIMULUS

SRR metric with our PRoN algorithm, that is not designed
to optimize this metric. Since SRR is the de facto standard to
measure goodness of selected signals, we evaluate our algo-
rithm according to this metric for the sake of completeness.

To calculate SRR values for the ISCAS89 benchmarks and
USB 2.0 design, we simulate the designs using randomized
testbenches. We use the top 20% of the signals selected by
each method for each benchmark and restore signals for 5000
cycles.

For the OpenSPARC T2 design modules, since we con-
struct SystemVerilog testbenches (see Section V), we could
use signal values from simulation traces in addition to ran-
domized signal values to calculate the SRR. We use a trace
buffer width of 256 bits and a trace buffer depth of 512 cycles
for both simulation-value-based and randomized-value-based
SRR calculations.

Tables IV and V show comparative analysis of SRR val-
ues for different algorithms on ISCAS89, USB, and different
OpenSPARC T2 design modules, respectively.

SRR calculation involves forward propagation and back-
ward justification [10] for selected trace signals. In several
cases, signal restoration tool was not able to compute SRR
on the selected signals from Table III. In one case, none of
the randomized signal values converged, possibly because the
number of signals to be restored overflowed and eventually
restoration process ran out of memory.

On the ISCAS89 benchmarks, none of the methods out-
performed the others. PRoN’s SRR value is lower than that
of SigSeT_1 and HybrSel. On OpenSPARC T2 design mod-
ules, HybrSel and PRoN consistently performed better than
SigSeT_1. Table V shows that PRoN achieves the highest SRR
values for three IP modules while using simulation-based trace
values (in column 7), and for two IP modules while using
randomized trace values (§ in column 6). This is interesting,
given that PRoN is not optimized for SRR.

We note that the SRRs of the ISCAS89 benchmarks in
Table IV are significantly lower than the values reported
in previous papers [10], [16], [22]. SRR is a ratio and is
defined as (total number of signals restored + total number
of signals traced)/(total number of signals traced). Previous
work [10], [16], [22] used a fixed-length trace buffer of size
8/16/32, and therefore the denominator is 8/16/32. If the aver-
age number of signals restored is 1000, the RR value will be
126/63/32. We select approx 350 signals in each design, mak-
ing our denominator very large. So even with 1200 signals
restored, the SRR value is small. In Table V, when trace signal
values from simulation are used for restoration compared to
randomized values, the SRR values of the T2 benchmarks were
4× smaller. The reason is that randomization assigns a con-
crete binary value of 1’b1 or 1’b0 to every selected trace signal
at each cycle, effectively maximizing the SRR value. In a sim-
ulation, that is more reminiscent of the real scenario, there are
cycles in which a 1’bX (an unknown value) is assigned to a
traced signal. An unknown value does not help to restore any
other new signal values, effectively reducing the SRR values.
A traced signal may have 1’bX if it is part of a control bus
or a data bus. Whenever the control or data bus enable signal
is de-asserted, the control bus or the data bus does not have
a concrete binary value, causing the trace value of the traced
signal to become 1’bX.

Section VI-A concerns the scalability of each of the signal
selection methods. AASR and HybrSel simulate the design

PAL et al.: EMPHASIZING FUNCTIONAL RELEVANCE OVER STATE RESTORATION IN POST-SILICON SIGNAL TRACING 541

TABLE VI
COMPARATIVE ANALYSIS OF TRACE SIGNALS FROM SIGSET_1 [10] AND PRON WITH RESPECT TO SIMULATION-BASED COVERAGE METRICS FOR

DIFFERENT USB MODULES. U0: USBF_UTMI_IF. U1: USBF_PL, U2: USBF_MEM_ARB. U4: USBF_RF. U5: USBF_WB. L: LINE COVERAGE, C: CONDITION

COVERAGE, F: FSM COVERAGE, B: BRANCH COVERAGE, O: OVERALL COVERAGE. �: VCS DOES NOT REPORT THE COVERAGE VALUE

TABLE VII
COMPARATIVE ANALYSIS OF TRACE SIGNALS FROM SIGSET_1 [10], AND PRON WITH RESPECT TO SIMULATION-BASED COVERAGE METRICS FOR

DIFFERENT OPENSPARC T2 DESIGN MODULES. M1: PMU. M2: MCU_RDPCTL_CTL. M3: DMU_DSN. M4: DMU_ILU. M5: NCU_FCD_CTL. M6:
DMU_CLU. L: LINE COVERAGE. C: CONDITION COVERAGE. F: FSM COVERAGE. B: BRANCH COVERAGE. T: TOGGLE COVERAGE. P: PATH

COVERAGE. O: OVERALL COVERAGE. �: VCS DOES NOT REPORT THE COVERAGE VALUE. �: COVERAGE CALCULATION WAS NOT

POSSIBLE SINCE SIGSET_1 FAILS TO SELECT SIGNALS (TABLE III). §: HIGHLIGHTING PATH COVERAGE

TABLE VIII
COMPARATIVE ANALYSIS OF TRACE SIGNALS FROM HYBRSEL [22], AND PRON WITH RESPECT TO SIMULATION-BASED COVERAGE METRICS FOR

DIFFERENT OPENSPARC T2 DESIGN MODULES. M1: PMU. M2: MCU_RDPCTL_CTL. M3: DMU_DSN. M4: DMU_ILU. M5: NCU_FCD_CTL. M6:
DMU_CLU. L: LINE COVERAGE. C: CONDITION COVERAGE. F: FSM COVERAGE. B: BRANCH COVERAGE. T: TOGGLE COVERAGE. P: PATH

COVERAGE. O: OVERALL COVERAGE. �: VCS DOES NOT REPORT THE COVERAGE VALUE. : HIGHLIGHTING PATH COVERAGE

netlist in each iteration for the specified number of cycles dur-
ing signal selection to find out the best signals to trace. For
these big designs, with a larger number of specified cycles,
AASR and HybrSel take much longer time to complete sig-
nal selection and often times out. Hence, in order to have a
fair comparison of runtime and peak memory usage for signal
selection of all the methods on a reasonable number of designs,
we used a trace buffer depth of 512 cycles. We found that for
any trace buffer depth value of greater than 512 cycles, even
HybrSel can only complete signal selection for no more than
four designs, thereby reducing the value of this experiment.

This section concerns the signal restoration post tracing
using traced signal values. We restore signals with traced sig-
nal values using a combination of forward propagation and
backward justification. We can afford to restore up to 5000
cycles in this phase, since there is no iterative calculation,
unlike in the signal selection phase.

This experiment demonstrates that signals selected by
PRoN although not optimized for SRR, often achieve
higher restorability.

C. Comparing Behavioral Coverage of Selected Signals
In this experiment we study the behavioral coverage

achieved by the selected signals using different tools. In pre-
silicon simulation, behavioral coverage metrics are intended
to check for important high-level behavioral and functional
coverage of the design.

In this experiment, we use USB 2.0 and OpenSPARC T2
design modules. For USB design, we trace values of 355 flip-
flops for a simulation duration of 175 ms. Such a long trace
is needed since at least 100 ms of simulation is required to
activate different important states (such as the high-speed state
mode of USB) of the USB line control module. We use the
traced value of the selected signals along with five impor-
tant input control signals as the stimulus in RTL and measure
the behavioral coverage by using Synopsys VCS. The behav-
ioral coverage consists of four components, namely branch
coverage, line coverage, condition coverage, and FSM cover-
age. Table VI shows the behavioral coverage values reported
by VCS. For each of the methods, we do not report the
FSM coverage for u4 (usbf_rf), since it did not contain

542 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

(a) (b) (c)

(d) (e)

Fig. 8. Graphs showing lack of correlation between SRR and for (a) line coverage, (b) condition coverage, (c) branch coverage, (d) FSM coverage, and
(e) overall coverage on different USB modules u0, . . . , u5 for the signals selected by SigSeT_1 [10], and PRoN. ρ: correlation co-efficient between SRR and
the coverage metric. p: p-value indicating rejection probability for the null hypothesis of an uncorrelated system producing datasets that have ρ as extreme
as the one computed from observed datasets.

any state machines. Also, we do not report the FSM and
conditional coverage for u2 (usbf_mem_arb), as it is a
combinational design module. For OpenSPARC T2 design
modules, we traced values of 256 flip-flops for 512 cycles.
We used the traced values to measure the behavioral cover-
age by using Synopsys VCS. The behavioral coverage consists
of six components namely line coverage, condition coverage,
branch coverage, FSM coverage, toggle coverage, and path
coverage.2 Tables VII and VIII show the behavioral coverage
values reported by VCS. For SigSeT_1, VCS was able to cal-
culate path coverage for two different design modules whereas
for HybrSel and PRoN, VCS was able to calculate path cover-
age for three different design modules by using traced signal
values. The path coverage values are highlighted with § in
Table VII and with in Table VIII.

For the USB design, the behavioral coverage of signals
selected by PRoN is up to 42% (with an average of 19.6%)
greater than that of the signals selected by SigSeT_1. This
experiment shows that compared to SigSeT_1, PRoN selected
more functionally relevant signals from the USB design.

For the OpenSPARC T2 design modules, the overall behav-
ioral coverage of signals selected by PRoN is up to 30.12%
(with an average of 5.64%) greater than that of the signals
selected by SigSeT_1 and up to 13.12% (with an average of
5.83%) greater than that of the signals selected by HybrSel.
For OpenSPARC T2 we do not report FSM coverage for sev-
eral design modules, since those modules do not contain any
explicit state machines.

1) Line Coverage: Line coverage (Section II-D) of signals
selected by PRoN is up to 61.25% (with an average
of 10.34%) greater than that of the signals selected by
SigSeT_1 and up to 20.31% (with an average of 5.52%)
greater than that of the signals selected by HybrSel.

2) Branch Coverage: Branch coverage (Section II-D) of
signals selected by PRoN is up to 17.46% (with an aver-
age of 8.38%) greater than that of the signals selected by

2We enabled path coverage in VCS by using the -lca option.

SigSeT_1 and up to 42.72% (with an average of 7.4%)
greater than that of the signals selected by HybrSel.

3) Condition Coverage: Condition coverage (Section II-D)
of signals selected by PRoN is up to 24.62% (with
an average of 14.25%) greater than that of the signals
selected by SigSeT_1 and up to 50.94% (with an aver-
age of 11.62%) greater than that of the signals selected
by HybrSel.

4) Path Coverage: For SigSeT_1, the path coverage
(Section II-D) was up to 25.38% (with an average of
22.79%); for HybrSel the path coverage was up to
23.85% (with an average of 20.32%); and for PRoN,
the path coverage was up to 28.44% (with an aver-
age of 25.1%). For large designs, like OpenSPARC T2
design modules, even a small increment in path cov-
erage manifests in the execution of a large number of
additional design paths. In our analysis, signals selected
by PRoN achieved up to 4.59% (with an average of
3.33%) more path coverage than SigSeT_1 and HybrSel,
implying that signals selected by PRoN executed a larger
number of additional design paths compared to the
signals selected by SigSeT_1 and HybrSel. This experi-
ment shows that compared to SigSeT_1 and HybrSel,
PRoN selects functionally superior signals for trac-
ing from OpenSPARC T2 design modules. This result
supports our modification to the PageRank metric to
select important internal signals as demonstrated in
Section IV-A.

5) Toggle Coverage: Toggle coverage (Section II-D) of sig-
nals selected by SigSeT_1 is up to 3.35% greater than
that of PRoN but on average, toggle coverage of the
signals selected by PRoN is 0.37% greater than the sig-
nals selected by SigSeT_1. Toggle coverage of signals
selected by HybrSel is up to 4.82% (with an average
of 2.26%) greater than that of the signals selected by
PRoN.

This experiment shows that signals selected by
PRoN achieve higher behavioral coverage on industry

PAL et al.: EMPHASIZING FUNCTIONAL RELEVANCE OVER STATE RESTORATION IN POST-SILICON SIGNAL TRACING 543

(a) (b) (c)

(d) (e)

Fig. 9. Graphs showing lack of correlation between SRR and for (a) line coverage, (b) condition coverage, (c) branch coverage, (d) toggle coverage, and
(e) overall coverage on different OpenSPARC T2 modules M1, . . . , M6 for the signals selected by SigSeT_1 [10], HybrSel [22], and PRoN. M1: pmu. M2:
mcu_rdpctl_ctl. M3: dmu_dsn. M4: dmu_ilu. M5: ncu_fcd_ctl. M6: dmu_clu. ρ: correlation co-efficient between SRR and the coverage metric. p: p-value
indicating rejection probability for the null hypothesis of an uncorrelated system producing datasets that have ρ as extreme as the one computed from observed
datasets.

(a) (b) (c)

(d) (e)

Fig. 10. Graphs showing change in (a) line coverage, (b) condition coverage, (c) branch coverage, (d) toggle coverage, and (e) overall coverage and with differ-
ent configuration of trace buffer width on different OpenSPARC T2 modules M1, . . . , M6 for the signals selected by SigSeT_1 [10], HybrSel [22], and PRoN.
M1: pmu (). M2: mcu_rdpctl_ctl (). M3: dmu_dsn (). M4: dmu_ilu (). M5: ncu_fcd_ctl (). M6: dmu_clu (). SigSeT_1: �, HybrSel: •, PRoN: �.

TABLE IX
COMPARATIVE ANALYSIS OF TRACE SIGNALS FROM TRADITIONAL PAGERANK ALGORITHM [26], AND PRON WITH RESPECT TO SIMULATION-BASED

COVERAGE METRICS FOR DIFFERENT OPENSPARC T2 DESIGN MODULES. M1: PMU. M2: MCU_RDPCTL_CTL. M3: DMU_DSN. M4: DMU_ILU. M5:
NCU_FCD_CTL. M6: DMU_CLU. L: LINE COVERAGE. C: CONDITION COVERAGE. F: FSM COVERAGE. B: BRANCH COVERAGE. T: TOGGLE

COVERAGE. P: PATH COVERAGE. O: OVERALL COVERAGE. �: VCS DOES NOT REPORT THE COVERAGE VALUE. : HIGHLIGHTING PATH COVERAGE

standard large-scale designs outperforming the signals
selected by the state-of-the-art SRR-based techniques.

D. Correlation Analysis Between SRR and High-Level
Behavioral Coverage Metrics

This experiment finds if there is a correlation between
high SRR values and the behavioral coverage metrics from

pre-silicon, in order to determine the extent of high-level
functional coverage of SRR. For each of the USB design mod-
ules, we traced top 5%, 10%, 15%, and 20% flip-flops per tool
and for each of the OpenSPARC T2 design modules, we traced
top 32, 64, 128, and 256 flip-flops per tool. We used the trace
signal values and the design netlist to calculate the SRR value
via backward justification and forward propagation [11]. Also,
we used the traced signal values and the instrumented Verilog

544 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

Fig. 11. Comparison between signals selected by the traditional PageRank
algorithm [26] and the modified PageRank algorithm of current work for
various OpenSPARC T2 design modules. M1: pmu. M2: mcu_rdpctl_ctl. M3:
dmu_dsn. M4: dmu_ilu. M5: ncu_fcd_ctl. M6: dmu_clu.

code of each of the design module and calculated different
coverage metrics using Synopsys VCS. We use scatter plots
to analyze correlation between SRR and the coverage metric
values for each group of traced flip-flops for each of the design
modules.

In Fig. 8(a)–(e), we analyze the correlation between SRR
and the different components of behavioral coverage for USB
design modules. In Fig. 9(a)–(e), we analyze the correlation
between SRR and the different components of behavioral cov-
erage for OpenSPARC T2 design modules. For each such
scatter plot, we have calculated the Pearson rank correlation
coefficient ρ and have shown it below the scatter plot.

This experiment shows that there is no correlation
between the SRR value and behavioral coverage. This
underscores the point that a high SRR has low to no
correlation with functional behavior.

E. Sensitivity Analysis Between Behavioral Coverage and
Trace Buffer Width and Depth

This experiment finds the sensitivity of the behavioral cov-
erage metrics from pre-silicon with the different configurations
of the trace buffer width with a fixed trace buffer depth. For
each of the OpenSPARC T2 design modules, we traced top
32, 64, 128, and 256 flip-flops per tool for 512 cycles. We
use line plots to analyze the sensitivity between each of the
coverage metrics and the different trace buffer width.

In Fig. 10(a)–(e), we analyze the sensitivity between differ-
ent components of the behavioral coverage and different trace
buffer width for OpenSPARC T2 design modules.

This experiment shows that the behavioral coverage
increases with the increasing width of the trace buffer.
This underscores the point that post-silicon observability
is positively sensitive to the trace buffer width.

F. Comparison of the Signals Selected by Traditional
PageRank Algorithm [26] and PRoN (Modified
PageRank Algorithm)

This experiment demonstrates the improvement in signal
selection of PRoN, the modified version of the PageRank algo-
rithm over the traditional PageRank algorithm applied in [26].
We compare the improvement in terms of: 1) the percentage
of the selected internal design signals and 2) the improvement
in the behavioral coverage metrics of the selected signals.

TABLE X
HIGH-LEVEL FUNCTIONALITY COVERED BY PRON AND SIGSET_1
SELECTED SIGNALS ON USB NETLIST. P: PARTIAL BIT SELECTED

For this experiment, we choose a trace buffer width of 256
bits for each of the OpenSPARC T2 design modules per
method.

1) Comparison in Terms of Selected Internal Design
Signals: In Fig. 11, we analyze the percentage of internal
design signals among the signals that are selected for trac-
ing by two methods. In traditional PageRank algorithm, up
to 77.34% of selected signals are design output signals (with
an average of 54.10%) whereas for the PRoN no more than
19.14% of selected signals are design output signals (with an
average of 6.77%). While for traditional PageRank algorithm
up to 74.60% of selected signals are internal design signals
(with an average of 45.89%), for PRoN up to 100% of selected
signals are internal design signals (with an average of 93.23%).
Further analysis shows that the output signals that are selected
by PRoN are connected to highly important internal design
signals in a feedback loop making those signals relevant for
tracing. PRoN selects up to 77.35% more internal design sig-
nals (with an average of 41.80%) for tracing compared to the
traditional PageRank algorithm of [26].

This experiment shows that for tracing, the modified
PageRank algorithm selects significantly more internal
design signals compared to the traditional PageRank
algorithm method of [26], thereby increasing post-silicon
observability.

PAL et al.: EMPHASIZING FUNCTIONAL RELEVANCE OVER STATE RESTORATION IN POST-SILICON SIGNAL TRACING 545

2) Comparison in Terms of Behavioral Coverage: In this
experiment, we study the behavioral coverage achieved by the
selected signals using traditional PageRank algorithm [26] and
PRoN. Our experimental setup and the behavioral coverage
metrics that are used for this comparison, are similar to that
of Section VI-C.

In Table IX, we compare the behavioral coverage of the sig-
nals that are selected by the two methods. Our analysis shows
that the signals selected by PRoN achieves up to 13.31% (aver-
age 6.97%) more overall behavioral coverage compared to the
signals selected by the traditional PageRank algorithm. For
large designs like OpenSPARC T2 design modules, even a
small increment in path coverage manifests in the execution of
a large number of additional design paths. In our experiment,
signals selected by the PRoN achieves up to 7.51% (average
5.73%) path coverage compared to the traditional PageRank
algorithm implying that signals selected by the PRoN exe-
cuted a large number of additional design paths compared to
the signals selected by the traditional PageRank algorithm.

This experiment shows that signals selected by
PRoN achieve superior behavioral coverage on industry
standard large-scale designs outperforming the signals
selected by the traditional PageRank algorithm.

G. High-Level Functionality Selected by PRoN on
USB Netlist

To give a flavor of the type of high-level functionality cap-
tured by the signals selected, we provide a qualitative analysis
of two algorithms, PRoN and SigSet_1. In Table X, for each
signal, we list the corresponding RTL module and its high-
level functionality. PRoN selects all the FSM state registers of
the USB protocol engine (usbf_pe) and the USB line state
module (usbf_utmi_ls) and other important signals. On
the other hand, SigSet_1 selects only one signal completely
and the other partially.

VII. RELATED WORK

Automatic selection of trace buffer signals to maximize
the SRR has been studied and many methods have
been proposed such as partial-restoration-based [20], [25],
complete-restoration-based [10], [12], simulation-based [16],
hybrid analysis-based [22], and machine-learning-based [31],
[33]. Hardware tracing combining scan chain and trace buffers
were studied in [11], [21], and [32]. Hardware tracing using
graph centrality measure was studied in [18]. The proposed
work improves over above mentioned works in terms of
scalability, functional relevance of the selected signals to com-
prehend post-silicon execution, and behavioral coverage of the
selected signals.

Many existing post-silicon debug technique can benefit from
PRoN and its improved functionally relevant signals. These
include trace analysis-based SoC protocol debug [14], [38],
post-silicon validation and trace signal selection via bit-
flip detection [34], [35], post-silicon bug localization, and
validation for processors [24], [28], [29], [36].

VIII. CONCLUSION

In light of our experimental findings, the use of SRR as
a signal selection metric is not advisable. Instead, an alter-
nate metric needs to be proposed for hardware signal tracing.
In [26], we proposed assertion coverage as one such metric.
This comprises the number of assertions that can be eval-
uated using the traced signal values. This metric certainly
captures high-level behavioral intent since it uses assertions. It
may be noted that it depends heavily on the quality of asser-
tions, increasing the subjectivity of the approach. There is a
need to define and characterize a metric for signal selection
that reflects high-level functionality better than SRR. In future
work, we will evaluate assertion coverage and develop such
metrics.

In conclusion, we have shown that the SRR as a metric
does not reflect the behavioral coverage of the design relevant
to practical post-silicon debug. Unsurprisingly, we found no
study reporting on the usage of SRR-based methods on indus-
try scale design; all reported applications have been on small
benchmarks (e.g., ISCAS89) that are not representative of the
complexities of an industrial integrated circuit. The current and
future needs of industry are better served if more representa-
tive metrics are used for signal selection. We present a signal
selection method based on analyzing structural connectivity of
the circuit netlist which in turn selects functionally relevant
signals by computing variable importance. We demonstrate
experiments at a scale and complexity that has hitherto never
been used in hardware signal tracing literature. Our algorithm
can scale to very large designs with moderate usage of com-
puting resources, and selects high quality signals that closely
reflect high-level behavioral functionality.

ACKNOWLEDGMENT

The authors would like to thank Prof. S. Ray of the
University of Florida, Gainesville, for many insightful dis-
cussions. They would also like to thank R. Jiang for
implementation.

REFERENCES

[1] Intel Core I7 Processors. Accessed: Mar. 16, 2018. [Online]. Available:
https://www.intel.com/content/www/us/en/processors/core/8th-gen-proc
essor-family-s-platform-datasheet-vol-1.html

[2] LC3B Processor. Accessed: Oct. 31, 2015. [Online]. Available:
https://courses.engr.illinois.edu/ece411/mp/LC3b_ISA.pdf

[3] Nangate FreePDK. Accessed: Oct. 31, 2015. [Online]. Available:
http://www.nangate.com/?page_id=2325

[4] OpenSPARC T2. Accessed: Mar. 16, 2018. [Online]. Available:
http://www.oracle.com/technetwork/systems/opensparc/opensparc-t2-pa
ge-1446157.html

[5] PageRank Algorithm. Accessed: Mar. 16, 2018. [Online]. Available:
http://www.ccs.northeastern.edu/home/daikeshi/notes/PageRank.pdf

[6] PRoN Framework. Accessed: Mar. 16, 2018. [Online]. Available:
https://sites.google.com/view/dpal2/tools

[7] System Verilog LRM. Accessed: Mar. 16, 2018. [Online]. Available:
http://standards.ieee.org/getieee/1800/download/1800-2012.pdf

[8] USB 2.0. Accessed: Oct. 31, 2015. [Online]. Available:
http://opencores.org/project,usb

[9] Valgrind Massif Tool. Accessed: Oct. 31, 2015. [Online]. Available:
http://valgrind.org/docs/manual/ms-manual.html

[10] K. Basu and P. Mishra, “Efficient trace signal selection for post sili-
con validation and debug,” in Proc. 24th Int. Conf. VLSI Design (VLSI
Design), 2011, pp. 352–357.

546 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 2, FEBRUARY 2020

[11] K. Basu, P. Mishra, and P. Patra, “Efficient combination of trace and
scan signals for post silicon validation and debug,” in Proc. IEEE Int.
Test Conf. (ITC), Anaheim, CA, USA, Sep. 2011, pp. 1–8.

[12] K. Basu, P. Mishra, P. Patra, A. Nahir, and A. Adir, “Dynamic selection
of trace signals for post-silicon debug,” in Proc. 14th Int. Workshop
Microprocessor Test Verification (MTV), Dec. 2013, pp. 62–67.

[13] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web
search engine,” Comput. Netw., vol. 30, nos. 1–7, pp. 107–117, 1998.

[14] Y. Cao, H. Zheng, H. M. Palombo, S. Ray, and J. Yang, “A post-silicon
trace analysis approach for system-on-chip protocol debug,” in Proc.
IEEE Int. Conf. Comput. Design (ICCD) Boston, MA, USA, Nov. 2017,
pp. 177–184.

[15] A. Chatterjee, S. Deyati, B. Muldrey, S. Devarakond, and A. Banerjee,
“Validation signature testing: A methodology for post-silicon valida-
tion of analog/mixed-signal circuits,” in Proc. Int. Conf. Comput.-Aided
Design, 2012, pp. 553–556.

[16] D. Chatterjee, C. McCarter, and V. Bertacco, “Simulation-based signal
selection for state restoration in silicon debug,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design (ICCAD), 2011, pp. 595–601.

[17] K. Han, J.-S. Yang, and J. A. Abraham, “Enhanced algorithm of com-
bining trace and scan signals in post-silicon validation,” in Proc. IEEE
31st VLSI Test Symp. (VTS), 2013, pp. 1–6.

[18] E. Hung and S. J. E. Wilton, “Scalable signal selection for post-silicon
debug,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 6,
pp. 1103–1115, Jun. 2013.

[19] H. F. Ko and N. Nicolici, “Algorithms for state restoration and trace-
signal selection for data acquisition in silicon debug,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 28, no. 2, pp. 285–297,
Feb. 2009.

[20] H. F. Ko and N. Nicolici, “Automated trace signals selection using the
RTL descriptions,” in Proc. IEEE Int. Test Conf. (ITC), 2010, pp. 1–10.

[21] H. F. Ko and N. Nicolici, “Combining scan and trace buffers for enhanc-
ing real-time observability in post-silicon debugging,” in Proc. Eur. Test
Symp., 2010, pp. 62–67.

[22] M. Li and A. Davoodi, “A hybrid approach for fast and accurate trace
signal selection for post-silicon debug,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 33, no. 7, pp. 1081–1094, Jul. 2014.

[23] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” in Proc. ACM SIGPLAN Conf. Program. Lang.
Design Implement., Chicago, IL, USA, Jun. 2005, pp. 15–26.

[24] D. Lin et al., “Effective post-silicon validation of system-on-chips
using quick error detection,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 33, no. 10, pp. 1573–1590, Oct. 2014.

[25] X. Liu and Q. Xu, “On signal selection for visibility enhancement in
trace-based post-silicon validation,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 31, no. 8, pp. 1263–1274, Aug. 2012.

[26] S. Ma, D. Pal, R. Jiang, S. Ray, and S. Vasudevan, “Can’t see the forest
for the trees: State restoration’s limitations in post-silicon trace sig-
nal selection,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design,
(ICCAD), Austin, TX, USA, Nov. 2015, pp. 1–8.

[27] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: Bringing order to the Web,” Dept. Comput. Sci.,
Stanford Univ., Stanford, CA, USA, Rep., 1998. [Online]. Available:
http://ilpubs.stanford.edu:8090/422/

[28] S.-B. Park, A. Bracy, H. Wang, and S. Mitra, “BLoG: Post-silicon bug
localization in processors using bug localization graphs,” in Proc. ACM
47th Design Autom. Conf., 2010, pp. 368–373.

[29] S.-B. Park, T. Hong, and S. Mitra, “Post-silicon bug localization in
processors using instruction footprint recording and analysis (IFRA),”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28, no. 10,
pp. 1545–1558, Oct. 2009.

[30] P. Patra, “On the cusp of a validation wall,” IEEE Design Test Comput.,
vol. 24, no. 2, pp. 193–196, Mar./Apr. 2007.

[31] K. Rahmani, P. Mishra, and S. Ray, “Efficient trace signal selection
using augmentation and ILP techniques,” in Proc. 15th Int. Symp.
Qual. Electron. Design (ISQED), Santa Clara, CA, USA, Mar. 2014,
pp. 148–155.

[32] K. Rahmani, S. Proch, and P. Mishra, “Efficient selection of trace and
scan signals for post-silicon debug,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 24, no. 1, pp. 313–323, Jan. 2016.

[33] K. Rahmani, S. Ray, and P. Mishra, “Postsilicon trace signal selec-
tion using machine learning techniques,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 25, no. 2, pp. 570–580, Feb. 2017.

[34] P. Taatizadeh and N. Nicolici, “Automated selection of asser-
tions for bit-flip detection during post-silicon validation,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 12,
pp. 2118–2130, Mar. 2016.

[35] A. Vali and N. Nicolici, “Bit-flip detection-driven selection of trace
signals,” in Proc. 21st IEEE Eur. Test Symp. (ETS), Amsterdam,
The Netherlands, May 2016, pp. 1–6.

[36] I. Wagner and V. Bertacco, “Reversi: Post-silicon validation system for
modern microprocessors,” in Proc. IEEE Int. Conf. Comput. Design
(ICCD), 2008, pp. 307–314.

[37] S. Yerramilli, “Addressing post-silicon validation challenge: Leverage
validation and test synergy,” in Proc. Int. Test Conf. Keynote, 2006,
pp. 12–17.

[38] H. Zheng, Y. Cao, S. Ray, and J. Yang, “Protocol-guided analysis of
post-silicon traces under limited observability,” in Proc. 17th Int. Symp.
Qual. Electron. Design (ISQED), Santa Clara, CA, USA, Mar. 2016,
pp. 301–306.

Debjit Pal (S’18) received the B.Tech. degree from
Jadavpur University, Kolkata, India, and the M.S.
degree from the Indian Institute of Technology
Kharagpur, Kharagpur, India. He is currently pur-
suing the Ph.D. degree with the Electrical and
Computer Engineering Department, University of
Illinois at Urbana–Champaign, Urbana, IL, USA.

His current research interests include post-silicon
validation and debug, pre-silicon validation and
debug, system verification, and assertion-based
verification.

Mr. Pal was a recipient of the best paper nomination in ICCAD 2015 and
DAC 2018, and the IEEE CEDA System Validation and Debug Technology
Committee Student Research Award in 2016.

Sai Ma received the B.S. and M.S. degrees from the
Electrical and Computer Engineering Department,
University of Illinois at Urbana–Champaign,
Urbana, IL, USA, with a focus on trace buffer
signal selection for post-silicon debugging.

Ms. Ma was a recipient of the Best Paper Award
of DAC 2014 and was nominated for Best Paper
Award of ICCAD 2015.

Shobha Vasudevan received the M.S. and Ph.D.
degrees from the University of Texas at Austin,
Austin, TX, USA.

She is currently an Associate Professor with the
Electrical and Computer Engineering Department,
University of Illinois at Urbana–Champaign,
Urbana, IL, USA. Her current research interests
include system verification, analog and digital
validation, formal and static analysis, machine
learning, and causal inferencing in big data.

Dr. Vasudevan was a recipient of the Best Paper
Award of VLSI 2014 and DAC 2014, the NSF Career Award, the ACM
SIGDA Outstanding New Faculty Award, the IEEE CEDA Early Career
Award, the IBM Faculty Partnership Award in 2017, and several best paper
nominations.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

