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 This paper deals with the problem of synchronization (anti-synchronization) of fractional nonlinear systems. Here, due 

to the advantages of fractional calculus and sliding mode control, we provide a new fractional order sliding mode control 

for synchronization (anti-synchronization) problems. So, in this paper a novel sliding surface is introduced and with and 

without the existence of uncertainties and external disturbances, finite-time synchronization is achieved by designing a new 

fractional sliding mode control. This method applied to the class of fractional order nonlinear systems and sufficient 

conditions for achieving synchronization/anti-synchronization are derived by the use of fractional Lyapunov theory. To 

show the effectiveness and robustness of the proposal, we applied our method on two identical fractional order financial 

system to verify the efficacy. 
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I. INTRODUCTION 

Chaotic system is a nonlinear deterministic system with 

complex and unpredictable behavior. Chaotic behavior as is 

known to all, is a prevalent phenomenon which can be 

appeared in nonlinear systems. It has been also seen in a 

variety of real system in laboratory such as electrical circuits, 

chemical reactions and fluid dynamics and so forth [1]. Based 

on chaos theory, the prominent features of chaotic systems 

are that the highly sensitivity to initial conditions. Chaos 

synchronization is a phenomenon that may happen when two, 

or more, dissipative chaotic systems are coupled. Moreover, 

Synchronization control is one of the important research area 

in chaos theory and it is simply means that things occur at the 

same time. The main problem related to the synchronization 

of two chaotic systems is that the time which complete 

synchronization will happen is not specified [2].The original 

synchronization technique investigated and developed by 

Pecorra and Carroll [3]. Synchronization is a contemporary 

topic in nonlinear science because of the broad applications 

in various fields such as automatic control [4], secure 

communication [5] and signal processing [6]. Therefore, 

especially during the past decades, synchronization of chaotic 

systems have been attracted attentions of many researchers in 

various field of sciences. Different kinds of control 

methodologies have been applied for synchronization of 

chaotic systems like adaptive control [7], linear and nonlinear 

active control [8], back stepping control [9] and sliding mode 

control [10]. One other interesting phenomena in scholars’ 

view is anti-synchronization of chaotic systems which is 

noticeable in periodic oscillators.  

Fractional calculus is a mathematical tool and has a long 

history when Leibniz wrote a letter to L’Hôpital, raising the 

possibility of generalizing the meaning of derivatives from 

integer order to fractional order (FO) derivatives. But, from 

then, its applications to physics and engineering have 

attracted much more attention just in recent years [11]. It has 
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been recently found that many real phenomena can be more 

accurately model with FO systems comparing to integer order 

systems. It is obvious that the advantages of FO system is the 

number of degree of freedom in modelling of nonlinear 

phenomena as well as memory which included in. In recent 

years, many complex systems can be described using 

fractional integrals and derivatives such as FO Chen system 

[12], FO Duffing-Holmes [13] , FO Chua system [14], 

Arneodo systems[15] and so on. Thereafter, different kinds of 

FO control methodologies are studied like FO PID 

controller[16], and FO optimal controllers [17]. 

Among different kinds of control methodologies for 

synchronization and anti-synchronization which mentioned 

above sliding mode control owing to its benefits such as fast 

response, robustness, and low sensitivity to external noise as 

well as easy realization are considered. 

Synchronization problem of FO chaotic systems was first 

reported by Deng and Li [18]. Finite time synchronization of 

two different chaotic nonlinear integer order with unknown 

parameters are investigated in [19]. The issues of 

Synchronization of a coupled Hodgkin–Huxley neurons were 

investigated via high order sliding-mode feedback[20]. A 

novel FO terminal sliding mode control is designed for 

control and synchronization of FO non autonomous chaotic 

and hyper chaotic systems in finite time [21]. A modified 

sliding mode synchronization for a typical three-dimensional 

FO chaotic systems as well as a modified projective 

synchronization of FO chaotic systems based on active 

sliding mode control are considered in[22]. Also, lots of 

researches have been done for anti-synchronization of FO 

chaotic systems. For instance, Synchronization and 

anti-synchronization of two identical chaotic system is 

investigated[3]. In[23] anti-synchronization of FO chaotic 

and hyper chaotic systems with unknown parameters by the 

method of modified adaptive control is investigated. 

In this paper, owing to the above advantages of fractional 

calculus and sliding mode control and combinations of them 

which are applied in different case studies and some of are 

mentioned in the literature, we suggest and introduce a novel 

fractional sliding mode controller for a class of nonlinear 

systems. In other words, we first propose a novel sliding 

surface and then design a new fractional order controller for 

synchronization and anti-synchronization. 

The main contributions of this paper can be presented in 

brief as follows: (1) Synchronization and 

anti-synchronization of a class of nonlinear fractional order 

system is discussed in terms of FO sliding mode strategy with 

a really simple methodology. (2) It is proved that, error 

dynamics are converged to zero in finite time as well as 

sliding motion occurs in finite time. That is to say, to show 

the effectiveness of the method and finite time stability we 

theoretically investigate stability and reaching time and add 

the method on different examples for confirmation. (3) 

Fractional order sign function in our controller design when 

s(t) is large is able to push the state to converge to the 

switching manifold faster. (4) The fractional sliding mode 

methodology is really effective and simple for fast 

synchronization and anti-synchronization. 

Therefore, this paper is organized as follows: A brief 

review of fractional calculus are presented in section 2. 

System descriptions are investigated in section 3. 

Synchronization (anti-synchronization) problem are 

considered as well as the controller design scheme and the 

stability analysis of the closed-loop system are included in 

section 4. In Section 5, simulations results are shown. The 

conclusions are drawn in Section 6. 

 

II. SOME NOTATIONS AND DEFINITIONS 

 

There are different types of definitions for fractional 

derivatives which among them three of are more commonly 

used in researcher's work which are called Riemann–

Liouville, Grunwald–Letnikov, and Caputo definitions. The 

initial conditions for Caputo fractional differential operator is 

the same as integer order one, so, the Caputo fractional order 

derivative is selected in our research. We also give some 

definitions which are used in our analyses as well as for 

completion. 

Definition 1 [24]. Let m - 1 < α < m, m N∈ the Riemann- 

Liouville fractional derivative of order α of any function 

( )f t  is defined as follows: 

)1(    
1
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1 ( )
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t n n

d f d
D f t

n dt t
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τ τ

α τ + −
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Where n is the first integer and is greater than α  and Γ is 

the Gamma function. 
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1

0
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∞
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Definition 2 [24]. Let 1 ,m
f C m N−∈ ∈ Then (left sided) 

Caputo fractional differential equation of ( )f x  is defined 

by: 
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Where, m, similar to n is the smallest integer number, larger 

than α. 

Remark [25]: When (0,1)α ∈ , the Caputo system 

0
( , )c

t tD f x t
α = has the same equilibrium points as the 

integer order system ( ) ( , )x t f x t=& . 
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III.PROBLEM STATEMENT 

Considering a class of fractional-order Master-Slave systems 

with uncertainties and external disturbances as (4) and (5) 

respectively: 

 

(4)    
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1 1 1 1
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Where (0,1)α ∈  is the order of the sys

( ) ((n-1))T T n
X(t) = [x1,x2,. . .,xn]  = [x,x ,...,x ] R  

α α
∈ is the 

state vector, F(X,t) R ∈ is a given nonlinear function of X 

and t, ( , )f x t
i

∆ and ( )
m

d t
i

represents an unknown 

uncertainty and external disturbance respectively and 
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Where again similar to the master system,
(0,1)α ∈

 is the 

order of the system, 

( ) ((n-1))T T nY(t) = [y1,y2,. . .,yn]  = [y,y ,...,y ] R  
α α

∈
is the 

state vector, 
G(Y,t) R ∈

is a given nonlinear function of Y 

and t, 
( , )g y t

i
∆

and 
( )

s
d t

i represents an unknown 

uncertainty and external disturbance respectively and finally 

),,( tyxui are control inputs. 

Assumption: The uncertainty terms (
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∆

,
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i
g∆

) 

and external disturbances terms (
)(t

i
d

m

,
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d
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be bounded by[26]: 
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Where df γγ ,
are known positive constants. 

Synchronization error is defined as follow: 

e y x
i i i

= −                                   (7) 

Where if taking α order fractional derivative from (7): 

D e D y D x
i i i

α α α= −                           (8) 

Substituting from (4) and (5) into (8) the fractional 

synchronization error is obtained as follow: 
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If we take ( ) ( ) ( , )i ig y f x x y
i

− = Γ  and rewriting (9) 

based on error synchronization we have: 
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IV. MAIN RESULT 

Now the aim of this paper is introducing a novel fractional 

sliding mode surface and design a new fractional sliding 

mode control for synchronization and anti-synchronization of 

fractional order chaotic system. So, to achieve the goal, a 

simple novel sliding surface is suggested and based on the 

sliding manifold fractional sliding mode controller is 

designed. 

 

V.SLIDING SURFACE DESIGN 

Here we introduce the below switching surface as: 

1( ) ( )i iS e D sign e
i

µ υ −= + +
                   (11) 

Where
> 0µ

 and υ is a small positive number. 

The following equations will satisfy when the trajectories 

reaches the sliding surface: 

0S =
and 0=SD

α
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Take the fractional derivative from the sliding surface we 

have: 

1( ) ( )iD S D e D sign e
i i

α α αµ υ −= + +
          (12) 

Therefore, if 
0D S

i

α
=

then:

1( ) ( )iD e D sign e
i

α αµ υ −= − +
                (13) 

To design the sliding mode controller, we consider the 

following fractional order reaching law: 

1( ( ) )D S D qsign s rs
α α −= − +

                 (14) 

Where r and q are positive constants. From (12) and (14) 

1( ) ( )

1... ( ( ) )

i iD e D sign e

D qsign S rS
i i

α αµ υ

α

−+ + =
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Substitute from (10) into the (15) 
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i i
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+ Γ + − − +

− −+ = − +   (16) 

Which controller is designed by the above equation. 

 

VI. CONTROLLER DESIGN 

Now, the robust fractional sliding mode controller is designed 

based on the switching sliding surface. From (16) controller 

can be obtained and the following theorem provides sufficient 

conditions for robust synchronization of fractional chaotic 

systems at a pre-specified time. 

 

Theorem 1. The sliding mode dynamic (12) is asymptotic 

stable to the equilibrium ei = 0 in a finite time. 

Proof. Here, we select Lyapunov function ie=eV
 and its 

derivative along the trajectory (13):
 

1( ). ( ). ( )V sign e e sign e D D ee i i i i
α α−= =& &

           (17) 

Substitute from (13): 
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Therefore, since the parameters ,µ υ  are positive
 

( ) 0Ve µ υ= − +& p  

Which means error dynamical system converge to zero 

asymptotically. 

So as to prove convergence of all errors to zero in finite time 

from the above equation:  
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Integration from both sides of the above equation: 

1
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Then, 

( )
1
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e t
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µ υ
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Which means state trajectories of ei converges to zero in 

finite time. 

Theorem 2. For the controlled error system (10), if the 

sliding control scheme is designed as (21), the system 

trajectories will converge to the sliding surface s = 0 in finite 

time. 
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To check and prove the stability of the controller design, 

again the following Lyapunov function is considered for 

sliding surface as: 

V S
s i

=                                       (22)  

Derivative from (23)  
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The state trajectories of the error dynamical system (10) will 

converge from the reaching phase to the sliding phase and 

fractional systems (4) and (5) are globally asymptotically 

synchronized. It has been seen that sliding motion occurs in 

finite time 2 1

1
ln( )t t q r s

r
= − +

. 

For anti-synchronization, the method is the same and error is 

defined as bellow: 

e y x
i i i

= +                                   (23)
 

In this section, the method have been applied on different 

examples for synchronization and anti-synchronization to 

illustrate the effectiveness of the proposal. Therefore, we first 

want to depict the capability of the proposed controller in 

synchronization/anti-synchronization of fractional chaotic 

systems which for this, different fractional order chaotic 

systems with and without uncertainty and disturbances are 

considered as drive and response systems.
 

 

 

 

 



Example. In this example, we consider two identical 

fractional financial systems for synchronization and 

anti













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And the response system are















 

Which again, 

case, we compare our method with 

synchronization. Error functions for synchronization are 

defined as:

1e

Subtracting drive and response lead the bellow error system:















 

The parameters of fractional financial chaotic system are 

taken as q = 0.95, a = 2.1, b = 0.01,c = 2.6, m1 = 8.4, m2 = 

6.4, m3 = 2.2 and the initial conditions of the drive and 

response

5, 4, 3) and (x2(0), y2(0), z2(0), 

respectively. Parameter values of input controllers are set as
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VII.

Example. In this example, we consider two identical 

fractional financial systems for synchronization and 

anti-synchronization. The drive system is as follow:

1 ( )
1 1 1 1 1

1 1
1 1 2 1

1
1 1 3 1

1
1 1 1

d x
z y a x m w

dt

d y
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dt
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
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And the response system are
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2
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dt
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Which again, 
U=[u ,u ,u  ,u ]

case, we compare our method with 

synchronization. Error functions for synchronization are 

defined as: 

121 xx −=
, 2e

Subtracting drive and response lead the bellow error system:
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The parameters of fractional financial chaotic system are 

taken as q = 0.95, a = 2.1, b = 0.01,c = 2.6, m1 = 8.4, m2 = 

6.4, m3 = 2.2 and the initial conditions of the drive and 

response system are taken as (x1(0), y1(0), z1(0), 

5, 4, 3) and (x2(0), y2(0), z2(0), 

respectively. Parameter values of input controllers are set as

International Journal of Industrial Electronics, Control and Optimization

VII. SIMULATIO

Example. In this example, we consider two identical 

fractional financial systems for synchronization and 

synchronization. The drive system is as follow:

( )
1 1 1 1 1

2
1 1 2 1

1 1 3 1

1 1 1

z y a x m w

by x m w

x cz m w

x y z

= + − +

= − − +

= − − +

And the response system are selected as:

( ) ( )
2 2 2 1 2 1

2
1 ( )

2 2 2 2 2

2 2 3 2 3

( )
2 2 2 4

z y a x m w u t

by x m w u t

x cz m w u t

x y z u t

= + − + +

= − − + +

= − − + +

= − +

U=[u ,u ,u  ,u ]
1 2 3 4

case, we compare our method with 

synchronization. Error functions for synchronization are 

12
yy −=

, 3
e =

Subtracting drive and response lead the bellow error system:

1 3 1 4 2 2 1 1 1

2 2
2 2 4 1 2 2

1 3 3 4 3

1 1 1 2 2 2 4

ae e m e x y x y u t

be m e x x u t

e ce m e u t

x y z x y z u t

= + + + + +

= − + + − +

= − − + +

= − +

The parameters of fractional financial chaotic system are 

taken as q = 0.95, a = 2.1, b = 0.01,c = 2.6, m1 = 8.4, m2 = 

6.4, m3 = 2.2 and the initial conditions of the drive and 

system are taken as (x1(0), y1(0), z1(0), 

5, 4, 3) and (x2(0), y2(0), z2(0), 

respectively. Parameter values of input controllers are set as
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IMULATION RESULTS

Example. In this example, we consider two identical 

fractional financial systems for synchronization and 

synchronization. The drive system is as follow:

1 1 1 1 1

                    

selected as: 

( ) ( )
2 2 2 1 2 1

1 ( )
2 2 2 2 2

( )
2 2 3 2 3

z y a x m w u t

by x m w u t

x cz m w u t

= + − + +

= − − + +

= − − + +

           

U=[u ,u ,u  ,u ]
1 2 3 4 are control inputs. In this 

case, we compare our method with [27]

synchronization. Error functions for synchronization are 

12
zz −=

,
4e =

Subtracting drive and response lead the bellow error system:

( )
1 3 1 4 2 2 1 1 1

2 2
( )

2 2 4 1 2 2

( )
1 3 3 4 3

( )
1 1 1 2 2 2 4

ae e m e x y x y u t

be m e x x u t

e ce m e u t

x y z x y z u t

= + + + + +

= − + + − +

The parameters of fractional financial chaotic system are 

taken as q = 0.95, a = 2.1, b = 0.01,c = 2.6, m1 = 8.4, m2 = 

6.4, m3 = 2.2 and the initial conditions of the drive and 

system are taken as (x1(0), y1(0), z1(0), 

5, 4, 3) and (x2(0), y2(0), z2(0), ω2(0)) = (10, 

respectively. Parameter values of input controllers are set as
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N RESULTS 

Example. In this example, we consider two identical 

fractional financial systems for synchronization and 

synchronization. The drive system is as follow: 

                    (24) 

           (25) 

are control inputs. In this 

[27] to show 

synchronization. Error functions for synchronization are 

12
ww −

 

Subtracting drive and response lead the bellow error system: 

( )ae e m e x y x y u t

        (26)

The parameters of fractional financial chaotic system are 

taken as q = 0.95, a = 2.1, b = 0.01,c = 2.6, m1 = 8.4, m2 = 

6.4, m3 = 2.2 and the initial conditions of the drive and 

system are taken as (x1(0), y1(0), z1(0), ω1(0)) = (1, 

2(0)) = (10, -4, 6, -2) , 
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