
	
1	

	

	

	

	

MINT709 Capstone Project Report

Design & Implementation of a Dynamic and Traffic Aware Load Balancer on SDN
controller (OpenDaylight)

September 2016

Japmeet Singh

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
2	

Design & Implementation of a Dynamic and Traffic Aware Load Balancer on SDN
controller (OpenDaylight)

By

Japmeet Singh

A project submitted in partial fulfillment

of the requirements for the degree of

Masters of Science in Internetworking

at the

University of Alberta

December 2016

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
3	

Abstract

Design & Implementation of a Dynamic and Traffic Aware Load Balancer on SDN

controller (OpenDaylight)

By Japmeet Singh

University of Alberta, 2016

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
4	

	
Acknowledgements

I would like to thank my project mentor and supervisor Prof. Gurpreet Nanda for his continuous

guidance throughout the duration of my MSc, as well as during the project implementation. I

would also like to thank my family for their continuous support and guidance.

	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
5	

Table of Contents

Introduction……………………………………………………...………………………………… 6

 Software Defined Networking…………………………………………………………………... 6

 OpenFlow………………………………………...……………………………………………… 7

The Need for Software Defined Load Balancing…….………………………………….……..…. 9

Project Purpose ……………………………………………………………………...…………... 10

Lab Implementation ……………………………………………………………….…………….. 11

Issues & Challenges…………………………………………...…………………………………. 26

Conclusion………………………………….……………………………………………………. 27

Appendices & References……………………………………………….………………………. 28

 Mininet Network Topology……………………………...…………….………………………. 28

 References……….…………………………………………………………………………….. 29

Table of Figures………………………………………………….………………………. …….. 30

	
	
	
	
	
	
	
	

	
6	

Introduction

Software Defined Networking (SDN)

Software defined networking (SDN) is an emerging networking architecture that aims to be

dynamic, centrally manageable, cost-effective, future proof and adaptable. SDN is ideal for

today’s network applications that require high bandwidth and are dynamic in nature. SDN aims to

eventually replace traditional networking by separating the network control logic from the

networking devices. This process is also referred to as decoupling the control plane from the

forwarding plane. This allows the control logic to be highly centralized as well as highly

programmable and it reduces the effort required to maintain the network. The SDN approach to a

network also makes it easy to diagnose the network in the event of errors or failures.

A software defined network consists of devices that are referred to as ‘Controllers’. Switches, that

are the forwarding devices, send the packets they receive to the controller and the controller tells

the switches what to do with those packets by installing ‘rules’ into the switches. Essentially,

whenever a switch receives a packet that does not match any existing rule in the switch, it is sent

to the controller for processing. Once the rules have been installed on the switches, the need to

forward (those) packets to the controller is eliminated and the latency to perform the requested

action is decreased. All communication that takes place in a software defined network takes place

via OpenFlow messages.

Advantages of SDN

1. Programmable: As the control and the physical layers of the network elements are decoupled,

the network control is programmable on the SDN controller, which is at the logical center of the

network.

2. Central: Since the SDN controller is logically central to the network, it maintains a global

network topology view at all times. This allows the controller to manage the entire network,

without relying upon any other network element.

	
7	

3. Vendor Neutral & Open Source:

Software Defined Networks when implemented via Open Source standards, are not restricted to

vendor specific hardware, software and protocols. This in turn allows ‘off-the-shelf’ hardware to

be used in order to deploy Software Defined Networks. Since the protocol/rules are defined by the

Open Networking Foundation (ONF) and are implemented via the Network OS (ex. Mininet),

vendor lock-ins can be easily avoided. Furthermore, Controllers such as OpenDaylight are open

source projects, everybody can contribute to the development of the projects and the community is

very large and diverse.

While SDN is a very promising direction for modern networks, it is not without it’s

disadvantages. The primary challenge that Software Defined Networks face today is the challenge

with the adoption of the new standard. Since SDN is a fairly new field of study and research, there

are a lot of features missing that are very critical to the functioning of many large scale networks.

Furthermore, many large scale networks do not, yet, see the feasibility to bring their services

down in order to switch from traditional networking to software defined networking. The work

around for that has been the deployment of ‘hybrid’ networks that can function in both SDN mode

and the traditional mode (for redundancy).

OpenFlow

OpenFlow is the protocol that defines how the network elements talk with each other, for

example: how the controller will talk with the switches and vice versa. OpenFlow is a

communications protocol that gives access to the forwarding plane of a network switch or router

over the network [1]. OpenFlow 1.0 was released on the 31st of December, 2009 and the

development is managed by the Open Networking Foundation (ONF). The current OpenFlow

version is 1.4, which includes multiple feature additions over version 1.0 like the addition of

multiple flow tables, MPLS & VLAN tagging support, virtual ports, controller connection failure

modes, the ability to use multiple controllers in the same network, per flow metrics, auxiliary

connections to name a few.

An OpenFlow switch separates the control plane and the forwarding plane in a switch. OpenFlow

switches only serve to forward data and the control logic is pushed to the OpenFlow switches via

	
8	

OpenFlow messages. The data plane of an OpenFlow switch consists of a flow table that have

flow rules according to which packets are matched and forwarded.

The Software defined networking architecture is shown in figure 1 below:

Figure 1

Connected to the Northbound APIs are user ‘apps’ or ‘applications’ which can perform a variety

of functions. These apps are deployed on top of the controller and rules in the matching tables

might be made to forward the data packets to these apps. A ‘load balancer’ is one of these

applications that runs on top of the SDN controller, which manages the load in the network.

There are many different flavors of SDN controllers as well. Mininet, the most popular Network

Operation System (NOS) is bundled with a few SDN controllers by default. These controllers are

the OVS Controller (OVS: Open VSwitch) and the POX controller. Mininet comes ready for

running other SDN controllers like NOX and RYU as well. There are other SDN controllers that

can be downloaded separately and be used either within Mininet or run as a separate VM. An

example of such a SDN controller is the OpenDaylight controller.

	
9	

The need for Software Defined Load Balancing

Traditional networks use static switches, resulting in static load balancing techniques. The primary

issue with this approach is that each packet has a pre defined path as per a pre defined flow. In the

event of a link or a switch failure, the flows and the pre defined paths have to be reconfigured

manually. This process becomes very complex and cumbersome as the network grows.

Controllers in a software defined networks have the complete topology information by listening to

the switches and calculates paths with the least load. This enables the controllers to make

intelligent decisions and frees the switches from any computational load. A challenge that

traditional networks face very frequently is the challenge with network looping. In order to solve

this problem, spanning tree protocols are run in traditional networks which remove the loops, at

the expense of bandwidth.

SDN Load balancers aim to change that by utilizing all the links between switches while avoiding

loops. In order to avoid loops, the SDN controller, OpenDaylight in my case, has to proactively

install flows into the switches as looping is bound to happen if the switches attempt to discover

hosts by the means of L2 Learning (flood packets until the switch builds a table with the hosts

mac address and the out port for that host).

The OpenDaylight SDN controller uses a Link Aggregation Control Protocol (LACP) [2] to

aggregate multiple links into one big link that connects multiple switches. This aggregated link’s

bandwidth is the sum of the individual bandwidths of each link. With the use of LACP in

OpenDaylight, load balancing is successfully achieved in the scenario where there are multiple

links between switches.

	
	
	
	
	
	
	
	
	
	
	
	
	

	
10	

Project	Purpose	

	

The	 primary	 purpose	 of	 my	 project	 is	 to	 develop	 a	 load	 balancing	 mechanism	 for	 use	 in	 a	

network	using	the	OpenDaylight	controller.	The	network	topology	can	be	seen	in	figure	2	below:	

	

	
Figure	2	

In	the	network	topology	in	figure	2,	if	a	SDN	Load	balancer	is	not	used,	loops	will	form	between	

Switch	1	and	Switch	2	and	the	hosts	would	be	unable	to	to	talk	to	each	other.	

Since	 this	 is	 a	 SDN	 network	 with	 the	 OpenDaylight	 controller	 pushing	 rules	 and	 flows	 to	 the	

Switches	(which	are	Open	VSwitches),	loops	are	avoided.	The	OpenDaylight	controller	is	running	

the	link	aggregator	service	via	the	link	aggregation	control	protocol	(LACP)	which	combines	the	

three	 links	 between	 both	 switches,	 into	 one	 high	 bandwidth	 link,	 thereby	 providing	 load	

aggregation	as	well	as	load	balancing.	

	

	

	

	
11	

Lab	implementation	

	

This	 section	 explains	 all	 the	 steps	 involved	 in	 setting	 up	 the	 project	 and	 to	 get	 it	 working	 as	

required.	

	

	

1.	 Download	 VirtualBox	 for	 the	 required	 platform	 from	 (I	 am	 using	 the	 Mac	 OS	 version):	

https://www.virtualbox.org/wiki/Downloads	

		

	

2.	Upon	successfully	downloading	and	installing	VirtualBox,	download	Mininet	VM	image	from:	

http://onlab.vicci.org/mininet-vm/mininet-2.2.0-150106-ubuntu-14.04-server-amd64.zip	

	

3.	Go	to	file	and	select	the	option	to	‘import	appliance’	as	shown	in	figure	3:	

	

	

	
	

Figure	3	

	

	

	
	
	
	
	
	
	
	

	
12	

4. Choose the ‘.ovf’ file to import as shown in figure 4:

Figure 4

5. Configure the import settings. The VM needs a recommended 2GB of memory to perform.

Click on import as shown in figure 5:

Figure 5

	
13	

6. Once the import is complete, configure the VM and select the network option. Enable the

second network adapter and choose ‘Host-Only Adapter’ as shown in figure 6:

Figure 6

7. Click OK to save.

8. Double click on the VM to boot.

	

	
14	

9. Upon boot, you will be greeted with the following screen as shown in figure 7:

Figure 7

10. Use the username and password ‘mininet’ to log-in as shown in figure 8:

Figure 8

11. Run the command ‘sudo dhclient eth1’ to configure an IP for the 2nd network interface we

added earlier.

12. Verify that the 2nd network interface has an IP address by using the command ‘ifconfig eth1’

	
15	

13. Verify that the first network interface has an IP address by using the command ‘ifconfig eth0’

Figure 9

	
	
	
	
	
	
	
	

	
16	

14. Update mininet by running the ‘sudo apt-get update’ command as shown in figure 10:

Figure 10

The apt-get update command updates the sources required by mininet in order to download and

install software as well as update the operating system.

15. Once complete, run the ‘sudo-apt get install lxde xinit’ command as shown in figure 11:

Figure 11

	
17	

This command downloads the ‘lxde’ GUI environment and also installs the ‘xinit’ command that

is required to run lxde GUI environment from command shell.

16. Once the download is complete, run the ‘sudo startx’ command to run the lxde environment

with root privileges as shown in figure 12:

Figure 12

Once lxde starts up, you will be able to see the desktop.

Once on the desktop click on the menu button, go to accessories and select ‘gedit’ as shown in

figure 13:

Figure 13

	
18	

Alternatively, if you do not see the gedit application, open LXTerminal and type:

‘sudo apt-get install gedit’

This will install the gedit application and you will be able to access it from within the accessories

sub menu.

17. In the gedit application, write the following code and save it to the /mininet/custom directory:

Figure 14

	
19	

This code adds three hosts and two switches. The hosts and switches are connected as shown in

the network diagram in figure 2.

18. Open a terminal window and type in the following commands as shown in figure 15:

Figure 15

The cd mininet/custom command changes the current working directory to /mininet/custom.

19. Open another terminal window and type the commands as shown in figure 16:

Figure 16

	
20	

20. This command downloads the opendaylight SDN controller from the opendaylight.org

website.

The downloaded file is compressed in a .tar format. This command extracts the tar file into a

folder with the same name.

Figure 17

21. Type ls to see the file list in the home folder as show in figure 18:

Figure 18

22. Type cd distributon-karaf-0.4.0-Beryllium to change the working directory to that of the

OpenDaylight controller.

OpenDaylight is packaged into a karaf container. Typing ./bin/karaf starts the OpenDaylight SDN

controller.

	
21	

23. After the OpenDaylight controller starts, type in the following command as shown in figure

19:

Figure 19

This command installs the following modules into the OpenDaylight controller [3]:

1. odl-restconf: Allows access to the restconf API

2. odl-l2switch-switch: Provides network functionality similar to an Ethernet switch

3. odl-mdsal-apidocs: Allows access to the YANG API

4. odl-dlux-all: Installs the OpenDaylight GUI

5. odl-lacp-plugin: Installs the Link Aggregation Control Protocol on the OpenDaylight controller.

24. Upon launching the OpenDaylight controller and installing the features mentioned above,

open Firefox and type ‘127.0.0.1:8181/index.html’ and log in using the username and password

‘admin’ to access the dlux GUI.

Figure 20

	
22	

From this GUI, the user can access the graphical representation of the topology, access the rest

config to push flows and retrieve topology information and also access the YANG visualizer.

25. Open the other terminal window (the one pointing towards /mininet/custom) and type the

following commands as shown in figure 21:

Figure 21

26. This command launches the custom topology we programmed earlier with the following

options:

1. --topo=mytopo: Pass an object to instantiate the topology we created

2. --controller=remote: Tell the mininet system to use a remote controller and not the default

controller. The parameters ip and port tell the system where the controller is hosted.

Here we can see that the hosts H1 H2 and H3 have been added and switches S1 and S2 have also

been added.

The links (h1,s1), (h2,s1), (h3,s1), (s1,s2), (s1,s2), (s1,s2) have also been created and the

controller c0 has been added to the topology as well.

The links and the network information can be obtained by running the command ‘links’ and ‘net’

separately in the terminal as shown in figure 22:

	
23	

Figure 22

The ‘links’ command shows the status of the links. This command is ideal to debug a network in

case a link between the network element goes down.

The ‘net’ command shows how the network elements are connected to each other and on what

interfaces. This command is ideal to debug the network in the event a host or a switch goes down.

In order to push the topology to the controller, the first few packets that are sent to the switches

are sent up to the controller for processing. During this first step, the controller installs flows into

the switches and creates a network map that can be visualized on the OpenDaylight DLUX GUI.

	
24	

27. Run the following ping commands to generate traffic that will flow from between the hosts:

Figure 23

The pingall command is a quick command to ping all hosts from all other hosts. Running that

command makes the controller aware of the topology and the flows are pushed to the switches.

Run individual ping commands between every host to make sure each host can reach all the other

hosts.

28. Within the DLUX GUI, click on the nodes option and click on the Node Connectors option on

openflow:1 switch

Figure 24

	
25	

The Node Connectors screen will open and will show all the ports on the switch ‘openflow:1’ and

the statistics of all the ports:

Figure 25

Go back and click on Node Connectors option for ‘openflow:2’ switch:

Figure 26

As we can see in figure 26 on both switches there is traffic generated on each port (in the columns

Rx Pkts and Tx Pkts) which means all links are being utilized and thus, the load balancing is being

achieved on all of these links when communicating from one host to another.

	
	
	
	
	
	
	

	
26	

Issues and Challenges

The challenges faced during the project in the implementation of this project were the

identification of the limitations of mininet, the default mininet controller (OVS Controller) as well

as the POX controller.

Initially, efforts were made to develop a load balancing scheme for the default OVS Controller.

However, upon reading the documentation [4] as well as dry running the source code [5], it was

discovered that the default OVS Controller (controller-8) [6] only worked in the L2 learning mode

and any attempt to utilize multiple links between the two switches resulted in loops. That meant in

order to implement multi-link load balancing in the default OVS Controller, one would have to re-

code the controller from the ground up. It was decided that we were going to focus our efforts

elsewhere as better and more modular SDN controllers are already available and the default OVS

Controller is there to introduce people to the basic concepts of SDN.

The second controller that we looked at was the POX controller. POX is an open source

development platform for Python based SDN control applications such as OpenFlow SDN

Controllers [7]. POX supports modules that can be used to run the controller in a certain mode and

while POX supported load balancing, it did not support load balancing over multiple links [8] as

the POX controller fundamentally functioned in a L2 learning mode as well. Furthermore, POX

does not support OpenFlow 1.3 and only supports OpenFlow 1.0, which is a deal breaker as load

balancing over a network is not possible, in a reasonable and non-experimental way, in OpenFlow

1.0 [9]. POX is able to perform load balance across multiple servers, i.e. only multi-server round-

robin load balancing was available with the POX controller and thus, a different controller had to

be chosen.

The challenge faced with mininet was that mininet did not have the ability to implement multiple

links between switches and hosts. Upon further research, it was discovered that this feature was

later introduced in mininet version 2.2.0 and higher so the entire implementation had to be re-done

on this newer version of mininet.

	
27	

Conclusion

Load balancing is a technique that is in place today to provide high network throughput as well as

provide a means to utilize extra links in a network that would otherwise be redundant. With the

advent of Software Defined Networks, load balancers and load balancing techniques can now

utilize the power of SDN controllers that have supreme control over the network topology,

allowing for greater control over how the data is handled in a network. We looked at Load

Balancing via Link Aggregation Control Protocol in the Open Daylight SDN controller, balancing

load over multiple links in this project, which is dynamic and represents a real world use case.

Organizations often run multiple links between multiple switches in order to provide redundancy

as well as link aggregation and load balancing. However, traditional approaches are more

cumbersome as each of the above mentioned features have to be implemented individually.

With the dawn of SDN based load balancing techniques in controllers such as Open Daylight, all

of the above mentioned techniques can be implemented within a single configuration. This

reduces the complexity of the network as well as the operating costs, which in the end is a primary

goal for Software Defined Networks.

	
28	

Appendices & References

Mininet network topology

from mininet.topo import Topo

class MyTopo(Topo):

 def __init__(self):

 "Create custom topology."

 # Initialize topology

 Topo.__init__(self)

 # Add hosts and switches

 h1 = self.addHost('h1')

 h2 = self.addHost('h2')

 h3 = self.addHost('h3')

 s1 = self.addSwitch('s1')

 s2 = self.addSwitch('s2')

 # Add links

 self.addLink(h1, s1)

 self.addLink(h2, s1)

 self.addLink(h3, s1)

 self.addLink(s1, s2)

 self.addLink(s1, s2)

 self.addLink(s1, s2)

topos = { 'mytopo': (lambda: MyTopo()) }

	
29	

References

[1] Nick McKeown; et al. (April 2008). "OpenFlow: Enabling innovation in campus networks".

ACM Communications Review. Retrieved 2009-11-02.

[2] https://wiki.opendaylight.org/view/LACP:Lithium:User_Guide#LACP

[3]http://www.brianlinkletter.com/using-the-opendaylight-sdn-controller-with-the-mininet-

network-emulator/

[4]http://www.manualpages.de/FreeBSD/FreeBSD-ports-9.0-RELEASE/man8/ovs-

controller.8.html

[5]https://sourcecodebrowser.com/openvswitch/1.1.0~pre2.g2.ea763e0e/ovs-

controller_8c_source.html

[6] https://github.com/osrg/openvswitch/blob/master/utilities/ovs-controller.8.in

[7] http://searchsdn.techtarget.com/definition/POX

[8] https://www.mail-archive.com/pox-dev@lists.noxrepo.org/msg01093.html

[9] http://sdnhub.org/tutorials/pox/

https://www.opennetworking.org/sdn-resources/

https://wiki.opendaylight.org/

http://www.brianlinkletter.com/

	
30	

Table of Figures

Figure 1: SDN Architecture

Figure 2: Project Network Topology

Figure 3: Virtual Box Import Appliance Screen# 1

Figure 4: Virtual Box Import Appliance Screen# 2

Figure 5: Virtual Box Import Appliance Screen# 3

Figure 6: Virtual Machine Settings Page

Figure 7: Mininet Login Screen

Figure 8: Mininet DHCP Configuration

Figure 9: Mininet Network Adapter Configuration

Figure 10: Mininet Update Screen

Figure 11: Mininet: GUI Installation

Figure 12: Mininet: GUI Launch Command

Figure 13: Mininet: Launching Gedit

Figure 14: Mininet: Custom Topology Script

Figure 15: Mininet: Navigating To /custom/

Figure 16: Mininet: Download OpenDaylight

Figure 17: Mininet: Extracting OpenDaylight from tar file

Figure 18: Mininet: Running OpenDaylight

Figure 19: OpenDaylight: Installing features

Figure 20: OpenDaylight: Accessing DLUX GUI

Figure 21: Mininet: Running Custom Topology

Figure 22: Mininet: Links, Net and Nodes Commands

Figure 23: Mininet: Ping Commands

Figure 24: OpenDaylight: DLUX GUI Nodes Screen

Figure 25: OpenDaylight: Openflow:1 Node Connector Statistics Screen

Figure 26: OpenDaylight: Openflow:2 Node Connector Statistics Screen

