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Abstract 
Spectrum sensing is a core function at cognitive radio systems to have spec-
trum awareness. This could be achieved by collecting samples from the fre-
quency band under observation to make a conclusion whether the band is 
occupied, or it is a spectrum hole. The task of sensing is becoming more chal-
lenging especially at wideband spectrum scenario. The difficulty is due to 
conventional sampling rate theory which makes it infeasible to sample such 
very wide range of frequencies and the technical requirements are very costly. 
Recently, compressive sensing introduced itself as a pioneer solution that re-
laxed the wideband sampling rate requirements. It showed the ability to sam-
ple a signal below the Nyquist sampling rate and reconstructed it using very 
few measurements. In this paper, we discuss the approaches used for solving 
compressed spectrum sensing problem for wideband cognitive radio networks 
and how the problem is formulated and rendered to improve the detection 
performance. 
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1. Introduction 

The spectrum scarcity has created a false believe that there are no more useful 
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radio frequencies left. This false believe occurred due to the current spectrum 
allocation policy and made the spectrum underutilization, i.e., nearly 70% of ra-
dio occupancy was not used most of the time [1] [2]. The problem of underuti-
lization led to have many frequency bands not operative or Spectrum Holes 
(SHs). SHs are not but frequency bands assigned to Primary Users (PUs) at spe-
cific frequencies and geographic locations not used for period. So, to solve the 
spectrum issue, the Federal Communications Commission (FCC) suggested 
opening these frequency bands dedicated to the PUs to be shared with Second-
ary Users (SUs). Opening these frequency bands is known later as Dynamic 
Spectrum Access (DSA) [3] [4]. In the DSA, the SUs access these unoccupied 
bands whenever the PUs are absent and should terminate their transmission 
when PUs transmitted signals are detected. Also, the SUs should keep the infe-
rence background within acceptable limit that does no harm to the communica-
tion transmissions of both PUs and other SUs. Figure 1 manifests that certain 
lot of the radio bands is sparsely used and substantial amount of these bands is 
unutilized [2]. 

However, a question may pose; how do SUs identify these hidden spectral 
opportunities or SHs? Simply without complication by searching the spectrum 
looking for empty slots/bands or detecting primary user transmitted signal on  
 

 
Figure 1. Spectrum occupancy in each band measured in Chicago. 
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the band(s) under observation. For more clarity, spectrum sensing mechanism is 
nothing but collecting samples from the frequency band(s) of interest, then 
thresholding and draw up a conclusion about that band(s) statue [5]. Cognitive 
Radio (CR) as DSA technique enables SUs the spectrum awareness. This arises 
from that it has the ability to adapt its transmission parameters to meet spectral 
opportunities requirements such as transmission power, modulation schemes, 
code rates, etc. [4] [6] [7] [8]. 

Spectrum sensing is a mandatory component at IEEE 802.22 WRAN standar-
dization to enable self-coexistence for CR and it could be achieved by two me-
thods [9] [10]. In the first method, the radio itself becomes spectrum awareness 
by detecting and estimating the spectrum to identify which channels are occu-
pied and which are unoccupied [11]. In the second method, geolocation and da-
tabase or beacon are used for identifying SHs [9]. However, the second method 
requires the involvement of PUs cooperation which violates the condition of 
CR’s independency on performing sensing task depending on its own ability 
without PU assistance. Moreover, spectrum sensing performance could be im-
proved if cooperation between SUs is involved to mitigate hidden node problem, 
multipath fading and shadowing [12] [13]. And even further enhanced perfor-
mance could be achieved by introducing Compressive Sensing (CS) technique. 
Most of researches focused on detecting primary transmitter signal rather than 
primary receiver detection due to some technical difficulties with the latter. 

The sensing task becomes more challenging especially in wideband spectrum 
[14], e.g., a range up to 20 GHz. Conventional Digital Signal Processing (DSP) 
may take long time processing this wide range of frequencies and it’s very ex-
pensive. To the best of our knowledge, the achievable sampling rate of the cur-
rent Analog-to-digital convertor (ADC) is 3.6 Giga Sample per second or 3.6 
GSps [15]. Filter bank technique could ease sampling requirements by turn wi-
deband into narrowband [16] but we end with another problem which is the 
number of filters required. Nyquist sampling rate is very serious problem in wi-
deband spectrum once it is rendered the rest is straight forward task. CS is a po-
werful tool that cracked the sampling rate problem [17]. It proved the possibility 
of sampling below Nyquist sampling rate, also known as sub-Nyquist sampling 
rate, and reconstructed the transmitted signal after sub-Nyquist sampling. 
However, it requires the signal to be sparse or compressible [18] [19]. If a signal 
is not sparse, it may transform to another domain at which sparsity condition is 
hold. Numerous research papers were published to identify spectrum holes-based 
CS through signal reconstruction algorithms. This kind of spectrum holes iden-
tification dominant since then. To the best of our knowledge there are few pub-
lications that concern with spectrum sensing problem as detection problem 
without going to reconstruction stage [20] [21] [22]. 

In general, spectrum sensing problem can be discussed in several ways based 
on different criterions and different assumptions. For example, if the classifica-
tion is based on what or how to sense, then discussion would classify the spec-
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trum sensing to:1) transmitter detection, 2) cooperative detection, and 3) inter-
ference-based detection [11]. Depending on the type of applications leads to 
highlight to the spectrum types, either narrow band sensing or wideband sens-
ing. Proactive and reactive sensing are another aspect of classification. Mostly, in 
literature, spectrum sensing is based on transmitter detection due infeasibility to 
detect primary receiver signal such as the location of PU receiver [6] [11]. Dif-
ferent detection techniques, i.e., energy detection, matched filter, cyclostationary 
detection, covariance-based detection wavelet, compressed detection…, etc, can 
be employed to detect the SHs. Spectrum sensing framework is depicted in Fig-
ure 2. Comparison of the main spectrum sensing is illustrated in Table 1. 

Even though there are numerous research papers that discussed the problem 
of spectrum sensing for wideband cognitive radio based compressed sensing, 
nevertheless, the detection problem is formulated as detection based-signal re-
construction using compressed sensing which is the prevailing trend [5] [6] [18] 
[23]. In [23], the authors have focused on discussing technical implementation 
issues of Analog to Information Conversion (AIC). In this paper the compressed 
spectrum sensing problem at wideband CR networks is addressed. And the re-
cent research achievements in solving the problem are discussed, e.g., how the 
problem is formulated and rendered to improve the detection performance. 

The rest of this paper is structured as follows. Section 2 highlighted the wide-
band CR spectrum sensing challenge. In Section 3, compressed spectrum sensing 
problem is formulated. Compressed wideband CR spectrum detection ap-
proaches are discussed in Section 4. The open research problems of the wide-
band CR networks based compressive spectrum sensing are introduced in Sec-
tion 5. Finally, Section 6 presents the main conclusions. 
 

 
Figure 2. Spectrum sensing framework.  
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Table 1. Comparison of main spectrum sensing techniques. 

Detection 
technique 

Performance metrics 

Accuracy Complexity Robustness 

Energy detection 

- at high SNRs, the 
performance is 
good 

- at low SNRs, the 
performance is 
unreliable 

- affected by noise 
uncertainty 

- Low  
implementation 
complexity 

- convergence is 
reach by collecting 
higher number of 
samples 

- orior information 
of PU signal isn’t 
required 

- inappropriate for 
spread spectrum 
signals 

- cannot  
differentiate a PU 
signal from other 
signal sources 

Feature detection 
- the performance 

is good at all 
SNRs 

- medium  
complexity 

- convergence re-
quires small num-
ber of samples 

- require partial 
knowledge of  
PU signal 

- robust against 
noise uncertainty 
and interference 

- differentiate PU 
signal among  
different types of 
signal source 

Matched filter 
and coherent 

detection 

- best performance 
at all SNRs 

- high complexity 
- convergence  

requires fewest 
number of samples 

- require precise 
prior information 
PU signals 

Covariance-based 
detection 

- detection  
accuracy is high 

- low computational 
complexity 

- uncorrelated PU 
signals degrade 
detection  
Performance. 

- blind detection 

2. Wideband CR Spectrum Sensing Challenge 

In literature, there have been several signal processing challenges facing CR since 
certain tasks have become more complicated. Some of these were discussed in 
[6] [24]. In this section, we discuss the wideband spectrum sensing problem in 
the sense that the complication in this type of spectrum is very high. In fact, 
there is no signal processing approach yet exist that could provide the locations 
of all the hidden spectral opportunities and at what frequency band at one single 
shot. Several technical challenges are facing wideband sensing and limiting its 
operation. One of these challenges is the need for high data rate radio front end 
requirement to sense a wide frequency range. This adds additional constraint for 
CR system deployment especially on units with limited data rate processors. 
Conventional estimation methods based on Nyquist sampling are challenging 
task in wideband spectrum. Even though using filter banks may help to turn a 
wideband signal into narrowband to be easy sensed using conventional methods, 
but with the cost of using large number of narrowband filters. Even though the 
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above-mentioned problem is very challenging in wideband CR spectrum sens-
ing, we will see how compressive sensing technique relaxes Nyquist sampling 
rate effectively alongside with reducing both complexity and power consump-
tion requirements. 

3. Compressive Spectrum Sensing Problem 

The idea of using learning and sensing machines to probe the radio spectrum 
was envisioned several decades earlier. Two different frameworks regarding how 
to formulate spectrum sensing were presented. Signal detection and signal clas-
sification which encapsulated the spectrum sensing on coming up a decision 
whether the PU transmitted signal, e.g., deterministic or random, is present or 
not from the observed received signals [25]. Due to the importance of this topic, 
we will discuss the sensing or detection problem as entrance to compressive 
spectrum sensing problem template. Moreover, we will investigate how the de-
tection based compressive sensing could improve the detection performance in 
CR systems. 

3.1. Signal Sensing Problem 

Signal detection has been an important topic in wireless communication engi-
neering and in CR. It is considered as a core function. In CR the radio frequency 
spectrum is sensed to come out with a decision whether the PU transmitted sig-
nal, mostly very weak PU signals, exists in a certain frequency band of interest or 
not. In other words, it enables the SUs identifying the SHs. So, we could formu-
late the spectrum sensing problem by the classical binary hypothesis test [5] [11] 
[26] as follows: 

( )
( )
( ) ( )

0

1

: , PU is absent

: ,PU is present

n t
x t

s t n t

= 
+




                 (1) 

where, ( )x t  is the received signal at the SU receiver during observation win-
dow T. ( )n t  is the additive white Gaussian noise (AWGN) with zero mean and 
variance 2σ , i.e., ( )2~ 0,n σ . 2σ  is also considered as a noise power. ( )s t  
is the transmitted PU signal and it is independent and identical Gaussian ran-
dom variable. 0  and 1  denote the absence and the presence of the PU re-
spectively. The decision between the two hypotheses is based on the comparison 
of statistical test to a predetermined threshold λ as follows; 

1

0

T λ



                              (2) 

where, T is the statistical test generated to decide if the observed signal ( )x t  
under hypothesis 0  or 1 . Most widely used detectors, e.g., energy detection, 
and cyclostationary detection, perform the statistical test to differentiate the PU 
transmitted signal from noise as depicted in Figure 3. 

In the context of spectrum sensing, the performance of sensing is measured by 
the Receiver Operating Characteristics (ROC) curves. It is a tradeoff between  
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Figure 3. Primary user signal detection scenario. 

 
probability of detection versus probability of false alarm or probability of 
miss-detection versus probability of false alarm [26]. Let us assume the received 
signal in (1) follows normal Gaussian distribution as depicted in Figure 4. Then 
then decision statistics under each hypothesis 0  and 1  could be denoted as 
( )0|f x  and ( )1|f x , respectively. 
If the observed sample of ( )x t  is greater than the threshold, the detector is 

more likely to choose 1  or ( ) ( )1 0| |f f> x x . The error in this scheme 
occurs as follows; if the detector decides 1  when 0  true and this type of 
error is known as false alarm. On the other hands, if the detector decides 0  
when 1  true and this type of error is known as miss detection. These two er-
rors are inevitable to some extent nevertheless may be traded off against each 
other to achieve high probability of detection ( )1 1P |   to guarantee minimal 
interference with the PU [26].   

At the same time, we need to have a low probability of false alarm ( )1 0P |   
to improve the SU throughput. This setup is called the Neyman-Pearson (NP) 
approach to spectrum sensing. The reason of using NP test is we do not know 
the prior probabilities for ( )0P   and ( )1P   which yields having a problem 
in minimizing the averaging probability of error. Also, we could not make risk 
minimization which requires having the prior probabilities of 0  and 1 . 
Maximum likelihood is an optimal detector but we have no way to evaluate its 
performance for the same problem of not having any knowledge of the prior 
probabilities [5]. The performance of the detector will be evaluated in term of 
these probabilities of detection, miss detection and false alarm, defined as; 

Probability of detection ( DP ): it is the probability when SU detects PU 
transmitted signal correctly or declaring 1  under 1 , ( )1 1P |  . 

( ) ( )1 1P signal is detected | P |DP X λ= = >                (3) 

Probability of false alarm ( FP ): it is the probability when SU declares that PU 
is present, when it is not or declaring 1  under 0 , ( )1 0P |  .  

( ) ( ) ( )0F 0 0P signal is detected | P | | dP X f x
λ

λ
∞

= = > = ∫ x         (4) 

Probability of miss-detection ( MP ): it is probability of failing to detect the PU 
presence when it is there or declaring 0  under 1 , ( )0 1P |  . 

( ) ( )1 1P signal is not detected | P |MP X λ= = >               (5) 

3.1.1. Probability of Detection and False Alarm over AWGN Channels 
The spectrum sensing problem could be formulated as a constrain optimization 
problem; maximize DP  where α is a specified maximum tolerable false alarm  
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Figure 4. Trade off error by adjusting threshold. 
 
probability [26]. In summary, ROC curves allow us to have insight understand-
ing to that govern the relationship between the sensitivity ( DP ) and specificity 
( FP ) of a spectrum sensing scheme for a variety of different algorithm parame-
ters [27]. If the observed signal in (1) is deterministic, the test statistics could 
then be modeled as [28] 

( )
( )

22

2

0

2
1

2

0, :

, :

N s
T

N s s

σ

σ












                       (6) 

And by solving (3) and (4), we have 

( )
2

1 22 22

1| d exp d
22π

F

s
P f x H x x Q

s
λ λ

λ
σσ σ

∞ ∞
     = = = −       

∫ ∫       (7a) 

( )
2 2

1 22 22

1| d exp d
22π

D

x s s
P f x H x x Q

s
λ λ

λ
σσ σ

∞ ∞
  − −  = = = −       

∫ ∫     (7b) 

where, ( )Q ⋅  is the complementary distribution function of a standard Gaus-
sian. For indirect method, we could specify the amount of threshold required to 
maximize the DP  for certain FP  from (7a) as follows 

( )22 1
Fs Q Pλ σ −=                          (8) 

Substituting (8) into (7b), it yields 

( )( ) ( )( )1 2 1
D F FP Q Q P x Q Q Pσ γ− −= − = −              (9) 
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where, 2 2sγ σ= , i.e., the signal-to-noise ratio SNR. On the other hand, if PU 
transmitted signal ( )s t  assumed to be an unknown deterministic signal, the 
distribution of the decision statistics follows central chi-square 2

Nχ  under 0  
and non-central chi-square 2

Nχ′  with TW degrees of freedom under 1  [29]. 
However, for the sake of simplicity, we exchange the time-bandwidth product by 
an integer number N. In literature, some researchers used instead of TW, they 
used 2TW ( )2N N→ . In other words, we could use either even or odd degrees 
of freedom for the analytic processes relying on the type of applications. 

0

1

2

2

:

:
N

N

χ
ζ

χ




′





                             (10) 

The probability density function of the decision statistics Xi is specified by 

( )
( )

( ) ( )
( )

( ) ( )

0
2 1 2

2 2

2 4

2 1 1

1 exp :
2 2

1 exp 2 :
2

N
N

x N

N

x x
N

f x
x x I x

σ
σ

µ µ
µ

−

−

−

 − Γ= 
  − +   





            (11) 

where, μ is the noncentrality parameter ( )2 2sµ σ∝  and ( )1vI − ⋅  is the v-th 
modified Bessel function of the first kind. The FP  and DP  over AWGN is 
given respectively by: 

( ) ( )

( )
( ) ( )

0,

2 1 2
2 2

0Pr | d

1 exp d
2 2

F x

N
N

P x f x x

x x x
N

λ

λ

λ

σ
σ

∞

∞ −

= > =

= −
Γ

∫

∫


               (12) 

( ) ( )22, 2 2FP N Nλ σ= Γ Γ                     (13) 

Similarly, 

( ) ( )
( )

( ) ( )
11 ,

2 4

2 1

Pr | d

1 exp 2 d
2

D x

N

N

P x f x x

x x I x x

λ

λ

λ

µ µ
µ

∞

−
∞

−

= > =

 
= − + 

 

∫

∫



            (14) 

( )2 2

2

,D NP Q µ σ λ σ=                       (15) 

where, ( ),Γ ⋅ ⋅ , ( )Γ ⋅ , and ( ),vQ ⋅ ⋅  are complete and in complete gamma func-
tion and generalized Marcum Q-function, respectively. As the number of de-
grees of freedom increases, the 2

Nχ  and 2
Nχ′  probability density functions 

asymptotically turn out to be Gaussian by the central limit theorem [28].  

( )( )1PD Q Q PF Nγ−= −                       (16) 

A board published research has been conducted and discussed spectrum 
sensing in CR. To the best of our knowledge most of the researches are dedicated 
to improving the detection performance of the energy detector. Since it does not 
involve complicated signal processing and has short time response and low 
complexity cost [30]. It is called blind technique in that it does not require prior 
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information about the PU transmitted signal. Despite these merits made it pre-
ferable at wide variety of applications such as CR systems and ultra-wideband 
communications, it is subjected to noise uncertainty issue. On the other hand, 
cyclostationary detectors outperform all other detectors in term of spectrum 
sensing performance but with the expense of computational complexity. How-
ever, it requires long sensing time. Table 2 includes some closed forms of spec-
trum sensing performance based on computations of PD, PF and PM, where, E is 
the received signal power. 

3.1.2. Probability of Detection and False Alarm over Fading Channels 
In the proceeding section, the spectrum sensing performance over AWGN 
channel and the derived detection probabilities pairs ( ),D FP P  have been dis-
cussed. To broad the picture for more than talking on AWGN, fading channel 
should not be ignored, e.g., Rayleigh, Nakagami-m, lognormal,…, etc. The ana-
lytical expression DP  could be undergone of two popular methods; namely, the 
probability density function and the moment generating function (MGF) relying 
on the fading channel statistical characteristic to derive the performance analysis 
[31]. However, the MGF method is restricted to integer-valued fading descrip-
tors. The conventional method for obtaining the average DP  over specific fad-
ing distribution is by averaging DP  of AWGN over ( )fγ γ  of the output SNR. 
This method could be expressed as: 

( ) ( )
0

dD DP P fγγ γ γ
∞

= ∫                        (17) 

where ( )fγ γ  is the fading channel distribution. Alternatively, it could be ex-
pressed by:  

( ) ( )2 2
0

2

, dD NP Q fγµ σ λ σ λ γ
∞

= ∫                 (18) 

with ( )µ γ µ αγ∝ =  and α is a positive value. Many channel models have been 
suggested to define the amplitude and phase of multipath fading signals statis-
tics. Among them Nakagami-m distribution is a generalized distribution to 
model different fading environments [32]. It has greater flexibility and accuracy  
 
Table 2. Probabilities of detection and false alarm of well-known detectors over AWGN. 

Detector type 
Probability of  

detection 
Probability of false 

alarm 
Probability of 
miss-detection 

Matched  
filtering 

2

2 2

2 2,EQ
E
λ

σ σ
 
  
 

 
2

2
exp

E
λ
σ

 
− 
 

 
2

2 2

2 21 ,EQ
E
λ

σ σ
 

−   
 

 

Energy 2 2
2

,NQ µ λ
σ σ

 
  
 

 
2

,
2 2

2

N

N

λ
σ

 Γ 
 

 Γ 
 

 
2 2

2

1 ,NQ µ λ
σ σ

 
−   

 
 

cyclostationary 
( )

2

2 12
,

N
Q

λγ
σ σ

 +
  
 

 ( ) 2

2

2 1
exp

N
E

λ
σ
+ 

− 
 

 ( )
2

2 12
1 ,

N
Q

λγ
σ σ

 +
−   

 
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in matching some experimental data than the Rayleigh, lognormal or Rice dis-
tributions [31] [33]. The letter -m in the word “Nakagami-m” is called Nakaga-
mi shape factor or the fading order. For example, 1m =  is Rayleigh distribution 
which is sufficient to model amplitude in urban areas. While for 1m >  Rician 
distribution suits better in sub-urban area where LOS components exist. Both 
Rayleigh and Rician distributions are special cases of Nakagami-m distribution. 
The problem of spectrum sensing over fading channels is addressed in [34]. And 
for sake of simplicity, we tabulate the closed forms obtained in Table 3 (after 
mathematical manipulations see [34]). 

In the following section, the sensing problem in case of compressive sensing 
and its formulation will be discussed. 

3.2. Compressed Signal Detection Problem 

Compressed sensing proved the conventional sampling theory was not com-
pletely true [17] [35] [36]. In the sampling theory, the transmitted signal re-
quires to be sampled, at least, twice the maximum frequency component in the 
signal to be able to reconstruct it successfully at the receiver side. In wideband 
spectrum scenario, the signal has 3 GHz bandwidth and after sampling we get 6 
GHz bandwidth which infeasible for implementation and signal processing. 
Even though current advance analog-to-digital conversion, to the best of our 
knowledge, achieve sampling rate at speed to 3.6 GSps [15] but the cost of this 
signal processing is very high. CS showed that the possibility to sample below 
Nyquist sampling rate as long the signal is sparse or compressible [36]. We say 
that a certain signal is sparse if it contains few coefficients are nonzero and the 
rest are zeros. And the signal is compressible it has few large coefficients and the 
remainders are small or zero. Also, signal sparsity could be maintained by 
transformation, e.g., Fourier, DCT, wavelet, …, etc. Signals with this type of re-
presentation yield to underdetermined system problem because we are seeking 
to reconstruct the transmitted signal with N dimensions ( )1Nx ×∈  from the 
received signal with m dimensions ( )1my ×∈  where, m N . Mathematically  
 
Table 3. Probability of detection over different types of fading channels. 

Type of fading 
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Closed form expression of DP  
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Rician ( )( )2 1 , 1 1Q K K K Kγ γ λ γ+ + + + +  

Nakagami-m ( ) ( ) ( ){ }21 2 2 2 , 2 2m m N Nγ γ λ σ− + Γ  

where K is Rician factor, 2 2hγ µ σ=  and h is the channel amplitude gain, which is supposed to be con-
stant during N observed samples. 
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speaking, in case of discrete received signal the compressed sensing problem 
could be formulated as [17] [21] [35] [37]: 

y x s As= Φ = ΦΨ =                      (19) 

where y is an 1m×  measurement vector, Φ is an m N×  measurement or 
sensing matrix, Ψ is an N N×  sparsity basis matrix, and s is an 1N ×  
weighting vector. The measurement matrix design is an important issue in CS 
problem. We seek for stable Φ to reduce the dimension of Nx∈  to my∈  
without losing signal information. Also, Φ requires to be non-adaptive and 
could not be sparse representation to the columns of Ψ and vice versa. It should 
be noted that since m N , there are infinitely many solutions that satisfy (19) 
and among all of them we seek for the sparsest solution only. Several reconstruc-
tion algorithms have been existed in literature to obtain the optimum solution. 
Example of these algorithms are Basis Pursuit (BP), Matching Pursuit (MP), 
Orthogonal Matching Pursuit (OMP), Gradient Pursuit, Stage-wise Orthogonal 
Matching Pursuit (StOMP), Regularized Orthogonal Matching Pursuit (ROMP), 
Compressive Sampling Matching Pursuit (CoSaMP), …, etc., (see [18] [37] and 
the references therein). The number of measurements required for the signal 
reconstruction is in the order of ( )logO m N . On the other hand, if the signals 
are analog, then we use analog to information converter (AIC) to extract the in-
formation of the signal. Due to that the information rate of a sparse signal is less 
than its sampling rate. AIC be implemented in different ways, e.g., Wideband 
Modulation Converter (WMC), multi-coset sampling, multi-rate sampling, and 
random demodulator [23]. The advantages and disadvantages of the wideband 
sensing AICs are summarized in Table 4. 

Current CS literature is generally centralized on signal reconstruction or ap-
proximation while in most communication processes and radars, signals are 
processed for making detection or classification decision [20] [21]. In detection, 
we do not ever reconstruct the signal rather than extract sufficient statistics from 
a small number of random projections or compressive measurements from the 
frequency band under observation as depicted in Figure 5. 

In Figure 5, the PU transmitted signal is detected from the compressed mea-
surements without any reconstruction stage. This generic structure outperforms 
the conventional structure of detection in two folds: 1) by reducing the compu-
tational complexity and 2) guaranteeing better performance with remarkably 
reduction in the number of measurements due to that the information of PU is 
preserved in the compressed measurements. Also, there is no obligation to pre-
cise reconstruction of s coefficients in (19). However, the detection decision is 
accurate because the compressed measurements still contain sufficient data for 
detection. 

By considering the same detection problem as in Section (3.1), however, in 
compressive detection problem the observing x is changed to y as in (19) where 

m N×Φ∈ , m N≤  and N NI ×Ψ =  is an identity matrix. Hence, the compres-
sive spectrum detection could be formulated as [21]: 
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Table 4. Advantages and disadvantages of different wideband sensing AIC approaches. 

AIC Method advantages disadvantages 

Random Modulation 
- signal sparsity is  

reconstructed using  
partial measurements 

- affected by design  
imperfection 

modulated wideband  
converter (MWC) 

- robustness against the 
noise and model  
mismatches. 

- reduction in the  
measurement matrix  
dimensionality 

- requires large number  
of low pass filters 

Multi-coset sampler 

- the sampling rate in each 
channel is lower than the 
Nyquist rate 

- less measurements 

- the channel synchronization 
should be met to satisfy a  
specific sampling pattern for  
robust spectral reconstruction 

- requires many sampling 
channels 

Multi-rate Sampling 
- Low sampling rate 
- Less sampling channels 

- stringent implementation 

 

 
Figure 5. Compressed measurements-based spectrum sensing framework. 
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where 1Nx ×∈  is the PU transmitted signal and ( )2~ 0, Nn Iσ  is indepen-
dent and identical distribution (i.i.d.) Gaussian noise. The optimal decision of 
NP detector is: 
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where λ is a threshold and the distribution of compressed measurements under 

0  and 1  is: 
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Using the same method described in section (3.1) to obtain FP  and DP  (see 
(7a) and (7b)) we get: 
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From (23a), the threshold λ required to maximize the DP  for specific FP  
could be computed as: 

( ) ( )
1T T T 1

Fx xQ Pλ
− −= Φ ΦΦ Φ                   (24) 

Let T
mIΦΦ =  and substituting (24) for (23-b), we get ( ),max

F DP Pλ : 
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As m N , the matrix Φ is ill-conditioned. For a small controllable perturba-
tion error 0> , Φ is enabled to preserve Euclidean length between x-sparse 
vectors. Therefore, Φ needs to satisfy the restricted isometry property (RIP) [37]. 
Thus, 

( ) ( )2 2 21 1m N x x m N xε ε− ≤ Φ ≤ +              (26) 

Hence, the compressed detector performance is bounded by 

( )( )1
DP Q Q PF m N γ−≈ −                    (27) 

Next, approaches adopted so far for identifying the spectrum holes under wi-
deband spectrum using CS will be discussed in the following sections. 

4. Compressed Wideband CR Spectrum Detection  
Approaches  

For years, detecting PU transmitted signal has been acquired from compressed 
measurements by signal reconstruction [21]. In this section compressed wide-
band detection approaches will be highlighted. Our discussion will be catego-
rized into two mains categories; 

1) Sparse recovery for detection which could be divided into three subcatego-
ries: detection-based signal reconstruction, detection based partial signal recon-
struction and detection based compressive cooperative.   

2) detection based compressed measurements where compressed measure-
ments are used directly to decide whether the PU transmitted signal exists or not 
on the observed frequency band of interest. Further, compressed detection based 
cooperative approaches could also comprise the second category as depicted in 
Figure 6. 

4.1. Detection Based Sparse Signal Recovery 

Prior to the CS introduction as a solution to alleviate sampling rates bottleneck 
which represents a main challenge for wideband spectrum sensing, it was per-
formed using band-by-band approach. In this case each band has been modulated  
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Figure 6. Compressed wideband spectrum detection framework. 
 
to know the locations of these vacant frequency bands. However, this approach 
of sensing introduces substantially large amount of latency. Later, to beat the la-
tency, filter banks approach was used where each filter is dedicated to scan a 
specific frequency band. Although filter banks helped on relaxing latency issue 
introduced by band-by-band method, the number of band pass filters required 
to achieve sensing purpose was the major problem. On the other hand, wavelet 
detectors may be suitable solution to overcome filter banks drawbacks, but it 
may end up with power issue. The nature of the wideband spectrum exhibits 
sparse structure in open wireless environment in the sense that the number of 
operative frequency bands is less in comparison to the total number of frequency 
bands offered by vendors. The sparsity property eases applying CS. 

4.1.1. Detection Based on Signal Reconstruction  
Detection of spectrum holes based on the signal reconstruction has been 
adopted as the major method used for years before a decision took place. In this 
method, CR required to build up the spectrum occupancy or PUs transmitted 
signals using one of the signal reconstruction algorithms [18]. To the best of our 
knowledge, Tian and Giannakis [38] were the first who built a model to acquire 
measurement vector depending on Power Spectral Density (PSD) level. It was 
estimated from the autocorrelation sample sequence, such as high, medium or 
low to identify spectrum hole. They exploited coarse sensing on analog wide-
band signal after converted to discrete time sequence using Nyquist sampling 
rate and then applied CS on the discrete sequence under noiseless channel. PSD 
gained a great attention where the estimate is acquired from the diagonal matrix 
of weakly or Wide Sense Stationary (WSS) signals representation in the cova-
riance matrix [39] [40]. Hence, spectrum holes could be identified from the es-
timated autocorrelation coefficients. Then wavelet edge detector took place to 
identify edges between adjacent bands to locate the empty bands. In [39] Polo et. 
al. skip the converting analog to discrete stage and suggested obtaining autocor-
relation samples directly from the analog wideband signal unlike [38]. The re-
sults in [38] [39] were based on single CR. In [41], a more generalized approach 
has been introduced based on the autocorrelation vectors obtained from mul-
tiple CRs distributing among a network used joint sparse model.  However, due 
to the fact that compressive measurements matrices are not all truly stationary, 
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the authors of [42] assumed non WSS signal. The developed algorithm depended 
on slow channel variation due to small change between two close time instants 
of the spectrum. In addition, it is focused on monitoring these quite small 
changing in borders of bands where sparsity found. In this case, the autocorrela-
tion coefficients were estimated from several compressed measurements using 
random demodulator, however it requires memory support. Eventually, Fourier 
transform took place to estimate the PSDs. 

Other researchers suggested to use the available known information of 
VHF/UHF TV channels for spectral shape estimate [43] [44] [45], e.g., modula-
tion parameters, channelization, and PU activity. IEEE802.22 WRAN suggested 
TV channels for CR systems [9]. Bayesian based iterative scheme to estimate a 
set of occupied bands and their spectral powers simultaneously in wideband 
spectrum from compressed measurements was proposed in [45]. As well in [43], 
detecting PU activity was suggested because compressed autocorrelation func-
tion computation is conserved. So, PSD of the compressed received signal 
wouldn’t be accessed likens the preset spectral profile. In [45], the sensing task 
could be further enhanced based on geodesic distance, minimum eigenvalue and 
by conserving positive semi definite symbol. For this purpose, the difference 
between the reference spectral profile and auto-correlation matrices sample 
without reconstructing the signal completely has been used. Even in case of low 
leakage interference come from other SU, it may increase both the detection 
performance as in [44]. The signal support is obtained from the over complete 
dictionary to attain sparsity to elude band by band sweeping. Of course, spectral 
shape-based detection reduced the sensing time and mitigate interference, i.e., 
TV bands are sparse in frequency domain. Nonetheless, it requires prior know-
ledge of interesting signal for comparison with the estimated signal. In other 
words, memory issue is posed. Cyclostationary feature detection could relax the 
previous memory with some acceptable complexity as in [46]. Compressive 
Spectrum Estimator (CSE) was proposed that not only could reconstruct PSD of 
PU signals from sparse structure by reducing two-dimension cyclic feature. 
However, it could also have extended to the non-sparse signal to estimate occu-
pancy across a wideband spectrum in CR network. CSE showed robustness 
against noise uncertainty and interference. Further, the linear relationship be-
tween the preferable cyclic feature and the compressed measurements of 
time-varying cross-correlations used to reconstruct power spectrum was derived 
in [47]. It rendered the problem to be formulated as convex 1  minimization 
solution. Despite these advantages of CSE, the adaptive block size affects the 
sensing time performance causing the loss of available spectral opportunities.  

Undoubtedly, better PSD estimate was achieved exploiting Kronecker matrix 
as sparsifying basis compared to traditional approaches through substantially 
reduction of Mean Square Error (MSE) [48]. On the other hand, if sparsity con-
straints on the power spectrum were relaxed using Least Squares (LSs) and after 
some rank conditions were hold, blind sampling of power spectrum was pro-
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posed in [49]. Estimating PSDs of the wideband spectrum could be obtained us-
ing the cross-correlations between the different outcomes of the sampler. As an 
extension to the work presented in [46], minimum sparse ruler based mul-
ti-coset sampling was used to acquire compressed measurements [49]. It guar-
anteed unique LS solution when full column rank is met with at least single digit 
at each column of autocorrelation matrix. In early cooperative approach, Simul-
taneous Orthogonal Matching Pursuit (SOMP) took place for signal recovery at 
fusion center [38] [39] [50]. When there is no constraints on sparsity, Simulta-
neous Sparsity Adaptive Matching Pursuit (SSAMP) was used [51] for more sta-
ble reconstruction. When deterioration of spectrum recovery is occurred due to 
mismatching in standard 2 1   optimization, the problem could be rendered 
by dividing the spectrum into blocks with different lengths [52]. Occupancy 
could be reconstructed using, mixed 2 1   denoising operator. First, 1  mi-
nimization to each cluster of PSD vector was performed; then 2  minimization 
was applied to the aggregation of the minimized cluster by 2  norm. While 
Distributed Online Scheme (DOS) uses online distributed least-absolute shrin-
kage, selection operator Least Absolute Shrinkage and Selection Operator 
(D-LASSO) algorithm to track the variations on PU's PSDs in ad hoc networks 
[53]. If the measurements contain complex value, DFT was used as sparsifying 
basis, Tree based Orthogonal Matching Pursuit (TOMP) would be expedient al-
gorithm [38]. Early mentioned sensing performance is characterized by receiver 
operating characteristics (ROC) as described in section 3.1 which is a tradeoff 
between false and detection probabilities, modified blindly optimized compres-
sive sensing (MBOCS) was used in [54]. It used optimized sparsifying basis ra-
ther than being fixed. It showed better reconstruction accuracy when compared 
to simultaneous orthogonal matching pursuit (SOMP) under the same number 
of measurements. Moreover, when low complexity computations with fast con-
vergence are posed, an iterative technique known as weighted orthogonal 
matching pursuit (WOMP) [44] was introduced due to its ability rebuild sparsity 
representation very fast. Following that the optimal sparsifying basis attained by 
Karhunen-Loéve Transform (KLT) [55] yielded to accuracy, reduction in num-
ber of measurements and estimation improvement as [54] due to its coefficients 
redundancy avoidance in signal representation. Also, it could detect the signal 
correlation structure and directly update the basis from compressed received 
signal. In [56], the sensing performance using partially knowledge of the spec-
trum occupancy has been proposed. The partially knowledge could be provided 
by remote database, collaborative sensors or any auxiliary entity may deliver that 
kind of data where only subbands location were known but not their varying 
PSDs. When signal support is not available, the performance of weighted 1  
minimization is comparable to Modified Basis Pursuit Denoising (MBPDN). It 
assigned small weights to occupied bands while assigned large weights to the 
unoccupied bands. It showed some robustness to error when partially knowledge 
is available. 
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It follows that reconstruction algorithm requires having termination point to 
reduce the sensing period to maximize data throughput when certain satisfac-
tion criterion is met using 1 -norm validation to stop data acquisition as in 
[56]. Besides, detection performance and computational complexity will be more 
enhanced and reduced respectively as stated in [57]. The algorithm searches for 
highly sparse frequency band in the spectrum without a prior knowledge of PU 
signal by dividing the received wideband spectrum to several frequency band via 
several bandpass filters followed by AIC. Energy vector is acquired by comparing 
and averaging these measurements to estimate spectrum occupancy. Also, the 
choice of sensing matrices, e.g., Discrete Walsh-Hadamard Transform (WHT) 
and DCT, introduced even far improvement to sensing performance as in [58]. 
WHT is a matrix that its columns and rows are orthogonal to each other and 
comprise ±1 values only. Decision of compressed detector is thresholding based 
on centralized chi squared distribution which requires less processing time to 
unveil spectrum holes. Moreover, WHT and DCT have comparable probability 
of detection. DCT uses real arithmetic computation due it’s lack to complex 
coefficients and concentrates the energy on the first low order coefficients which 
make it sparser [59].  

The benefits of sparsity led to Sub-Nyquist sampling rate, spectral leakage of 
spatial, frequency reduction and enhance detection sensitivity. In [53] an arbi-
trary spatial map of estimating PSDs to identify SHs, but with the expense of 
battery exhausting of CR device due to the online monitoring has been created. 
According to the domain where the signal is sparse, [60] proposed an estimator 
to just acquire the PSD without reconstruction via solving least squares problem 
rather than 1  norm that is used for signal reconstruction. Also by feeding the 
wideband received signal to a number of filters less in number than the available 
spectrum bands will reduce the latency caused via band-by-band sensing ap-
proach [38] [61]. However exploiting the number of BPF in [61] adds another 
problem which is how many filters are required. According to the simulation 
results of [62], it is stated that this number is 12, which may not be valid in all 
circumstances.  

Although beamforming was not included within IEEE802.22 WRAN frame-
work according to antenna structures [9], CS Minimum Variance Distortion less 
Response (CSMVDR) algorithm introduced significant reduction in computa-
tion complexity at created the reconstruction process. Due to varying the thre-
shold, the probability of detection was improved [62]. Furthermore, spatial 
beamforming is not only avoiding unnecessary interference to PUs to provide 
higher throughput for SUs, but it also alleviates the main challenge in traditional 
methods in estimating the angle of arrival of the signal received by many trans-
mitters. Steven and Sachin [63] designed MAC Spatial Compressed Detection 
(MAC-SCD) that exploits a spatial degree of freedom as low power wideband 
detector to estimate spectrum holes efficiently and accurately in CR networks. 
Also, they used CS to recover angles of arrival by fewer spatial samples obtained 
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from less number of antennas than required by traditional one. Ones should 
keep in mind when the signal of interest of wideband issue is sampled at 
non-uniform sub-Nyquist sampling rate, approaches such as energy and cyclos-
tationary is no longer valid. So, Aziz et al. [64] formulated the problem of spec-
trum sensing as missing data problem and proposed Lomb-Scargle method for 
PSD estimate.  

We summarize our discussion in Table 5 to show the advantages and disad-
vantages of each method. 
 
Table 5. Detection based signal reconstruction methods dis/advantages. 

Article 
Ref. 

Advantages Disadvantages 

[44] 
- elude band by band sweeping 
- reduced the sensing time 
- mitigate interference 

- Computational complexity 
- requires prior knowledge 
- memory issue 

[46] 

- reducing two-dimension  
cyclic feature 

- can be applied on sparse and 
non-sparse signals. 

- robustness against noise  
uncertainty and interference 

- Computational complexity 
- block size affects the sensing  

time performance 

[38] [39] 
[50] 

- fast algorithm 
- easy to implement 

- requires more measurements to 
have perfect reconstruction 

- lacks provable quality of  
reconstruction 

[50] 
- sparsity constraints due to the use 

of overcomplete method 

- the unique solution is  
conditioned by complex Gaussian 
matrix ( )2 2 1M N≥ − 1  
and the selection of M is subject to 
the auto- and cross  
correlation between the row  
of sensing matrix used 

[51] 
- prior sparse level is not required 
- sequential measurements are used 

to fasten detection process 

- quality of reconstruction  
performance is subject to  
complexity 

[52] 
- using mixed l1/l2 norm denoising 

operator with LASSO algorithm 
increase detection performance. 

- require information of the  
spectrum boundaries between  
different PU as a priori  
information 

[53] 

- localized transmitting CRs 
- sensitive to changes in the system 
- single hop with low overhead  

message between neighbors 

- battery issue 

[56] 
- Robust to error 
- comparable detection performance 

compare to MBPDN algorithm 

- Priori knowledge of  
subband locations 

[57] 
- complexity reduction 
- improved detection accuracy 

- Priori knowledge is required 

1M and N denote the number rows and columns in the measurement matrix respectively. 
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4.1.2. Detection Based Partial Signal Reconstruction  
Before continuing our discussion of partial signal reconstruction, we need to de-
fine what does partial reconstruction-based detection approach mean? It could 
be defined as an intermediate stage prior to what we discussed in Section 4.1.1 
where final decision is declared after signal reconstruction nor does exploiting 
fewer measurements directly as highlighted in Section 3.2. For this reason, we 
call it partially signal reconstruction. A multi-resolution Bayesian CS algorithm 
(BCS) [65] tunes with this concept with fine computational complexity and 
sensing time reduction whereas the CS problem is inversely solved by Bayesian 
coefficients obtained by Relevance Vector Machine (VRM). The accuracy of re-
covered signal is obtained from error bars which it is an indicator for up/down 
sampling rate according to the varying nature of spectrum occupancy [66]. The 
error bars strategy is even included in [67]. 

4.2. Detection Based Compressed Measurements 

Notwithstanding spectrum occupancy estimate from power spectrum provides 
more insight on spectrum holes’ distribution or spectrum grid. However, in 
many cases of signal detection problem, we are interested in determining 
whether the presence of PU transmitted signal on the frequency band under ob-
servation or not without ever reconstructing the signal. Thus, compressed mea-
surements-based spectrum detection approach improves sensing into three 
folds; 1) minimum sensing duration depending on sensing matrices used, 2) in-
creasing CR throughput, and 3) reducing computation cost and implementation 
complexity. In other words, traditional CS is applied on the received signal 
firstly. Then reconstruction process took place and after that a decision about 
existence PU is made as in [38] [53]. In fact, this outcome is obtained with high 
computation cost and complexity even though the reduction of sampling rate is 
below the Nyquist rate. The difference between detection based compressed 
measurements and -signal reconstruction is summarized in Table 6. 

Compressed detection or compressed measurements-based detection aims to 
detect PU transmitted signal without ever reconstruction. Therefore, in [22] di-
rect detection from CS measurements rather than went through reconstruction 
stage has been proposed. This will increase the CR user data transmission due to 
the fast detection and the improvement of the sensing time. In [76] the number 
of measurements required for compressed detection has been specified. Also, as  
 
Table 6. Comparison between two methods of detection based compressed measure-
ments and signal reconstruction. 

detection based compressed measurements detection based signal reconstruction 

- minimum sensing duration depending on 
sensing matrices used, 

- increasing CR throughput, and 
- reducing computation cost and implementa-

tion complexity 

- high computation cost and 
 

- high system complexity 
- sensing decision is subject to the used 

reconstruction algorithms speed 
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mentioned earlier, the wireless communication environment exhibits sparsity 
property by nature. Hence the spectral opportunities that viewed as Markov 
hidden chain motivated [68] to propose optimum myopic strategy to improve 
detection performance. The authors of [68] combined CS with online learning of 
multi-branches bandit, where these branches denote the rows and columns of 
the sensing matrix, to create an adaptive compressive sensing known as opti-
mum myopic strategy. Nevertheless, the approach of [68] was derived according 
to an idealistic state of noise free channel with signal support is guaranteed defi-
nitely.  

Moreover, the optimality of spectrum occupancy decision needs to take into 
consideration all the previous states of channels occupancy both observation and 
decision. However, it requires long term of channels activities history database 
on how it is being taken and left. To enhance the detection performance, in [69] 
the Algebraic Detection (AD) for compressed wideband spectrum sensing was 
designed. It exploited the distribution discontinuities method to save the linear-
ity of PU sparse signal by using measurement matrix consists of Dirac function. 
On the other hand, by relaxing the convex optimization problem used to solve 
the underdetermined system in estimate compressed wideband spectrum, [70] 
suggested to design a Nonlinear Least Square Estimator (NLLSE). It is used to 
unconcealed the SHs directly from few collected samples of multiband signal ei-
ther correlated or not in time domain. Furthermore, since the noise does not 
bear any sparsifying basis unlike interference, it has sparsifying basis in some 
dictionaries. The sparse coefficients positions were used as detector in [67] by 
measuring the coherence between the sparsity coefficients position on received 
signal that is free or even corrupted with noise. 

4.3. Detection Based Compressive Cooperative Schemes  

Cooperative compressed spectrum sensing approaches either centralized or dis-
tributive CR networks will have a great effect in alleviating challenges related to 
high sampling rate requirements for wideband spectrum, computation, com-
plexity and power constraint reduction. In addition, noise, and interference is-
sues such as fading, shadowing, hidden node/terminal problem, and network 
overheads transmission might devastatingly deteriorate spectrum detection per-
formance. 

Proceeding in Section 4.2 it has been mentioned that spectrum sensing could 
be achieved cooperatively either in centralized or distributed scheme. In centra-
lized scheme, the FC collects the sensory information from CR users to deter-
mine the decision about spectrum occupancy and broadcasts that result among 
CR users to be shared opportunistically. While in distributed scheme, a global 
decision on SHs converge iteratively and jointly through communications per-
formed among CRs. Fading is one of the major challenges in any wireless net-
work which aggravates the detection performance. To tackle this issue, multiple 
CR terminals cooperate with each other during sensing assignment performing 
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spectral estimate locally using data fusion to bring global convergence without 
the aid of FC to proliferate decision accuracy. Node failure avoidance is obtained 
by distributive implementation where each SU communicates with its neigh-
boring SUs only using single hop to consume less power throughout sensing 
mechanism [71]. Another serious issue is the hidden node problem, when an 
obstacle blocking the CR user from seeing PU signal which lead unintentionally 
to raise the interference. Albeit the combination of CS with an algebraic detector 
at FC will provide better detection performance than that obtained with energy 
detector [69]. However, processing each income from each CR node separately 
may cause latency unlike if all collected compressed measurements process to-
gether at once. A general case of multiple CR users in centralized scheme, rather 
than the one in [38], is performed in [41] using joint sparsity matrix to improve 
decision making. 

The centralized detection performance [72] could be further improved by 
formulating spectrum detection problem as support recovery. This improvement 
could be achieved using several fusion schemes such as decision, quantized data 
and data fusion in FC with no a prior knowledge of channel state condition and 
noise statistics. Applying this to the sequential spectrum sensing leads to an in-
crease in the detection sensitivity against noise uncertainty at low SNR using 
minimum number of measurements. Because sequential detection task is distri-
buted among CR users in the network. On the other hand, Farrag et al. [54] 
proposed algorithm based on distributed detection matrix targets to increase 
detection performance of PU with low sensing node complexity among clusters 
of sensing nodes rather than individuals. In contrast to [72] where each node 
sends its measurements as a sign vector only to FC. In [54], each sensing node 
uses its own local detection matrix to sense the wideband spectrum. decision 
report is generated and sent to FC. In this case, global spectrum occupancy was 
determined from the aggregation of all received measured signals.  

Moreover, sensing node hardware complexity was avoided using upper bound 
value while maintaining acceptable SNR. Alternatively, in [73] the authors stated 
that detection could even far improve if sensing problem merged with localiza-
tion using a grid of available spectrum holes to be easily accessed by SU was 
created. In other words, the joint framework proposed in [73] might be im-
agined as a 3D map or grid. It shows the PSD of occupied bands at PU location 
in the network from sparse observation. For more clarity, just imagine ( ), ,x y z  
space where the xy-plane is used for PU positioning and z-axis represents the 
occupied bands. The PSD is considered as point in that space or 3D map. As the 
location of the PU is known to the CR users, the effect hidden node problem 
could be minimized. However, it requires large storage space to record data or 
having frequently updated external database. Also, power consumption issue is 
presented by CR users due to the continuous update. The modified Kronecker 
joint sparsity matrix in cooperative approach was recommended in [48]. It re-
duces the mean square error of estimated PSD and maintains the lower sampling 
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rate under low compression ratio. In [54] an optimized sparsifying basis has 
been adopted. The beauty of modified Kronecker comes from the n-th dimen-
sion, it has. It could represent frequency, time, space and more. This is due to 
the fact that each dimension exhibits different sparsity representation basis ra-
ther than Distributed CS (DCS) which is one-dimension joint sparse matrix. Si-
milarly in [74], Bayesian compressed sensing is used jointly with localization to 
enhance reconstruction. The PSD map could be estimated using online iterative 
process. It also yields uncovering the other nearby CR user to minimize the in-
terference caused by CR users themselves [53].   

In [40], Ariananda and Leus considered PSD estimation by multiple CR sen-
sors through collected measurements deliver to FC along with Channel State In-
formation (CSI) and sensing matrices to make the final decision about spectrum 
occupancy. This is for sake of lowering sampling rate per CR sensors cooperated 
in centralized network in estimate the spectrum state search for spectral oppor-
tunities. Later on Romero et al. [75] exploited the model of [40] however, with-
out CSI and instead using cross spectra between the different collected data. In 
this case, the sensors are grouped, and each group uses different CS structure 
and sweep different portion of the spectrum; where PSD estimated the correla-
tion of collected measurements. Further reduction on overhead transmission 
and reports are sent from CR sensor to FC using matrix completion and joint 
sparsity recovery [76]. Unfortunately, each sensor is equipped with frequency 
selective filter to sense multiple bands collecting sensory data will encounter la-
tency due to band by band detection. On the other hand, reduction of hardware 
complexity and sensing time in [77] is a new direction worth-noting. Instead of 
assigning each CR device with m channels to observe, the m channels will be di-
vided among m CR devices. So each CR device is assigned with only one channel 
unlike traditional MWC [75]. In this case, m channels in each CR device are 
adopted to sweep the whole spectrum search for SHs which reduced the sam-
pling rate to be the same as bandwidth of one subband. 

5. Open Research Problems 
5.1. Compressed Detection of PU Signal at Wideband CR Networks  

over Fading Channels   

Although the magnificent advantages being gained by introducing CS as a key 
success for relaxing sampling rate burden at wideband CR networks, the domi-
nant use of CS has been focused almost on signal reconstruction. In literature, 
there have been several handy reconstruction algorithms used, e.g., basis pursue, 
greedy algorithm (matching pursue and its extensions),…, etc. In solving detec-
tion or sensing problem, we are pivotal interested on deciding if the PU trans-
mitted signal on a frequency band under observation exists or not without ever 
reconstructing. To the best of our knowledge, this topic of compressed detection 
or sensing problem isn’t attained enough attention yet. Despite the very few 
published articles to cover this important topic, they ended discussing recon-
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structing the spectrum grid by building the PSD of spectrum occupancy to un-
cover hidden spectral opportunities location. However, some of these frequency 
bands may highly likely be occupied by the time for final decision. CS is useful 
for wide range of statistical inference tasks. Recent published papers dealt com-
pressed detection over AWGN channel, and to the best of our knowledge the 
topic over several types of fading channels hasn’t investigated yet. 

5.2. Minimizing Sensing Time via Wideband Compressed  
Cooperation CR Networks 

The collaborative approaches have their enormous impact in minimizing sam-
pling rate requirements and computational and hardware complexities per single 
CR node and/or to overall CR network performance. In collaborative approach 
CR users, nodes or sensors agree to form a coalition to detect the hidden WS at 
wideband spectrum. This coalition could be categorized as centralized or distri-
buted. In distributed mode, spectrum occupancy status on the observed fre-
quency band is converged via a global decision. On the other hand, the final de-
cision on spectrum occupancy status is made by FC as in centralized mode. 
Furthermore, in both modes, individually or cooperatively, CR users involve 
sweeping wide range of frequencies sensing WS. The process is performed by di-
viding the wideband spectrum into N non-overlapping subbands. The process is 
time consuming which may end to lose the opportunity to use free frequency 
bands by CR users. However, it is worth noting that the wideband spectrum is 
sparse in open environment and stressing on this point sensing scenario could 
be achieved as: 
• The spectrum may be divided into sparsity blocks. Let’s say J and each CR 

users or CR group work together by adopting their reception parameters to 
specific block of interest. And they deliver their sensing compressed mea-
surements to FC for final decision to build the spectrum occupancy.  

• Or two different groups of CR may sense the same block to minimize the er-
rors due to noise and interference and send their compressed measurements 
to FC. 

The highlighted point requires an investigation on how this technique will 
minimizing sensing time and complexity per node and reduce miss detection 
and false alarm and maximize throughput and detection performance. 

5.3. Optimal Compressed Decision for CR Networks 

As already stated before, spectrum sensing involves the detection of the hidden 
unused spectral opportunities. However, specifying an optimal threshold for de-
tection is one of the most noteworthy contests. Under optimal requirements, it is 
required to maintain the probability of false alarm as low as possible and the 
probability of detection as high as possible as regulated by IEEE802.22 WRAN 
work group. Minimum false alarm probability improves the utilization of the 
spectrum, while maximum detection probability reduces the chances of interfe-
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rence due to miss-detection. Miss-detection probability reduction bids protec-
tion to the PU against potential CR transmissions. These two metrics is also 
known as ROC curves where the statistics decision must be adjusted adaptively 
to satisfy these two opposing requirements for various channel conditions. In 
most of the published research works, statistics decision is formulated to follow 
the central chi square distribution with L degrees of freedom under hypothesis 

0  and noncentral chi square distribution under hypothesis 1  with μ is the 
non-centrality parameter. Since for large number of observation the chi-square 
distribution could be approximated as Gaussian distribution, the Ney-
man-Pearson rule may take place to find the optimal threshold for specific false 
alarm probabilities. A compressed sensing form of threshold is already derived 
as in [21] at form of Gaussian distribution. An effort to derive an optimal tradi-
tional energy detection has been investigated in [78]. However, analytical closed 
form has not been reached yet under chi-square distribution and more research 
are required to obtain the closed form optimal threshold for detection compres-
sively as well traditionally. Any breakthrough in this research point will happen 
in minimizing the sensing time required for detection. 

6. Conclusion 

Spectrum sensing is a mandatory feature to enable self-coexistence for CR in 
IEEE 802.22 WRAN standardization. Sensing becomes very challenging at wi-
deband CR network due to the cost of signal processing requirements, i.e., Ny-
quist sampling rates. Thanks to compressive sensing technique that eases the 
sampling rates crisis by proving sub-Nyquist sampling and reconstructing the 
signal using few random projections. It also reduces cost computations, hard-
ware complexity and energy issue. Further, it improved sensing performance 
over AWGN and fading channels. In this paper compressed spectrum sensing 
problem at wideband CR networks is addressed and the recent research 
achievements in solving the problem are discussed. 
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