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Abstract— In this paper, a new adaptive control framework
for LTI parametric systems based on an ISS small-gain-like
condition and Kreisselmeier observer is proposed. The control
structure composes of a constant state feedback, a Kreisselmeier
observer and an adaptive law. This approach achieves global
exponential stability subject to robust controllability, robust
observability and a small-gain condition. It overcomes the
shortcomings of the classic adaptive control methods and
handles MIMO systems straightforwardly.

I. INTRODUCTION

As a powerful technology of dealing with parametric
uncertainty in feedback system design, adaptive control has
been studied extensively since 1950’s. The main stream of
approaches is transfer function based and the fundamen-
tal scheme in the proof of stability is Lyapunov stability
theory[1], [4]. This classic approach has achieved many fruit-
ful results and has been industrially applied extensively[1].
However, this classic approach also embodies some inherent
limitations such as design complexity due to high relative
degree and minimal phase requirements. Particularly, in the
performance aspect only the boundedness of states and
asymptotic tracking of output are guaranteed theoretically,
even though the designed adaptive systems might possess a
better performance such as exponential convergence, as is
observed in many examples. This is because in the classic
approaches both the feedback gain and the adaptive law
are designed simultaneously based on a single Lyapunov
function. Therefore, it impossible to investigate whether the
closed loop system is exponentially stable by using the same
Lyapunov function.

Meanwhile, the state space approach was explored since
late 1970’s as represented by the research of Kreisselmeier.
In his landmark paper[8], Kreisselmier proposed a smart
structure of full-order observer for single-input single-output
uncertain parametric systems and showed that the state of
uncertain systems could be reconstructed by a set of filters
and an adaptive law for uncertain parameters. This observer
and the related state regulation problem was investigated in a
series of papers[8], [9], [10]. Unfortunately, only some local
results on state regulation problem was obtained except for
that the PE (persistent excitation) requirement is put on the
filter states.

This observer structure was extended to a class of SISO
nonlinear systems (parametric output-feedback systems) by
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Krstić et al.[11] in their adaptive observer backstepping in
which global boundedness of states and asymptotic tracking
of output were achieved.

However, to the knowledge of the author no global ex-
ponential adaptive stabilization method has been established
in state space for linear parametric systems. This is possibly
because all approaches up to now are Lyapunov based.

So in this paper, a totally different approach is ex-
plored. This approach is motivated by the ISS (input-to-state
stability) small-gain theory of Jiang[5] and Kreisselmeier
observer[8]. In the present approach, the adaptive system has
a structure of constant state feedback, Kreisselmeier observer
and adaptive law. The constant state feedback robustly stabi-
lizes the uncertain parametric system, Kreisselmeier observer
reconstructs the state of plant and the adaptive law improves
the parameter estimate. An attractive feature of this approach
is that the designs of these ingredients are independent which
resembles the Separation Principle in linear time-invariant
systems. They are unified by a newly developed ISS small-
gain-like condition to yield global exponential stability of
all states, with explicit convergence rate. No requirements
are necessary other than controllability, observability and a
small-gain condition. Also discussed is an LMI optimization
based design technique. Further, a hanging crane example is
illustrated briefly.

As in the proposed approach the role of adaptive control is
to recover the performance of robust constant state feedback,
this method is named as ”adaptive robust control”.

Let θ = [θ1 · · · θr]T be an uncertain parameter vector
taking values in a time-invariant, bounded polyhedral set S:

S = {θ|θi ∈ [0, 1], i = 1, . . . , r}. (1)

Since any parameter p ∈ [pmin, pmax] can be expressed as
p = pmin + θ(pmax − pmin) for θ ∈ [0, 1], the uncertain
parameter p can always be scaled and replaced by θ.

The MIMO uncertain parametric plant considered in this
paper is given by

ẋ = A(θ)x + B(θ)u (2)

y = Cx, x ∈ Rn, u ∈ Rp, y ∈ Rq (3)

in which A(θ), B(θ) are matrices affine in an uncertain
parameter vector θ ∈ Rr which takes value in S. Throughout
this paper it is assumed that

A1 (A(θ), B(θ)) is controllable for all θ ∈ S (Robust
Controllability) and (C, A(θ)) is observable for all
θ ∈ S (Robust Observability)

A2 rankB(θ) = p for all θ ∈ S and rankC = p (No
redundancy in actuator and sensor).
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In Sec. II some mathematical preliminaries are presented
which form the foundation for this approach. Sec. III dis-
cusses briefly the robust state feedback design using a
constant gain and Sec. IV describes the design of full-
order Kreisselmeier observers. The stability conditions are
provided and proved in Sec. V. An LMI optimization based
design technique is discussed in Sec. VI.

Although this approach has been extended to minimal-
order Kreisselmeier observer, this topic is omitted due to
page limitation.
Notations and conventions: We use x̂(t), θ̂(t) to denote the
estimates of signal x(t) and parameter θ. The estimation
error of signal x(t) is denoted by ex(t) while the estimation
error of parameter θ is denoted by θ̃(t). λi(A) denotes the
ith eigenvalue of matrix A and blk diag(·) denotes a block
diagonal matrix. || · || is the Euclidean 2 norm. Further,
x(t) ∗ y(t) denotes the convolution integral.

It is assumed that the Projection Algorithm[1], [4] is used
to guarantee that the estimate θ̂ of a scalar parameter θ is
within the known interval [0, 1] so that |θ̃(t)| ≤ 1.

II. PRELIMINARIES

First of all, a standard result[3] on the norm bound of
matrix exponential is stated below, which will be used to
estimate the norm bound of the response of linear systems.

Lemma 1: Suppose matrix A ∈ Rn×n is stable and

λm := min
i
{|Reλi(A)|} > 0.

Then for any ε > 0 and compatible matrix B, there is a
k(ε) > 0 such that exp(At)B has the following norm bound

‖eAtB‖ ≤ k(ε)e−(λm−ε)t, t ≥ 0. (4)
An upper bound for solutions to 2 coupled integral in-

equalities is derived below and it is shown that the expo-
nential convergence is guaranteed by a certain small-gain
condition. This result forms the foundation for the stability
analysis of the adaptive design of this paper.

Theorem 1: Suppose 2 functions x, y : [t0,∞) �→ R

satisfy

x(t) ≤ ae−λ1(t−t0) + k1

∫ t

t0

e−λ1(t−τ)y(τ)dτ (5)

y(t) ≤ be−λ2(t−t0) + k2

∫ t

t0

e−λ2(t−τ)x(τ)dτ (6)

in which λ1, λ2, k1, k2, a, b > 0. If

g :=
k1k2

λ1λ2
< 1 (7)

is true, then both x(t) and y(t) are exponentially convergent
functions with a convergence rate no less than (λ1 + λ2 −√

(λ2 − λ1)2 + 4k1k2)/2 > 0.
(Proof) For nonzero t0, a transformation of variables t =
t − t0, τ = τ − t0, x(t) = x(t + t0) = x(t) and y(t) =

y(t + t0) = y(t) leads to

x(t) ≤ ae−λ1t + k1

∫ t

0

e−λ1(t−τ)y(τ)dτ

y(t) ≤ be−λ2t + k2

∫ t

0

e−λ2(t−τ)x(τ)dτ.

Since the convergence rate of (x(t), y(t)) in t is equal to
that of (x(t), y(t)) in t, it is sufficient just to consider the
case of t0 = 0.

Substitution of (6) into (5) gives

x(t) ≤ ae−λ1t + bk1e
−λ1t ∗ e−λ2t

+k1k2e
−λ1t ∗ e−λ2t ∗ x(t).

Let a signal u(t) ≥ 0 be

u(t) = ae−λ1t + bk1e
−λ1t ∗ e−λ2t

+k1k2e
−λ1t ∗ e−λ2t ∗ x(t) − x(t).

Then Laplace transform yields

U(s) =
a(s + λ2 + bk1/a)
(s + λ1)(s + λ2)

+
k1k2 − (s + λ1)(s + λ2)

(s + λ1)(s + λ2)
X(s).

Solving for X(s), we obtain

X(s) = H0(s) − (1 + H(s))U(s) (8)

H0(s) =
a(s + λ2 + bk1/a)

(s + λ1)(s + λ2) − k1k2

H(s) =
k1k2

(s + λ1)(s + λ2) − k1k2
.

The impulse responses h0(t), h(t) of H0(s),H(s) are expo-
nentially convergent iff the small-gain condition (7) holds.
Further, we define

α =
λ1 + λ2 −

√
(λ2 − λ1)2 + 4k1k2

2

β =
λ1 + λ2 +

√
(λ2 − λ1)2 + 4k1k2

2
(> α).

Then partial fraction expansion and inverse Laplace trans-
form give

h(t) =
k1k2

β − α

(
e−αt − e−βt

) ≥ 0 (9)

h0(t) = c1e
−αt + c2e

−βt (10)

c1 = bk1 + a(λ2 − α), c2 = bk1 + a(λ2 − β).

Therefore

x(t) = h0(t) − (u(t) + h(t) ∗ u(t)) ≤ h0(t) (11)

is derived by noting u(t) ≥ 0 and h(t) ≥ 0. The convergence
rate of y(t) follows from this conclusion and (6). �

Since the 2nd term of (5) is less than k1/λ1 ×
maxτ∈[t0,t] y(τ), k1/λ1 can be interpreted as an ISS gain
for x(t) with respect to input y(t). Similarly, k2/λ2 is an
ISS gain for y(t) with respect to input x(t). Therefore, (7)
is an ISS small-gain-like condition.
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III. ROBUST STATE FEEDBACK DESIGN

The design problem in this section is to find a constant
feedback matrix F such that the control input

u = Fx (12)

stabilizes system (2) exponentially with a convergence rate
λ1 > 0. That is, in the closed loop system

ẋ = (A(θ) + B(θ)F )x := Ac(θ)x (13)

the largest real part among all eigenvalues of matrix Ac(θ)
satisfies

max
i

Reλi(A(θ)) ≤ −λ1, ∀θ ∈ S. (14)

This design problem is well-posed subject to Assumption 1
and is well studied in control literature. So this issue will not
be pursued in this paper. It is just assumed that a solution
F has been found. Hence according to Lemma 1 for any
δ1 > 0 there exist k1(δ1), a(δ1) > 0 such that for all θ ∈ S

‖eAc(θ)t‖ ≤ ae−αt, ‖eAc(θ)tB(θ)F‖ ≤ k1e
−αt (15)

hold with respect to α = λ1 − δ1 > 0.
When the state is estimated by some sort of observer and

the estimate is x̂, then the state feedback changes to

u = Fx̂ (16)

and the closed loop system becomes

ẋ = Ac(θ)x + B(θ)Fex (17)

in which ex denotes the estimation error of state ex = x̂−x.
Therefore

‖x(t)‖ ≤ ae−α(t−t0)‖x1(t0)‖ + k1

∫ t

t0

e−α(t−τ)‖ex(τ)‖dτ

(18)
holds.

IV. KREISSELMEIER OBSERVER

Kreisselmeier observer is used to reconstruct the state from
input and measured output.

In the following observer

˙̂x = (A(θ) + L(θ)C)x̂ + B(θ)u − L(θ)y, (19)

it is assumed that

A3 There is an observer gain L(θ) affine in θ such that

T := A(θ) + L(θ)C (20)

is a constant matrix independent of θ and its
eigenvalues can be placed arbitrarily.

To see under what condition this assumption holds true,
we express A(θ), L(θ) as

A(θ) = A0 +
r∑

i=1

θiAi, L(θ) = L0 +
r∑

i=1

θiLi. (21)

Then Assumption A3 is true iff the algebraic matrix equation

Ai + LiC = 0 (22)

has solution Li for all i and (A0, C) is observable. In this
case the matrix T becomes

T = A0 + L0C (23)

and its eigenvalues can be arbitrarily assigned by suitable
observer gain L0.

Remark 1: Assumption A3 is satisfied at least in the so-
called observer canonical form[7] in which

A(θ) = A0 + K(θ)C, C = DC0 (24)

A0 = blk diag(A11 · · · Aqq)

Aii =
[

0 0
Iσi−1 0

]

C0 = blk diag(C11 · · · Cqq)
Cii =

[
0 · · · 0 1

]
and D is a constant, lower triangular matrix with all diagonal
entries equal to 1, K(θ) is a nonzero matrix. Here σi (i =
1, . . . , q) is the so-called observability index and

∑q
i=1 σi =

n. Under Assumptions A1 and A2, it is always possible to
transform the state space model (2) into this form. Further,
the unknown parameter vector can always be rearranged in
such a way that K(θ) is affine in θ. Hence

L(θ) = −K(θ) + L∗D−1 (25)

leads to

T = A0 + L∗C0 (26)

and the eigenvalues of T can be arbitrarily assigned by
suitable observer gain L∗. �

Example 1: Consider a simplified model of hanging crane
in which the load is modeled as a mass m, the rope length is l
and the friction coefficient of the rail is µ, all are unknown.
For simplicity, the mass of the cart is set as unit and the
mass of rope is ignored. Let the state variables be x1 = x
(displacement of cart), x2 = ẋ, x3 = φ (angle of rope)
and x4 = φ̇. Then the state space model is described by
(x = [x1 x2 x3 x4]T )

ẋ =

⎡
⎢⎢⎣

0 1 0 0
0 −p2 p1 0
0 0 0 1
0 p3 −p4 0

⎤
⎥⎥⎦x +

⎡
⎢⎢⎣

0
1
0

−p5

⎤
⎥⎥⎦ u

in which the unknown parameters are

p1 = mg, p2 = µ, p3 = µ/l, p4 = (1 + m)g/l, p5 = 1/l.

Note each pi can be expressed as pi = pi,min + θi(pi,max −
pi,min). The measured output is

y =
[

1 0 0 0
0 0 1 0

]
x =

[
x
φ

]
.

This model is transformed into the observer canonical form
by defining the new state variables as

z1 = x2 + p2x1, z2 = x1, z3 = x4 − p3x1, z4 = x3
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and the new state space model is given by

ż =

⎡
⎢⎢⎣

0 0 0 p1

1 −p2 0 0
0 0 0 −p4

0 p3 1 0

⎤
⎥⎥⎦ z +

⎡
⎢⎢⎣

1
0

−p5

0

⎤
⎥⎥⎦ u

y =
[

0 1 0 0
0 0 0 1

]
z.

Obviously, this new model is in the observer canonical form
in which

A11 = A22 =
[

0 0
1 0

]
, D = I2

K(θ) =
[

0 −p2 0 p3

p1 0 −p4 0

]T

. �
Now express B(θ) as

B(θ) = B0 +
r∑

i=1

θiBi (27)

and prepare the following filters (ζ0(0) = 0, ζi(0) = 0)

ζ̇0 = Tζ0 + B0u − L0y (28)

ζ̇i = Tζi + Biu − Liy, i = 1, . . . , r. (29)

Note the states of these filters are computable since all
parameter matrices are given.

It can be shown that[8]

x = ζ0 + θ1ζ1 + · · · + θrζr − ε (30)

holds in which ε is the estimation error due to nonzero initial
state x(0) and satisfies

ε̇ = Tε, ε(0) = −x(0). (31)

Let the estimate of parameter θi be denoted by θ̂i, then the
estimated state is computed as

x̂ = ζ0 + θ̂1ζ1 + · · · + θ̂rζr. (32)

V. STABILITY ANALYSIS

In this section we analyze the conditions for exponential
stability of the closed loop system composed of robust state
feedback and Kreisselmeier observer.

The estimation error of state is equal to

ex = x̂ − x = θ̃1ζ1 + · · · + θ̃rζr + ε, θ̃i = θ̂i − θi. (33)

Further, in order to analyze the stability of closed loop
system, we define the following notations for simplicity

ζ = [ζT
1 · · · ζT

r ]T , Θ̃ = [θ̃1In · · · θ̃rIn] (34)

J = blk diag(T · · · T ), G = [BT
1 · · · BT

r ]T

H = [LT
1 · · · LT

r ]T .

Due to the stability of matrix T ,

max
i

Reλi(T ) = max
i

Reλi(J) = −λ2, ∀θ ∈ S. (35)

holds with respect to some λ2 > 0. Further, according to
Lemma 1 for any δ2 > 0 there exist b(δ2), k2(δ2), k3(δ2) > 0
such that

‖eTt‖ ≤ be−βt, ‖eJt(GF − HC)‖ ≤ k2e
−βt

‖eJtGF‖ ≤ k3e
−βt (36)

holds in which β = λ2 − δ2 > 0.
Now ex can be written as

ex = Θ̃ζ + ε. (37)

Noting y = Cx and u = Fx + Fex, it is easy to see that

ζ̇ = Jζ + Gu − Hy = Jζ + (GF − HC)x + GFex

holds. By (30), the stability of ζ0 is guaranteed by that of
(x, ζ, ε), so the state of the closed loop system can be taken
as (x, ζ) and ε be regarded as an exponentially convergent
disturbance. The closed loop system is described by

Σx : ẋ = Ac(θ)x + B(θ)Fex (38)

Σζ : ζ̇ = Jζ + (GF − HC)x + GFex (39)

Σε : ε̇ = Tε (40)

ex = Θ̃ζ + ε. (41)

Refer to Fig.1 for the block diagram.
Since ε is exponentially convergent and the closed loop

system is linear time-varying, ε does not affect the stability
of the closed loop system and thus will be omitted in the
stability analysis hereafter.

Θ̃

ε

ex

ζ
ΣζΣε

Σx

X

Fig. 1. Closed loop system

The response of ζ(t) is obtained as

ζ(t) = eJ(t−t0)ζ(t0) +
∫ t

t0

eJ(t−τ)(GF − HC)x(τ)dτ

+
∫ t

t0

eJ(t−τ)GF Θ̃(τ)ζ(τ)dτ.

Further, define a constant as

µ = k3‖Θ̃‖[t0,∞) ≥ 0 (42)

in which ‖Θ̃‖[t0,∞) is a norm defined below

‖Θ̃‖[t0,∞) = max
t∈[t0,∞)

√√√√ r∑
i=1

θ̃i(t)2. (43)

Since ‖eJt‖ = ‖eTt‖, there holds

‖ζ(t)‖ ≤ be−β(t−t0)‖ζ(t0)‖ + k2

∫ t

t0

e−β(t−τ)‖x(τ)‖dτ

+µ

∫ t

t0

e−β(t−τ)‖ζ(τ)‖dτ.
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By using the same technique as in the proof of Theorem 1,
it is obtained that

‖ζ(t)‖ ≤ b‖ζ(t0)‖e−(β−µ)(t−t0)

+k2

∫ t

t0

e−(β−µ)(t−τ)‖x(τ)‖dτ. (44)

Theorem 2: Suppose A1–A3 hold. The state (x, ζ) of the
closed loop system (38) is exponentially stable for all θ ∈ S
and t > t0 if

k1k2‖Θ̃‖[t0,∞)

α(β − µ)
< 1 (45)

holds. The covergence rate is at least no less than

1
2

(
α + β − µ −

√
(β − α − µ)2 + 4k1k2‖Θ̃‖[t0,∞)

)

(Proof) The exponential stability of (x, ζ) follows from
Theorem 1 immediately if one notes that (18) on the norm
bound of x can be written as

‖x(t)‖ ≤ ae−α(t−t0)‖x(t0)‖
+k1‖Θ̃‖[t0,∞)

∫ t

t0

e−α(t−τ)‖ζ(τ)‖dτ

in this case. �
Remark 2: Note the small-gain condition (45) needs not

be true from the beginning. What is required is that (45)
is satisfied after some finite time (t0 > 0) of parameter
adaptation. Then the states converge exponentially from that
moment.

Corollary 1: Suppose A1–A3 hold. The state (x, ζ) of the
closed loop system (38) is exponentially stable for all θ ∈ S
and t > t0 if either of the following two conditions holds:

1) ‖Θ̃‖[t0,∞) < αβ/(k1k2 + αk3)
2) β > (k3 + k1k2/α)

√
r

(Proof) Condition 1 is obvious. Meanwhile, the small gain
condition in Theorem 2 is equivalent to

β > (k3 + k1k2/α)‖Θ̃‖[t0,∞)

which holds if Condition 2 is true because ‖Θ̃‖[t0,∞) ≤
√

r
owing to the use of Projection Algorithm. �

VI. LMI OPTIMIZATION BASED DESIGN

In the closed loop system (13), convergence rate specifi-
cation (14) is satisfied if there exists P > 0 such that

Ac(θ)P + PAT
c (θ) + 2λ1P < 0, ∀θ ∈ S (46)

holds. Similarly,

Reλi(T ) ≤ −λ2, ∀i (47)

iff there exists a matrix Q > 0 such that

TQ + QTT + 2λ2Q < 0 (48)

is true. The norm bounds on x and ζ can be derived using
these two LMIs, as is shown below. Again, the exponentially
convergent ε(t) is omitted in the derivation of solution upper
bounds.

Define 2 nonnegative functions V (x) and U(ζ) as

V (x) = ‖P−1/2x‖ (49)

U(ζ) = ‖Q−1/2ζ‖, Q = blk diag(Q, · · · , Q).

Then differentiation of V 2(x) along the trajectory of system
(17) leads to

2V V̇ = xT P−1(AcP + PAT
c )P−1x + 2xT P−1BFex

< −2λ1x
T P−1x + 2xT P−1BF Θ̃ζ.

It is easy to see that Θ̃ζ = Q1/2 ·Θ̃ ·Q−1/2ζ. Also ‖Θ̃(t)‖ ≤
‖Θ̃‖[t0,∞) (∀t > t0) holds. Therefore,

2V V̇ < −2λ1V
2 + 2V ‖P−1/2BFQ1/2‖‖Θ̃‖[t0,∞)U

holds. Let
‖P−1/2BcFQ1/2‖ ≤ k1. (50)

Then as V ≥ 0, the preceding inequality reduces to

V̇ < −λ1V + k1‖Θ̃‖[t0,∞)U, ∀t > t0.

And the following bound of V (t) is obtained by Comparison
Principle[6]

V (t) < e−λ1(t−t0)V (t0)

+k1‖Θ̃‖[t0,∞)

∫ t

t0

e−λ1(t−τ)U(τ)dτ. (51)

By a similar argument, we obtain that for t > t0

U̇ < −(λ2 − µ)U + k2V

in which

µ = k3‖Θ̃‖[t0,∞), k3 ≥ ‖Q−1/2GFQ1/2‖
k2 ≥ ‖Q−1/2(GF − HC)P 1/2‖. (52)

Hence

U(t) < e−(λ2−µ)(t−t0)U(t0)

+k2

∫ t

t0

e−(λ2−µ)(t−τ)V (τ)dτ. (53)

Since the convergence rates of ‖x‖, ‖ζ‖ are equal to those of
V (x), U(ζ) respectively, the convergence rate of (x, ζ) can
be computed by substituting these numbers α = λ1, β =
λ2, k1, k2, k3 given above into Theorem 2.

We note that the three inequalities about k1, k2, k3 in (50)
and (52) are equivalent to[

k2
1P B(θ)FQ

Q(B(θ)F )T Q

]
≥ 0, ∀θ ∈ S (54)

[
k2
3Q GFQ

Q(GF )T Q

]
≥ 0 (55)

[
k2
2Q (GF − HC)P

P (GF − HC)T P

]
≥ 0. (56)

In order to maximize the convergence rate of (x, ζ), we can
solve the following optimization problems:

min k1k2
λ1(λ2−√

rk3)
subject to (46), (48), (54), (55) and (56)
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VII. IMPROVING CONVERGENCE RATE BY PARAMETER

ADAPTATION

If the parameter estimation error bound ‖Θ̃‖[t0,∞) is
reduced by parameter adaptation, the convergence rate can
be improved. So in this section, the design of adaptive laws
is discussed. This is also crucial in lowering the observer
gain so as to alleviate the sensitivity to sensor noise.

Define
ξi = Cζi, i = 1, . . . , r (57)

and
θ̃ = [θ̃1 · · · θ̃r]T , Ξ = [ξ1 · · · ξr] (58)

for convenience. Also denote the estimated output by ŷ =
Cx̂. Then in the noise free situation the output estimation
error ey = ŷ − y = Cex can be expressed as

ey =
r∑

i=1

θ̃iξi + Cε = Ξθ̃ + Cε. (59)

This error signal is in the conventional linear form about
parameter estimation error θ̃, hence any known parameter
adaptation methods may be used to derive the adaptive law.
For example, we can prove the two following theorems.

Theorem 3: The adaptive law

˙̂
θ = −ΓΞT ey, Γ = diag(γi) > 0 (60)

has the following properties:
1) θ̃ ∈ L∞ and ey ∈ L2.

2) If Ξ ∈ L∞, then ey ∈ L∞ and ˙̃
θ ∈ L∞ ∩ L2.

3) If Ξ, Ξ̇ ∈ L∞, then ey → 0 and ˙̃
θ → 0 as t → ∞.

4) If Ξ ∈ L∞ and satisfies the PE condition that ∃T > 0
such that for all t ≥ 0

α1I ≤
∫ t+T

t

ΞT Ξdτ ≤ α2I, 0 < α1 < α2

holds, then θ̃ converges to zero exponentially fast.
Statements 1)-3) are proved based on the following Lya-

punov function:

V =
1
2
θ̃T Γ−1θ̃ + βεT Pε, Γ > 0, β > 0.

Meanwhile, statement 4) follows from an argument similar
to that of Theorem 1 of [2] about

˙̃
θ = −ΓΞT Ξθ̃ − ΓΞT Cε.

Theorem 4: Consider the following adaptive law

˙̂
θ = −ΓΞT η, Γ = diag(γi) > 0 (61)

in which
η(t) =

1
s + ρ

ey(t). (62)

The following properties hold:
1) θ̃ ∈ L∞ and η ∈ L∞ ∩ L2.
2) If Ξ ∈ L∞, then ˙̃

θ ∈ L∞ ∩ L2 and η → 0,
˙̃
θ → 0 as

t → ∞.
3) If ef , ėf ∈ L∞, then η̇,

˙̃
θ → 0 as t → ∞.

4) If Ξ ∈ L∞ and satisfies the PE conditions that ∃T > 0
such that for all t ≥ 0

α1I ≤
∫ t+T

t

ΞT Ξdτ ≤ α2I, 0 < α1 < α2

holds, then θ̃ and η converge to zero exponentially fast.

VIII. CONCLUDING REMARKS

In this paper, a totally new adaptive approach has been
proposed in the state space for linear parametric systems. The
ingredients are robust constant state feedback, Kreisselmeier
observer and adaptive law. The key in unifying these ingre-
dients together to achieve global exponential stability is a
newly developed ISS small-gain-like condition.

This approach has made the following achievements: (1)
No minimal phase requirement (2) No design complexity
due to high relative degree (3) Separated designs of robust
state feedback, Kreisselmeier observer and adaptive law (4)
Global exponential stability guarantee for all states (5) It is
an MIMO theory.

In this paper, only stabilization problem is treated. When
the internal model is put into the loop, asymptotic reference
tracking problem can be solved as a stabilization problem.
The extension to linear parametric system with unmodeled
dynamics will be reported in a forthcoming paper.

However, many issues remain unsolved. The first one
is how to satisfy the small-gain condition. According to
our experience on some physical systems, it seems that
this small-gain condition can be satisfied by placing the
poles of Kreisselmeier observer sufficiently far away from
the imaginary axis. Secondly, it still remains unclear how
to extend this approach to handle performance problems
as measured by input/output norm. Further, this approach
has a fundamental limitation: it is not able to surpass the
performance of robust constant state feedback!

Finally, it is also an interesting theme to see whether
this approach can be extended to deal with some classes
of nonlinear systems. It seems highly possible to extend
the proposed approach to the parametric output-feedback
systems[11]
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