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Kurzfassung

Um im Rahmen des Krisenmanagements im Katastrophenfall möglichst rasch und effizient

auf die vorliegende Situation reagieren zu können, gewinnen Social Media Platformen als

Daten- und Informationsquelle immer mehr an Bedeutung. Das Filtern von Social Me-

dia Nachrichten hinsichtlich informativen und nicht informativen Inhalten kann dabei als

ein wesentlicher Schritt verstanden werden. Dieses Filtern von Nachrichten wird häufig

realisiert unter Anwendung von überwachtem Lernen (engl. ”Supervised Machine Learn-

ing”). Aufgrund der Tatsache, dass kein Katastrophenfall mit einem anderen ident ist,

beschränken sich in diesem Kontext viele Lösungsansätze auf einzelne Krisenarten, wie

beispielsweise Erdbeben oder Flutkatastrophen. Zum Einen sind diese Ansätze nur bed-

ingt geeignet für zukünftige Katastrophen anderer Arten, wie beispielsweise Waldbrände,

zum Anderen bieten unterschiedliche Ausgangsdaten, verwendete Features, sowie Lernal-

gorithmen und deren Konfiguration zahlreiche Realisierungsmöglichkeiten, welche zu un-

terschiedlicher Qualität der Klassifizierung von Social Media Nachrichten führen. Diese

Problemstellungen addressierend, umfasst die vorliegende Masterarbeit zwei Teile: Eine

systematische und detaillierte Analyse eines existierenden krisenbezogenen Twitter Daten-

satzes trägt zu einem besseren Verständnis von Merkmalen dar, welche informative und

nicht informative Nachrichten karakterisieren. Darauf aufbauend entwickelt diese Master-

arbeit eine krisentyp unabhängige Klassifizierung von Twitter Nachrichten und zeigt ab-

schließend in einer systematischen Evaluierung zahlreicher Experimente, dass diese krisen-

typ unabhängige Klassifizierung qualitativ bessere Ergebnisse erziehlt als eine Klassifika-

tion bezogen auf spezifische Krisenarten.



Abstract VII

Abstract

Social Media services gain increasing importance as a new data source for achieving Situa-

tion Awareness in disaster management. One crucial prerequisite is to automatically filter

social media messages towards informativeness commonly realized by supervised machine

learning. Since disaster situations are different, most classification approaches focus on

informativeness classification of similar disasters. Thus their use is limited to particular

disaster types, for instance earthquakes or floods, lacking general applicability. At the

same time, how to get accurate informativeness classification for new disaster events is

not yet totally understood due to variations in training data, features, classification algo-

rithms and their settings. To address these issues, the contribution of this thesis twofold:

First, a systematic and in-depth analysis of an existing twitter crisis data set is provided

along four different dimensions in order to gain a comprehensive understanding of those

characteristics indicating informative Tweets in disaster situations. Second, on basis of

these insights, a cross domain classifier is engineered, which is applicable not only across

different disaster events but also across disaster events of different types. Systematic clas-

sification experiments are conducted, demonstrating that the cross-domain classification

approach presented in this thesis is more accurate than other disaster type specific ones.
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1

Chapter 1

Introduction

Situation Awareness in disaster management. In crisis situations, such as natu-

ral disasters like earthquakes, floods, hurricanes or human-induced disasters like

shootings or bombings, it is crucial for organizations and authorities to know the

extent of the current situation to be able to react in an appropriate way. In

many cases, however, detailed information about what happened exactly and what

is going on in the affected area does not exist [Imran et al., 2015]. Counteract-

ing this missing Situation Awareness (SA), i.e., ”understanding what is happening”

[Vieweg et al., 2010], in a timely manner is crucial to reduce the impact on affected people

[Cameron et al., 2012][Girtelschmid et al., 2016][Imran et al., 2015][Salfinger et al., 2016a]

[Salfinger et al., 2016b].

Social Media for SA. Due to fast growing numbers of Social Media users in recent years

all over the world, organizations and researchers are trying to use the paradigm of ”hu-

mans as sensors” to get up to date Social Media messages, and ”first-hand” information,

from people, individuals or organizations who are affected by the actual crisis and further

are trying to extract relevant information for efficient disaster management and decision

making. ”First-hand” [Imran et al., 2015] information by affected people or local organi-

zations is one possible way to gather information about what is going on in the effected

environment. Further on, in some situations ”first-hand” information is even the only

source of information, which can provide additional knowledge about the current situation

[Vieweg, 2012]. Several studies showed, that Social Media are a very frequently used com-

munication channel even during crisis situations [Acerbo and Rossi, 2017][Vieweg, 2012],

thus providing a new source of data for gaining SA [Cameron et al., 2012]. In order to

exploit the full potential of Social Media for enhancing SA in disaster management, first

of all, Social media messages have to be automatically filtered with respect to informa-

tiveness [Salfinger, 2016], eliminating non-related messages like spam or advertisements

and non informative ones like emotions or emphatic expressions. Overall, informativeness

classification is the crucial basis for all further processing steps, like damage or impact

assessment [Cresci et al., 2015].



2 Introduction

Informativeness of tweets. The concept of informativeness is diverse in its use

and discussed in various areas, including e.g. informativeness of web documents

[Horn et al., 2013], term informativeness [Wong and Kit, 2011][Wu and Giles, 2013] or in-

formativeness of Social Media messages in areas like news [Lloret and Palomar, 2016]

as well as the crisis domain itself [Olteanu et al., 2015]. Yet, informativeness

is a subjective concept, which heavily depends on the receiver of the informa-

tion [Olteanu et al., 2015]. Since a variety of informativeness definitions exist

[Derczynski et al., 2018][Horn et al., 2013][Lloret and Palomar, 2016][Longhini et al., 2017],

the current work follows the informativeness definition of Olteanu et al.

[Olteanu et al., 2015] where informativeness of crisis related tweets is captured by

”checking whether the tweet contributes to a better understanding of the situation on the

ground”.

1.1 Social Media in disaster situation

Social Media platforms are an ”easy-to-use way to communicate and network with each

other” [Gundecha and Liu, 2012]. Therefore, millions of people use them every day to

share messages for various reasons [Olteanu, 2016]. Studies showed that lots of people use

Social Media platforms in crisis situations to communicate and share information about

the ”situation on the ground” [Imran et al., 2015], for example about areas with power

outages, people without food or water [Imran et al., 2015], [Vieweg, 2012], [Olteanu, 2016].

The amount of information shared on Social Media after a disaster event is even more than

usually shared by users [Cresci et al., 2015]. However, there are many limitations of using

social data [Olteanu, 2016], which have to take into considerations when working with

data from Social Media. Social Media data are ”vast, noisy, distributed, unstructured,

and dynamic” [Gundecha and Liu, 2012]. In addition, information shared online by users

depend on their goal [Imran et al., 2015]. In other words, not every piece of information,

shared online by users, can contribute to situation awareness or is informative in some

way at all. Even worse, information on Social Media platforms can not be verified easily

and may be a rumor, i.e. may be not true or consists of wrong facts [Zubiaga et al., 2015].

Yet, if these issues are taken into considerations while using Social Media services, they

can contribute to situation awareness in early phases of disaster situations.

1.2 Twitter

A very popular social media platform is Twitter1, a microblogging service which limits one

messages to a maximum of 140 characters. Last year, 2017, Twitter doubles the amount of

1www.twitter.com
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Figure 1.1: Informativeness filtering

allowed characters to 280 per message. A message is called tweet. Twitter is used all over

the world to communicate, share and discuss any topics. The network uses the concept of

followers and followees. Unlike other social media platfroms like Facebook2, this concept

leads to a directed user network. A user X who follows another user Y does not imply that

user Y necessarily follows back user X. A user X who follows user Y receives all tweets

posted by user Y. Retweets allow to answer on a previous tweet immediately. Over time

Twitter users evolved common practices for communication. For instance, ”RT” stands

for Retweet, ”@” followed by a certain user refers to this particualr user and ”#” followed

by a word is used for Hashtags [Kwak et al., 2010]. hashtag information is used in tweets

to refer tweets to certain topics which are currently discussed. For instance, the hashtag

”#hurricanesandy” was used in Twitter communication to state this tweet is related to

this particular Hurricane. The reason why Twitter is frequently used for scientific research

is because Twitter provides an API to access real tweet data. In general, Twitter provides

three types of APIs, namely the Search API, the Streaming API and the Twitter Firehose.

While the Search API works like searching based on keywords, the Streaming API and

the Firehose are rather a push of data by Twitter, i.e. Twitter delivers tweets in near

real-time directly to the API’s user. Twitter’s Search API and the Streaming API are

accessible for free, yet there exist some limitations by Twitter, for instance the amount of

accessible data or number of Retweets. In contrast, Twitter Firehose provides full access

and less restrictions, however usage is costly.

1.3 Motivation

Past disaster events showed that Social Media users post a huge amount of messages

during and after crisis situations [Olteanu et al., 2015]. However, not all messages are

useful in the sense of informativeness and can contribute to situation awareness. Some

messages contain a lot of emotion and are hardly informative, for instance ad and spam

messages or even not related messages which do not provide any crisis related informa-

tion at all. Therefore, filtering potentially crisis related Social Media messages regard-

ing their informativeness, i.e., a particular message contributes to crisis related situation

2www.facebook.com
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awareness or in other words is informative or is not informative, is one major task, vi-

sualized in Figure 1.1. In an ideal case immediately after a user shares a message, an

automated task can decide, whether this particular message is informative or not, i.e.,

filters out only informative messages to support disaster management and disaster de-

cision making. This is desirable since due to the huge number of Social Media mes-

sages in a crisis event, human processing and filtering of those messages is almost im-

possible. For instance, when analysing the Hurricane ”Sandy” event in 2012 and 2013,

Stowe et al. [Stowe et al., 2016] got a collection of 22.2 million messages after perform-

ing keyword selection on Twitter. Manual processing of such a big amount of data is

not feasible. Hence, the state-of-the-art approach for this task is using machine learn-

ing to classify Social Media posts in informative and not informative messages automat-

ically [Acerbo and Rossi, 2017][Imran et al., 2016][Khare et al., 2017][Verma et al., 2011].

Recent scientific literature deal with this issue and propose a variety of different approaches

to address this information filtering task.

1.4 Machine Learning from Social Media data

Machine Learning types. Machine Learning is a huge field in the domain of artificial

intelligence. In general, scientific literature distinguish three main types of machine learn-

ing [Russell and Norvig, 2016]. First, supervised learning, where an algorithm learns a

function for input-output pairs based on previous examples, which is used to predict

the output class of new input data. Classification is an example of supervised learning.

The second type, unsupervised learning tries to uncover patterns in data without explic-

itly defining output classes. Clustering is the most common unsupervised learning task

[Russell and Norvig, 2016]. The third type, reinforcement learning is based on ”series of

reinforcements-rewards or punishments” [Russell and Norvig, 2016] which tell the algo-

rithm whether previous decisions were right or wrong. This master thesis uses concepts of

supervised learning or classification respectively, to determine informativeness of poten-

tially crisis related tweets. Furthermore, clustering is used for tasks of the data analysis

part.

Classification. Extracting information from Social Media can be considered as a classi-

fication problem. A certain message can be informative or not, can contain information

about affected people, about the state of infrastructure or affected areas. Due to the huge

amount of data generated by users in crisis situation, manually categorization by humans

of these messages is not feasible. Hence, categorization of Social Media messages is a clas-

sification task done by computer algorithms, so-called classifiers. The classifier is trained

on labeled messages of past disaster events. Each message is described by a set of features,

which are properties of this particular message. The classifier learns, based on features,

how to classify messages, i.e., which properties of a message leads to which result. The
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trained classification model then can be used to classify new messages in new crisis events,

for instance, whether a message is informative or not, contain information about affected

people, about the state of infrastructure or affected areas.

1.5 Research scope

Informativeness classification. Current approaches for informativeness classification

mainly employ supervised machine learning [Acerbo and Rossi, 2017][Imran et al., 2016]

[Khare et al., 2017][Verma et al., 2011]. Learning from past events and classification on

new events, is, however quite challenging not least since disaster situations are different

in many ways [Pekar et al., 2016]. For instance, a Hurricane differs from a plan crash

regarding affected people, affected geographic location, duration of the event and further

leads to different decisions and reactions in disaster management. Thus, most classification

approaches focus on informativeness classification for specific types of events, for instance

earthquakes or floods, only, lacking general applicability. At the same time, how to get

accurate informativeness classification for new crisis events is not yet totally understood

due to variations in training data, features, classification algorithms and their settings.

Crisis related data. Some studies already investigated the behaviour of people using Social

Media in different crisis situations [Vieweg, 2012]. Furthermore, previous research showed

that events also differs significantly regarding the information shared on Social Media

[Olteanu et al., 2015]. Since every crisis is unique in general, the question is, are there still

commonalities between events which allow learning from past events? What are common

characteristics of different crisis events? Where are the differences? How are differences

and similarities related to informativeness in messages?

Problem definition. While many research deal with various classifica-

tion approaches to extract information out of Social Media messages

[Imran et al., 2013][Pekar et al., 2016][Stowe et al., 2016][Verma et al., 2011], very few

research address the actual characteristics of past events and their contained implicit

temporal, spatial, linguistic and source information, in particular related to informa-

tiveness. Detailed insights in potentially crisis related data might contribute to a more

efficient and intelligent way of classification. Moreover, a majority of classification ap-

proaches uses a relatively small corpus, regarding number of crisis events, disaster types

as well as number of samples, for training, because manually labeling is a very time

consuming and cost intensive task. Hence, only little existing research has addressed

cross-domain training, i.e., to train the classifier with samples from more than one event

domain [Pekar et al., 2016][Verma et al., 2011][Acerbo and Rossi, 2017]. Due to different

event characteristics, training the classifier on one crisis event and further using it for

classification on a current event might not be effective. Differences in event dimensions
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like type, whether it is an earthquake or a flood, or like temporal aspects, whether it is an

instantaneous or progressive event, might lead to insufficient classification results. In other

words, learning from an event in the past might not be suitable for classification of future

events. The questions is whether this assumption is true for informativness classification

also? Since a corpus for each type of event is practically not feasible [Cresci et al., 2015],

a classifier, cross-domain trained on a heterogeneous dataset, which achieves sufficient

accuracy over various events, is beneficial.

Contributions. This master thesis consists of two main parts. First, a systematic and

in-depth analysis of an existing twitter crisis data set is provided along four different

dimensions, covering temporal, spatial, linguistic and source information with respect to

informativeness in order to gain a comprehensive understanding of those characteristics

indicating informative tweets in disaster situations. Additionally, insight in crisis related

data uncovers differences and similarities cross crisis events of the same type and cross

crisis events of different types to create an appropriate training set for informativeness

classification. On basis of these insights, in the second part of this thesis, a cross domain

classifier is engineered, which is applicable not only across different disaster events but

also across disaster events of different types. Features and training data used for the

classification approach are based on data analysis results. Since the time aspect plays an

important role in crisis, this thesis proposes a novel time dependent classification approach,

which partitions the entire classification in sub- classification tasks with respect of the time

when the tweet was shared. For the previous stated reasons, this thesis focuses on cross-

domain training, i.e., use more than one event as training corpus, to show how well this

informativeness classification approach performs on a heterogeneous training set, tested

on various different events of different event types. However, being able to compare cross-

domain training results with other approaches used in recent literature this thesis runs a

variety of classification experiments using different train-testset combinations, including

in-domain and out-domain classification.

Thesis scope. The overall scope of this thesis is informativeness classification. Thus, all

statements, data analysis, results and experiments in this thesis are considered regarding

informativeness classification, which might be different from other classification tasks in

the context of mining crisis related data. Not the primary scope of this thesis is improving

informativeness classification by optimizing and developing more complex features like

using lexicons and ontologies to represent messages in a more abstract way, since a lot of

other research already did and improvements are slight at some point [Khare et al., 2017].

Instead, this work’s focus is more on the data itself and how data and knowledge about

it can be used to improve informativeness classification of tweets. However, using data

insights to develop additionally more complex features might lead to further classification

improvements and thus is suited for future work.
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1.6 Thesis outline

This master thesis is structured as follows. Chapter 2 gives some background information

to get a better understanding of the current research field. The following Chapter 3

discusses and compares recent literature and tries to point out main differences with respect

to this thesis. Further, Chapter 4 focuses on the dataset and provides a systematic manual

data analysis regarding temporal, spatial, linguistic and source characteristics. Chapter 5

and Chapter 6 propose an informativeness classification approach based on data insights

and explain details of the prototype implementation. Chapter 7 discusses and compares

various classification experiments and their results. The final Chapter 8 contains a lessons

learned sections as well as an outlook for future work.
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Chapter 2

Background

The current chapter gives some background information related to the research field of this

master thesis. Since a majority of research focusing on Twitter as information source, the

following section discusses briefly the usage of Twitter for research. Furthermore, relevant

aspects regarding the data set are explained in more detail. In addition, state-of-the-art

Machine Learning algorithms used for research are discussed. Finally, this chapter covers

some definitions used in the Machine Learning domain to explain meanings of used terms

in this thesis.

2.1 Twitter for research

A majority of researchers use Twitter, respectively tweets posted by Social Media users,

as a source of information [Vieweg, 2012][Cresci et al., 2015][Olteanu et al., 2015], because

Twitter provides a public accessible Application Programming Interface (API)1, where it

is possible to access and stream tweets in near real-time. Hence, research in this domain is

rather focused and adapted on characteristics of Twitter, for instance the limited amount

of characters used in a message or the concept of Retweets or the directed linking con-

cept of followers and followees. As a consequence, research and their conclusions based

on Twitter might not be applicable to other Social Media services directly. At least, dif-

ferences between Social Media services have to be considered when working with different

platforms. In general, information extraction from Social Media for scientific reasearch is

not restricted to Twitter, Pogrebnyakov et al. [Pogrebnyakov and Maldonado, 2017] uses

Facebook as information source. Nevertheless, getting data from other Social Media plat-

forms than Twitter might be challenging since only a minority of Social Media platforms

provide their data to public.

1https://developer.twitter.com/en/docs.html
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2.2 Available datasets

For this thesis the most relevant work with respect to crisis related datasets is the work

of Olteanu et al. [Olteanu et al., 2015]. They accessed the Twitter API by using Hashtag

and keyword filtering to collect tweets of 26 crisis events, which take place in the years

2012 and 2013. Furthermore, they employed crowed-source worker to judge each tweet

and label them manually regarding informativeness, i.e., whether a certain tweet is infor-

mative or not, regarding information type, i.e., categories like for example infrastructure

or donations, and regarding information source, i.e., whether a tweet was posted by media

organizations, by government or directly by affected people. The outcome of their work

is a labeled corpus with around 28K tweets public available under the name CrisisLexT26

dataset1. The CrisisLexT26 dataset is described in more detail in section 4, because this

thesis build up on the CrisisLexT26 dataset.

Stowe at al. [Stowe et al., 2016] created for their work a crisis related corpus using tweets

posted by Twitter users before, during and after Hurricane ”Sandy” in the year 2012.

Then ”domain experts, social scientists, and linguists” [Stowe et al., 2016] labeled them

manually which resulted in a corpus of 7.5K tweets. The corpus of [Imran et al., 2013]

was manually label by an external crowd-sourcing platform and contains approximately

4.5K tweets from the Tornado in Joplin, Missouri 2011.

Due to the reason that creating a corpus for training and testing is very costly, many

researches use already existing and labeled data sets or subsets of them. Pekar et al.

[Pekar et al., 2016] uses the entire CrisisLexT26 dataset, Khare et al. [Khare et al., 2017]

a subset of the it. In total 3.2K tweets out of 9 events, where the majority of tweets

are in English. Imran et al. [Imran et al., 2016] uses 11 events, five earthquakes and six

flood events, of the CrisisLexT26 combined with tweets from a platform called AIDR,

which results in total in 11.7K tweets. A subset of the CrisisLexT26, 12 events and only

natural hazards, are used by Acerbo et al. [Acerbo and Rossi, 2017] for their classification

approach. Adding additional related tweets from the Twitter API they ended up with a

dataset of 36K tweets. Yet, in their approach they removed tweets which are labeled as

”not applicable” or ”not related”.

Cresci et al. [Cresci et al., 2015] used a manually annotated dataset of four crisis events

taken place in Italy. 5.6K tweets in total consists of two floods and two earthquakes.

Stowe et al. [Stowe et al., 2016] created their own corpus using tweets from Hurricane

Sandy. They ended up with 7.5K tweets posted by 93 different users. A realatively small

dataset was used by Verma et al. [Verma et al., 2011]. Their dataset contains 2K tweets,

approximately 500 tweets per event, collected in the years 2009 and 2010. Imran et al.

[Imran et al., 2013] used 4.4K tweets from to the Tornado in Joplin, Missouri in 2011.

1http://www.crisislex.org/data-collections.html
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To conclude, for research purposes, not many labeled datasets exist due to the time con-

suming and costly creation and labeling process of datasets. Many research work set up on

already existing datasets. Since the CrisisLexT26 is one of the largest datasets available,

which consists of various events, it is chosen as a basis for this thesis.

2.3 Data classification

Beside the dataset used for classification, choosing the ”right” features is not less impor-

tant to get accurate classification results [Pekar et al., 2016]. Various types of supervised

Machine Learning algorithms use training examples from the dataset to train a classifi-

cation model. The outcome is the trained model or classifier, respectively, which than

can be used to predict unseen tweets of future events. Many different types of supervised

Machine Learning algorithms exist to classify crisis related tweets and many of them are

also used in related literature. Depending on the particular task, different algorithms lead

to more or less suitable results. However, using which classification algorithm with which

configurations for which dataset is almost impossible to generalize, although there exist

some preferred approaches in related literature. The current section describes algorithms

and settings used for classification. Furthermore, this section describes the data used for

training and testing the classifier and points out the differences in in-domain, out-domain

and cross-domain classification.

2.3.1 Algorithms

Various implementations of supervised Machine Learning algorithms exist. How-

ever, for classifying crisis related information some of them are more fre-

quently used than others, namely Support Vector Machines (SVM), Maxi-

mum Entropy Models, K-Nearest Neighbor (KNN) and Random Forest classi-

fications. Linear SVM are very frequently used Machine Learning algorithms

when it comes to higher dimensional data [Pedregosa et al., 2011]. In the work

of [Cresci et al., 2015][Stowe et al., 2016][Khare et al., 2017][Mohammad et al., 2013]

and [Pekar et al., 2016] SVMs are used for their classification task. Moreover,

Naive Bayes classifier and Maximum Entropy Models, used in the work of

[Stowe et al., 2016][Verma et al., 2011] and [Pekar et al., 2016], lead to suitable classifica-

tion results. Pekar et al. [Pekar et al., 2016] additionally experimented and compared in

their work K-Nearest Neighbor (KNN) and Random Forest classifier. Nevertheless, best

classification results achieved SVM and Maximum Entropy Models. While the Random

Forest classifier, used by Pekar et al. [Pekar et al., 2016], was not the best choice regarding

classification accuracy, in the work of Acerbo et al. [Acerbo and Rossi, 2017] the Random
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Forest classifier lead to the best results. This aspect shows that classification accuracy

does not only depend on the algorithm, rather different algorithm configurations or even

more relevant, different features used can lead to different classification results while

using the same classification algorithm. Which classifier to choose depends on various

aspects and thus training the classifier is more an experimental setup and evaluation

task. Nevertheless, testing the classifier on unseen data or applying Cross-Validation

estimates the performance of the classification model on real data and ensures that

future classification will lead to reliable and suitable classification results. The underlying

assumption thereby is that training data represents the unseen future data, which again

emphasizes the importance of using the ”right” data for training the classifier.

2.3.2 Data for training and testing

As already argued at the end of the previous section, using the ”right” training data is

crucial to get reliable and suitable classification results. In general, literature categorizes

classification experiments in three main types with respect to crisis events. First, training

on data or tweets, respectively of a particular type of event, for example tweets of Hur-

ricane Sandy, and testing on another event, but from the same type, for instance tweets

of Hurricane Irma. Researchers [Cresci et al., 2015] call this in-domain, i.e., training and

testing within the same type of event. The second category is called out-domain classifi-

cation. Thereby, the classifier is trained on one type of event, e.g. Hurricane Sandy, and

tested on tweets of a different type of event, e.g. an earthquake. In the third category

training data consists of more than one event, for instance using tweets of Hurricane Sandy,

tweets of an earthquake in Chile as well as tweets from a helicopter crash in the UK to

train the classifier. In the current thesis this type of classification is called cross-domain

(training). In addition to these three main types and not comparable to cross-domain

there exist Cross-Validation [Pedregosa et al., 2011], which is a concept frequently used

in the Machine Learning domain and also in crisis related literature. Cross-Validation

splits the training data, e.g. from one particular event and uses parts of the same event

for training as well as for testing. This is typically used for estimating the classification

results during the experimental phase.

In general, the accuracy of classification results tend to decrease from Cross-Validation

over in-domain, out-domain to cross-domain, due to the reason that in an event are more

similarities within the same event than with another event or even with an event of an-

other type. Based on the used dataset, literature uses a variety of training and testing

scenarios. Since it is practically not feasible or very time consuming and costly, respec-

tively to create a corpus for each type of event, e.g. earthquakes, floods, shootings, re-

searchers pay out-domain and cross-domain approaches more attention than in-domain
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approaches, although out-domain and cross-domain classification are reasonable harder to

realize [Cresci et al., 2015].

2.3.3 Machine Learning terms

For clarification, the following list gives a set of definitions used in the Machine Learning

domain. All explanations and examples are related to informativeness classification, i.e.

supervised learning, which is used in the context of this master thesis. Moreover, definitions

are based on the books of [Russell and Norvig, 2016] and [Bishop, 2006].

• A Dataset or Corpus contain data or input-output samples, which are used for

training and testing the classifier. Usually the entire dataset is split up into training

data and test data. The ratio for splitting depends on the requirements of the

classification task.

• Training data contains input-output samples used for training the classifier (e.g.

past disaster events). Thereby, input are features or their values, respectively, and

the output is the corresponding class, i.e. informative or not informative. The

learning algorithm tries to find a function which match given input data, i.e. features,

to a given output class.

• Test data is used for testing the classifier and simulates a new disaster event. Thus,

based on input data, i.e. features, the classifier tries to predict the corresponding

class.

• Classes are the categories, which the classifier tries to classify certain input data. For

informativeness classification there are two classes, informative and non informative.

• Features are properties which describes a single object, for instance a certain tweet.

Feature are extracted for instance from tweet text, e.g. the number of words in the

text. Each object for classification is described by a set of n features, which results

in a n-dimensional representation of the object.

• Cross-Validation is a technique used for evaluation and selecting the best perform-

ing classifier and is used during development. In S-fold Cross-Validation, the entire

dataset is split into S parts where S-1 parts are used for training the classifier and

the remaining part is used for testing the classifier. The final performance score is

the average over all S runs.
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predicted informative predicted non informative

true informative TI FN

true non informative FI TN

Table 2.1: Confusion matrix

• Performance evaluation and performance measures are used to compare different

classification approaches or results of different classifiers. Since informativeness clas-

sification is a binary classification, the confusion matrix of table 2.1 show prediction

results.

Frequently used performance metrics in literature are:

– Accuracy: The number of correct classified objects.

Acc =
TI + TN

TI + FN + FI + TN
(2.1)

– Precision: Proportion of correct informative predictions

Prec =
TI

TI + FI
(2.2)

– Recall: Proportion of correct classified informative tweets

Rec =
TI

TI + FN
(2.3)

– F1-value:

F1 = 2 ∗ Prec ∗Rec

Prec + Rec
(2.4)
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Chapter 3

Related Work

With increasing popularity of Social Media services more researchers are trying to use

information from Social Media also in disaster situations [Olteanu et al., 2015].

This chapter discusses related literature with respect to the current thesis. The first section

deals with informativeness classification in general, in other areas as well as in the crisis

domain. The second section focuses on related work with respect to a systematic manual

analysis of crisis related data and in the following section, main differences to other closely

related classification approaches are factored out. Table 3.1 shows a summary of closely

related work, sorted firstly with respect to the classification task, secondly concerning

the dataset used and thirdly regarding other related aspects, such as used features or

cross-domain training. Related classification approaches are discussed along this table.

3.1 Informativeness classification

Informativeness is a broadly discussed concept in literature and applied in various

areas like news articles [Lloret and Palomar, 2016], web documents [Horn et al., 2013]

and linguistic sciences [Kireyev, 2009][Wu and Giles, 2013], to mention just a few. In

the crisis domain, informativeness classification is one early step in processing infor-

mation from Social Media. While few research thereby focuses on the informative-

ness classification task [Acerbo and Rossi, 2017][Imran et al., 2016][Longhini et al., 2017],

other work take that for granted and focus on more specific classification tasks like

damage assessment [Cresci et al., 2015] or develop platforms [Cameron et al., 2012] and

frameworks [Avvenuti et al., 2016][Ren et al., 2017], which support crisis management

as a whole. While many approaches for informativeness classification focus on par-

ticular disaster types [Acerbo and Rossi, 2017][Cresci et al., 2015][Longhini et al., 2017],

only few works, however, address classification cross a variety of disaster types
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[Khare et al., 2018][Khare et al., 2017] and also in other application areas like e.g. news

[Dai et al., 2007] cross-domain approaches are sparse.

3.2 Manual crisis data analysis

Important for any Machine Learning task is an appropriate corpus for training and testing

the classifier. Based on training examples or past tweets respectively, the classifier learns a

classification model, which then is used to predict new unseen tweets. Recent studies found

out that information posted online during disaster varies a lot between different types

of events [Olteanu et al., 2014][Munro and Manning, 2012][Kanhabua and Nejdl, 2013].

While many research focus on feature-engineering, i.e., inventing and evaluating new

features, [Khare et al., 2018][Khare et al., 2017][Longhini et al., 2017] or classification it-

self [Pekar et al., 2016][Stowe et al., 2016][Verma et al., 2011], only few research deal with

crisis data analysis with respect to informativeness. Acerbo & Rossi investigate ”com-

mon patterns” inside informative and non informative tweets, which is similar to the data

analysis of the current thesis, yet, they focus on similarities and differences in words. A

statistical analysis of data with respect to informativeness is done by Lloret & Palomar

[Lloret and Palomar, 2016] where they present linguistic features which ”an informative

tweet should have in order to be informative”, focusing, however, on the news domain.

Ning et al. [Ning et al., 2017] present an analysis of six disasters, to identify linguistic,

sentimental and emotional features. In contrast to this thesis, they address ”relatedness”

rather than ”informativeness” of tweets. The manual crisis data analysis of the current

thesis is based on the results of Olteanu et al. [Olteanu et al., 2015], additionally, on top

of that this thesis focuses on a detailed analysis with respect to informativeness.

3.3 Classification approaches

Most closely related works deal with informativeness classification of Social Media mes-

sages. This section wants to discuss closely related work along Table 3.1 and tries to point

out main differences with respect to this thesis.

Considering closely related informativeness classification approaches, Acerbo & Rossi

[Acerbo and Rossi, 2017] base their work on a subset of the CrisisLexT26 and solely used

natural hazards with more than one event per event type. Hence, their dataset contains

three disaster types: floods, earthquakes and fires. In contrast to this thesis, their goal was

not to learn a cross-domain classifier, rather they focus on a novel text metric to use as

additional feature for classification. In addition, they exclude all tweets, which are labeled

as ”not related” and ”not applicable” from the original dataset. Since the classification
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approach proposed in this thesis is designed for online classification, i.e. classifying tweets

in real time on the message stream, removing tweets from the dataset does not correspond

with the final use case and thus the current thesis uses all tweets, shared by users, for

classification. Used features by Acerbo & Rossi like hashtags, URLs, ”@” character and

source information are also used in the current thesis. Additionally, they accessed the

Twitter API to get user information as features, for instance, number of followers and

followees, registration date, total number of tweets by user and also Retweets, which are,

however, not used in this thesis, but might be part of future works.

Closely related with respect to the number of cross-domain experiments is the work of

Imran et al. [Imran et al., 2016], which is also based on a subset of the CrisisLexT26, yet,

they only use two disaster types, namely floods and earthquakes. In contrast, this the-

sis uses the entire CrisisLexT26 dataset including 26 events from 13 different event types.

Beside tweets in English, this dataset contains also tweets of other languages, mainly Span-

ish, Portuguese and Tagalog. It includes human-induced events as well as natural hazards.

Important for data analysis is using a variety of events and disaster types to uncover dif-

ferences and similarities among them. In order to uncover characteristics within the same

disaster type it is important to analyze several events of the same type, i.e. in-domain.

As well, it is important to analyze a variety of different event types to investigate out-

domain differences and similarities. Thus, by using all 26 events, this thesis covers both,

a variety of event types as well as several events from the same type. Additionally, Imran

et al. experiments with adding portions of the test set to the training set, i.e. test on the

same data already used for training, which led to reasonable classification improvements.

However, this is likewise not applicable for online classification and therefore not in the

scope of the current thesis.

Longhini et al. [Longhini et al., 2017] present a ”language-agnostic model” for informa-

tiveness classification and show the impact of a new feature ”source”, indicating hardware

for communication, e.g. mobile or not. Cross-domain classification, however, is not part

of their work.

Considerable more disaster types as all previously mentioned approaches are used by

Khare et al. [Khare et al., 2017]. As in this thesis, they run cross-domain experiments,

yet their classification task is ”relatedness” (whether a tweet is related to a crisis event

or not) instead of ”informativeness”. Statistical features used by Khare et al. like Part-

of-Speech information, and tweet lenght are part of this thesis. To address the problem

of ”lexical sparsity of tweets” [Cresci et al., 2015], i.e., tweets can be per definition only

140 characters long, Khare et al., as well as [Cresci et al., 2015] and [Imran et al., 2013],

use a similarity, synonym and hypenym lexicon based approach. Words in tweets were

replaced with synonyms from a lexicon to eliminate the issue of same meanings by different



18 Related Work

words. In addition, by using ”Babelfy”2 they extracted ”semantic entities” out of the

tweet text, which they further used to look up for hypernyms or synonyms on a more

abstract level in a knowledge base called Bebel.net3. Using a more abstract level, e.g.

the words ”firemen” or ”policemen” are translated in the more general term ”defender”,

allows to encapsulate the specific event type. The current thesis focuses mainly on simple

linguistic featues, however, more complex features, like semantic concepts, considering

hypernyms and synonyms might be part of future work. Most closely related to this

thesis is another very similar work of Khare et al. [Khare et al., 2018] where they use the

entire CrisisLexT26 dataset to address cross-domain classification, focusing, however, on

”relatedness”, not on ”informativeness”.

The work of [Cresci et al., 2015] is closely related with respect to features used for classi-

fication like number of tokens, ”@”-symbols, hashtags, punctuation, Emoticons, sentiment

and Part-of-Speech (POS) information, like number of adjectives, number of verbs or

number of nouns. Additionally, they address cross-domain classification by using four

disaster events of two disaster types in Italy. They do not focus, however, on informa-

tiveness classification but rather on ”damage assessments” of Italian tweets. Another type

of feature was used in the work of Cresci et al., and also used by Mohammad et al.

[Mohammad et al., 2013]. They tried to extract the sentiment, which is implicit in the

tweet content, and used it as features. Many research is done to determine the sentiment

of tweets in an automated way. Cresci et al. used in their work already existing sentiment

polarity lexicons as well as an own developed classification approach which learns and clas-

sifies the sentiment based on positive and negative tweets in a labeled corpus. Mohammed

at al. [Mohammad et al., 2013] created an own ”Hashtag sentiment lexicon”, where Hash-

tags used in tweets are directly related to positive or negative sentiment. For example,

Hashtags like #good, #angry express the emotion of the user who posted a certain tweet.

In order to determine the sentiment of a tweet and further to use as a feature, the current

thesis applied an existing sentiment library, namely TextBlob1.

Closely related with respect to cross-domain classification are the works of Li et al.

[Li et al., 2015] and Imran et al. [Imran et al., 2013], yet they consider two different dis-

aster types, only.

3.4 Conclusion

Finally, this section summarizes the main aspects which distinguish this thesis from other

related work.

2http://babelfy.org/
3http://babelnet.org/
1http://textblob.readthedocs.io/en/dev/index.html



3.4 Conclusion 19

Approach Goal Dataset Features Training & Evaluation

D
a
ta

se
t

L
an

gu
ag

e

N
o.

tw
ee

ts

N
o.

d
is

as
te

rs

N
o.

ty
p

es

L
in

gu
is

ti
c

T
em

p
or

al

S
p

at
ia

l

A
lg

or
it

h
m

In
-d

om
ai

n

O
u

t-
d

om
ai

n

C
ro

ss
-d

om
ai

n

[Acerbo and Rossi, 2017] Informativeness CrisisLexT26 EN,ES,TL 36.0K 12 3 3 3 Random Forest 3

[Imran et al., 2016] Informativeness CrisisLexT26 EN,ES,TL 11.7K 11 2 3 Random Forest 3 3 3

[Longhini et al., 2017] Informativeness CrisisLexT26 EN,ES,TL 12.9K 12 3 3 3 Random Forest 3

[Khare et al., 2017] Relatedness CrisisLexT26 EN 3.2K 9 7 3 SVM 3

[Khare et al., 2018] Relatedness CrisisLexT26 EN,ES,TL,PT 32.0K 26 11 3 SVM 3 3

[Cresci et al., 2015] Damage assessment own IT 5.6K 4 2 3 SVM 3 3 3

[Ning et al., 2017] Relatedness CrisisLexT6 EN 32.5K 6 5 3 3 CNN 3

[Li et al., 2015] Relatedness and others own EN 2.7K 2 2 3 Naive Bayes 3

[Imran et al., 2013] Informativeness and others own EN 6.4K 2 2 3 Naive Bayes 3

[Graf et al., 2018] Informativeness CrisisLexT26 EN,ES,TL,PT 28.0K 26 13 3 3 SVM 3 3 3

Table 3.1: Overview on informativeness classification approaches.

First, the current thesis [Graf et al., 2018] uses a larger dataset, regarding amount

of samples as well as regarding variety of events and disaster types. Imran et al.

[Imran et al., 2016] showed in their work that accuracy improves significantly when in-

cluding more data for training, even when this data is from other events. As table 3.1

shows, many experiments use significantly smaller datasets, some events for training con-

tain only a few hundred tweets. Hence, not only the size of the entire dataset matters,

also the number of tweets per event, which are used for training, is highly relevant. The

number of training examples decreases even more when applying some filter or using a

under-sampled balanced dataset, i.e., create an equal distribution of classes for training.

The current thesis uses a dataset including 12K more tweets than the average dataset used

in closely related work of Table 3.1. According the number of events and the variety of

event types, the dataset used in this thesis is even the largest.

Moreover, this thesis provides a systematic manual data analysis, which is based on the

results of Olteanu et al. [Olteanu et al., 2015], and additionally, on top of that, focuses

particularly on informativeness. Such a detailed analysis of the CrisisLexT26 dataset with

respect to informativeness does not exist so far. First, this data analysis allows suitable

feature selection, i.e., detailed insight in data show whether certain data characteristics

are suitable to use as a feature for classification. In addition, data analysis provides infor-

mation for appropriate composition of train and test set to achieve reliable and accurate

classification results on unseen events.

The classification approach proposed in this thesis is designed for real time, i.e., online,

classification. Therefore, certain features used in related work, like number of Retweets or

other tweet reply information are not used for classification due to the reason that some

information is not available when a certain tweet is classified.

By running in-domain, out-domain and cross-domain experiments, the current thesis is

able to show the impact of the crisis domain on informativeness classification results,

i.e., to answer the question whether a cross-domain trained classifier is more accurate in

classifying crisis related tweets with respect to informativeness than a crisis specific one. In
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general, less research focus on cross-domain training, since cross-domain training requires

an appropriate dataset including a higher number of events as well as events from different

types.
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Chapter 4

Data Analysis

Analyzing crisis-related data and furthermore using those insights in data to improve

informativeness classification is the overall scope of the current master thesis. The Cri-

sisLexT26, created by [Olteanu et al., 2015], seems to be best suitable for this task for

mainly two reasons. Firstly, it is one of the largest dataset available containing approxi-

mately 28K tweets, which are manually labeled with respect to informativeness. Secondly,

the CrisisLexT26 dataset contains a variaty of different event types, natural hazards as

well as human induced events. Furthermore, these events happened all around the globe.

Some events took place in North and South America, moreover, there are events from

the Asian area, for instance Philippines or Bangladesh, disaster events took place in Eu-

rope, Spain, Italy or UK, as well as in Australia. Thus, also in the sense of geographic

location, the CrisisLexT26 can be considered as a heterogeneous collection of potentially

crisis related tweets. The first section of the current chapter explains the CrisisLexT26 in

detail, mainly based on the work of Olteanu et al. [Olteanu et al., 2015], to get a better

understanding of how the CrisisLexT26 dataset was developed and manually annotated.

Based on the work of Olteanu et al. [Olteanu et al., 2015], the systematic analysis of the

CrisisLexT26 presented in the second section of the current chapter addresses two main

Figure 4.1: Analysis dimensions
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goals: Firstly, analysis wants to uncover similarities and differences of different crisis events

and in particular of crisis events of different disasters types. This provides the basis for

creating an appropriate training set, which addresses the hypothesis accurate informa-

tiveness classification over various disaster types, i.e., addressing the domain adaptation

problem. Secondly, analysis wants to uncover the impact of tweet characteristics with

respect to informativeness, to use specifically those having high impact on informativeness

as features for classification, which addresses the hypothesis of a more accurate informa-

tiveness classification compared to other approaches. The systematic analysis is based

on 4 different dimensions (cf. Figure 4.1), comprising i) WHEN a tweet was shared, i.e.,

temporal dimension, ii) WHERE a tweet geographically belongs to, i.e., spatial dimension,

iii) HOW a tweet is written, i.e., linguistic dimension and iv) WHO posts a tweet, i.e.,

source dimension. In order to uncover tweet characteristics correlating with informative-

ness and their differences with respect to disaster types, analysis of each dimension follows

a systematic hierarchical process. To be more specific, the analysis considers, firstly, each

dimension on an aggregated level, secondly, on a crisis event level, and, thirdly, in combi-

nation with other dimensions. Overall, for each dimension, the analysis is detailed as far

as significant differences with respect to informativeness are encountered.

The final section of the current chapter focuses on event similarity by applying hierarchical

clustering to show similarities of events based on event dimensions given by Olteanu et al.

and tweet characteristics discussed in the current chapter. Clustering results are able to

show the impact of tweet characteristics on event similarities. In other words, clustering

visualizes similarity of events based on the tweets. More details are explained in Section

4.3.

4.1 CrisisLexT26 dataset

The CrisisLexT26 dataset contains potentially crisis-related tweets from 26 past disaster

events, which happened in the years 2012 and 2013 all over the world. Basically, events can

be distinguished between natural hazards, for instance earthquakes or floods, and human

induced crisis events, for instance shootings or plane crashes. The dataset contains events

from both categories, 15 natural events, 10 human induced events and one event which

can be seen in both categories. Olteanu et al. [Olteanu et al., 2015] categorize those 26

events furthermore according their subcategory, type, development and spread. All the

dimension and characteristics of each events are listed in table 4.1. The column ”Days”

refers to the duration of the event, i.e., only tweets from this time frame are included in

the dataset. The column ”Tweets” does not show the final number of tweets in the dataset,

but rather the number of tweets collected to a certain crisis event.
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Year Country Crisis Name Days Tweets Category Subcategory Type Developmenta Spreadb

2012 Italy Italy earthquakes 32 7.4K Natural Geophysical Earthquake Instantaneous Diffused
2012 US Colorado wildfires 31 4.2K Natural Climatological Wildfire Progressive Diffused
2012 Philippines Philippines floods 13 3.0K Natural Hydrological Floods Progressive Diffused
2012 Venezuela Venezuela refinery explosion 12 2.7K Human-induced Accidental Explosion Instantaneous Focalized
2012 Costa Rica Costa Rica earthquake 13 2.2K Natural Geophysical Earthquake Instantaneous Diffused
2012 Guatemala Guatemala earthquake 20 3.3K Natural Geophysical Earthquake Instantaneous Diffused
2012 Philippines Typhoon Pablo 21 1.9K Natural Meteorological Typhoon Progressive Diffused
2013 Brazil Brazil nightclub fire 16 4.8K Human-induced Accidental Fire Instantaneous Focalized
2013 Australia Queensland floods 19 1.2K Natural Hydrological Floods Progressive Diffused
2013 Russia Russian meteor 19 8.4K Natural Others Meteorite Instantaneous Focalized
2013 US Boston bombings 60 157.5K Human-induced Intentional Bombings Instantaneous Focalized
2013 Bangladesh Savar building collapse 36 4.1K Human-induced Accidental Collapse Instantaneous Focalized
2013 US West Texas explosion 29 14.5K Human-induced Accidental Explosion Instantaneous Focalized
2013 Canada Alberta floods 25 5.9K Natural Hydrological Floods Progressive Diffused
2013 Singapore Singapore haze 19 3.6K Mixed Others Haze Progressive Diffused
2013 Canada Lac-Megantic train crash 14 2.3K Human-induced Accidental Derailment Instantaneous Focalized
2013 Spain Spain train crash 15 3.7K Human-induced Accidental Derailment Instantaneous Focalized
2013 Philippines Manila floods 11 2.0K Natural Hydrological Floods Progressive Diffused
2013 US Colorado floods 21 1.8K Natural Hydrological Floods Progressive Diffused
2013 Australia Australia wildfires 21 2.0K Natural Climatological Wildfire Progressive Diffused
2013 Philippines Bohol earthquake 12 2.2K Natural Geophysical Earthquake Instantaneous Diffused
2013 UK Glasgow helicopter crash 30 2.6K Human-induced Accidental Crash Instantaneous Focalized
2013 US LA Airport shootings 12 2.7K Human-induced Intentional Shootings Instantaneous Focalized
2013 US NYC train crash 8 1.1K Human-induced Accidental Derailment Instantaneous Focalized
2013 Italy Sardinia floods 13 1.1K Natural Hydrological Floods Progressive Diffused
2013 Philippines Typhoon Yolanda 58 39.0K Natural Meteorological Typhoon Progressive Diffused

atemporal development of crises
bgeographic spread of a crisis

Table 4.1: Crisis events of the CrisisLexT26 dataset [Olteanu et al., 2015]

4.1.1 Data source

Source of the CrisisLexT26 dataset is Twitter’s Sample API, which is available for public

use. Yet, Twitter’s Sample API only provides 1% of the entire tweet stream of Twitter,

i.e., all tweets posted by users. Previous studies have showed that although only 1% of

all tweets are accessible, this 1% of all tweets are up to some point representative for all

posted tweets and do not bias the results [Olteanu et al., 2015]. Disaster events, which

had associated more than 100,000 tweets are considered for this dataset of 26 events, since

1% of tweets from the Sample API result in at least 1K tweets. In a first step, all public

available tweets from the years 2012 and 2013 were accessed using Twitter’s Sample API.

In a second step tweets were filtered and associated to certain disaster events based on

Hashtags and Keywords. Very short tweets, equal or less than three tokens long, were

removed from the dataset, because usually they contain no useful information at all. They

did not remove Retweets or duplicates from the dataset, since they want to keep the

information of people repeating already existing messages.

4.1.2 Labeling process

Manual labeling of tweets in the work of Olteanu et al. was done by crowdsource work-

ers employed for this particular task. Each tweet was manually annotated towards three

dimensions, namely informativeness, information type, information source. To reduce la-

beling bias by subjective interpretations, the authors provided detailed definitions and
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instructions for the task. Informativeness was defined as ”checking whether the tweet con-

tributes to better understanding the situation on the ground” [Olteanu et al., 2015]. Still,

this definition allows some subjective judgment. To address this issue, first, at least three

worker labeled each tweet, and second, also the authors contributed in the labeling pro-

cess and compared their annotations with the annotations of the crowed workers to reduce

the labeling bias. The following list shows examples of informative and non informative

messages:

1. Informative

informative (direct or indirect); curating or producing content; contribute to situ-

ational awareness; situational information; contextual information to better under-

stand the situation

2. Not Informative

trolling; humor; off-topic; rumor; humor or irrelevant/spam;

Finally, the informativeness labeling process ended up with four classes, namely ”informa-

tive and related”, ”related but not informative”, ”not related” and ”not applicable”.

Information type and information source were annotated in the same way. Labeled classes

for information source are ”Eyewitness”, ”Government”, ”NGOs”, ”Business”, ”Media” and

”Outsiders” [Olteanu et al., 2015].

1. Eyewitness

citizen reporters, members of the community; eyewitnesses; local, peripheral, per-

sonally connected; local individuals ; local perspective, on the ground reports; direct

experience (personal narrative and eyewitness reports); direct observation, direct

impact, relayed observation;

2. Government

(news organizations and) authorities; government/administration; police and fire ser-

vices; police; government; public institutions; public service agencies, flood specific

agencies;

3. NGOs

non-profit organizations; non-governmental organization; faith-based organizations;

Business commercial organizations; enterprises; for-profit corporation;

4. Media

news organizations (and authorities), blogs; journalists, media, and bloggers; news

organization; professional news reports; media; traditional media (print, television,
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radio), alternative media, freelance, journalist; blogs, news-crawler bots, local, na-

tional and alternative media; media sharing (news media updates, multimedia);

5. Outsiders

sympathizers; distant witness; remote crowd; non-locals

Class labels of the dimension information type are ”Affected individuals”, ”Infrastructure

and Utilities”, ”Donations and volunteer”, ”Caution and advice”, ”Sympathy and emotion”,

”Other useful information” [Olteanu et al., 2015]. Since this dimension is mainly related

to semantic content of a tweet and hardly related to informativeness, information type is

not discussed in detail in the current thesis.

Finally, Olteanu et al. ended up with approximately 28K labeled tweets and published

their collection of 26 events for research purposes as CrisisLexT261 dataset.

4.2 Systematic crisis data analysis

In the following a systematic and in-depth analysis of crisis related tweets with respect

to informativeness is provided along four different dimensions, covering temporal, spa-

tial, linguistic and source characteristics (cf. Figure 4.1) on basis of the CrisisLexT26

[Olteanu et al., 2015] dataset.

Since this thesis deals with informativeness classification, the distribution of informative-

ness in the dataset is an important aspect. To get a complexity reduced view on the

data, this thesis only considers two informativeness classes, namely ”informative” and ”not

informative”. Thus, the class labels ”related but not informative”, ”not related” and ”not

applicable”are joined together and all belong to one class ”non informative”. Second reason

for joining these classes to one is that for a practical use on the Twitter message stream,

this binary classification can be considered as an early stage filtering task, where only in-

formative tweets are further processed. In total, the dataset contains 60.11% informative

and 39.89% non informative tweets. Figure 4.2 visualizes the overall class distribution,

i.e., the distribution of informative and non informative tweets, of all events. The major-

ity of events included in the CrisisLexT26 tend to have more tweets in the ”informative”

class. The most unbalanced event is the NYC train crash where over 90% of tweets belong

to the ”informative” class and thus less than 10% to the ”non informative” class. Class

distribution, i.e., whether classes are balanced or not, is important for the classification

approach. An unbalanced training set may bias classification accuracy and thus have to

be considered in the classification approach.

1http://www.crisislex.org/data-collections.html
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Figure 4.2: Informativeness per event
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4.2.1 Temporal dimension

By considering the temporal dimension of tweets this thesis wants to analyze the evolution

of informativeness in time over an entire crisis. For this, it is investigated how far tweet

characteristics determined by spatial, source and linguistic dimensions change from the

beginning of a crisis to its end. Particular emphasis is put on whether there are differences

between crisis events or between disaster types, apart expectable peculiarities induced by

the instantaneous or progressive character [Olteanu et al., 2015] of certain disaster types

like bombings or floods. In the following, most important aspects are discussed in more

detail.

4.2.1.1 Informativeness per time

The evolution of communication in time regarding informativeness during crisis events may

give interesting insights in people’s Social Media behavior. If the relation of informative

to non informative tweets differ in time, for instance in early stages there are more non

informative tweets and barely informative tweets or the other way round, this knowledge

can be used for adapting the classification approach, for instance using different classifiers

for different time phases during the entire disaster.

Figure 4.3 shows the evolution of informativeness over all events during the first 31 days

after the event took place. 31 days represents one month after the event occurred and

include 99.45% of all tweets from the entire dataset. Especially progressive events demand

to consider over a longer period of time and yet 31 days are still possible to visualize in

form of a time line. The chart shows that in the first few days of an event the majority

of tweets about that event were posted. Furthermore, Figure 4.4 visualizes the difference

in communication regarding the time development dimension of events, which is clearly

related to time. Instantaneous events, like earthquakes, shootings or train crashes trigger

immediately lot of online communication in the very early stages after the event starts.

In contrast, progressive event types, which might build up in severeness gradually, like

floods or bush fires lead to more continuous online communication which might build up

over time. While there are differences regarding the time development dimension of an

event, whether it is an instantaneous or progressive event, in both categories there are still

informative and non informative tweets over the entire time period. However, the amount

of tweets decreases significantly over time.

Regarding in-domain, out-domain and cross-domain classification, similarity of events with

respect to informativeness over time is essential to look at. The charts in Figure 4.7 show

the events in time grouped by their event type. Hence, similarities or even not existing

similarities in the same domain or cross another domain are visible. Out of this charts some
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Figure 4.3: Informativeness per time

Figure 4.4: Informative tweets in respect to time development dimension
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observations can be drawn. Firstly, the temporal progress of progressive events, like floods

or wildfires, look different even within the same event type. For instance, comparing both

wildfires, Colorado and Australia, show that tweets were posted on different days. The

point in time when most of the tweet communication take place depends more on particular

occurrences within the event itself. In the case of floods, this may be a rising water level.

As a consequence, more people are directly affected by the higher water level and so more

people share information online. Secondly, instantaneous events, whether they are natural

or human-induces does not make significant differences, tend to look similar even over

other domains. Comparing the charts of earthquakes, derailments, explosions and other

instantaneous events, in all of these events a majority of the entire communication take

place in early stages of the event, independent from the actual type of event. Hence,

informativeness over time tend to be the same in instantaneous types of events. Typhoons

are a progressive type of event and both of them look similar in time, this is not necessarily

representative for all Typhoons. Like in floods, the number of affected people in Typhoons

during the entire crisis can vary and consequently has impact on online communication.

Possible existing geographic and cultural differences in informativeness evolution over time

show the charts in Figure 4.9. Disaster events are clustered based on their country and

each continent is represented in one chart. In general, the relation informative to non

informative tweets seems to be similar over all five charts. However, there exist some

fine grained distinctions. In Asian events predominate non informative tweets in the first

two days. Whereas, this is not the case for all other events, rather it is the other way

round. Especially in European events, South- and North America, in early stages of the

events tweets tend to be mainly informative. Yet, informative tweets drop down below

non informative tweets in later phases of the event in Europe or in South America. For

instance, in South American events, six days after the event occurred, there are more non

informative tweets than informative tweets.

To conclude, a majority of tweet communication take place in early stages of the event.

50.06% online communication is within the first three days after the event took place.

This is even more the case in instantaneous events, where 71.87% of all tweets are posted

within the first three days. In general, the timeline of informative tweets of instantaneous

events look more similar even over different event types. This is not the case in progressive

events where tweet behavior over time depends on particular occurrences within the event

itself.

4.2.1.2 Findings

Main findings regarding the temporal dimension can be summarized as follows:
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Figure 4.5: Informative tweets per event type (1)
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Figure 4.6: Informative tweets per event type (2)
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Figure 4.7: Informative tweets per event type (3)

1. Figure 4.10 visualizes the relation of informative tweets to non informative tweets

over time. Overall, this relation stays constant indicated by the dashed gray line.

Thus, response time itself, i.e., the period elapsed since the event started and the

tweet was sent, is not highly informative for classification.

2. Considering differences in informativeness over time with respect to the other three

analysis dimensions, only the source dimension shows some peculiarities. While for

all events ”media”, ”government” and ”NGOs” tend to be much more informative

over the entire time period independent of the disaster type, this is not true for

sources, ”business”, ”eyewitness” and ”outsiders”. ”Eyewitnesses” over all events,

e.g., tend to share, interestingly, in early stages of a crisis more non informative

than informative tweets, which turns around after a few days (cf. dashed yellow

line in Figure 4.10). Since response time in combination with other dimensions, like

source, shows differences with respect to informativeness, response time is therefore

suited to be used as feature for informativeness classification.

3. Analysis shows no considerable differences with respect to informativeness between

different disasters types, except expectable differences with respect to the amount

of shared tweets over time between instantaneous disaster types where a majority

of tweet communication takes place in the first days and progressive disaster types,

where communication is more constant over the entire crisis or correlates with par-

ticular occurrences within the event itself, e.g., a rising water level in case of a flood.
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Figure 4.8: Informativeness per geographic location (1)
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Figure 4.9: Informativeness per geographic location (2)



4.2 Systematic crisis data analysis 35

Figure 4.10: Temporal - informativeness evolution

4.2.2 Spatial dimension

By considering the spatial dimension of tweets this thesis wants to analyze whether there

exist differences in informativeness of tweets with respect to the geographic location where

the crisis event happened. Due to the geographic distribution of crisis events in the dataset,

events were grouped together at a continent level (Asia, Europe, Australia, North- and

South-America) based on their country. In the following, most important aspects are

discussed in more detail.

4.2.2.1 Informativeness per geographic locations

Grouping events based on the country show whether there are differences in informative-

ness towards geographic location of the event. Figure 4.11 shows the informativeness in

events grouped per continent. However there are no significant differences in informative-

ness between geographic location. Western countries, i.e., events in Europe and North

America have a slightly higher proportion of informative tweets.

To conclude, informativeness with respect to geographic locations does not show any

obvious patterns.
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Figure 4.11: Informativeness per geographic locations

4.2.2.2 Findings

Main main findings towards the spatial dimension can be summarized as follows:

1. The overall relation between informative and non informative tweets in disaster

events is similar across all continents although there is little variation between single

events (cf. Figure 4.12). However, the spatial dimension does not provide additional

information with respect to informativeness and thus is not used for classification.

2. There are no considerable differences between disaster events and between disasters

types within one continent, which as a consequence support cross-domain classifica-

tion.

4.2.3 Linguistic dimension

By considering the linguistic dimension of tweets this thesis wants to analyze which lin-

guistic characteristics differentiate informative tweets from non informative ones. Since

naturally a variety of linguistic characteristics exist, we focus on those ones which have been

already used for classification in other domains such as news [Lloret and Palomar, 2016].

In particular, we analyze i) language, length and sentiment of a tweet, ii) Part-of-Speech

(POS) information covering nouns, verbs, adverbs and adjectives, iii) frequency of spe-
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Figure 4.12: Spatial - informativeness per continent

cial characters, Emoticons and crisis-related hashtags and finally iv) punctuation. Since

a majority of tweets, 71%, are in English, POS annotations and sentiment analysis are

based on the English language. In order to analyze linguistic characteristics some of them

require pre-processing steps, like Tokenization, removing stop-words, and Stemming. In

the following, most important aspects are discussed in more detail.

4.2.3.1 Language

Language may play an important role for extracting, creating and selecting linguistic

features, mainly in a pre-processing step. Using different words, a different grammatical

structure in the tweet text can possibly bias classification results. Therefore, this section

takes a look on used languages in the dataset. A majority of tweets from the entire dataset

are written in English (EN), however there are some proportions of Tagalog (TL), which

is a common language used in the Philippines, Spanish (ES) and Portuguese (PT) as well

as very small portions of various other languages, included. Since the top four languages

automatically determined in the dataset, EN, ES, TL, PT, cover over 90% of tweets, the

focus lies on these four languages. Figure 4.13 shows the languages included in the dataset.

To assess the language of the tweet text the python package ”langdetect” 4 was used. Since

the language is based on the tweet text, the remaining less than 15% of tweets are those

tweets of other languages, 9.50%, as well as tweets which can not be surely recognized as

one of the top 4 languages but with a probability of less than 0.75% be still from one of

these top 4 languages. Table 4.2 shows the proportion of used languages in detail.

4https://pypi.python.org/pypi/langdetect
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Figure 4.13: Language per event
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Language %

EN 71.08%
ES 10.42%
PT 2.16%
TL 2.01%
na 14.33%

Table 4.2: Dataset languages

Figure 4.14: Tweet text length

To conclude, top four used languages are English, Spanish, Portuguese and Tagalog. More

than 70% of all tweets are written in English. Since a majority of tweets are written in

English and all 26 events contain at least portions of English tweets, pre-processing and

extracting of features for classification can primary focus on the English language.

4.2.3.2 Tweet text length

Figure 4.14 shows the tweet length in number of tokens to visualize potential differences

in tweet length regarding the informativeness classes. Yet, Chart 4.14 does not show

significant differences in tweet length between informative and non informative tweets over

all events. A more detailed view on certain events gives Table 4.3. Overall, non informative

tweets tend to be slightly shorter than informative tweets. The average informative tweet

is 21.13 tokens long, the average non informative tweet 19.62 tokens. Non informative

tweets in other languages than English, like ES, TL and PT, are even shorter.
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Informative Not informative
mean st.dev. mean st.dev.

Total 21.13 7.22 19.62 8.31

EN 21.41 7.04 20.42 7.73
ES 20.31 7.53 18.78 9.47
TL 21.59 7.24 17.88 7.66
PT 20.21 8.16 16.03 10.18

Business 23.05 8.17 23.97 6.25
Eyewitness 22.50 7.37 20.32 7.98
Government 21.88 7.26 22.80 6.96
Media 20.88 6.67 20.08 7.99
NGO 23.56 7.84 21.63 8.47
Outsiders 20.45 7.93 19.39 8.56

Instantaneous 20.59 7.08 19.17 8.59

Human-induced 20.78 7.02 19.92 8.76

Boston bombings 21.71 6.26 19.80 7.95
Brazil nightclub fire 21.00 7.38 18.51 9.79
Glasgow helicopter crash 21.44 6.36 21.08 7.19
LA Airport shootings 20.98 6.93 21.01 8.96
Lac-Megantic train crash 19.37 8.04 18.00 9.81
NYC train crash 21.13 6.63 21.01 7.96
Savar building collapse 20.24 6.82 21.65 7.65
Spain train crash 20.26 7.50 17.35 10.36
Venezuela refinery explosion 20.19 7.18 20.87 9.06
West Texas Explosion 22.06 6.68 20.14 8.03

Natural 20.20 7.19 17.97 8.16

Bohol earthquake 18.81 7.83 17.67 7.77
Costa Rica earthquake 20.81 7.44 18.67 7.53
Guatemala earthquake 20.55 7.23 20.05 8.19
Italy earthquakes 20.78 6.27 19.75 7.81
Russian meteor 19.46 7.05 15.99 8.64

Progressive 21.81 7.33 20.38 7.76

Singapore haze 21.23 6.65 21.34 7.90

Natural 21.85 7.37 20.23 7.73

Alberta floods 22.69 7.14 22.13 7.44
Australia wildfires 22.31 7.25 21.96 7.74
Colorado floods 20.35 6.99 21.53 7.70
Colorado wildfires 20.70 6.64 20.67 7.17
Manila floods 22.81 8.35 19.00 7.95
Philipinnes floods 24.89 6.31 20.49 7.80
Queensland floods 21.85 6.48 18.82 7.08
Sardinia floods 20.37 7.66 19.22 7.91
Typhoon Pablo 22.05 6.51 19.11 8.02
Typhoon Yolanda 20.42 8.73 19.60 7.97

Table 4.3: Mean and standard deviation of informativeness classes
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Figures 4.15 and 4.16 provide the results of Table 4.3 in graphical form. Wider gaps in

the chart between the informative and non informative line mean there is a difference in

tweet length between informative and non informative tweets.

To conclude, informative tweets tend to be longer, on average 1.51 tokens, than non

informative tweets.

4.2.3.3 Part of Speech information of tweets

In Natural Language Processing (NLP), Part of Speech (POS) information is commonly

used for information processing tasks in general or pre-processing of features in Machine

Learning, respectively. Part of Speech taggers annotate tokens as part of a sentence with

additional lexical information. Nouns, verbs, adjectives or adverbs are examples for POS

annotations. POS information of sentences used in tweets might be different between

informative tweets or not informative tweets. For instance, more nouns may correlate

with more facts and furthermore, tend to be more informative, whereas more adjectives

or adverbs are an indicator for emotion, which tend to not informative information. POS

information is usually used as features in classification approaches.

Part of Speech taggers are based on language rules, thus, this thesis only uses events

containing more than 50% of tweets in English for analyzing POS information. In addition,

out of those events all tweets other than English are filtered out. Otherwise this may lead

to biased results. POS tagging was implemented by using the ”Natural Language Toolkit”4

to identify nouns, verbs, adjectives and adverbs in tweet sentences.

Table 4.4 shows the resulting POS information based on the mean and separated by

informativeness classes. Overall, some observations can be made from these results. On

average, informative tweets contain slightly more nouns and adjectives. In contrast, non

informative tweets have a tendency to contain more verbs and adverbs on average. This is

even more the case for eyewitness tweets where an informative tweet contains on average

2.69 more nouns than an average non informative tweet. This fact is clearly visible in

Figure 4.18. Differences visualized in grey stand for a higher mean in the informative class,

difference bars visualized in white stand for a higher mean in the informative class.

In Table 4.4, events with less than 50% tweets in English are replaced with ”n.a” instead

of values.

To conclude, informative tweets tend to contain more nouns and adjectives, whereas non

informative tweets tend to contain more verbs and adverbs. As a consequence, POS

4https://www.nltk.org/index.html
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Figure 4.15: Average tweet length per event
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Figure 4.16: Standard deviation tweet length per event
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Figure 4.17: Mean of Part-of-Speech (1)
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Figure 4.18: Mean of Part-of-Speech (2)
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Informative Not informative
Noun Verb Adj Adv Noun Verb Adj Adv

Total 9.94 1.89 1.26 0.37 8.10 2.03 1.14 0.60

Business 10.34 2.18 1.24 0.37 10.72 2.12 1.05 0.49
Eyewitness 10.37 1.97 1.24 0.66 7.68 2.48 1.32 0.93
Government 10.35 1.88 1.22 0.37 9.87 2.30 1.29 0.52
Media 10.12 1.75 1.29 0.29 9.54 1.88 1.20 0.42
NGO 10.64 2.13 1.17 0.40 9.37 2.35 1.11 0.64
Outsiders 9.00 2.09 1.20 0.43 7.57 2.17 1.02 0.62

Instantaneous 9.94 1.82 1.27 0.29 8.07 1.95 1.06 0.54

Human-induced 10.20 1.90 1.22 0.28 8.50 2.03 1.07 0.55

Boston bombings 10.41 1.99 1.13 0.33 7.78 2.29 0.91 0.63
Brazil nightclub fire n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Glasgow helicopter crash 10.32 1.86 1.20 0.24 9.29 2.12 0.96 0.46
LA Airport shootings 9.83 2.45 1.10 0.31 7.83 2.33 1.09 0.54
Lac-Megantic train crash 9.41 1.75 1.52 0.35 8.43 1.73 1.77 0.56
NYC train crash 10.68 1.66 1.37 0.20 8.78 2.20 1.07 0.44
Savar building collapse 9.94 1.79 1.08 0.25 10.23 1.74 1.42 0.34
Spain train crash n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Venezuela refinery explosion n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
West Texas Explosion 10.56 1.81 1.18 0.42 7.85 1.80 0.90 0.71

Natural 8.80 1.48 1.49 0.33 7.03 1.73 1.04 0.51

Bohol earthquake 8.57 1.23 1.33 0.27 7.24 1.62 0.98 0.42
Costa Rica earthquake n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Guatemala earthquake n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Italy earthquakes n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Russian meteor 8.98 1.67 1.60 0.38 6.87 1.82 1.09 0.57

Progressive 9.94 1.94 1.25 0.42 8.14 2.12 1.22 0.66

Singapore haze 8.67 1.79 1.41 0.48 8.69 2.40 1.18 0.88

Natural 10.03 1.95 1.24 0.42 8.04 2.07 1.22 0.62

Alberta floods 9.77 2.14 1.43 0.57 8.39 2.29 1.46 0.73
Australia wildfires 10.00 2.39 1.31 0.41 8.54 2.62 1.06 0.71
Colorado floods 9.31 1.90 1.18 0.38 8.91 1.85 1.15 0.46
Colorado wildfires 9.58 1.94 1.05 0.39 8.41 1.98 1.13 0.56
Manila floods 10.47 1.82 1.27 0.39 7.92 1.59 1.21 0.59
Philipinnes floods 12.26 1.74 1.32 0.40 8.77 1.58 0.89 0.57
Queensland floods 9.46 2.14 1.47 0.52 6.29 2.31 1.55 0.75
Sardinia floods n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Typhoon Pablo 10.01 1.79 1.11 0.46 7.55 1.82 1.26 0.56
Typhoon Yolanda 9.63 1.69 1.00 0.29 8.23 1.69 1.17 0.42

Table 4.4: Mean of POS values of informativeness classes
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information is suitable to use as feature for informativeness classification since differences

in informative and non informative tweets exist.

4.2.3.4 Characters used in tweets

The usage of special characters in tweets might be an additional indicator for informa-

tiveness of tweets. Table 4.5 lists the average frequency of characters in tweets and 4.20

visualizes the results of the special characters ”#”, ”?”, ”!”, URLs and ”@”. Over all events,

there is a trend that the characters ”?” and ”!” are more used in non informative tweets,

which may correlate with emotion of users. The ”#” character is usually used as hashtag

in tweets. There is a tendency towards the character ”#” is more frequently used in non

informative tweets. In contrast, there is a tendency that URLs and the ”@” character are

more used in informative tweets. This is maybe related to evidence, which is provided by

an additional link in the tweet as well as tweet answers directly referred to users using the

”@” character.

To conclude, there is a tendency that the characters ”#”, ”!” and ”?” are more frequently

used in non informative tweets, whereas URLs and ”@” are more frequently used in in-

formative tweets. Again, this kind of information is suitable to use as feature since there

exist differences with respect to informativeness of tweets.

4.2.3.5 Emoticons

Emoticons, e.g. ”:)” or ”:(”, used in tweets may be an indicator for emotion of

users. Studies showed that Emotions are more frequent in non informative tweets

[Acerbo and Rossi, 2017]. The same conclusion can be drawn from the current data anal-

ysis. Figure 4.21 show the frequency of positive and negative Emoticons used in tweet

text. Over all events, there is a tendency that in general more negative Emotions are

used. However, there are differences regarding the event. In general, when considering

differences between the informativeness classes, Emoticons are used more frequently in

non informative tweets.

To conclude, Emoticons are more used in non informative tweets. Thus, existing Emoticons

in tweets can be used as feature for classifying tweets.
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Figure 4.19: Average characters in tweet text (1)
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Figure 4.20: Average characters in tweet text (2)
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# ? ! URL @
Inf. Not Inf. Not Inf. Not Inf. Not Inf. Not

Total 0.87 1.08 0.03 0.13 0.11 0.29 0.67 0.26 0.88 0.72

Business 1.16 0.87 0.02 0.08 0.17 0.18 0.52 0.38 1.07 1.24
Eyewitness 1.28 1.15 0.05 0.12 0.40 0.43 0.42 0.27 1.04 0.64
Government 1.21 1.44 0.02 0.07 0.05 0.09 0.54 0.39 0.92 1.03
Media 0.71 1.11 0.02 0.10 0.05 0.15 0.80 0.68 0.85 0.98
NGO 1.44 1.46 0.04 0.11 0.21 0.46 0.55 0.48 1.14 1.03
Outsiders 0.89 1.05 0.07 0.13 0.16 0.28 0.52 0.18 0.81 0.68

Instantaneous 0.61 1.27 0.03 0.13 0.07 0.24 0.72 0.34 0.79 0.70

Human-induced 0.51 1.14 0.03 0.12 0.05 0.20 0.74 0.32 0.80 0.76

Boston bombings 0.47 0.87 0.03 0.13 0.05 0.18 0.63 0.28 0.89 0.68
Brazil nightclub fire 0.52 0.84 0.04 0.12 0.14 0.27 0.70 0.16 0.65 0.67
Glasgow helicopter crash 0.51 0.81 0.00 0.08 0.03 0.19 0.67 0.38 0.86 0.75
LA Airport shootings 0.70 1.75 0.04 0.19 0.05 0.17 0.70 0.36 0.85 0.74
Lac-Megantic train crash 0.63 1.00 0.02 0.13 0.04 0.15 0.74 0.55 0.77 0.86
NYC train crash 0.22 0.33 0.03 0.06 0.01 0.19 0.90 0.19 0.74 0.59
Savar building collapse 0.58 2.52 0.04 0.08 0.03 0.13 0.76 0.64 0.79 0.98
Spain train crash 0.36 0.37 0.02 0.03 0.07 0.15 0.83 0.18 0.70 0.70
Venezuela refinery explosion 0.74 1.19 0.04 0.14 0.08 0.27 0.69 0.25 0.94 0.92
West Texas Explosion 0.59 1.23 0.04 0.17 0.07 0.22 0.64 0.20 0.88 0.66

Natural 0.80 1.48 0.03 0.14 0.10 0.31 0.66 0.38 0.78 0.61

Bohol earthquake 0.76 1.63 0.01 0.05 0.09 0.30 0.76 0.20 0.66 0.63
Costa Rica earthquake 0.73 1.96 0.02 0.07 0.07 0.30 0.62 0.56 0.77 0.50
Guatemala earthquake 0.71 1.37 0.01 0.09 0.04 0.36 0.69 0.30 0.77 0.81
Italy earthquakes 1.15 1.37 0.03 0.20 0.14 0.39 0.47 0.28 0.90 0.68
Russian meteor 0.68 1.07 0.07 0.24 0.17 0.27 0.81 0.43 0.75 0.59

Progressive 1.20 1.49 0.04 0.12 0.16 0.38 0.61 0.40 0.99 0.73

Singapore haze 1.12 0.93 0.08 0.18 0.17 0.35 0.41 0.38 1.12 0.89

Natural 1.21 1.57 0.04 0.11 0.16 0.39 0.62 0.40 0.98 0.71

Alberta floods 1.51 1.70 0.05 0.13 0.18 0.31 0.62 0.39 1.10 0.97
Australia wildfires 1.22 1.61 0.03 0.08 0.06 0.37 0.71 0.36 0.96 0.90
Colorado floods 1.06 1.92 0.05 0.10 0.11 0.25 0.81 0.68 0.84 0.66
Colorado wildfires 0.70 1.07 0.02 0.07 0.10 0.32 0.72 0.49 0.68 0.61
Manila floods 1.56 1.85 0.03 0.18 0.23 0.58 0.47 0.24 1.18 0.62
Philipinnes floods 1.12 1.21 0.05 0.17 0.47 0.54 0.26 0.39 1.37 0.62
Queensland floods 1.24 1.36 0.05 0.19 0.08 0.41 0.59 0.49 0.75 0.41
Sardinia floods 1.79 2.09 0.04 0.08 0.10 0.34 0.63 0.40 0.92 0.88
Typhoon Pablo 0.96 1.45 0.04 0.09 0.13 0.44 0.58 0.18 0.86 0.73
Typhoon Yolanda 1.03 1.71 0.02 0.07 0.16 0.34 0.82 0.42 1.12 0.73

Table 4.5: Average characters in tweet text
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Figure 4.21: Emoticons in tweet text
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4.2.3.6 Sentiment

More precise than only looking for Emoticons in tweet text is determining the sentiment

of the tweet based on the language and terms used. Sentiment information is commonly

used for text classification. To determine the sentiment of a tweet, the Python library

Textblob5 was used. Based on the language used in the tweet text, TextBlob provides a

sentiment polarity and a sentiment subjectivity score. Positive values, in an interval from

zero to one, express positive sentiment and negative values, in an interval from minus

one to zero, express negative sentiment. The sentiment subjectivity score expresses the

objectivity, i.e., an estimation for reliability, of the sentiment polarity score where values

close to zero are very objective and values close to one are very subjective. To visualize the

sentiment in an comparable way in Figure 4.22, a positive as well as a negative sentiment

score was calculated:

postiveSentimentScore = Polarity ∗ (1− Subjectivity) (4.1)

negativeSentimentScore = |Polarity| ∗ (1− Subjectivity) (4.2)

Since sentiment analysis is based on language, again only tweets where more than 50% of

tweets written in English are considered.

Figure 4.22 shows, all events contain tweets with portions of sentiment, yet, there are no

distinguishable patterns between events. However, considering informativeness, there is

a tendency that informative tweets contain less positive sentiment than not informative

tweets, whereas considering negative sentiment there is a trend in the other way round,

i.e., informative tweets contain more negative sentiment than not informative tweets. Over

all, tweets contain almost twice as much positive sentiment than negative sentiment.

To conclude, there is a trend that informative tweets contain less positive and more neg-

ative sentiment. As a consequence, positive and negative sentiment are suitable feature

candidates for informativeness classification.

4.2.3.7 Tweet hashtags

Figure 4.23 shows the average number of hashtags, e.g ”#HurricaneSandy”, which are

related to the particular crisis event, used within the tweet text. These hashtags are

compared against a defined set of hashtags, which were commonly used to address the

particular crisis event. These set of hashtags was defined by the CrisisLexT26 dataset. In

contrast to the character analysis of ”#” in the section before, the current hashtag analysis

5http://textblob.readthedocs.io/en/dev/index.html
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Figure 4.22: Sentiment in tweet text
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Figure 4.23: Tags used in tweets

considers the entire hashtag-string, which is also used by users to search for particular

topics. There is a trend towards using less crisis related hashtags in informative tweets.

Yet, this is not the case for all events.

To conclude, there is a tendency that less crisis related hashtags are used in informa-

tive tweets. Again, since there exist differences towards informativeness classes, hashtag

information is suitable to use as feature for classification.

4.2.3.8 Negation in tweets

Terms which are associated with negation, for instance ”not”, ”none”, ”neither” or ”never”,

might provide additional information regarding informativeness. A full list of negation

words used is listed in Chapter 5. Figure 4.24 shows existing negation terms in both

classes. Except in the Colorado wildfire event, more negation terms are used in non

informative tweets.

To conclude, more negation terms are used in non informative tweets. As a consequence,

negation on tweets is suitable to use as feature for informativeness classification.
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Figure 4.24: Negations used in tweet text

4.2.3.9 Findings

Our main findings towards the linguistic dimension are visualized in Figure 4.25 and can

be summarized as follows:

Informative tweets tend to:

1. be longer, on average 1.51 tokens longer than non informative ones, thus indicating

that tweet length could be a suitable classification feature.

2. contain more nouns and adjectives.

3. contain URLs and the character ”@” more frequently.

4. contain less positive and more negative sentiment.

5. contain less crisis related hashtags.

Non informative tweets tend to:

1. be shorter.

2. contain more verbs and adverbs.
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3. contain the characters ”#”, ”!” and ”?” more frequently.

4. contain more Emoticons.

5. contain more negation terms in tweet text, such as ”no”, ”not” or ”never”.

6. finish with punctuation more likely.

However, overall no considerable differences between different events and different disaster

types over all analyzed tweet characteristics exist.

4.2.4 Source dimension

The source of a tweet was labeled by Olteanu et al. [Olteanu et al., 2015] and the dataset

contains tweets originating from source i) business, ii) eyewitness, iii) government, iv)

media, v) NGOs, iv) outsiders, and tweets not applicable, which are grouped in our work

as ”others”. Figure 4.26 shows the distribution of the information source classes in detail.

A majority of tweets from the entire dataset, 36%, belong to the ”Media”class. In contrast,

only around 8% of tweets were shared by eyewitnesses, i.e. those who are directly affected

by the crisis. In the following, most important aspects are discussed in more detail.

4.2.4.1 Informativeness per source

As Figure 4.28 shows there exist an unequal distribution of informativeness between differ-

ent information sources, which allows some conclusions. First, tweets from the information

source ”media” strongly tend to be ”informative”. In contrast, tweets from the information

source ”outsiders” and ”others” strongly tend to be ”non informative”. Second, eyewitness

reports, which intuitively may be more informative, due to the reason that eyewitness re-

ports from affected people are first-hand information, geographically nearby information,

are almost balanced in class. 44.01% tweets of information type ”eyewitness” belong to the

”informative” class and 55.99% of eyewitness tweets belong to ”not informative” class.

To conclude, informativeness of different sources vary significantly. Tweets shared by

source media are significantly more informative than tweets shared by source outsiders.

Hence, information source is important for informativeness classification and is suitable to

use as feature for classification.
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Figure 4.25: Linguistic - informativeness of characteristics
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Figure 4.26: Information source distribution

Figure 4.27: Informativeness per information source
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Figure 4.28: Informativeness per information source

4.2.4.2 Information source per event

Furthermore, Figure 4.29 shows the information source for each event individually. Some

interesting observations can be drawn. Except the Alberta floods, events in the Asian area

predominately tend to contain more eyewitness reports and less tweets from source media.

For instance, Philippines floods and Singapore haze have significantly more eyewitness

proportion. This fact may lead to worse classification results for these disaster events

since tweets from source eyewitness are informative as well as not informative almost

equally. However, differences regarding information source between events do not follow

obvious visible patterns.

To conclude, there are no obvious patterns regarding information source over different

events. However, events from the Asian area contain more eyewitness reports and less

media information than others.

4.2.4.3 Information source per geographic location

Figures 4.32 and 4.32 show informativeness per geographic location for the particular

information sources media and eyewitness. Correlations with the previous Figure set 4.30

are obvious and visible in the charts. One conclusion is that tweets from source labeled
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Figure 4.29: Information source per event
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Figure 4.30: Information source per geographic location
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media can be considered es highly informative. Over the entire duration of the events, in

all geographic locations, there are more informative tweets than non informative tweets.

Furthermore, except in Australia, in early phases media tweets are significantly more

informative than non informative. Eyewitness reports, i.e., tweets from source eyewitness,

expose a different perspective, which do not lead to such obvious conclusions. In the case

of Asian events, there is a correlation with Figure 4.30, which indicates that eyewitness

reports in early stages are the reason why there are more non informative tweets also in

total. Hence, the informativeness of eyewitness reports is at least in that case not very

high. Other interpretations are hard to generalize, since the entire dataset contains only

7.81% tweets with source eyewitness, which results in only very few samples per event.

To conclude, events from the Asian are tend to contain more tweets from source eyewitness

and less tweets from source media than others. Especially, events took place in America

have a higher proportion of tweets shared by source media. Since source media tend to

be mainly informative, American events may lead to better informativeness classification

than Asian events, because tweets from information source eyewitness can be informative

or non informative equally.

4.2.4.4 Information source per time

Separating the evolution of informativeness in time regarding the information source, see

Figure 4.37, shows some interesting insights. While information sources, media, govern-

ment and NGOs tend to be much more informative also over the entire time period of the

event, this is not true for information sources, business, eyewitness and outsiders. Consid-

ering the source Business in more detail, the chart shows more non informative communi-

cation in early stages of the event and tend to be more informative later on. Considering

the information source eyewitness, the chart shows in early stages of the event, there are

more non informative tweets than informative tweets. This changes slightly over time, in

later phases of the event informative and not informative tweets tend to be equal. The

peak, visible in the chart on day 6 might result from a particular progressive event where

something unusual happens, which can be considered as an outlier. Moreover, tweets from

the information source outsiders tend to be non informative, in early stages even worse.

To conclude, tweets from information sources media, business, government and NGOs are

informative also over time, whereas tweets from information sources outsiders, eyewitness

and others are not. As a consequence, considering the point in time when a tweet was

posted may give additional information regarding informativeness in the case of informa-

tion source eyewitness.



4.2 Systematic crisis data analysis 63

Figure 4.31: Informativeness per geographic location and information source media (1)
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Figure 4.32: Informativeness per geographic location and information source media (2)
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Figure 4.33: Informativeness per geographic location and information source eyewitness
(1)
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Figure 4.34: Informativeness per geographic location and information source eyewitness
(2)
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Figure 4.35: Informativeness per information source (1)
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Figure 4.36: Informativeness per information source (2)
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Figure 4.37: Informativeness per information source (3)

4.2.4.5 Findings

Figure 4.38 visualizes informativeness of tweets originating from different sources. Our

main findings towards the source dimension can be summarized as follows:

1. Tweets shared by ”business”, ”media”, ”government” and ”NGOs” tend to be infor-

mative.

2. Tweets shared by ”eyewitness” are informative as well as non informative.

3. Tweets shared by ”outsiders” and ”others” tend to be non informative.

4. The amount of tweets shared by each source vary significantly, while 36% of all

tweets originate from ”media” and 33% from ”outsiders”, only 4% originate from

”government”, 1.5% from ”business”, 8% from ”eyewitness”, 3.5% from ”NGO” and

14% from ”others”. Thus, analysis results based on these smaller classes might be

not representative, especially when the amount being reduced further by considering

only single events.

4.3 Event similarity

To achieve accurate prediction results on unseen new data, choosing the ”right” training

set to train the classifier is one important variable. Only if new data, i.e., upcoming crisis



70 Data Analysis

Figure 4.38: Source - informativeness
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events, fit the trained model, the classifier is able to predict informativeness accurately.

Hence, event similarity, i.e, how similar are events based on certain characteristics, is one

possible measure to build appropriate training sets, especially for cross-domain training.

New tweets are classified accurately more likely when they are more similar to tweets

where the classifier is trained on. For instance, if earthquake events vary significantly

from flood events based on characteristics described in the current chapter, it might be

not useful to use a earthquake trained classifier on an unseen flood event. This section

tries to show event similarity based on hierarchical clustering. In the first experiment,

events are clustered based on event dimensions given by Olteanu et al. Clustering results

of this experiment are considered as a baseline, which allows comparing further clustering

experiments. In the second experiment, events are clustered based on tweet characteristics

discussed in the previous sections.

4.3.1 Event similarity based on event dimensions

Considering the dimensions of events and characteristics of each event given in Table

4.1, hierarchical clustering can provide a simplified visualization of similarity in a cluster

dendrogram. The clustering algorithm uses the event dimensions duration, geographic

location, category and subcategory as well as development and spread as input and cal-

culates the similarity between events. As expected, the dendrogram shows certain event

types as clusters. For instance, floods are clustered together as well as earthquakes or

wildfires.

The y-axis shows the similarity between certain clusters or events, respectively. Events

which are clustered together very early, i.e., on the bottom of the chart, are considered to

be very similar. For instance, Philippines floods and Sardinia floods are considered to be

very similar based on the cluster dendrogram shown in Figure 4.39.

4.3.2 Event similarity based on tweet characteristics

Previously discussed characteristics can be used as features for hierarchical clustering of

events. While the clustering results of Figure 4.39 show event similarity based on static

event dimensions, the current clustering tries to visualize intrinsic similarity given by tweet

characteristics. Similarity is based on how people write and communicate informative and

non informative tweets in certain crisis events, i.e., rather the characteristics of the tweet

itself than the characteristics of the event is important. Hence, similarity of events can

be interpreted as people’s online communication behavior in crisis events. For instance,

Colorado floods and Colorado wildfires are considered to be similar, i.e., clustered very

early (cf. Figure 4.40), although their event type is different.
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Figure 4.39: Event similarity by hierarchical clustering - event dimensions based on Table
4.1

Data characteristics described above are scaled and used as input for hierarchical clus-

tering. Details are listed in Table 4.6. For the clustering itself, the R package ”hclust”

applying complete linkage was used to create clusters. For those characteristics which no

information is available, because more than 50% of tweets are not in English, they are

replaced by mean values of all other events.

Comparing both clustering results, clustering based on event dimensions (cf. Figure 4.39)

and clustering based on intrinsic tweet characteristics (cf. Figure 4.40), show some inter-

esting observations. While the dimension based clustering uncovers clusters mainly based

on the event type, for instance Philippines floods and Sardinia floods, this is not the case

in the tweet characteristic based clustering. Still, there are some event type based clus-

ters, for instance Costa Rica and Guatemala earthquake or Manila and Philippines floods,

yet, there are clusters based on tweet characteristics, for instance Italy earthquakes and

Sardinia floods, which both took place in Italy, but are from different event types. One

further example is Colorado floods and Colorado wildfire, which are clustered together

although events are from different types, but same geographic location. Considering the

cluster around both Typhoons show that Typhoon Yolanda is more similar to the Colorado

cluster than to Typhoon Pablo, since it was clustered in a further step.
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Feature type Features

Language EN
ES
PT
TL

Information source Business
Eyewitness
Government
Media
NGO
Outsiders

Avg. number of tokens informative
not informative

Avg. number of nouns informative
not informative

Avg. number of verbs informative
not informative

Avg. number of adjectives informative
not informative

Avg. number of adverbs informative
not informative

Avg. number of ”#” informative
not informative

Avg. number of ”?” informative
not informative

Avg. number of ”!” informative
not informative

Avg. number of URLs informative
not informative

Avg. number of ”@” informative
not informative

Emoticons positive
negative

Sentiment polarity informative
polarity not informative
subjectivity informative
subjectivity not informative

Time avg. reply time

Hashtags informative
not informative

Negation terms informative
not informative

Table 4.6: Features used for hierarchical clustering
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Figure 4.40: Event similarity by hierarchical clustering - tweet characteristics

To sum up, event types are not as important for informativeness classification. Tweet

characteristics are considered as similar although they are from different event types. In

other words, whether a tweet is informative or not depends on certain characteristics,

those characteristics are not considerable different for different event types. Nevertheless,

the importance of event types for classification might be different in other crisis related

mining tasks, where semantic information is more important.

4.3.3 Tweets of events

Figure 4.41 underlines the statement of the precious section by showing all informative

tweets in a scatter plot. No clusters related to event types are recognizable. Tweets from

all events are scattered distributed over the entire plot. Since there are no clusters of

certain events or event types, tweet characteristics are distributed over all events. For

the scatter plot, characteristics described in the sections above were used. Furthermore,

Principal Component Analysis (PCA) was used to visualize d-dimensional information in

a two dimensional space.
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Figure 4.41: Tweets scattered after PCA applied

4.4 Conclusion of data analysis

Detailed analysis of the CrisisLexT26 dataset shows some interesting insights in data and

furthermore important aspects for informativeness classification. Firstly, there are some

trends of certain characteristics of tweets, which tend more belonging to the informative

class or the non informative class. For instance, tweets originating from source media,

government or NGOs tend to be more informative than tweets originating from source

eyewitness, business or outsiders. Analyzing informativeness over time show eyewitness

reports in early stages are not highly informative. Moreover, geographic location does

not make significantly difference. While informativeness of tweets in instantaneous crisis

events tend to be similar considering tweets in time, this is not the case for progressive

events. Yet, more crucial for informativeness classification are linguistic characteristics of

tweets. The average informative tweet contains more words, more nouns, less verbs, more

adjectives, less adverbs than the average not informative tweet. Moreover, the average

informative tweet contains more URL links as well as more ”@” characters. In contrast,

the average non informative tweet contains more ”!”, ”?”, which tend to be more emotional,

which in turn tend to be not as informative. Regarding sentiment in tweets, positive

sentiment tend to non informative tweets and negative sentiment tend to informative

tweets. In addition, crisis related hashtags in the tweet are an indicator for informative

tweets, whereas negation in tweets is an indicator for non informative tweets.

Beside these tendencies of certain characteristics, results of the hierarchical clustering allow

one further conclusion. For informativeness classification of tweets, the event type does

not seem to be as important. Considerable more important, whether a tweet is informative

or not, are intrinsic characteristics of the tweet itself. In other words, the main reasons
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why a tweet is informative or not, is what the tweet is about and what text it contains,

and these characteristics with respect to informativeness does not differ significantly cross

events. The characteristics discussed in this chapter, try to express characteristics of a

tweet in values, which can be used as features for classification.

Finally, main findings along all four dimensions as well as results of hierarchical clustering

can be summarized in two outcomes: Firstly, analysis of temporal, linguistic and source

dimensions uncovers tweet characteristics having impact on informativeness thus being

candidates to be used as features, whereas analysis of spatial dimension (per continent)

shows no significant correlations with respect to informativeness. Secondly, the fact that

analysis does not show significant differences with respect to disaster types and furthermore

does not show significant similarities within same disaster types, supports the hypotheses

to train an accurate cross-domain classifier cross the 13 different disaster types available

in our dataset.
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Chapter 5

Classification approach

Based on the analysis presented in the previous chapter suggesting that different disas-

ter types do not show significant differences in terms of informativeness and taking into

account indication of informativeness of certain characteristics, this chapter proposes a

classification approach which can be used on new events of various disaster types while

being at least as accurate in informativeness classification as disaster type specific ones.

Data analysis uncovers characteristics, which show correlations to either informative or

non informative tweets and thus are suited to be realized as features for classification.

The current chapter proposes a cross-domain informativeness classification approach, visu-

alized in Figure 5.1. In the following, firstly, some important aspects in classifying tweets

with respect to informativeness are mentioned. Secondly, features used for classification

are described in detail as well as their extraction out of the tweet text. Thirdly, used train-

and test sets are discussed.

Informativeness classification in the current thesis can be considered as binary classification

of potentially crisis related tweets, which are either informative or non informative. The

classification approach proposed in this thesis is designed to be used upon directly on

the Twitter message stream (cf. Figure 5.1), i.e., shared tweets are instantly classified by

an already trained classifier. In literature this is called ”online” classification. Thereby,

classification is mainly based on the information source and characteristics of the tweet

content itself as data analysis showed that informativeness does not differ a lot in different

event types, rather informativeness correlates with information source and certain tweet

characteristics. Thus, it is not essential to distinguish events and different event types for

classification if the features used expresses the characteristics of the tweet content. This

approach can be used for in-domain, out-domain and cross-domain classification.
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Figure 5.1: Classification approach

5.1 Offline versus online classification

Using Social Media messages as source for classification, literature distinguish between

offline and online classification. Offline means applying classification of messages, on an

offline available dataset, mainly for research and development purposes. In contrast, online

means applying classification directly on online data streams, which is the final use case

also for crisis related classification. Finally, a learned classifier classifies messages in real-

time on the message stream to filter informative from not informative messages or tweets,

respectively. As a consequence of online classification, some information is not available

to use for classification, e.g. for features. For instance, it is not possible to use the number

of Retweets as feature for online classification, since the final number of retweets is not

known at the point in time when a certain message is classified.

The current approach proposed in this thesis is designed to use for online classification.

Hence, all used feature can be extracted immediately when classifying the tweet. Only

exception is the feature information source, which is not explicitly given by Twitter even

though user profiles show the source implicitly. In addition, Supervised Machine Learning

can be used to classify tweets towards information source. However, this task is not in the

scope of this thesis.
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5.2 Processing textual data

In general, processing textual data usually requires some pre-processing steps before fea-

tures can be extracted out of the tweet text. In the current approach, first, stop words

are removed, because they usually do not provide any additional information. Second,

Tokenization splits up sentences or words into tokens, which then are processed further.

Third, Stemming converts tokens in their basic form, if possible. For instance, the token

”supported” is converted to the basic verb form ”support”. Not all pre-processing steps are

suitable for all kind of features, yet, this has to be decided individually for each feature.

Details regarding features are explained in the following section.

5.3 Features

Essential for accurate classification results are the features used. Thus, extracting and

selecting features, which lead to accurate classification, is a main part of the entire clas-

sification process. As discussed in Chapter 3, many different types of features exist and

also are used in approaches of related work. Whether an individual feature is suitable

for classification or not can be tested using feature evaluation methods. Different feature

evaluation methods exist [Pedregosa et al., 2011]. One possible way of feature evaluation

is determining the correlation between an individual feature and individual class labels.

Features, which have a higher correlation with one of the class labels are more expressive

regarding classification. Moreover, correlations between features among themselves allow

elimination of one feature of both, because the second feature does not provide any addi-

tional information, and more features increase learning complexity. For instance, if feature

A has a strong correlation with feature B, then one, either feature A or feature B, can be

excluded from classification, since feature B does not provide any additional information

to feature A. Which features are used in the current classification approach are listed in

Table 6.1. In the following, features are explained in more detail along this table.

5.3.1 Reply time to event

The time span from the begin of a crisis to when a certain tweet is shared online, contains

important information. This time span can be an indicator whether it is informative or

not. Therefore, time based features are crucial for classification and commonly used in

research. The current feature represents the time difference between the start of the crisis

to the point in time when the tweet was shared online. The time difference is measured
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Nr. Dimension Feature Data type

1 Temporal Response time Integer

2-5 Probability of language EN, ES, TL, PT Float [0,1]
6 Number of tokens Integer
7-10 Special charactersa ”#”, ”?”, ”!”, ”@” Integer
11 Links (URLs)a Integer
12-15 POSa: nouns, verbs, adjectives, adverbs Integer
16-17 Linguistic Positive/negative Emoticonsa Integer
18 Sentiment polarity Float [-1,1]
19 Sentiment subjectivity Float [0,1]
20 Crisis related Hashtagsa Integer
21 Negation termsa Integer
22 Sentence finishes with punctuation Binary

23 Media Binary
24 Business Binary
25 NGO Binary
26 Source Government Binary
27 Eyewitness Binary
28 Others Binary
29 Outsiders Binary

aquantity contained in tweet text

Table 5.1: Set of features - grouped by analysis dimensions
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in days. Values close to zero mean the tweet was shared in very early stages of the event,

higher values mean the tweet was shared later during the event.

featureReplyT ime = tweetPostDate− eventStarted (5.1)

5.3.2 Language

Obviously, language information can be crucial in combination with other feature due

to the reason that some feature rely on the used language. Results, for instance Part-

of-Speech information, are different in different languages. For this work the top four

languages used in the dataset are represented in four features and four feature values

respectively. The top four languages includes more than 90% of all tweets. The language

of each tweet is determined using an language detection tool based on the tweet text itself.

More details about the tool are described in section 6. The values of all four features

represents the probability of a certain tweet belongs to the language. Values close to one

mean the tweet belongs with a high probability to this particular language.

5.3.3 Number of tokens

Data insights showed that there is a tendency of shorter tweets belonging to the not

informative class. Therefore, this feature is based on the tweet text itself and represents

the tweet text in number of tokens. Tokens are extracted from tweet text after removing

stopwords and applying Tokenization in pre-processing steps. The implementation used for

removing stopwords and Tokenization is described in more detail in the following Chapter

6.

5.3.4 Special characters

According to data analysis, frequently used special characters in tweets are suited to dis-

tinguish informativeness in tweets. Each character ”#”, ”?”, ”!”, ”@” or character sequence

in case of URLs respectively, result in one feature, where its values are the frequency used

in raw tweet text. Number of URLs refer to web-links only or ”http” links respectively. In

total, special characters in tweet text are represented as five independent features.
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5.3.5 POS features

Part-of-Speech information differ regarding informative and not informative tweets. Data

analysis showed that nouns and adjectives tend to be more frequently used in informative

tweet text, whereas verbs and adverbs tend to be more frequently used in non informative

tweet text. The Part-of-Speech information results in four different features: number of

nouns, number of verbs, number of adjectives and number of adverbs. Its values represents

the frequencies of each Part-of-Speech element in tweet text. Pre-processing in form of

removing stopwords, Tokenization and stemming are applied. The implementation used

for extracting POS information is described in more detail in the following chapter 6.

5.3.6 Emoticons

Emotion in tweet text is very commonly used to be represented as features in related

literature. However, to determine the emotion of tweets there exist a variety of methods,

also very complex ones. Acerbo et al. [Acerbo and Rossi, 2017] showed in their work

that emotion tend rather to be not informative. This is also true for the statistics shown

in data analysis in chapter 4. A very simple form of emotion expression is the usage of

Emoticons, for instance, ”:-)” or ”:-(”, which was used in the current work. Two features

expresses positive and negative Emoticons. Its values are the amount of positive and

negative Emoticons used in tweet text.

5.3.7 Sentiment

Data analysis showed that sentiment in tweet text can possibly be an indicator whether a

tweets contains informative information or not. Various sentiment analyzing tools exist,

which allow to assess a sentiment score based on the language of the text. For this work a

sentiment analyzing tool was used. Hence, two features represent the sentiment in tweet

text. The first feature expresses the sentiment polarity, whether the tweet contains positive

or negative sentiment. The second feature represents the subjectivity of the sentiment,

whether the sentiment polarity value is subjective or rather objective. Both features result

from the used sentiment analyzing tool, which is the reason why sentiment is realized as

two features for classification. Details about the tool are described in section 6.
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5.3.8 Number of hashtags

Additional information whether a tweet contains informative information or not, are the

number of hashtags used in the tweet. Data analysis showed that there is a trend towards

less crisis related Tags in informative tweets. The current feature value represents the

number of crisis related hashtags used in tweets. Crisis related hashtags are defined by

the CrisisLexT26 dataset for each crisis.

5.3.9 Negations terms

Data analysis showed, more negations terms are used in not informative tweets than they

are used in informative tweets. Thus, the information about negation in tweet text is

a potential feature for classifying tweets. The resulted feature represents the number of

negation terms used in the tweet text. In the following list contains terms considered as

negation terms and it was created during classification experiments. (profane words are

spelled with ”*” to replace one letter)

Negation terms: not, none, neither, never, no one, nobody, nor, nothing, nowhere, does

not, did not, f*ck

5.3.10 Sentence finishes with punctuation

An additional feature used in the work of [Cresci et al., 2015] is whether a tweet sentence

finishes with punctuation or not. Punctuation includes the characters ”.”, ”!” an ”?”. This

feature results in a binary feature where its value is one when the tweet text finished with

punctuation.

5.3.11 Source

Information source showed considerable difference regarding informativeness classes after

analyzing the data. Formal sources, like media, government or NGOs, tend to be much

more reliable and informative than not formal sources like eyewitness, outsiders or even

business. Hence, representing the information source as a feature leads to an important

information to classify tweets. The information source is given by the dataset and was

labeled manually by humans. Naturally, this information is not explicitly known using

the classifier in an online real scenario, however, the information source is implicitly given
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by the user who shares the tweet. Information source results in six binary features for

classification. Each source represents one binary feature.

5.4 Training and testing the classifier

The current section describes different training and test sets to use in more details.

5.4.1 Training

In order to evaluate which classifier, a cross-domain one or an event specific one, is more

suited for new events, the approach proposed in this thesis considers three different types

of experiments regarding the disaster type:

1. In-domain: training and test data belong to the same disaster type.

2. Out-domain: training and test data belong to different disaster types.

3. Cross-domain: training set consists of tweets of various disaster types, the test set

is of a disaster type included or not included in the training set.

Additional experimental parameters, which can be used in different ways for classification

experiments, allows to realize variations of in-domain, out-domain and cross-domain ex-

periments: i) Over- and under-sampling allows to balance the data, i.e., use same amount

of tweets in both informativeness classes. ii) Randomly sampling portions of the train-

ing data allows more flexible classification experiments. iii) The training set can be split

up into subsets regarding the time when the tweet was shared to use separate classi-

fiers for each time phase during an event (Details are explained in Section 5.4.1.2). iv)

Using multiple events for training allows to perform cross-domain training. v) Cross-

validation can be used to optimize classification in the development phase. These various

implementation-parameter settings can be used to train different classifier and compare

their informativeness classification accuracy.

5.4.1.1 Cross-domain training

In particular, this thesis emphasizes cross-domain training, since data analysis showed

that differences between event dimensions are not as important as the tweet content itself.

Hence, cross-domain training might be more sufficient due to it allows training on a larger
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amount of training samples and therefore gets a more heterogeneous classification model to

use for unseen tweets. This thesis wants to show how well cross-domain training perform

in comparison to in-domain and out-domain training and testing. To apply cross-domain

training the ”leave-one-out” method is used. The classifier is trained on n-1 events and

tested on the remaining event, which was not used for training. To distinguish further,

experiments can be run cross-domain or cross-event, where multiple events from the same

event type are used. Thus, comparing their experimental results allows to uncover the

factor event type in the classification process.

5.4.1.2 Three-step time dependent classification

Since the period when a tweet has been shared after the event started is crucial for clas-

sification [Stowe et al., 2016], the current section introduces a time dependent three-step

classifier. Timeline analyses of events showed that informativeness is also time dependent,

i.e., the period when a tweet has been shared after the event started. Hence, this time

dependent classification approach splits the training as well as the test set into three sub-

datasets regarding the time period of the event. Therby, time periods are statically or

dynamically defined, chosen by parameter settings during experiments. Static time inter-

val means, for all events there are fixed days of the entire crisis event period, which belong

to a certain phase. For instance, tweets between day 0 and day 3 belong to the early stage

of the event, tweets from day 4 to day 10 belong to the middle stage and greater tweets

shared after day 10 belong to the late stage of the event. Thus, each tweet belongs to

a particular subset. In dynamic time intervals the event stages are dependent from the

duration of the current event. However, the current event duration is not known when the

classifier is used for online stream classification. As a results, each stage of the event is

classified separately, based on trained classifiers on the particular stage, only.

5.4.2 Test classifier

In order to simulate a real scenario where tweets are classified with respect to informative-

ness on new events, the trained classifiers are tested on unseen crisis events. To compare

their classification results, classifiers are tested on the same crisis event.

5.4.3 Evaluation

Evaluation of classification results is important to estimate how accurate a trained classifier

perform in real classification scenarios. In the current thesis, classification accuracy is
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employed as basis of evaluation, i.e., how many tweets related to the total number of

classified tweets are classified as informative or non informative correctly.

5.5 Summary

The informativeness classification approach presented in the current chapter tries to op-

erationalize the outcomes of the previous data analysis chapter. Firstly, certain charac-

teristics, which show correlations towards one of both informativeness classes, are realized

as features for classification. Secondly, the current approach allows flexible compositions

of training sets including cross-domain training since data analysis show event similarities

are not as important for informativeness classification. Therefore, the possibility of using a

larger training set by cross-domain training might be sufficient to improve the performance

of informativeness classification.
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Chapter 6

Implementation

The implementation of a classification prototype described in this chapter is based on the

approach discussed in the previous Chapter 5. In contrast to the previous chapter, the

current chapter focuses on the actual implementation of classification experiments in more

detail, explains used tools and settings made. The full implementation is available on

Gitlab1.

Firstly, this chapter discusses tools and technology used. Secondly, some important Python

libraries for feature extracting are listed. Furthermore, this chapter focuses on data pro-

cessing techniques commonly used for Machine Learning task. Finally, this chapter de-

scribes used classification algorithms and its settings.

6.1 Tools and technology

Data analyzing was done using Microsoft Excel including Pivot Tables and Pivot Charts

for visualizing and interpreting the data characteristics, which are described in chapter 4.

The tool R including R-Studio was used for the hierarchical clustering of events.

For Machine Learning tasks many different implementations of algorithms in different lan-

guages exist. Some examples of popular languages for scientific research are WEKA, R and

Python. Python supports the very frequently used Machine learning library Scikit-Learn

[Pedregosa et al., 2011]. Scikit additionally supports the entire data processing process,

from pre-processing steps to evaluation metrics and provides a variety of state-of-the-art

Machine Learning algorithms. Scikit-Learn is built on NumPy2, SciPy3, and matplotlib4

1https://gitlab.com/davidgraf-mathesis/crisisInfoMining.git
2http://www.numpy.org/
3https://www.scipy.org/
4https://matplotlib.org/
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and it provides ”simple and efficient tools for data mining and data analysis”5. In addi-

tion, it provides an extensive online documentation as well as some general information

about Machine Learning techniques. Furthermore, Python was already used in a previous

project, parts of the code of [Graf, 2017] were reused as a starting point for the current

implementation. Thus, the main implementation of this classification prototype is realized

in Python.

For storing and accessing tweet data a relational Postgres6 database is used for which the

python library Psycopg27 allows convenient access in Python.

The following subsections deal with special Python libraries used for certain tasks in the

implementation.

6.1.1 NLTK

NLTK stands for Natural Language Toolkit8 and provides support for Natural Language

processing in Python programs. In the current work, an English stopword lexicon, a Tok-

enization function and the PorterStemmer for stemming, all provided by the NLTK library,

are used. In addition, a Part-of-Speech tagger function ”pos tag” of the NLTK library is

used to annotate English nouns, verbs, adjectives and adverbs in tweet sentences.

6.1.2 TextBlob

Like NLTK, TextBlob9 is a Python library for Natural Language Processing and is deal-

ing with textual data. Particularly, TextBlob provides additionally a sentiment analysis

module, which is easy to use. Based on a pattern analyzer the sentiment analysis module’s

output is an estimation of the popularity and the subjectivity of a sentence or a particular

text. Popularity values are in an interval from minus one to plus one, where negative val-

ues is related to negative sentiment and positive values are related to positive sentiment.

Additionally, the subjectivity value estimates the objectivity of the sentiment popularity,

where zero is a totally objective and 1 is a totally subjective assessment.

5http://scikit-learn.org
6https://www.postgresql.org/
7https://pypi.python.org/pypi/psycopg2
8https://www.nltk.org/
9http://textblob.readthedocs.io/en/dev/index.html
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6.1.3 Language detection

Since there is no language information beside the tweet text itself, a language detection tool

was used to assess the language based on the tweet text. The Python library Langdetect10

is ported from Google’s language-detection and supports 55 different languages. In the

current implementation Langdetect was used to calculate the probability of a certain

tweets is written in English, Spanish, Portuguese and Tagalog, a language used in the

Philippines. A probability close to one means a certain piece of text is certainly written

in this language.

6.2 Data processing

Before data and extracted features can be used for training the classifier some pre-

processing steps are necessary. This section describes these steps in more detail.

6.2.1 Data balancing

Class distribution and data balancing are crucial aspects to consider in Machine Learning

applications. Some classification algorithms are vulnerable [Pedregosa et al., 2011] against

unbalanced data, which lead to biased classification models and results respectively. Un-

balanced data mean samples are not equally distributed between class labels, i.e., the

number of samples belonging to each class are significantly different. For instance, only

20% of all samples belong to the informative class and 80% of all tweets belong to the non

informative class. Informativeness distribution of all events is visualized in Figure 4.2 in

Chapter 4. Hence, this class distribution of samples might bias the classifier. In literature

as well as in online documentations, e.g. of Scikit-Learn11 there exist several strategies

against unbalanced data. One possible option is sampling to gain equal distribution over

classes. In this work under and over sampling, explained in the following sections in more

detail, are used to balance data.

6.2.1.1 Data under-sampling

Under-sampling is a simple strategy to gain equal class distribution. The same amount

of samples are used for both classes, thus leaving out some of the available samples from

the larger class. This results in classes with same amount of samples. Yet, one major

10https://pypi.python.org/pypi/langdetect
11http://contrib.scikit-learn.org/imbalanced-learn/stable/introduction.html
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disadvantage of under sampling is the reduced dataset size, i.e., there are in total less

training samples for the final dataset. This might not be a problem in some cases, however,

in the current thesis under sampling is not suitable.

6.2.1.2 Data over-sampling

If the final data size matters, over sampling is probably the option more suitable to balance

the data. Over-sampling means replicating samples from the smaller class until the former

smaller class has become the same size as the former larger class. A disadvantage of over

sampling is that there are copies of training samples included in the data, which might

lead to overfitting of the classification model.

For this work in the final classification approach over-sampling is used, since over-sampling

does not reduce the amount of samples.

6.2.2 Feature scaling

Extracted features values usually have different units. Hence, scaling these values to

common units is necessary to prevent classification bias. Scikit-Learn provides several

feature scaling methods, whereas it turned out that the Standard Scaler12 work best for

this classification approach. The Standard Scaler scales all feature values independently

from each other and ”Standardizes features by removing the mean and scaling to unit

variance”.

6.3 Feature evaluation

Whether a feature is suitable for the final classification or not can be measured by feature

evaluation metrics. Several of them are provided by the Scikit-Learn framework. Basi-

cally, the correlation between single features and the class labels are determined. Strong

correlation of a single feature to a certain class expresses an important feature for classi-

fication. The feature evaluation metric used in this prototype implementation is ”mutual

information classification”, which measures the dependency between the feature and a cer-

tain class label. Thereby, value close to zero means no dependency, a higher value means

higher dependency. Feature evaluation is an important step to select those features which

provide additional information regarding the classification. Table 6.1 shows mutual infor-

mation classification values on average over all events, sorted in descending order. Higher

12http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
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Feature Dependency to class

sourceMedia 0.134248132
numberOfURL 0.058554753
sourceOut 0.053998574
sentimentpolarity 0.048314646
numberOfNouns 0.046057527
sentimentsubjectivity 0.038255962
numberOfHash 0.037680616
replyTimeToEvent 0.031614661
numberOfTokens 0.025143307
numberOfContainedTags 0.022630527
langEN 0.021173189
numberOfAdj 0.016483257
numberOfEMark 0.015189369
numberOfQMark 0.015153933
numberOfAt 0.015095157
numberOfAdv 0.012776012
langTL 0.012484242
sourceEyew 0.012277692
sourceGov 0.011127693
numberOfVerbs 0.010531956
finishesWithPunct 0.009901169
sourceNGO 0.009665882
langES 0.008910637
langPT 0.008864438
sourceBus 0.006817192
negationWordsCount 0.006486926
posEmoji 0.00613398
negEmoji 0.005494237

Table 6.1: Mutual information classification - on average over all events

values mean more important for classification. For instance, the feature source media is

highly important for classification.

6.4 Classification algorithms

State-of-the-art informativeness classification employ standard algorithms, like Sup-

port Vector Machines (SVM) [Cresci et al., 2015][Stowe et al., 2016][Khare et al., 2017]

[Mohammad et al., 2013][Pekar et al., 2016], Naive Bayes classification, Maximum En-

tropy Models [Stowe et al., 2016] [Verma et al., 2011][Pekar et al., 2016] or Random For-

est classification [Acerbo and Rossi, 2017][Imran et al., 2016] [Longhini et al., 2017] as

well as deep learning [Ning et al., 2017], using a Convolutional Neural Network (CNN).

Classification algorithms provided by Scikit-Learn, such as SVM, Naive Bayes, AdaBoost

(an ensemble method), Random Forest, and a Multilayer Perceptron (a neural network)
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have been used for the presented experiments. However, experiments showed that SVM us-

ing an RBF kernel by applying Scikit-Learn default settings (C=1.0, gamma=’auto’) work

best out of all other algorithms being therefore the first choice for all of our experiments.
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Chapter 7

Evaluation

The current chapter describes various informativeness classification experiments and com-

pares their results against each other as well as against results of approaches of other

related works. For a systematic evaluation of the classification approach, described in the

two previous chapters, two orthogonal dimensions for experiments are defined:

1. Event specifity: To clarify the question whether disaster type specific classifiers or

more generic cross-domain classifiers are more beneficial, training data containing

tweets of only one type of disaster (i.e., deep event specifity) from training data

including tweets of multiple different types of disasters (broad event specifity) are

considered.

2. Training size: To clarify the impact of sample size on classifier performance in

relation to event specifity, the amount of tweets used for training from 1K (small

training size) to 28K (large training size) is distinguished.

Hence, experiments are categorized into four groups as shown in Figure 7.1. However,

experiments using a large amount of tweets for training and a deeper event specificity

had to be ruled out, since a comparable amount of tweets of the same disaster type is

not available in the CrisisLexT26 data set. By comparing classification results based

on the three remaining groups, evaluation of this thesis is able to show the impact of

the disaster type, i.e., event specifity, as well as the impact of the amount of tweets

used for training the classifier on classification accuracy. Thus, evaluation can show,

how accurate the proposed cross-domain classifier performs on various events of different

disaster types against classifiers trained on events of the same disaster type (e.g., trained

on an earthquake event ”Guatemala earthquake”and tested on an earthquake event ”Costa

Rica earthquake”).

The evaluation of different experiments is based on classification accuracy, i.e. how many

Tweets are classified correctly. Hence, several values shown in tables of this chapter contain
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Figure 7.1: Evaluation dimensions

accuracy classification values. An accuracy values of one means every single Tweet of

the test set was classified correctly, thus the aim to achieve for classification approaches

are close to one. For a two class, informative and non informative, the simplest baseline

accuracy value is 0.5, because statistically randomly guessing would achieve a classification

accuracy of 0.5 if having equal prior probabilities.

7.1 Deep | Small experiments (DS)

In order to get an evaluation baseline for classification, first systematic in-domain and

out-domain classification experiments by using all possible train/test-set combinations are

considered, which results in a 26 times 26 event matrix shown in Figure 7.2. Regarding

training data size, this kind of experiments use a rather small amount of approximately 1K

tweets to train the classifier, since limited by the available CrisisLexT26 dataset. For those

disaster types in the dataset which contain data about more than one event, crisis events

of the same disaster type are used for training and testing the classifier, i.e., in-domain

classification. For instance, for disaster type ”floods”, the event Alberta floods is used to

train the classifier and the event Sardinia floods is used to test the classifier. In total, the

CrisisLexT26 dataset allows 55 in-domain experiments, by using all possible train/test-set

combinations of crisis events of the same disaster type, considering those types identified

by Olteanu et al. [Olteanu et al., 2015]. Blue labels in figure 7.3 show in-domain results.

Using all possible train/test-set combinations of crisis events of different disaster types

result in additional 495 out-domain experiments, which are marked by red labels in figure

7.3. Figure 7.4 shows the average classification accuracy of all 650 in- and out-domain

experiments with respect to one particular crisis event used for testing the classifier. All

DS classification results are listed in Table7.1. In-domain experiments result on average in
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Figure 7.2: In-domain and out-domain results

an informativeness classification accuracy of 75% (including a standard deviation of 5%).

Out of 55 in-domain experiments, the best classification accuracy of 88% achieved the

Costa Rica earthquake using the Guatemala Earthquake as training event, which might

be due to obvious similarities between these two events. The worst result of 58% gives the

event Philippines flood using Sardinia floods as training set. Figure 7.2 visualizes results

of all DS classification experiments. Red cells indicate a higher classification accuracy,

blue cells a lower classification accuracy. In order to verify the hypothesis that a cross-

domain classifier leads to at least as accurate informativeness classification as an in-domain

classifier, i.e., a more specific one, the mentioned classification results serve as a baseline.

7.2 Broad | Small experiments (BS)

In order to eliminate the impact of training data size on classification accuracy when

comparing results against DS experiments, in the second group of experiments the same
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Figure 7.3: In-domain (blue) vs. out-domain (red)
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Event Cross-Val. Acc. Avg. Acc. Min. Acc. Max Acc. # Tweets

Alberta floods 0.75 0.63 0.47 0.74 1376
Australia wildfires 0.84 0.75 0.63 0.85 1408
Bohol earthquake 0.86 0.78 0.50 0.86 1150
Boston bombings 0.80 0.74 0.51 0.82 1180
Brazil nightclub fire 0.87 0.79 0.61 0.86 1120
Colorado floods 0.86 0.73 0.63 0.82 1536
Colorado wildfires 0.82 0.77 0.62 0.83 1370
Costa Rica earthquake 0.89 0.83 0.53 0.88 1484
Glasgow helicopter crash 0.82 0.74 0.62 0.83 1156
Guatemala earthquake 0.88 0.77 0.68 0.83 1508
Italy earthquakes 0.77 0.67 0.62 0.74 1254
LA Airport shootings 0.86 0.81 0.73 0.85 1364
Lac-Megantic train crash 0.70 0.68 0.60 0.72 1118
Manila floods 0.84 0.69 0.55 0.79 1256
NYC train crash 0.91 0.76 0.63 0.88 1884
Philipinnes floods 0.88 0.55 0.39 0.76 1522
Queensland floods 0.88 0.78 0.66 0.88 1456
Russian meteor 0.78 0.73 0.53 0.78 1602
Sardinia floods 0.74 0.66 0.60 0.71 1264
Savar building collapse 0.90 0.75 0.59 0.87 1676
Singapore haze 0.81 0.73 0.49 0.80 1087
Spain train crash 0.85 0.76 0.69 0.81 1458
Typhoon Pablo 0.86 0.75 0.62 0.84 1356
Typhoon Yolanda 0.84 0.65 0.48 0.77 1530
Venezuela refinery explosion 0.77 0.71 0.58 0.76 1092
West Texas Explosion 0.83 0.76 0.51 0.83 1258

Total 0.83 0.73 0.39 0.88 35456

Table 7.1: In-domain and out-domain summery

amount of tweets as before is used, for training. These 1K tweets out of all crisis events

are sampled, excluding the one crisis event used for testing the classifier, to address a

broad event specificity. In general, cross-domain classification experiments follows a ”leave

one out” strategy, 25 crisis events are used for training and the remaining 26th event

was used for testing. The average classification accuracy over all 26 experiments is 79%

(including a standard deviation of 7%), which is 4% higher than the average of in-domain

experiments (cf. Figure 7.4, column ”BS”). In other words, a classifier trained on random

sampled tweets from various crisis events of different disaster types achieves a 4% higher

informativeness classification accuracy than using a classifier trained on the same disaster

type as the actual crisis is, even using the same size of tweets for training.

7.3 Broad | Large experiments (BL)

Since using tweets of different crisis events of different types of disasters for training lead

to more accurate classification on average than in-domain training, in the third group of

experiments evaluation wants to figure out the impact of the training size on classification

accuracy. By applying a ”leave one out” strategy, 26 experiments use all available 28K

tweets, again excluding those used for testing, to train the classifier. Classification results
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Cross-domain (leave-one-out) # Samples
Event 10K 2K 1K

Alberta floods 0.72 0.73 0.71
Australia wildfires 0.85 0.85 0.84
Bohol earthquake 0.86 0.86 0.86
Boston bombings 0.81 0.79 0.82
Brazil nightclub fire 0.86 0.87 0.85
Colorado floods 0.83 0.83 0.80
Colorado wildfires 0.82 0.83 0.82
Costa Rica earthquake 0.89 0.86 0.88
Glasgow helicopter crash 0.82 0.80 0.80
Guatemala earthquake 0.84 0.84 0.82
Italy earthquakes 0.74 0.72 0.73
LA Airport shootings 0.86 0.85 0.83
Lac-Megantic train crash 0.71 0.72 0.72
Manila floods 0.82 0.79 0.82
NYC train crash 0.84 0.82 0.82
Philipinnes floods 0.60 0.58 0.62
Queensland floods 0.86 0.87 0.85
Russian meteor 0.78 0.77 0.77
Sardinia floods 0.70 0.69 0.69
Savar building collapse 0.83 0.78 0.79
Singapore haze 0.72 0.75 0.77
Spain train crash 0.79 0.78 0.78
Typhoon Pablo 0.84 0.84 0.82
Typhoon Yolanda 0.75 0.70 0.63
Venezuela refinery explosion 0.76 0.76 0.77
West Texas Explosion 0.83 0.83 0.82

Total 0.80 0.79 0.79

Table 7.2: Cross-domain training with samples
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Accuracy
Event Acc. # Tweets ∆ avg. ∆ min. ∆ max.

Alberta floods 0.73 32430 10.02 25.50 -1.39
Australia wildfires 0.86 32398 11.16 22.75 1.42
Bohol earthquake 0.87 32956 9.36 37.20 1.00
Boston bombings 0.82 32970 7.40 30.36 0.30
Brazil nightclub fire 0.87 32922 7.26 25.65 0.20
Colorado floods 0.85 32270 11.12 21.70 2.80
Colorado wildfires 0.83 32436 6.27 21.08 0.33
Costa Rica earthquake 0.89 32322 6.20 36.40 0.71
Glasgow helicopter crash 0.83 32650 8.97 20.91 0.55
Guatemala earthquake 0.84 32298 7.89 16.67 1.14
Italy earthquakes 0.74 32552 6.26 11.28 -0.40
LA Airport shootings 0.87 32442 6.06 13.47 1.55
Lac-Megantic train crash 0.71 32688 2.86 10.96 -1.59
Manila floods 0.83 32550 14.06 28.30 3.80
NYC train crash 0.87 31922 10.38 24.00 -1.24
Philipinnes floods 0.62 32284 6.65 22.70 -14.30
Queensland floods 0.87 32350 9.23 21.67 -0.83
Russian meteor 0.78 32522 4.83 24.81 0.28
Sardinia floods 0.70 32542 3.90 10.09 -1.30
Savar building collapse 0.84 32130 9.18 25.66 -2.55
Singapore haze 0.71 32884 -2.19 22.50 -9.40
Spain train crash 0.81 32348 4.76 11.60 -0.70
Typhoon Pablo 0.85 32450 10.39 22.60 1.10
Typhoon Yolanda 0.76 32276 10.74 27.96 -0.86
Venezuela refinery explosion 0.76 32714 5.90 17.98 0.60
West Texas Explosion 0.83 32844 6.56 31.71 -0.45

Total 0.80 845150 7.51 22.52 -0.74

Table 7.3: Cross-domain results ”leave-one-out”

are visualized in Figure 7.4, column ”BL”. On average, classification accuracy over all

cross-domain experiments is 80% (including a standard deviation of 7%), which is sig-

nificantly higher compared to in- and out-domain experiments. Comparing the average

classification results using 28K tweets for training against using 1K tweets, show a slightly,

1%, higher classification accuracy. Thus, the interesting finding here is that the size of

the dataset used for training seems not to be primary relevant for accurate classification

of informativeness.

7.4 Interpretation of evaluation

To sum up, experimentation results allow us the following conclusions:
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Figure 7.4: Classification accuracy results

1. Using a classifier trained on various events cross different types of disasters outper-

forms in 23 cases out of 26 (cf. red diamonds in Figure 7.4) more specific classifiers,

trained on the same disaster type, in classification accuracy of 4% (avg.). This even

with the same amount of tweets in the training data.

2. Using a more specifically trained classifier may tend to overfit and therefore leads to

less accurate informativeness classification of unseen crisis events.

3. Increasing the amount of training samples on average lead to slightly more accurate

classification only (cf. Figure 7.4).

7.5 Classification performance

Finally, when considering informativeness classification results of other closely related ap-

proaches, which are discussed in more detail in the following related work section, as a base-

line, results show that the cross-domain classifier presented in the current work achieved a

higher accuracy on average as well as regarding best accuracy values (cf. Table 4). In par-

ticular, compared to cross-domain trained classifiers of [Acerbo and Rossi, 2017] as well as

to the in-domain classifier of [Longhini et al., 2017], our cross-domain classifier is 4% (avg.)

more accurate in informativeness classification, and compared to [Imran et al., 2016] 1.3%
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more accurate. In the current work, the best average accuracy is 80% (including a standard

deviation of 7%) using cross-domain training over all events, best accuracy classification

result is 89%, which is compared against [Imran et al., 2016] an accuracy improvement of

2% and 12% compared against [Longhini et al., 2017]. The worst result was classifying

Philippines flood with an accuracy of 62%.

7.6 Time-dependent classification

As introduced in Chapter 5 in Section 5.4.1.2, the current implementation includes settings

to split classification regarding the time. In other words, instead using a single trained

classifier to classify tweets of the test set, three different trained classifier are used to

classify tweets of the three-times-split test set. The aim of this experiment is to emphasize

the aspect of time during crisis events. The experimental setting includes two runs over all

events, by using leave-one-out. Training events as well as the test event are split into three

parts, which leads to three different classifiers. One for early time phases during the event,

one for middle time phases and one for late time phases. Intervals, for instance from day

0 to day 3, are static defined since for online classification no dynamic time intervals are

possible. Results shown in Table 7.4 lead to some interesting conclusions. Accuracy values

are averaged weighted accuracy scores of all 3 time dependent classification stages.

On average, the three way time dependent classification approach does not lead to signif-

icant improvements over single trained cross-domain classifier. However, for events with

low classification performance, for instance Philippines floods or the Lac-Megantic train

crash, the 3-step-time dependent classification approach leads to significant improvements.

In the case of classifying tweets from the Philippines flood, classification improved from

62% using single classification to 83% using time dependent classification. However, for

many events the single classification perform better. Using more sophisticated time inter-

vals or further classification steps, i.e., mapping selected tweets to the best suited classifier,

might lead to overall improvements and might be suggestions for future work.

To sum op, time dependent classification can lead to accuracy improvements, especially

for data, which do not perform very well using single classification or extraordinary events,

which does not fit very well to the training data. More future work in this field might lead

to multi-step classification where for each tweet the best suitable classifier for prediction

is selected.
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Event Exp. 1a ∆ Acc. table 7.3 Exp. 2 b ∆ Acc. table 7.3

Alberta floods 0.73 0.00 0.70 2.49
Australia wildfires 0.85 0.83 0.85 1.08
Bohol earthquake 0.86 1.00 0.86 0.50
Boston bombings 0.80 1.39 0.80 1.79
Brazil nightclub fire 0.86 1.10 0.86 1.00
Colorado floods 0.84 0.32 0.84 0.62
Colorado wildfires 0.81 2.08 0.82 0.75
Costa Rica earthquake 0.90 -0.71 0.90 -0.42
Glasgow helicopter crash 0.82 1.00 0.82 1.36
Guatemala earthquake 0.86 -1.52 0.86 -1.52
Italy earthquakes 0.74 -0.30 0.76 -2.40
LA Airport shootings 0.87 -0.10 0.87 0.10
Lac-Megantic train crash 0.69 1.49 0.70 0.80
Manila floods 0.81 1.40 0.79 3.80
NYC train crash 0.85 1.24 0.85 1.43
Philippines floods 0.79 -16.70 0.83 -20.90
Queensland floods 0.87 0.58 0.88 -0.83
Russian meteor 0.78 -0.62 0.78 0.21
Sardinia floods 0.72 -2.30 0.71 -1.50
Savar building collapse 0.88 -3.27 0.87 -2.39
Singapore haze 0.70 1.10 0.71 -0.40
Spain train crash 0.82 -1.30 0.83 -1.90
Typhoon Pablo 0.84 1.20 0.84 0.80
Typhoon Yolanda 0.83 -6.87 0.86 -9.83
Venezuela refinery explosion 0.76 0.00 0.77 -0.30
West Texas Explosion 0.82 0.36 0.83 -0.09

Total 0.81 -0.71 0.81 -0.99

Table 7.4: Time-dependent classification summery

atime dependent split according intervals [0<=x<3][3<=x<10][10<=x]
btime dependent split according intervals [0<=x<2][2<=x<5][5<=x]
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Chapter 8

Lessons learned and open issues

This master thesis deals with informativeness classification of potentially crisis-related

tweets. Previous chapters discuss the main contributions of this work: Firstly, a detailed

analyses of data with respect to informativeness, by investigating temporal, spatial, lin-

guistic and source aspects of tweets included in the CrisisLexT26 dataset. Secondly, this

thesis operationalized the outcomes of data analysis by proposing a cross-domain infor-

mativeness classifier, providing the following benefits:

1. It is usable on various events of various types of disasters so that a single classifier

is applicable for any event.

2. It achieves 4% (avg.) higher classification accuracy than disaster-type specific clas-

sifiers using the same size of training data.

3. It increases the amount of available training data since being not limited to one type

of disaster.

The current chapter wants to summarize the most important aspects and results discussed

in this thesis. Moreover, the open issues section provides an outlook for possible further

research in this area.

8.1 Lessons learned

Situation awareness during disaster situations is crucial for organizations and authorities,

since it is the basis of an effective crisis management and allows appropriate decisions and

reactions to support affected people. Social Media services like Twitter can contribute

to situation awareness, because people communicate a lot even in disaster situations via

Social Media. Information about affected people, damaged infrastructure, affected ares are
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shared by people during crisis events. However, online communication includes thoughts,

prayers, gratitude as well as lot of emotional messages too, which do not contribute to

situation awareness at all. Hence, filtering only informative tweets, i.e., informative in the

sense of information, which can contribute to gaining situation awareness, is a major task.

Due to the huge amount of data, this kind of filtering task is not manageable by humans,

instead supervised machine learning algorithms are used to classify messages in whether

they contain informative or non informative content.

While many research focus on feature-engineering, i.e., inventing and evaluating new fea-

tures, [Khare et al., 2018][Khare et al., 2017][Longhini et al., 2017] or classification itself

[Pekar et al., 2016][Stowe et al., 2016][Verma et al., 2011], only few research deal with cri-

sis data analysis with respect to informativeness. Knowing the underlying data is essential

in machine learning to gain reliable classification results. This thesis analyzed a large

dataset containing 26 different crisis events regarding temporal, spatial, linguistic and

source aspects with respect to informativeness. In addition, the CrisisLexT26 dataset

used in this thesis is one of the largest collection of crisis events, including a variety of

different event types, available, compared to other work in this field. Firstly, data analysis

uncovers tweet characteristics having impact on informativeness thus being candidates to

be used as features. Secondly, analysis does not show significant differences with respect

to event types and furthermore does not show significant similarities within same event

types, which allows accurate cross-domain classification thus it is not necessary to train a

classifier for each event type.

However, these conclusions are related to informativeness classification and might not be

the case for further information mining of crisis related tweets, for instance entity annota-

tion in tweet text. Informativeness does not focus primary on semantics in tweets, rather

informativeness classification use statistical properties or characteristics to classify tweets

in informative and not informative messages. This is one reason why for informativeness

classification the event type is not considerable important.

Overall, this thesis uses the insights gained through detailed data analysis to propose a

cross-domain classification approach which can be used for various event types. Features

used are mainly based on linguistic characteristics of tweets, which differ not significantly

over various event types. Classification experiments showed that cross-domain training

leads to significant better classification results than in- and out-domain training. In ad-

dition, data size matters, a larger amount of training samples lead to slightly better clas-

sification results even if there are a diversity of event types included. People’s behavior

is similar in crisis situations, although they are different particular events. Therefore, a

more heterogeneous training set in the sense of variations of tweets, provided by different

types of events, is more suitable to classify new and unseen events than using event type

adapted training.
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8.2 Critical reflection

However, those conclusions made in the previous section, in particular analysis and exper-

iments realized in the current thesis, require a critical reflection. Firstly, the comparison of

classification performance of different approaches is based on average classification accu-

racy values. However, average values do not show the distribution of classification results,

which measures of dispersion, such as variance and standard deviation, do. For instance,

Figure 7.4 shows average classification accuracy values of events of in-domain and out-

domain experiments, yet classification accuracy of some events is better than of others,

which is shown in more detail in Figure 7.2. Secondly, there might be further possible

improvements of classification accuracy when additionally experimenting with different

classification algorithms and their settings. Although in the current thesis several differ-

ent algorithms are tried out, there might be other classification algorithms, such as Deep

Neural Networks, as well as different parameter settings, which might lead to better re-

sults. Thirdly, part of features used, like POS or sentiment of tweets, are designed for

English, yet applied on all tweets of the dataset, which might bias informativeness clas-

sification of tweets of other languages than English. Lastly, sampling strategies used in

the current thesis for experiments might bias classification accuracy as well, since tweets

used for learning the classifier are different when new tweets are sampled out of the entire

dataset.

8.3 Limitations and open issues

This thesis focuses on informativeness classification, only. However, this is only one early

step in using Social Media services to support disaster management and the decision

making process.

Since, however, evaluation of classification is based on the 26 crisis events and 13 disaster

types included in the CrisisLexT26 data set, only. Hence, results might be different when

classifying new disaster types. In addition, since a majority of tweets in the CrisislexT26

data set are in English, it can be expected that classification is not as accurate in classify-

ing tweets of other languages thus limiting the classifiers applicability. Classifying tweets

of other languages requires to adjust linguistic features (e.g. POS, sentiment) to partic-

ular languages. Moreover, the CrisislexT26 data set contained tweets stemming from the

years 2012 to 2013. Yet, communication of people might change over years and thus infor-

mativeness classification accuracy using classifiers trained on past events happening years

ago might decrease over time. Since the CrisisLexT26 dataset does not provide any user

related information, user based features are not used for classification. Yet, user-related

information like user meta data or geo-location are expected to further improve the overall
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quality of classification, but has not been considered in the current work since not being

included in the CrisisLexT26 dataset. In our work we use mainly linguistic, emotional

and sentimental features. Experiments including additional (semantic) features as well as

geo-location information, which could help increase the accuracy of the classifier, is subject

to work. Another line of intended research is the consideration of other languages, crisis

data sets and finally also the expansion of our evaluation towards other domains like the

classification of news articles or web documents realizing a domain-generic informativeness

classification approach.

Moreover, information source is not explicitly given by Twitter even though the source is

implicitly known by the user or the user profile, respectively. Since the current classification

approach is designed for online classification, it is important to determine the source of

the tweet immediately when classifying the tweet. Supervised Machine Learning is one

solution to deal with this issue and might be necessary for future works.

Finally, the time dependent classification approach introduced in previous chapters point

out that informativeness classification is not limited to state-of-the-art classification ap-

proaches. Using multiple classifiers for different stages during a crisis and additionally use

an intelligent way to map portions of tweets to the best suitable classifier might lead to

novel designs of classification approaches. For future works this seems to be a solid basis

to build on.
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