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Rolling bearings are the core components of the machine. In order to save costs and prevent accidents caused by bearing failures,
the rolling bearing fault diagnosis technology has been widely used in the industrial field. At present, the proposed methods
include wavelet transform, morphological filtering, empirical mode decomposition (EMD), and ensemble empirical mode
decomposition (EEMD), which have obvious shortcomings. As it is difficult to extract the fault characteristic frequency caused by
nonlinear and nonstationary features of the rolling bearing fault signal, this paper presents a fault feature extraction method of
rolling bearing based on nonlinear mode decomposition (NMD) and wavelet threshold denoised method. First of all, the fault
signal was preprocessed via wavelet threshold denoising. )en, the denoised signal was decomposed by using NMD. Next, the
mode component envelope spectrum was made. Finally, the fault characteristic frequency of rolling bearing was extracted. )e
method was compared with EMD through the simulation experiment and rolling bearing fault experiment. Meanwhile, two
indicators including signal-noise ratio (SNR) and root-mean-square error (RMSE) were also established to evaluate the fault
diagnosis ability of this method, and the results show that this method can extract the fault characteristic frequency accurately.

1. Introduction

Rolling bearings are called “industrial joints.” Bearing in-
dustry, the basic and key industry of machinery industry,
often represents or restricts the development level of
a country’s machinery and other related industries. How-
ever, poor working conditions often affect their health status
[1]. In order to save costs and prevent accidents due to
bearing failures, the rolling bearing fault diagnosis tech-
nology has been widely used in the industrial field [2].
Rolling bearing failure and complex interference signals,
including pulse and modulation signals, likely affect the
extraction of fault characteristic frequency. Signals from
complex systems usually consist of a mixture of different
oscillations, so the signals should be decomposed to make
reliable analysis, namely, to restore the various oscillations
present therein, separating them from each other and from
the presence of noise interference [3]. How to effectively

extract the fault characteristic frequency is a key technical
problem to bearing fault diagnosis.

)e proposed methods include wavelet transform,
morphological filtering, Hilbert–Huang transform, empiri-
cal mode decomposition (EMD), and ensemble empirical
mode decomposition (EEMD) [4], in which obvious
shortcomings could be found. For example, the wavelet
transform can effectively suppress white noise, but it is
unable to suppress the interference of the pulse signal
completely [5]. Although the morphological filtering can
effectively suppress impulsive interference ability, the al-
gorithm is simple and feasible [6], but there are some
problems such as statistics offset and element selection [7].
As for the empirical mode decomposition [8], it does not
have good antinoise [9]; moreover, low efficient algorithms
[10], modal aliasing, and other issues [11] remain unsolved.
In order to reduce the sensitivity of EMD to noise, Wu and
Huang proposed a variant called ensemble empirical mode
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decomposition (EEMD) [12], which added the white
Gaussian noise to the signal using the EMD method [13].
However, EEMD cannot be a good antinoise method [14].

)erefore, these methods have the following deficiencies:

(1) )e method contains user-defined parameters and is
very sensitive to the choice of parameters. )ese
parameters cannot be adaptively selected, and there
is no more or less common setting.

(2) )e method does not have good noise robustness.
(3) If a single mode has a complex (nonsinusoidal)

waveform, the method breaks it down into several
oscillations with simpler waveforms [15].

(4) )emodes returned by somemethods are not always
physically meaningful. For example, some methods
even decompose a random signal (such as Brown
noise) into a set of oscillations [15].

In view of these problems mentioned above, this paper
presents a fault feature extraction method based on non-
linear mode decomposition and wavelet threshold denois-
ing, which can solve these problems. Firstly, the signal is
preprocessed by using wavelet threshold denoising, and then
the signal of noise reduction is processed by nonlinear mode
decomposition. )e corresponding time domain and en-
velope spectra are drawn and analyzed to obtain the fault
characteristic frequency of the rolling bearing.

2. Wavelet Threshold Denoising

Analysis of the vibration signal found that the useful signal
was often a low-frequency or a relatively stable signal, while
the noise signal was usually a high-frequency one [16]. As
a multiscale signal analysis method, wavelet transform has
a certain capability of recognition in the time-frequency
domain. )e improvement of the Fourier transform has
powerful data analysis capability and perfect theoretical
basis [17]. In the mechanical fault diagnosis, wavelet
threshold denoising has been widely used for its excellent
denoising and high-computational efficiency [18]. )e basic
idea of wavelet threshold denoising is to decompose the
original signal by wavelet decomposition [19]. First, filter the
coefficients after decomposition, and divide the coefficients
into larger or smaller than a specific value. )en, reconstruct
the selected components to obtain a preprocessed signal.
Wavelet threshold denoising includes hard threshold
denoising and soft threshold denoising [20]. )e hard
threshold denoising may preserve local features such as the
edge of the signal, while the soft threshold denoising signal is
relatively smooth [21].

(1) )e hard threshold denoising function is defined as

f(λ) �
0, |λ|< δ,

λ, |λ|≥ δ,
􏼨 (1)

where λ and δ denote the wavelet coefficients and the given
threshold, respectively. f(λ) is the wavelet coefficient after
applying the threshold [22].

(2) )e soft threshold denoising function is defined as

f(λ) �
0, |λ|< δ,

sign(λ)(|λ− δ|), |λ|≥ δ,
􏼨 (2)

where sign means the function of obtaining a value [23].
)e acquisition of thresholds is often achieved by esti-

mation. )ree commonly used threshold estimation
methods are as follows [24]:

(1) General threshold:

δ1 � σ
�����

2 lgN

􏽱

, (3)

where δ1, N, and σ denote the given threshold, the length of
wavelet coefficients, and standard deviation of noise,
respectively.

(2) Adaptive threshold selection based on unbiased
likelihood estimation principle:

δ2 � σ
���
ωb

√
, (4)

where δ2,ωb, and σ denote the given threshold, risk function,
and standard deviation of noise, respectively.

(3) Heuristic optimal threshold estimation:

)is is the synthesis of the first two methods and is the
optimal predictor of threshold selection. When the signal to
noise ratio is large, use the general threshold; when the signal to
noise ratio is small, use unbiased likelihood estimation of the
threshold. Let the sum of squares of n wavelet coefficients be s:

] �
(s− n)

n
,

ω � log2 n( 􏼁
3/2 �

n
√

.

(5)

)e threshold value is

δ3 �
δ1, ]<ω,

min δ1, δ2( 􏼁, ]>ω.
􏼨 (6)

3. NMD

3.1. Basic Principle ofNMD. Nonlinear mode decomposition
(NMD) is an adaptive decomposition tool for any waveform,
decomposing a given signal into a set of actually needed and
meaningful oscillations while excluding noise. NMD is
a powerful combination based on time-frequency analysis
techniques, and its adaptive selection of parameters makes it
extremely noise robust; surrogate data tests are used to
identify interdependent oscillations and to distinguish de-
terministic from random activity [15].

)e main goal of NMD is to decompose a given signal
into a set of nonlinear modes, which is defined as the sum of
all the components corresponding to the same activity [15].
)e NMD principle is as follows.
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First of all, according to the selected resolution pa-
rameters f0 (f0 is the resolution parameter determining the
relationship between time and frequency resolution, namely,
can reflect how fast the time changes and solve how close in
the frequency components, by default f0 � 1), use the
wavelet formula to calculate the WT (wavelet transform) of
a given signal. )e formulas are as follows:

Ws(ω, t) ≡ 􏽚
∞

−∞
s

+
(u)ψ∗

ω(u− t)

ωψ
􏼢 􏼣

ω du

ωψ

�
1
2π

􏽚
∞

0
e

iξt
􏽢s(ξ)􏽢ψ∗

ωψξ
ω

􏼠 􏼡 dξ,

(7)

where

􏽢ψ(ξ) � e
− 2πf0 ln ξ)2( )/2,

ωψ � 1.
(8)

Second, the principal component is extracted from the
WT of the signal (defined as a reference component) and
reconstructed. )e principal component reconstruction
formulas are as follows:

](t) � ωp(t)e
δ ln ]d(t)

,

A(t)e
iϕ(t)

�
2Ws ωp(t), t􏼐 􏼑

􏽢ψ∗ ωψ](t)/ωp(t)􏽨 􏽩
,

(9)

where ωp(t) is defined as the amplitude peak sequence after
the WT transformation.

)e reference component is then noise tested using
surrogates. If it does not pass this test, stop the de-
composition. )en, check if WT is the “correct” represen-
tation of the reference component, and if not, switch to using
the WFT (windowed Fourier transform) and reextract the
component from it. )e formulas are as follows:

S< 1⇒ use WFT,

S> 1⇒ use WT,

S ≡ 1 + V zt](t), ](t)􏼂 􏼃􏼈 􏼉
−1

+ 1 + V zt](t), ](t)􏼂 􏼃􏼈 􏼉
−1

,

(10)
where

V[m(t), n(t)] ≡
std |m(t)/n(t)|+􏼂 􏼃

std |m(t)/n(t)|+􏼂 􏼃
, (11)

where

|m(t)|
+ ≡ m

+
(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌,

m
+
(t) ≡ 􏽚

∞

0+

􏽢m(ξ)e
iξt

dξ,

m(t) �
1
T

􏽚 m(t) dt,

std m(t) ≡
���������������

[m(t)]2 − [m(t)]2
􏽱

􏼔 􏼕.

(12)

In the following, TFR means the selected representation:
WT or WFT. For h (harmonic)� 1/2, 1/3, . . . , do the
following:

(a) Calculate the time-frequency representation (TFR)
of the signal over a defined frequency range using
different values of the resolution parameter f

(h)
0 .

(i) Extract the hth harmonic of the reference compo-
nent from the TFR and reconstruct its amplitude,
phase, and frequency as follows:

A
(h)

� ahA
(1)

(t),

ϕ(h) − hϕ(1)
� φh,

](h)
(t) � h](1)

(t).

(13)

(ii) Test whether the current harmonic is true.
(b) If for some f

(h)
0 the harmonic is determined to be

true, then set its characteristics to those recon-
structed for f

(h)
0 that is characterized by the highest

consistency with the reference component among
f

(h)
0 for which the harmonic is determined to be

true.
(c) Stop when a prechosen number (default� 3) of

consequent harmonics are determined to be false for
all tested f

(h)
0 .

If you have identified some harmonics as true in the
previous step, use the true harmonic with the smallest h as
the reference component. )erefore, the reference compo-
nent is guaranteed to be the first harmonic of the corre-
sponding NM now. Perform the above steps from (a) to (c)
for h� 1, 2, . . . , remembering the reconstructed harmonic
parameters. )en, reconstruct the complete NM using the
harmonic parameters determined to be true in the previous
step. Finally, subtract the reconstructed NM from the signal
and repeat all the above steps for the residual.

)e above is the basic decomposition principle of NMD.
)e specific decomposition method of NMD can be sum-
marized in the following steps:

(a) Accurately extract the fundamental harmonic of NM
from the TFR of the signal

(b) Find all possible candidates for harmonics based on
their properties

(c) Identify the true harmonics (relative to the same
NM) among them

(d) Subtract the resulting NM from the signal (obtained
by combining all the true harmonics), and iterate the
procedure on the residual until the preset stop cri-
teria are met.

3.2. Analog Signal Comparison. In order to verify the ef-
fectiveness of the NMDmethod, the following signal is used
for simulation experiment:

Shock and Vibration 3



s(t) � A[cos(x) + 0.5 cos(3x− π/4) + 0.33 cos(4x + π/2)

+ 0.25 cos(7x + π/3)] + m,

(14)

where

A � 1 + 0.25 cos(2πt/20),

x � 2πt + 0.5 sin(2πt/6),
(15)

where m is a random noise signal and its amplitude is one.
)e original signal, the noise-added signal, and the signal
decomposed by various decomposition methods are shown
in Figure 1.

As can be seen from the three graphs in Figure 1, the
nonlinear mode decomposition (NMD) method can effec-
tively eliminate the noise and extract the original signal from
the complex mixed signal. )e EMD and EEMD methods
are used to decompose the signals added to the noise as
shown in Figures 2 and 3, respectively.

Figure 2 is obtained by using the EMD method to de-
compose the signal added to the noise, while Figure 3 uses
the EEMD method to decompose the signals added to the
noise. Unlike the NMDmethod, the EMDmethod produces
13 different components, of which only 4th components
extract the original signal approximately, and only 5th
components approximately extract the original signal in the
EEMD decomposed one. )e other components produced
by EMD and EEMD either have noise mixing or signal
corruption.

4. Fault Feature Extraction of Rolling Bearing

Rolling bearing fault feature extraction process is shown in
Figure 4.

Specific steps are as follows:

(1) )e original signal is processed by wavelet threshold
to obtain the preprocessed noise reduction signal.

(2) Perform NMD decomposition on the noise-reduced
signal to obtain a new component.

(3) Calculate the cross-correlation coefficient of the
component and the original signal.

(4) Draw the envelope spectrum of the component.
(5) Determine in the envelope spectrum whether a fault

has occurred and where the fault occurred.

5. Application of Fault Extraction of
Rolling Bearing

Conducting the research and analysis of the example of the
rolling bearing, the methods of NMD and EMD are used,
respectively, to deal with the faulty vibration signals gen-
erated in the bearing outer ring and the inner ring to prove
the effectiveness of the method [25].

Formula of the inner race frequency:

fi �
1
2

1 +
d

D
cos α􏼠 􏼡fnZ. (16)

Formula of the outer race frequency:

fo �
1
2

1−
d

D
cos α􏼠 􏼡fnZ, (17)

where d and D denote the ball diameter and the pitch di-
ameter, respectively. Z is the number of rolling elements, α
denotes the bearing contact angle, and fn is the rotation
frequency [26].

To further verify the proposed method, we used the real
motor bearing data provided by Case Western Reserve
University. Vibration data were picked up with a sampling
frequency of 12 kHz by an accelerometer placed at the
6 o’clock position at the drive end of themotor housing. Single
point faults were processed in the bearings using electro-
discharge machining with a fault diameter of 0.021 inches,
and the fault depth was 0.011 inches. In addition, the motor
speed was 1797 rpm. )e characteristic frequencies of the
bearing are shown in Table 1, which were calculated by for-
mulas (15) and (16).

)e raw inner race vibration signal and its spectrum are
shown in Figure 5. And the time domain map and spectrum
of the inner ring fault signal after wavelet threshold
denoising are shown in Figure 6. As can be seen from
Figure 5, due to the signal mixed with serious noise, it is
difficult to identify the fault characteristic frequency making
the spectrum of high-frequency components increase.

After being decomposed by NMD and EMD, re-
spectively, the cross-correlation coefficient between the
decomposed components and the original signal is calcu-
lated and the envelope spectrum is drawn. Usually, the cross-
correlation coefficient of the first two layers is large. We set
a threshold of 0.1 here and use the IMF with a coefficient
greater than 0.1 for reconstruction to draw the envelope
spectrum. In the selection of wavelet basis function de-
composition, the experiment proved db10 wavelet de-
composition signal SNR is better. In order to ensure that
experiments are conducted under the same conditions, the
“db10” wavelet decomposition of the original signal is
performed. Since the NMD method has an adaptive feature,
it does not need parameter settings.

Figures 7 and 8 are the envelope spectra of inner ring
fault signals, respectively, after wavelet threshold denoising
based on NMD and EMD. )rough comparison, the ex-
traction effect in Figure 7 is obviously better than that in
Figure 8. In Figure 7, we can accurately extract rotation
frequency, fault characteristic frequency, and frequency
multiplication thereof, thus verifying the effectiveness of the
method.

Further analysis is conducted on the fault signal of the
bearing outer ring, and the raw outer race vibration signal
and its spectrum are shown in Figure 9. )e time domain
map and spectrum of the outer ring fault signal after wavelet
threshold denoising are also shown in Figure 10.

After the denoising by wavelet threshold, NMD and
EMD are, respectively, used to decompose them to calculate
the cross-correlation coefficient between the decomposed
components and the original signal to draw the envelope
spectrum.
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FIGURE 1: (a) Original signal. (b) Noise-added signal. (c) Signal extracted by NMD.
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Figure 2: Signal extracted by EMD.
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Figures 11 and 12 show the result of wavelet threshold
denoising based on NMD and EMD for the outer ring fault
signal, respectively. It can be seen from the comparison that
the extraction effect in Figure 11 is slightly better than that in
Figure 12. Although the advantages of NMD in these two
figures are not obvious, the calculation of the SNR formula
(19) and the RMSE formula (20) can result in a larger signal-
noise ratio and a smaller root-mean-square error for the
NMD method. And the algorithm has a shorter processing
time and higher diagnostic efficiency. And the NMD al-
gorithm needs to perform fewer basic operations than the
EMD algorithm.

)rough formula (17), respectively, calculate their cross-
correlation coefficient as follows [27]:

rXY �
􏽐

N
i�1 Xi −X( 􏼁 Yi −Y( 􏼁

������������

􏽐
N
i�1 Xi −X( 􏼁

2
􏽱 �����������

􏽐
N
i�1 Yi −Y( 􏼁

2
􏽱 . (18)

It can be seen from Figure 13 that the cross-correlation
coefficient of the inner ring fault signal after the wavelet
threshold denoising and NMD is 0.8788 and the
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Figure 3: Signal extracted by EEMD.
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Figure 4: Fault feature extraction flow diagram.

Table 1: Fault characteristic frequencies of bearing.

Shaft frequency,
fn

Outer race frequency,
fo

Inner race frequency,
fi

29.32Hz 107.32Hz 162.29Hz
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Figure 5: )e inner ring fault signal time domain map and its spectrum.
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Figure 6: )e inner ring fault signal time domain map and its spectrum after wavelet threshold denoising.
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Figure 7: Envelope spectrum after NMD of the inner ring fault signal.
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Figure 9: )e outer ring fault signal time domain map and its spectrum.
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Figure 10: )e outer ring fault signal time domain map and its spectrum after wavelet threshold denoising.
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cross-correlation coefficient of the inner ring fault signal
after the wavelet threshold denoising and EMD is only
0.7946 [28]. )e cross-correlation coefficient of the outer
ring fault signal after the wavelet threshold denoising and
NMD is 0.8717 and the cross-correlation coefficient of the
outer ring fault signal after the wavelet threshold
denoising and EMD is only 0.8044 [29]. Whether the outer

ring or the inner ring, the correlation between the NMD
decomposed signal and the original signal far exceeds than
that of the EMD decomposed signal, which verifies the
effectiveness of the method again.

)e signal-noise ratio (SNR) [30] and root-mean-square
error (RMSE) [31, 32] are calculated, respectively, by for-
mulas (19) and (20):

SNR � 10 × log10
􏽐

N
i�1 S2i

􏽐
N
i�1 Si − S′i( 􏼁

2

⎧⎨

⎩

⎫⎬

⎭, (19)

RMSE �

����������������

1
N

􏽘

N

i�1
Si − S′i( 􏼁

2⎛⎝ ⎞⎠

􏽶
􏽴

. (20)

In Figures 14 and 15, both the SNRs of the inner ring and
outer ring and the RMSEs of the inner ring and outer ring can
be seen, which show that the bearing fault feature extraction
methods based on NMD and wavelet threshold denoising are
superior to the bearing fault feature extraction method based
on EMD and wavelet threshold denoising [33, 34]. )e ef-
fectiveness of this method is further illustrated.

6. Conclusion

)is paper studies a fault feature extraction method of
rolling bearing based on NMD and wavelet threshold
denoising, as well as the fault signals experiment of inner
ring and outer ring of rolling bearing. Compared with EMD
and wavelet threshold denoising method, this method can
effectively extract the accurate fault feature of rolling
bearing. As a new method with noise robust and adapt-
ability, NMD has solved the following problems:

(1) )e NMD method has the characteristics of self-
adaptability and does not require the user to define
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and set certain parameters specifically, avoiding the
problem that the selection of certain parameters is
very sensitive.

(2) )e NMDmethod is noise robust and can effectively
remove the noise signal from the mixed signal and
accurately extract the original signal.

(3) )e algorithm of NMD is very efficient, and the
original signal after noise removal can be directly
obtained, and the original signal does not need to be
reconstructed like other methods.

)eNMDmethod overcomes the shortcomings of EMD,
such as lacking of strict mathematical foundation, low al-
gorithm efficiency, and modal aliasing. It can be widely used
in the field of signal processing and analysis.
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