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Abstract

Dimensionality reduction is a commonly
used step in many algorithms for visualiza-
tion, classification, clustering and modeling.
Most dimensionality reduction algorithms
find a low dimensional embedding that pre-
serves the structure of high-dimensional data
points. This paper proposes Local Minima
Embedding (LME), a technique to find a low-
dimensional embedding that preserves the lo-
cal minima structure of a given objective
function. LME provides an embedding that
is useful for visualizing and understanding
the relation between the original variables
that create local minima. Additionally, the
embedding can potentially be used to sam-
ple the original function to discover new lo-
cal minima. The function in the embedded
space takes an analytic form and hence the
gradients can be computed analytically. We
illustrate the benefits of LME in both syn-
thetic data and real problems in the context
of image alignment. To the best of our knowl-
edge this is the first paper that addresses the
problem of finding an embedding that pre-
serves local minima properties of an objective
function.

1. Introduction

Optimization algorithms occupy a central role within
the arsenal of computational methods used for solving
problems in the fields of machine learning, statistics,
computer vision, and pattern recognition. In partic-
ular, many machine learning algorithms can be cast
as optimization problems. A major challenge in opti-
mization is to find the global minimum and to under-
stand the structure of local minima of a given problem.
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Figure 1. Illustration of local minima embedding (LME).
LME finds both an embedding (z) of the input space (x)
and a new target function (g(z)) defined on the embedded
space that preserves the local minima structure of f(x).
The three local minima of the original function (f(x)) are
preserved in g(z).

Motivated by the need of visualizing and understand-
ing the structure of local minima, in this paper, we
consider the problem of finding an embedding an er-
ror function that preserves local minima properties.
Fig. 1 illustrates the main idea of the paper. The ob-
jective function (f(x)) defined on the 2D parameter
space (left plot) contains three local minima. After
performing our 1D embedding, the new objective func-
tion (right plot), now defined on the lower dimensional
embedded space (z), preserves the local minima struc-
ture of the original function. We formulate the task of
local minima preserving embedding (denoted by LME)
as follows: Given a real-valued function f(x) on the in-
put space x ∈ Rp, we find the low-dimensional embed-
ding of x, denoted by z ∈ Rq (q � p), while simulta-
neously approximating f(x) to a real-valued function
g(z) so that it preserves the local minima properties
of f(x) as much as possible. LME is useful for vi-
sualization, as well as doing a gradient search in the
low dimensional space (e.g., 1D search), that typically
can be done more efficiently than in the input space.
Moreover, the embedding can potentially capture un-
derlying redundancies or dependencies that reside in
the original variables, providing a chance to explore
potentially unobserved local minima points.
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The rest of the paper is organized as follows: after
reviewing some related work on high-dimensional data
embedding in Sec. 2 and defining the notation used
throughout the paper in Sec. 3, we propose our LME
algorithm in Sec. 4. Experimental results on synthetic
and real data are illustrated in Sec. 5.

2. Related Work

A large literature on dimensionality reduction (DR)
has been devoted to the classical unsupervised and su-
pervised settings. In the former, discovering a low
dimensional structure of the data can often be ac-
complished by either extracting global statistical in-
formation (e.g., principal directions of PCA and ker-
nel PCA (Schölkopf et al., 1998)), or by exploiting the
geometric nature of data (e.g., local linear structures
of LLE (Roweis & Saul, 2000), geodesic distances of
ISOMAP (Tenenbaum et al., 2000), locality preserv-
ing projection (LPP) (He & Niyogi, 2003).

In supervised dimensionality reduction, each data
point is marked with additional label information that
guides the formation of the low-dimensional embedded
space. When the label indicates a discrete class mem-
bership, such a class label can be exploited to enforce
that data points are either grouped together or far
apart from one another in the embedded space. The
well-known Fisher discriminant analysis and the di-
verse forms of metric learning algorithms (Globerson
& Roweis, 2005; Xing et al., 2002; Yan et al., 2007)
fall into this category. On the other hand, in certain
applications it is reasonable to regard the label as a
smoothly varying real-value. The DR in this setting,
often referred to as dimensionality reduction for regres-
sion, can be treated within a regression framework,
where we regress a target (output label) from input
data points. The embedding then tries to minimize the
loss of information caused by dimensionality reduction
in terms of the regression performance, often achieved
by enforcing conditional independence between output
and input given the embedding (Fukumizu et al., 2004;
Kim & Pavlovic, 2008; Li, 1991; Nilsson et al., 2007).

A relatively unexplored problem in DR is finding em-
beddings that preserve local minima of a given objec-
tive function. Closest to our work is the structure pre-
serving embedding (Shaw & Jebara, 2009) whose goal
is to preserve the nearest neighbor structure of the in-
put graph. They explicitly enforce affinity (neighbors)
and repulsive (non-neighbors) constraints to fully re-
spect the original graph topology. Recent related
work in computer vision aims to perform feature se-
lection/weighting in generative (Nguyen & de la Torre,
2008) and dicriminative (Wu et al., 2008) models that

X

X

5

6

ε

X3

X
X

X

4

2

1

ε

Figure 2. Example illustrating the neighborhood topology.

avoid local minima in image alignment. Unlike previ-
ous work on dimensionality reduction on data samples
or graph structures, this paper proposes a dimension-
ality reduction technique to preserve the local minima
structure of a given objective function.

3. Notation and Setup

We denote by f(x) the target function in the orig-
inal space. For simplicity and tractability, we as-
sume that we are given a set of n paired samples
D = {(xi, f(xi))}ni=1, where xi ∈ Rp. We use the
boldfaced matrix/vector notation, X = [x1, . . . ,xn]>

and f = [f(x1), . . . , f(xn)]>, which are of dimension
(n× p) and (n× 1), respectively.

We assume that D contains three types of samples: (i)
some of the local minima points of the target func-
tion f(·), (ii) their neighborhood points obtained by
random sampling around the local minima, and (iii)
some other non-neighbor points. These points are
all labeled, meaning that we know which data points
are local minima, neighbors of local minima, or non-
neighbors. We define a neighbor as a point x which is
close to a local minimum x∗ in the original space (i.e.,
||x−x∗|| < ε for some small ε). The set of neighbors of
x∗ within the radius ε is denoted by Nε(x∗). By defi-
nition, the function value of a neighbor is not smaller
than that of the local minimum (i.e., f(x∗) ≤ f(x)).
For simplicity we restrict ourselves to disjoint neigh-
borhoods, meaning that Nε(x∗) ∩ Nε(x′∗) = ∅ for any
two local minima x∗ and x′∗.

Given D and the neighborhood threshold constant ε,
we represent the neighborhood topology as the (n×n)
matrix U which is a 0/1 matrix with Uji = 1 iff xi
is a local minimum and xj ∈ Nε(xi). We also define
the diagonal matrix V whose diagonal entries are the
row sums of U. For better understanding, consider
the synthetic example in Fig. 2 where D contains 6
points with two local minima x2,5 in blue/red color,
their neighbors x1,4,6, and a non-neighbor x3. In this
case, it is easy to see that the neighborhood topology
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matrix U and the row-sum matrix V are:

U =


0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 1 0

 ,V =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .
U and V facilitate expressing the local minima con-
straints (i.e., f(x∗) ≤ f(x) for x ∈ Nε(x∗)) com-
pactly as a single linear inequality system, namely
(U−V)f ≤ 0.

4. Local Minima Embedding (LME)

LME learns two mappings: (i) A low-dimensional em-
bedding z = B>x where B = [b1, . . . ,bq] is the (p×q)
embedding matrix1, and z ∈ Rq is the q-dimensional
(q � p) embedded point of x. (ii) A new target
function g(z) on the embedded space, which approxi-
mates f(x) while preserving the local minima proper-
ties of the original function f(·). We assume a linear
form g(z) = c>z with the parameter c ∈ Rq. Note
that as a linear function does not entail a local mini-
mum, we should kernelize it (now a kernel on the em-
bedded space). Also notice that this roughly corre-
sponds to performing a kernel regression with the data
{(zi, f(xi))}ni=1. However, as shown in this section, we
do not solve these two problems separately, but opti-
mize them simultaneously in a principled manner.

4.1. Constraints for LME

Given a set of n paired samples D = {(xi, f(xi))}ni=1,
where xi ∈ Rp, LME finds a low-dimensional embed-
ding that satisfies three criteria:

• Condition I (Local Structure Preservation):
The embedding preserves the locality (or prox-
imity) structure of local minima points and their
neighborhood points. That is, if a point is close
to a local minimum in the original space, so is it
in the embedded space.

• Condition II (Local Minima Preservation):
Within each neighborhood around a local mini-
mum, the target function g(·) has to satisfy the
local minima property. More specifically, when
we denote by x∗ (z∗) and x (z), a local min-
imum and its neighbor in the original (embed-
ded) space, respectively, one can enforce that

1One can always consider a kernel extension, in which B
becomes an operator composed of q (nonlinear) functions
in the RKHS of x. For expositional convenience, we use
the linear representation throughout the paper, which is
then turned into a kernel version straightforwardly using
the kernel trick.

g(z∗) ≤ g(z) as well as the stationary point con-
dition ∂g(z)

∂z

∣∣
z=z∗

= 0. We also need to avoid that
several local minima collapse in a single point.

• Condition III (Function Approximation):
Overall, g(z) should approximate f(x) well.

4.1.1. Enforcing Condition I

To enforce condition I, namely preserving the neigh-
bor structures around the local minima points, LME
enforces the following constraint:

For every local minimum x∗,

x ∈ Nε(x∗)⇔ z ∈ Nρ(z∗), (1)
where z = B>x and z∗ = B>x∗.

Here, the neighborhood set in the embedded space,
Nρ(z∗), is defined for a new radius constant ρ. A
straightforward way to enforce the above constraint
would be to have inequality constraints as follows:

||B>x−B>x∗||2 ≤ ρ ≤ ||B>x′ −B>x∗||2,
for all x ∈ Nε(x∗) and x′ /∈ Nε(x∗). (2)

However, (2) has the form of differences of quadratic
functions, which can yield non-convex constraints in
the optimization of B. Instead, one can consider a
soft version of neighborhood preserving by penalizing
pairs of data points which have higher proximity in the
original space, but lower proximity in the embedded
space. This can be expressed as:

min
B

∑
i,j

wij ||zi − zj ||2, (3)

where wij is the measure of affinity between xi and xj
in the original space, having a larger value if xi and xj
are closer. Note that (3) has the same form2 as that of
the locality preserving projection (He & Niyogi, 2003)
and the Laplace eigenmap (Belkin & Niyogi, 2002).
There are several diverse ways to construct the affinity
matrix W = (wij). Throughout the paper, we assume
that W = Kx, the kernel matrix in the original space.
Using the matrix notation Z = [z1, . . . , zn]> = XB,
(3) is equivalent to:

min
B

tr(Z>LZ) = tr(B>X>LXB), (4)

where L = D −W is the graph Laplacian induced
from W, and D is the diagonal matrix with row-sum
entries of W.

2As is done in LPP, one typically needs to impose cer-
tain regularization on B to avoid the trivial solution of the
constant Z (or B = 0). In our case, however, since this
trivial case is automatically discarded by the least-square
objective (8), we do not explicitly consider it.
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4.1.2. Enforcing Condition II

In condition II, we enforce the local minima criteria for
a new target function g(·) within the neighborhoods of
local minima points. We consider two conditions: (i)
minimality within a neighborhood, and (ii) stationary
point condition. The former can be formally stated as:

For every local minimum x∗ and x ∈ Nε(x∗),
g(z∗) ≤ g(z). (5)

As g(z) = c>z, the inequality constraints (5) can be
equivalently expressed in a matrix form as:

(U−V)Zc ≤ 0. (6)

Note that (6) forms a set of nonlinear and non-convex
constraints as we optimize for both c and Z.

The latter stationary point condition can be written
as: ∂g(z)

∂z

∣∣
z=z∗

= 0. As there always exists a numerical
error within machine precision, we introduce a slack
variable τ , a small positive number. Then∣∣∣∣∣∣∣∣∂g(z)

∂z

∣∣∣∣
z=z∗

∣∣∣∣∣∣∣∣2 ≤ τ. (7)

Unfortunately, (7) is not a convex constraint in general
due to the nonlinearity of g(z) in z.

Sometimes, we have observed that the local minima
points (and their neighbors) are collapsed to one an-
other in their embedding. To address this issue, we
additionally enforce the following constraint for every
pair of local minima points (x∗,x′∗): ||z∗ − z′∗|| ≥ δ,
where δ is chosen appropriately (e.g., δ = 1).

4.1.3. Enforcing Condition III

Finally, the last condition forces the new target func-
tion g(·) to approximate well the original function f(·).
In the least-squares sense, this can be written as:

min
∑
i

||g(zi)− f(xi)||2 = ||Zc− f ||2. (8)

It is worth noticing that in (8) we enforce g(·) to be
close to f(·) for all the training data points, which has
an auxiliary effect of imposing the ordering constraints
on the function values at the local minima points. For
instance, consider two local minima points x∗ and x′∗
where x∗ is the global minimum while x′∗ is not. Then
it is desirable to have the function values ordered ac-
cordingly, namely g(z∗) ≤ g(z′∗). This can be enforced
either explicitly by a set of inequalities similar to (6)
or implicitly by (8). We take the latter approach.

4.2. Energy function for LME

Combining all the constraints from section 4.1, (4),
(6), (7), and (8), LME optimizes (with Z = XB):

minB,c ||XBc− f ||2 + λtr(B>X>LXB)
s.t. (U−V)XBc ≤ 0∣∣∣∣∣∣∣∣∂g(z)

∂z

∣∣∣∣
z=z∗

∣∣∣∣∣∣∣∣2 ≤ τ, ||z∗ − z′∗||2 ≥ δ.(9)

Here λ is the trade-off parameter that balances two
cost terms. As mentioned earlier, it is necessary to
kernelize the target function g(·). We consider two
RBF kernels, one for the original space and the other
for the embedded space:

kx(xi,xj) = exp
(
− 1

2σ2
x
||xi − xj ||2

)
and

kz(zi, zj) = exp
(
− 1

2σ2
z
||zi − zj ||2

)
,

where the scale parameters σx and σz are assumed
fixed. We denote their kernel matrices evaluated on
the training data by Kx and Kz, respectively, which
are of dimension (n× n).

Using the dual representation, the embedding oper-
ator B can be parameterized by the (n × q) ma-
trix α = (αij), namely B = [b1(·), . . . , bq(·)], where
bj(·) =

∑n
i=1 αijkx(·,xi) for j = 1, . . . , q. This, by

the kernel trick, leads to the nonlinear embedding ex-
pressed as Z = Kxα, while replacing the second term
in the objective (9) by tr(α>KxLKxα).

Similarly, the target function g(·) can be represented
in a dual form in the embedded space as:

g(z) =
n∑
i=1

βikz(z, zi), (10)

parameterized by the (n×1) vector β = (βi). It should
be noted that the functional form of (10) sets an upper
bound on the number of local minima in the new func-
tion. That is, g(z) has at most n local minima points
in the embedded space, which is reasonable given a fi-
nite sample scenario. The kernel trick replaces Zc by
Kzβ, which yields the kernelized version of (9):

minα,β
1
2
||Kzβ − f ||2 + λtr(α>KxLKxα)

s.t. (U−V)Kzβ ≤ 0∣∣∣∣∣∣∣∣∂g(z)
∂z

∣∣∣∣
z=z∗

∣∣∣∣∣∣∣∣2 ≤ τ, ||z∗ − z′∗||2 ≥ δ.(11)

As Kz is nonlinearly related to α through the RBF
function, (11) is an instance of non-convex optimiza-
tion with non-convex inequality constraints. We solve
this problem using the constrained optimization tool-
box in Matlab with the function fmincon().

Once we have found the optimal α and β, the em-
bedding of a new test point x can be obtained from:

z = α>kx(x), (12)
where kx(x) = [kx(x,x1), . . . , kx(x,xn)]> is the (n×1)
test kernel vector for x.
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5. Experiments

This section demonstrates the effectiveness of LME for
visualization and local minima discovery. In the first
experiment we tested the ability of LME to find an
embedding that preserves the local minima of an an-
alytic function. In the second experiment LME found
an embeeding of the error function used for template
matching over translation, rotation and scale.

5.1. Synthetic data

We performed a synthetic experiment on the three
hump camel function, defined as

y =
1
6
x6

1 − 1.05x4
1 + 2x2

1 + x2
2 − x1x2. (13)

It has 3 local minima in the 2D space, where one of
them is the global minimum taking a strictly smaller
function value than the remaining two local minima.
Fig. 3(a) and Fig. 3(b) depict the function and the
contour plot, respectively. The training data D is com-
posed of all local minima points (depicted as squares),
20 randomly sampled neighbor points (crosses) per
each local minimum within a ball of radius 0.4, and 30
non-neighbor samples (black dots with sample IDs).
We used two RBF kernels for nonlinear mappings, B
and g(·), and set the parameters as σx = σz = 1.0.
Starting from random α and β as initial iterates, we
optimized (11) using fmincon() in Matlab until con-
vergence. We found the 1D embedding and the trans-
formed target function as shown in Fig. 3(c), where the
green curve represents the embedded function g(z) ob-
tained by LME (10). LME successfully preserves the
same local minima of the original function.

We also compared LME with two baseline approaches
that perform embedding of the function (KPCA and
KLPP (He & Niyogi, 2003)) followed by a least-
square fitting of the objective function in the embed-
ded spaces. As shown in Fig. 3(d) and Fig. 3(e), both
independent embedding approaches fail to preserve the
local minima structure of the original function.

5.2. Template matching

This section tested the LME on the error function for
template matching. Given an image frame I and a
template model I0, template matching minimizes:

min
p
||I(ω(x; p))− I0||22, (14)

where ω(x; p) is a geometric transformation (e.g.
affine) that transforms the pixel coordinates x into
the warped ones by the parameters p. We used a Eu-
clidean transformation composed by 4 parameters (p):
2 translation parameters (x-pos and y-pos), 1 scale

(a) Image frame (b) Template model

Figure 4. (a) Image frame (128×128 pixels). (b) Template
patch 48× 48 pixels.

(a) Local minima

lm 1 (err=44.02) lm 2 (err=67.05)

lm 3 (err=71.27) lm 4 (err=81.08)

(b) Images & errors

Figure 5. (a) 4 local minima points depicted as red boxes
with different positions, scales, and rotations found by sam-
pling and gradient search. The global minimum is depicted
as a yellow box, while the local minima are in red. (b) Im-
ages and sum-of-squared errors of the 4 local minima.

parameter (scale), and in-plane rotation parameter
(rotation).

We used Fig. 4(a) as an image frame I of size (128 ×
128) which contains a face template image patch I0
(Fig. 4(b)) at its center. The template patch is of
size (48 × 48). The image frame has uniform gray
background, where the background intensity is set to
the average intensity of the template patch.

Note that the error function is defined as the sum-
of-squared-distances (SSD) on the 4D input space x.
To find some local minima, we did numerical gradient
search around some randomly chosen starting points.
We found 4 local minima points (lm-1 ∼ lm-4) de-
picted as the red boxes in Fig. 5(a), as well as the
global minimum depicted as the yellow box. We also
computed the SSD for these 4 local minima w.r.t. the
template patch as shown in Fig. 5(b). For each lo-
cal (and global) minima point, we randomly sampled
8 neighbors taking into account different granularities
for different parameters. We also randomly sampled
20 non-neighboring points. LME was applied to re-
duce the original 4D input to 1D. The resulting em-
bedding and the transformed target error function is
shown in Fig. 6. As shown in the figure, the embed-
ding preserves all the local minima points of the given
target function observed in the data samples. Inter-
estingly, the embedding reflects a new local minimum
point (originally not observable in the available sam-
ples). The new point3 has a lower SSD error than the

3We note that this point does not necessarily correspond
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Figure 3. Three hump camel function. Blue square = global minimum, red squares = (non-global) local minima, crosses
= neighbor samples, and black dots (with sample ID numbers) = non-neighbor samples.
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Figure 6. LME for the template matching example. The
four local minima points are represented in blue squares,
and the global minimum in red. The newly found local
minimum point is depicted as a black cross.

other local minima points, and the corresponding im-
age can be obtained by solving a pre-image problem.
This image is shown in Fig. 8(b), under the title New
LM. As shown, the image corresponding to the new
local minimum is better aligned than the best local
minimum (lm-1). This is an example where LME is

to a local minimum in the original space. But it turned
out to be a local minimum along a particular direction.
These types of important points (e.g., saddle points) can
be useful for understanding the impact of input variables
on the error function, although more research needs to be
done to exactly establish the relation between the minima
in the embedded space and those in the original space.

Figure 7. Zoom of Fig. 6 from lm 1 to gm. We
split the line search into four regions: lm 1∼local max

1 (I), local max 1∼New local minimum (II), New local

minimum∼local max 2 (III), and local max 2∼gm (IV).
The line search results are shown in Fig. 8.

able to discover the structure of the input w.r.t the
error function, potentially yielding new local minima.

Furthermore, to see the effectiveness of LME in find-
ing the dependencies in the original parameters, we
did a one dimensional line search in the embedded
space around the regions adjoining the global mini-
mum. More specifically, we took the region from the
best local minimum in the training samples (i.e., lm-
1) to the global minimum (i.e., gm). This region is
zoomed in and shown in Fig. 7. We split the region
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into four segments knotting on the local/global min-
ima/maxima points (I ∼ IV). For each of these four
segments, we took 5 points (the two ending knots and
the three uniformly sampled points between the end-
ing points). We solved the pre-image problem (with
the initial points chosen from the previous solutions)
to retrieve the corresponding parameters in the origi-
nal 4D input space. The pre-image provides the visual
image for these parameters. The results (parameters
and images) retrieved by the line search for each of
four segments are shown in Fig. 8.

Observe that most local minima are produced by ro-
tation and scale, which are well known to be worse
conditioned for registration than translation parame-
ters. For example, for region I, we rotated the lm-1
image counter-clockwise to get the local max 1. Re-
gion II, that goes from the local maxima to the new lo-
cal minimum, corresponds to a rotation clockwise plus
a decrease in the scale parameter. This yields a new
local minima point, better aligned than lm-1. Con-
tinuing these rotation/scale changes, however, led to
increasing errors, and we denote as LMax-2 the new the
local maximum point shown in Fig. 8(c). In region IV,
we again reversed the trend in both scale and rotation
parameters, and finally land at the global minimum
as shown in Fig. 8(d). This example shows how LME
allows to visualize the structure of the local minima
and understand the parameters in the original space
that create local minima.

6. Conclusion

This paper proposes LME, an embedding technique
that preserves the local minima structure of a given
error function. We have shown in synthetic and real
examples that LME is a useful technique to understand
the structure of high-dimensional error functions. De-
spite a promising technique LME has a few issues that
need to be further explored. Firstly, given the embed-
ded point we need to solve the pre-image problem to
find the original parameter in the original space. The
pre-image problem is sensible to local minima because
there is no one-to-one mapping between the original
input space and the embedded space. We plan to con-
vexify it by formulating a learning problem in the ker-
nel (Hilbert) feature space directly. Secondly, during
the paper we have assumed that the locations of the
local minima are known. It is left as future work to
address the unsupervised problem where the locations
of the local minima are not known.
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Local Minima Embedding

(a) lm 1 to lmax 1 (region I) (b) lmax 1 to lm new (region II)

(c) lm new to lmax 2 (region III) (d) lmax 2 to gm (region IV)

Figure 8. Line search along the 4 regions (from I to IV): (a) lm 1∼local max 1 (I), (b) local max 1∼New local minimum

(II), (c) New local minimum∼local max 2 (III), and (d) local max 2∼gm (IV).


