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Abstract

Approximate MAP inference in graphical
models is an important and challenging prob-
lem for many domains including computer vi-
sion, computational biology and natural lan-
guage understanding. Current state-of-the-
art approaches employ convex relaxations of
these problems as surrogate objectives, but
only provide weak running time guarantees.
In this paper, we develop an approximate in-
ference algorithm that is both efficient and
has strong theoretical guarantees. Specifi-
cally, our algorithm is guaranteed to converge
to an ε-accurate solution of the convex relax-
ation in O

(
1
ε

)
time. We demonstrate our ap-

proach on synthetic and real-world problems
and show that it outperforms current state-
of-the-art techniques.

1. Introduction
Markov random fields (MRFs) are a useful framework
for modeling many important problems in computer
vision, computational biology and natural language
understanding. One important task for these prob-
lems is to find the assignment to each variable that
jointly minimizes the energy (maximizes the proba-
bility) defined by the model. However, finding the
optimal solution for a general MRF is an NP-hard
problem. Hence, research has focused on approximate
methods. These methods, however, still pose compu-
tational challenges, and algorithms with fast conver-
gence rates to near-optimal solutions are needed. This
is especially important when inference is used as the
inner loop of another algorithm, such as the popular
max-margin learning algorithms (Tsochantaridis et al.,
2005; Taskar et al., 2005), which iteratively add con-
straints to the training objective. Learning in these
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methods is significantly improved with better quality
inference (Finley & Joachims, 2008).

Current state-of-the-art methods for approximate in-
ference employ convex programming relaxations to
find an approximate solution via the convex dual (Kol-
mogorov, 2006; Globerson & Jaakkola, 2007; Wain-
wright et al., 2005; Komodakis & Paragios, 2009). The
solution to the original primal problem is found by a
decoding process on the dual variables. Typically, the
better the solution to the dual, the better the quality
of the solution to the original problem. While many
state-of-the-art approaches aim to optimize the dual
formulation, they are either slow to converge or can
get stuck (Globerson & Jaakkola, 2007; Kolmogorov,
2006). For example, coordinate descent procedures are
prone to this failure mode. In contrast to previous
methods, the method of Komodakis & Paragios (2009)
provided guarantees on quality of convergence. How-
ever, since this is a projected gradient approach the
guaranteed rate of convergence is slow, namely O( 1

ε2 )
time complexity for an ε-accurate solution.

In this paper, we develop an algorithm based on the
smoothing approach of Nesterov (2005) with signif-
icantly faster time complexity of O( 1

ε ). Like the
method of Komodakis & Paragios (2009), our method
is based on the framework of Lagrangian relaxation
that leverages the structure of the problem. La-
grangian relaxation divides the original problem into a
set of coordinated slave problems that have tractable
structure. The coordination of the slaves is handled
by a master. The master achieves this by collecting
messages from each of the slaves, which describe their
solutions. Each slave is then updated in a manner so as
to bring them into agreement. An important feature
of the framework is that the tractability of the slaves
is unaffected by the message passing. Note that, since
the slave problems are decoupled, the algorithm can
be distributed and the computational effort involved
in finding their solution is fixed across all iterations.

Unlike projected subgradient approaches, we construct
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smooth approximations to the slave problems that re-
main tractable and enable globally faster optimization
algorithms to be applied. Importantly, our approxima-
tions are uniformly bounded, resulting in guaranteed
convergence to an ε-accurate solution of the original
problem.
Surprisingly, our algorithm, which is aimed at solv-
ing the MAP problem, gives rise to sum-product-
like updates at a particular temperature. Such con-
nections between max-product and sum-product algo-
rithms have been explored in the context of zero-limit
temperatures (Meltzer et al., 2009). To our knowledge,
this is the first constructive approach to establishing
such relationships at non-zero temperatures.

While the smoothed objective can be solved using
any standard gradient-based approach (conjugate gra-
dients, L-BFGS, etc.), we derived a method from a
family of optimal methods (Nesterov, 1983), which
provide superior convergence guarantees. Specifically,
our method converges to an ε-approximate solution in
O( 1

ε ) iterations. In addition to the strong theoretical
guarantees, we provide experimental results on both
synthetic and real-world problems demonstrating the
superiority of our approach.

2. Related Work
Our work stems from Lagrangian relaxation of the
MAP estimation problem. This approach, which has
been explored by Komodakis et al. (2007), leverages
the tractability of the slave problems. The approach
derives a dual-decomposition algorithm that only re-
quires MAP inference in the slave. Although the algo-
rithm is provably convergent, that is, it does not get
stuck in local minima, the approach suffers from poor
run time guarantees. In particular, it can take up to
O

(
1
ε2

)
iterations to converge. Our algorithm, on the

other hand, converges in O( 1
ε ) iterations.

The tree-reweighted (TRW) family of algo-
rithms (Wainwright et al., 2005; Kolmogorov,
2006) are based on dual-decomposition across span-
ning trees. However, unlike (Komodakis & Paragios,
2009), these algorithms do not provide convergence
guarantees.

The innovative approach of Globerson & Jaakkola
(2007) derives a message-passing algorithm which it-
eratively optimizes the dual of the relaxed integer pro-
gram. This is accomplished by block coordinate de-
scent moves; thus the algorithm, due to its coordinate
nature, can get stuck. Furthermore, the method has
no convergence guarantees, but seems to perform well
in practice.

Johnson et al. (2007) investigated smoothing of La-

grangian relaxations and utilized a gradient descent
algorithm for their optimization. However, this work
does not provide guarantees on either run time or
on the level of error introduced by their smooth-
ing approximation. In contrast to the above three
approaches, our method provides strong convergence
guarantees.

Ravikumar et al. (2008) introduced a family of dou-
ble loop algorithms. The outer loop iterates over a
schedule of smoothing coefficients and the inner loop
solves an equivalent of a sequential TRW problem for
a given smoothing coefficient. Strong guarantees exist;
however these do not apply when the inner loop can-
not be solved exactly. Further, solution of the inner
loop requires sequential updates across different tree
subproblems, eliminating one of the main sources of
parallelism inherent in the dual decomposition based
methods. In contrast, we provide strong guarantees
on total running time, and each slave is solved ex-
actly. Additionally, in our algorithm, slave problems
can be solved in isolation, thus leveraging large scale
distribution on top of an efficient algorithm.

3. Background
3.1. Markov Random Fields
Let z = (z1, . . . , zN ) be a vector of discrete random
variables, each random variable zi taking its value from
a discrete set Zi. A Boltzmann distribution induced
by energy function E(z) over variables z at temper-
ature µ is defined by p(z) = 1

Z exp
{
− 1

µE(z)
}

where

Z =
∑

z exp
{
− 1

µE(z)
}

is referred to as the parti-
tion function and serves to normalize the distribution.
Markov random fields (MRFs) encode such a distribu-
tion and their energy function is formed as a sum of dif-
ferent potentials E(z) = −

∑C
c=1 φc(zπc) at a temper-

ature µ = 1. Here, we assume that each potential φc is
defined over a subset of the variables πc ⊆ {1, . . . , N}.
We introduce π−1

i = {c : i ∈ πc} to represent the set of
potentials with variable zi in their scope. In what fol-
lows, we will assume that inference is tractable for each
potential; however, we make no assumption about the
structure of the potential. Tractability can be achieved
through exploitation of the structure of the potential
(e.g., trees or low tree-width subgraphs) or the small
size of its configuration space, i.e., |Zπc | =

∏
i∈πc

|Zi|.

A typical task in MRF inference is to find the most
likely joint assignment z? under the distribution p(z),
explicitly z? = argmaxz p(z) = argmaxz

∑
c φc(zπc).

This problem can be recast as the integer program

maximize
z

∑C
c=1 φc(zπc)

subject to zi ∈ Zi i = 1, . . . , N.
(IP)
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The tractability of this integer program is made hard
by the coupling of potentials sharing the same vari-
ables. As we will see, a framework known as La-
grangian relaxation will enable us to take advantage
of our ability to efficiently solve tractable subprob-
lems (φc) and combine these sub-solutions into a solu-
tion of the main problem. Naturally, the relaxation
of the integer program leads to an approximation,
and Lagrangian relaxation bounds can be shown to
be at least as tight as the linear programming relax-
ations (Wolsey, 1998).

3.2. Lagrangian relaxation
In order to facilitate derivation of the algorithm and
elucidate the character of messages, we introduce an
equivalent representation of the integer program de-
fined above. For each value a ∈ Zi we introduce
a binary integer variable xi,a, indicating whether zi

assumes the value a. We will use xi to denote a
binary integer vector (xi,1, . . . xi,ni), and define set
Xi = {xi :

∑
a∈Zi

xi,a = 1}. Hence there exists
a one-to-one mapping of configurations of x and z,
bip(x) = z and |Xi| = |Zi|. We will use shorthand
φc (x) for φc (bip(x)) and let Xπc = bip−1(Zπc).

A binary integer program equivalent to (IP) is

maximize
x

∑
c φc(xπc

)

subject to xi ∈ Xi i = {1, . . . , N}.
(BIP)

We obtain the Lagrangian relaxation of (BIP) via the
process of dual decomposition (Bertsekas, 1999). First,
we introduce copies of the original variables specific to
each potential, with the corresponding potential in-
dicated by the variables’ superscript. These copies,
slave variables, are constrained to agree with the orig-
inal, master variables. The resulting equivalent integer
program is

maximize
x

∑
c φc(xc

πc
)

subject to xc
i ∈ Xi ∀c, i ∈ πc

xc
i,a = xi,a ∀c, i ∈ πc, a ∈ Zi

It is important to note that the equality constraints
between slave and master variables separate across the
domain of the variables. We note that the domain
of the x variables is heavily constrained, in that for
any i only one of the indicators xi,a can be one. We
introduce a partial Lagrangian

J(ν, x, x1, . . . xC) =
∑

c

φc(xc
πc

) +
〈
νc

πc
, xc

πc
− xπc

〉
.

The multiplier vector νc
πc

is of length equal to the total
number of indicator variables xc

i,a with i ∈ πc, that is∑
i∈πc

|Zi|. Maximization of the partial Lagrangian

over x yields the dual

minimize
ν

∑
c maxxc

πc
φc(xc

πc
) +

〈
νc

πc
, xc

πc

〉
subject to

∑
c∈π−1

i
νc

i,a = 0 ∀i, a ∈ Zi.
(LR)

By virtue of being a dual, this problem is convex in ν.
It is composed of a sum of disjoint maximization prob-
lems and is nonsmooth. We identify slave problems

sc(νc
πc

) = max
xc

πc
∈X

φc(xc
πc

) +
〈
νc

πc
, xc

πc

〉
. (SLV)

Each slave problem is an integer program. The exact
and MAP inference remain tractable in each slave as
φc(xπc

)′ = φc(xπc
) + 〈νπc

, xπc
〉 retains the size and

structure of φc(xπc). The master problem is

minimize
ν

m(ν) =
∑

c sc(νc
πc

) (MSTR)

subject to
∑

c∈π−1
i

νc
i,a = 0, ∀i, a ∈ Zi.

We draw attention to the constraint that ensures that
the multipliers ν associated with variable zi and its
state a, sum to zero across all slave problems that have
the variable zi in its scope. Equally importantly, the
slave problem sc does not involve multipliers for vari-
ables that are not in the scope of φc. Thus we can
conclude that the size of the slave’s state space has
not grown by the process of Lagrangian relaxation,
and the cost of exact inference in the slave remains
the same regardless of the messages.

Traditionally, Lagrangian relaxations are solved with a
projected subgradient method, due to the nonsmooth-
ness of the objective (Bertsekas, 1999; Held & Karp,
1970; Komodakis & Paragios, 2009). Such meth-
ods require specification of the step size schedule and
are guaranteed to require at most O( 1

ε2 ) iterations to
achieve a cost of f t ≤ f? +ε, where f? is the optimum.

4. Accelerated optimization
In this section, we will construct a smooth approx-
imation of the master problem’s objective (MSTR).
This construction will be accomplished by smoothing
of the slave problems’ objectives in Section 4.1. This
section also will cover the quality of the approximation
as well as exhibit the character of the gradients of the
smoothed problem. In Section 4.2 we derive a general
method for optimizing smooth objectives with con-
straints akin to the ones in the master problem. Sec-
tion 4.3 specializes the algorithm from Section 4.2 to
the smoothed master problem. The resulting method
optimizes an approximate cost, but with a faster algo-
rithm than the one used for the nonsmooth case. The
approximation introduced by smoothing of the objec-
tive ends up being more than compensated for by the
use of an optimal algorithm.
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4.1. Smoothing the Lagrangian relaxation
Recently, a broad framework for smoothing struc-
tured convex objectives has been introduced (Nes-
terov, 2005). In this approach, an adjoint problem,
in essence a dual problem, is constructed for a single
nonsmooth component. The adjoint problem is then
modified by the addition of a strongly concave term,
thus introducing smoothness in the original problem.
We will apply this general methodology to the problem
(SLV) to smooth each of the slave problems.

A slave problem (SLV) can be rewritten as

max
q∈∆c

∑
xπc

q(xπc)
(
φc(xc

πc
) +

〈
νc, xc

πc

〉)
,

where ∆c is the simplex over all configurations of
xπc . We denote the dimension of ∆c as |∆c|. Conse-
quently, q is a distribution over all configurations xπc

and |∆c| = |Xπc
|. This reformulation has not changed

the optimum of the problem. The optimal distribu-
tions q still put the probability mass only on configu-
rations that maximize the original slave objective.

We now change the problem by adding a strongly con-
cave contribution dependent on q

dc(q) = ln(|∆c|) +
∑
xπc

q(xπc) ln q(xπc)

This term is bound by 0 and ln(|∆c|). It is strongly
concave with concavity parameter 1 (Nesterov, 2005).
This term can be seen as a proximal regularization
that pulls the distributions q towards qc

0 ∝ 1, a uni-
form distribution across all configurations xπc . Addi-
tion of this proximal regularization term, weighted by
µ, yields a smoothed slave problem

sc
µ(νc) = max

q∈∆c

∑
xπc

q(xπc)
(
φc(xc

πc
) +

〈
νc, xc

πc

〉)
−

µ

ln(|∆c|) +
∑
xπc

q(xπc) ln q(xπc)

 ,

which after maximization over q yields

sc
µ(νc) = µ ln

 1
|∆c|

∑
xπc

exp

{
φc(xπc) +

〈
νc, xc

πc

〉
µ

} .

The smoothing of the slave integer problem produced
an objective that is closely related to the log partition
function of an MRF.

Proposition 4.1 The gradient of a smooth slave
problem sc

µ(νc) is given by

∂sc
µ(νc)

∂νc
i,a

= pc
µ(xc

i,a = 1)

where pc
µ(xπc) ∝ exp

{
1
µ

(
φc(xπc) +

〈
νc, xc

πc

〉)}
.

1-θk θk

νk ζkηk

Π
[∇

f(
η k

)/
(θ

k
L)

]

ζk+1

νk+1

1-
θ k

θ k

1: set ηk to a convex combination of νk and ζ k  
2: add projected gradient to ηk to obtain ζk+1

3: set νk+1 to a convex combination of νk and ζk+1
4: update θk+1 

ζην

Figure 1. Schematic view of Algorithm 1

For proof see Appendix A.

With smooth slaves and their gradients in hand we can
state the full smoothed master problem as

minimize
ν

mµ(ν) =
∑

c sc
µ(νc)

subject to
∑

c νc = 0. (SMSTR)

Proposition 4.2 For any feasible ν

mµ(ν) ≤ m(ν) ≤ mµ(ν) + µ
∑

c

ln |∆c|.

For proof see Appendix A.

In addition to stating that we have obtained a uniform
smooth approximation to the original nonsmooth ob-
jective, we point out that the choice of temperature µ
and the sizes of slave-MRF configuration spaces dic-
tate how close the smooth objective is to the original
objective.

For the sake of completeness, we now state the partial
derivatives of the master problem that will be used in
the optimization algorithm:

∂mµ(νc)
∂νc

i,a

=
∂sc

µ(νc)
∂νc

i,a

= pc
µ(xi,a = 1).

4.2. An optimal method derivation
The chief benefit of working with a smooth objective
is that its optimization can be performed with a vari-
ety of projected gradient based methods. Remarkably,
there exist first-order methods that have guarantees
of a better convergence rate than the naive projected
gradients. Algorithms achieving the provably optimal
error rate of O( 1

k2 ) in k iterations on problems with
a known Lipschitz constant are called optimal meth-
ods (Nesterov, 1983). Here we construct an optimal
method for problems akin to the smoothed master
(SMSTR) problem constructed in Section 4.1. Given
a differentiable and convex f , the problem of interest
is:

minimize f(ν)
subject to

∑
c νc = 0. (P)
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Algorithm 1 An optimal method for smooth function
optimization
1: initialize νk = 0, ηk = 0, ζk = 0, θ0 = 1
2: for k ≥ 0 do
3: ηk = (1− θk)νk + θkζk

4: ζk+1 = argminP
c νc=0{lf (ν; ηk) + θkLD(ν, ζk)}

5: νk+1 = (1− θk)νk + θkζk+1

6: θk+1 =
√

θ4
k+4θ2

k−θ2
k

2
7: end for

We note that there exist optimal algorithms that re-
tain all gradients from previous iterations (Nesterov,
2005). In large-scale MAP inference problems this
is impractical. Hence we opt for a method that has
limited memory requirements and achieves ε-solution

in O
(√

L
ε

)
iterations. One such algorithm is Algo-

rithm 1 (schematically shown in Figure 1). In order to
fully specify the algorithm, we define lf and proximal
function D:

lf (ν; η) := f(η) + 〈∇f(η), ν − η〉
D(ν, η) := (1/2) ‖ν − η‖2

2 .

Proposition 4.3 For a differentiable and convex
f(ν), where ν ∈ RN , Algorithm 1 produces an ε-

solution of the problem (P) in O
(√

L
ε

)
iterations,

where L is the Lipschitz constant of function f .

This proposition follows from Corollary 1 in (Tseng,
2008).

We note that for the update in line 4 of Algorithm 1
we need to compute

argminP
c νc=0 {lf (ν; ηk) + θkLD(ν, ζk)} =

argminP
c νc=0 {f(ηk) + 〈∇f(ηk), ν − ηk〉+

θk(L/2) ‖ν − ζk‖2
2}

Writing the Lagrangian of the minimization problem:

f(ηk)+〈∇f(ηk), ν − ηk〉+θk(L/2) ‖ν − ζk‖2
2+γT

∑
c

νc,

and relevant KKT conditions:

∇f(ηk) + θkL(ν − ζk) + γ = 0∑
c νc = 0,

we obtain γ = 1
C

∑
c (θkLζk −∇f(ηk)) and ν = ζk −

∇f(ηk)+γ
θkL .

We note that the memory requirement of this algo-
rithm is equal to 3×size(ν).

4.3. Accelerated dual decomposition
The smooth function mµ can be optimized by the
method introduced in Section 4.2. A specialization

Algorithm 2 An optimal method for smoothed dual
decomposition
1: initialize νk = 0, ηk = 0, ζk = 0, θ0 = 1
2: for k ≥ 0 do
3: ηk = (1− θk)νk + θkζk

4: foreach c compute pc
µ(xi,a) for i ∈ πc, a ∈ Zi;

5: ζk+1 = project(p, ζk, ηk)
6: νk+1 = (1− θk)νk + θkζk+1

7: θk+1 =
√

θ4
k+4θ2

k−θ2
k

2
8: end for
9:

10: function project(p, ζ, η)
11: for i = 1..N, a ∈ Zi do
12: γi,a = 1

|π−1
i |

∑
c∈π−1

i
θkLζc

i,a − pc
µ(xi,a)

13: for c ∈ π−1
i do

14: νc
i,a = ζc

i,a − 1
θkL (pc

µ(xi,a) + γi,a)
15: end for
16: end for
17: return ν

of Algorithm 1 to the problem of solving the smooth
master problem is given in Algorithm 2. In Section 4.1
we computed the gradients of the smooth master prob-
lem. It turned out that in order to compute gradients
we need to perform marginalization of the slave-MRF
at temperature µ given by

pc
µ (xπc) ∝ exp

{
1
µ

(φc(xπc
) + 〈νc, xπc〉)

}
and that the gradient of the master problem is given
by

∂mµ(νc)
∂νc

i,a

=
∂sc

µ(νc)
∂νc

i,a

= pc
µ(xi,a = 1).

By design, the slave problems are tractable and these
marginal distributions can be computed exactly in an
amount of time that is independent of µ and remains
constant across iterations. Importantly, the compu-
tation of the marginals of each slave (line 3. in Al-
gorithm 2) can be carried out in parallel. Given
desired precision ε and a chosen decomposition into
slave problems, the temperature and Lipschitz con-
stant (see Appendix A) are given by µ = ε

2
P

c |∆c| and

L = 2
P

c ln |∆c|
ε .

Note that any hard constraints that limit the space of
possible configurations of a slave will result in a smaller
simplex ∆c and consequently a smaller Lipschitz con-
stant.

5. Convergence guarantees
The algorithm constructed in the previous section is
applied to the smooth problem (SMSTR). However,
the ultimate assessment of this method’s performance
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Figure 2. Synthetic Experimental Results. The MRF in
all four examples is a grid of 30 × 30 random vari-
ables, each ranging over 7 states and involved in pairwise
nearest neighbor potentials. These potentials are drawn
from a zero mean Gaussian with variances ranging over
{1, 4, 36, 64}. The three methods are: “Nonsmooth”, pro-
jected subgradients applied to the nonsmooth objective;
“Smooth, non-optimal”, projected gradients applied to the
smooth objective; “Smooth, optimal,” the optimal method
applied to the smooth objective. All solutions are evalu-
ated in the non-smooth objective, and all solutions main-
tain dual feasibility in each iteration.

is how well it solves nonsmooth problem (MSTR). The
following proposition answers this question.

Proposition 5.1 For a given precision ε and a slave
decomposition specified by the potentials φc, setting
µ = ε

2
P

c ln |∆c| , L = 1
µ and iterating Algorithm 2 for

O
(√

2L
ε

)
iterations produces solution ν̂ for which

m(ν̂) ≤ m(ν?) + ε,

where ν? is optimum of the nonsmooth problem
(MSTR).
The proof of this proposition is given in Appendix A.

The projected subgradients on the original nonsmooth
objective achieve this error in O

(
1
ε2

)
iterations.

To summarize, we use a fast algorithm on an approxi-
mate cost to reach ε-solutions in the original cost faster
than we could have done had we just optimized the
original cost.

6. Experiments
6.1. Synthetic experiments
The synthetic experiments were performed on an MRF
with pairwise nearest neighbor interactions forming a
grid, and each random variable ranging over 7 states.
The pairwise potentials were sampled from a Gaussian
distribution with variance σ2 ∈ {1, 4, 36, 64}. In all
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Figure 3. Comparison of our smooth-optimal method
against (left) the dual decomposition method of Ko-
modakis & Paragios (2009), and (right) LP relaxation al-
gorithm of Globerson & Jaakkola (2007) on protein design
dataset (Yanover et al., 2006).

tasks, we assume that the slaves are the faces of the
grid (4-tuples of nodes and pairwise potentials on these
nodes form a cycle). The potentials shared between
multiple slaves are weighted by 0.5.

We compare three different methods. The first method
optimizes the nonsmooth objective m using projected
subgradients. The second method is gradient descent
on the smoothed objective (mµ). The third method is
the one introduced in this paper, an optimal method
on the smoothed objective (mµ). The methods are
compared in terms of the original nonsmooth objective
m, the Lagrangian relaxation. The temperature µ is
set so that the smooth objective is within ε = 1 of the
nonsmooth objective in all synthetic tests. The last
two methods do not optimize this objective directly.
However, by Proposition 4.2, the smooth objective is
always within ε of the nonsmooth objective, thus lim-
iting error due to optimization of the wrong objective.
The projected gradients were used to solve a nons-
mooth dual decomposition algorithm with a square
summable step size ( 1

k for kth iteration).

Results are shown in Figure 2. The plotted time is the
real running time of the algorithm rather than itera-
tions of the methods. A single iteration of algorithms
that optimize the smooth objective are the same; how-
ever, the projected subgradient method does not re-
quire computation of marginals. The difference in an
iteration’s running time is a result of the difference of
the computational cost of performing logsumexp and
max on a vector of values, which favors the projected
subgradients method on the nonsmooth objective, but
only as a multiplicative constant.

6.2. Protein Design
We conducted experiments on the protein design
dataset made available by Yanover et al. (2006). The
dataset consists of 97 problems with the goal of find-
ing the most stable set of amino-acids and rotamer
configurations that give rise to a given 3D configura-
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Figure 4. Typical optimization curves showing both the
(original) dual objective and the decoded integer solu-
tion. Compared are our smooth-optimal method, the dual
decomposition method of Komodakis & Paragios (2009)
and the LP relaxation algorithm of Globerson & Jaakkola
(2007).

tion. The problems are defined in terms of an energy
function with unary and pairwise terms.

We compare our method to the dual decomposition
method of Komodakis & Paragios (2009) and the
LP-based coordinate-descent method of Globerson &
Jaakkola (2007). For our method and dual decomposi-
tion, we absorb the unary potentials into the pairwise
terms by distributing their contribution evenly across
terms involving the same variable.1 We set ε = 1 for
our method and run for a maximum of 5000 iterations
on all methods.

Results for all 97 problems are shown in Figure 3. The
plots show the final value of the (nonsmoothed) dual
objective for our algorithm against the competing ap-
proaches. In the plots, a point above the diagonal indi-
cates better performance. Our approach significantly
outperforms the other methods.

We also show a plot of objective versus execution
time for the three methods (see Figure 4). The plot
shows both the non-smooth dual objective (solid lines)
and the best integer primal solution at hand (dashed
lines). The primal solution is determined by decoding
the messages at each iteration (Globerson & Jaakkola,
2007). Notice that, initially, our objective decreases
more slowly than the other approaches, but ultimately
attains a better solution. Also observe that the best
integer primal solution is only achieved after the dual
objective is sufficiently close to its optimal. However,
we note that monotonic decrease in the dual does not,

1That is, for unary potential φi(xi) we add 1
ni

φi(xi) to

each pairwise term φij(xi, xj) where ni is the number of
pairwise terms involving variable xi.

in general, guarantee increase in the primal.

7. Discussion
In this paper we constructed a smooth approximation
to the objective obtained from Lagrangian relaxation
of the MAP inference problem. This enabled us to
trade off quality of approximation in return for the
ability to apply efficient gradient based methods. In
particular, we used the “optimal method” of Nesterov
(1983) which yielded a significantly faster algorithm
compared to naive projected gradients. In addition,
our construction revealed a connection between solv-
ing a MAP problem and sum-product-like algorithms
at a particular low temperature. Ours is the first con-
structive illustration of such connections.

The smoothing of the objective also revealed the con-
nection between the quality of the Lipschitz constant
of this approximate objective and the form of the prox-
imal term used in smoothing. Employing entropic
proximal terms, as in our approach, is one of many
possibilities. For example, the convex free energies
studied by Meltzer et al. (2009) may offer alternative
proximal terms that yield better, or even adaptive,
Lipschitz constants.

Our experiments indicate that the initial iterations of
our algorithms can be significantly accelerated by us-
ing an adaptive Lipschitz schedule. For example, such
a schedule may be achieved through annealing of the
smoothing coefficient. Regardless of the speedups ob-
tained in initial iterations, the strength of our method
stems from its strong guarantees of fast global conver-
gence towards the optimal solution.

References

Bertsekas, D.P. Nonlinear Programming. Athena Sci-
entific, 1999.

Finley, T. and Joachims, T. Training structural SVMs
when exact inference is intractable. In ICML, 2008.

Globerson, A. and Jaakkola, T. Fixing max-product:
Convergent message passing algorithms for MAP
LP-relaxations. In NIPS, 2007.

Held, M. and Karp, R. M. The traveling-salesman
problem and minimum spanning trees. Operations
Research, 18:1138–1162, 1970.

Johnson, J. K., Malioutov, D., and Willsky, A. S. La-
grangian relaxation for map estimation in graphi-
cal models. In 45th Annual Allerton Conference on
Communication, Control and Computing, 2007.



Accelerated dual decomposition for MAP inference

Kolmogorov, V. Convergent tree-reweighted message
passing for energy minimization. IEEE PAMI, 2006.

Komodakis, N. and Paragios, N. Beyond pairwise ener-
gies: Efficient optimization for higher-order MRFs.
In CVPR, 2009.

Komodakis, N., Paragios, N., and Tziritas, G. MRF
optimization via dual decomposition: Message-
passing revisited. In ICCV, 2007.

Meltzer, T., Globerson, A., and Weiss, Y. Convergent
message passing algorithms - a unifying view. In
UAI, 2009.

Nesterov, Yu. A method of solving a convex program-
ming problem with convergence rate o(1/k2). Soviet.
Math. Dokl., 27:372–376, 1983.

Nesterov, Yu. Smooth minimization of non-smooth
functions. Math. Program., 103(1):127–152, 2005.

Ravikumar, P. D., Agarwal, A., and Wainwright,
M. J. Message-passing for graph-structured linear
programs: proximal projections, convergence and
rounding schemes. In ICML, pp. 800–807, 2008.

Taskar, B., Chatalbashev, V., Koller, D., and
Guestrin, C. Learning structured prediction mod-
els: A large margin approach. In ICML, 2005.

Tseng, P. On accelerated proximal gradient methods
for convex-concave optimization. SIAM Journal on
Optimization Optim., 2008.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Al-
tun, Y. Large margin methods for structured and in-
terdependent output variables. Journal of Machine
Learning Research (JMLR), 6:1453–1484, 2005.

Wainwright, M. J., Jaakkola, T., and Willsky, A. S.
MAP estimation via agreement on trees: message-
passing and linear programming. IEEE Trans. on
Info. Theory, 2005.

Wolsey, L. A. Integer Programming. Wiley-
Interscience, 1998.

Yanover, C., Meltzer, T., and Weiss, Y. Linear pro-
gramming relaxations and belief propagation—an
empirical study. JMLR, 2006.

A. Proofs of Propositions

Proof of Proposition 4.1. The slave problem is

sc
µ(νc) = max

q∈∆c

P
xπc

q(xπc) (φc(x
c
πc

) + 〈νc, xc
πc
〉)−

µ
“
ln(|∆c|) +

P
xπc

q(xπc) ln q(xπc)
”

.

The partial derivatives with respect to νc
i,a of this smooth

objective are

∂sc
µ(νc)

∂νc
i,a

=

P
xπc

exp
n

1
µ (φc(xπc )+〈νc,xc

πc〉)
o

xc
i,aP

xπc
exp

n
1
µ (φc(xπc )+〈νc,xc

πc〉)
o .

We note that these quantities are exactly marginals of a
MRF with potentials φc(x

c
πc

)+ 〈νc, xc
πc
〉 at temperature µ,

explicitly pc
µ(xπc) ∝ exp

n
1
µ

(φc(xπc) + 〈νc, xc
πc
〉)

o
. Hence

we observe that
∂sc

µ(νc)

∂νc
i,a

= pc
µ(xc

i,a = 1).

Proof of Proposition 4.2. Since dc(q) = ln(|∆c|)−P
xπc

q(xπc) ln q(xπc) is bounded by 0 ≤ dc(q) ≤ ln |∆c|,
then

sc
µ(νc) = max

q∈∆c

X
xπc

q(xπc) (φc(x
c
πc

) + 〈νc, xc
πc
〉)− µdc(q)

≥ sc(νc)− max
q∈∆c

dc(q) = sc(νc)− µ ln |∆c|

sc
µ(νc) = max

q∈∆c

X
xπc

q(xπc) (φc(x
c
πc

) + 〈νc, xc
πc
〉)− µdc(q)

≥ max
q∈∆c

X
xπc

q(xπc) (φc(x
c
πc

) + 〈νc, xc
πc
〉) = sc(νc)

It follows that sµ(νc) ≤ s(νc) ≤ sµ(νc) + µ ln |∆c| and
hence mµ(ν) ≤ m(ν) ≤ mµ(ν) + µ

P
c ln |∆c|.

Proof of Proposition 5.1. Assuming that ν? is the
optimum of the nonsmooth problem (MSTR), νs is the
optimum of the smooth problem (SMSTR) and ν̂ is the so-

lution obtained after O

„q
2L
ε

«
iterations. The following

inequality chain gives the desired bound on error

m(ν̂) ≤ mµ(ν̂) + ε
2

(Prop. 4.2)
≤ mµ(νs) + ε (by algorithm rate)
≤ mµ(ν?) + ε (by optimality of νs)
≤ m(ν?) + ε (Prop. 4.2)

Computing Lipschitz. In order to compute the Lip-
schitz constant for the master problem we rewrite the mas-
ter problem as

mµ(ν) = max
q1

· · ·max
qC

X
c

D
qc, φc + AT

c νc
E
− µdc(q)

= max
q1

· · ·max
qC

〈q, φ〉+
D
q, AT ν

E
− 〈1, µd(q)〉 ,

where q = [q1; q2; · · · qC ] and A = [A1; A2; · · ·AC ] and
d(q) = [d1(q1); d2(q2); · · · dC(qC)]. Further, each Ac is a bi-
nary matrix with

P
i∈πc

|Xi| rows and
Q

i∈πc
|Xi| columns

and (Ac)(i,a),x = xi,a. The Lipschitz constant is then

L = 1
µ
‖A‖1,2 (Nesterov, 2005) with

‖A‖1,2 = maxq,ν{
˙
νT A, q

¸
: ‖ν‖1 = 1, ‖q‖2 = 1}

= maxν

˘
maxq

˘‚‚˙
νT A, q

¸‚‚
2

: ‖q‖2 = 1
¯

: ‖ν‖1 = 1
¯

= maxν

˘
maxx

˘
|νT (A·,x)|

¯
: ‖ν‖1 = 1

¯
= maxi,j(|A|i,j) = 1

Assuming both ‖·‖1 and ‖·‖2 are L1 norms ‖A‖1,2 = 1.


