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Abstract—The growth rate is a genetic trait that is often
recorded in pearl oyster farming for use in selective breeding
programs. By tracking the growth rate of a pearl oyster, farmers
can make better decisions on which oysters to breed or manage
in order to produce healthier offspring and higher quality pearls.
However, the current practice of measurement by hand results
in measurement inaccuracies, slow processing, and unnecessary
employee costs. To rectify this, we propose automating the
workflow via computer vision techniques, which can be used
to capture images of pearl oysters and process the images to
obtain the absolute measurements of each oyster. Specifically, we
utilise and compare a set of edge detection algorithms to produce
an image-processing algorithm that automatically segments an
image containing multiple oysters and returns the height and
width of the oyster shell. Our final algorithm was tested on
images containing 2523 oysters (Pinctada maxima) captured on
farming boats in Indonesia. This algorithm achieved reliability (of
identifying at least one required oyster measurement correctly)
equal to 92.1%.

I. INTRODUCTION

Aquaculture is one of the world’s fastest-growing food sec-
tors, with the industry expected to grow to US$202 billion by
2020 [1]. Despite the size of this industry, technology-assisted
selective breeding is still in the infancy stages of development
compared to the corresponding terrestrial breading programs
[2], which allow for the easy measurement and analysis of
traits such as size and weight [3]–[5]. Measuring and recording
these types of genetic traits in an efficient manner allows
agricultural workers to save both money and time, as well as
deliver a superior product. As such, these types of technologies
are greatly needed in the aquaculture industry. Recently, there
has been an increase in research for uses of cameras and
sensors for genetic trait capture in aquaculture, however, for
the most part, the focus has been on fish [6]. A particular
aquaculture industry that would greatly benefit from this sort
of technology-assisted selective breeding is the pearl oyster
industry.

Pearl oyster growth rate tracking is beneficial for the
selective breeding of pearl oysters to optimise future pearl
production. Pearl oyster cultivation currently requires oysters
to be retrieved from the ocean monthly to be cleaned. During
this cleaning time, farms with a growth rate tracking program
measure each oyster individually, using a ruler or callipers.

Pearl oyster growth rates are used to determine pearl oysters’
health and estimate the quality and size of pearls they may
potentially produce [7].

The main breeding objective is to get the oysters to seeding
size as soon and as predictable as possible and to maintain
uniformity amongst all animal groups as much as possible.
Secondly, understanding growth rates over time allows better
farm management decisions to be made earlier on in their life
cycle. It allows correlated information on health or growth to
be monitored in association with environmental data. Studies
have shown that pearl oysters with slower growth rates but
higher starting size have a higher survival rate than smaller
pearl oysters with fast growth rates [8]. As such, pearl oyster
growth rate is a primary trait used for selective breeding of
pearl oysters, so that a higher percentage of oyster stock could
survive the 2-5 years of farming and cultivation [9].

The current manual tracking of pearl oyster growth rates is
not scalable or cost-effective for large farming operations and
selective breeding programs since additional effort is required
to measure sizes. An automatic solution to track the growth
rates using cameras would allow for a non-invasive measuring
system to be implemented in larger farms to replace the
manual process.

Existing automatic sizing systems often use equipment
which is expensive and/or difficult to deploy into aquaculture
farming environments. An example can be seen in the large
and complex automatic oyster grading machines design by
ShellQuip [10]. Capture technology in existing systems such
as X-Ray, NIR- cameras and lasers [11]–[13] are expensive,
with near infer-red (NIR) cameras and lasers ranging from
US$1,000 - US$5,000 [14]. A simple and cost-effective solu-
tion for image capture, in close proximity to water, is to use
action cameras, which are water-resistant/waterproof cameras
that can capture high-resolution images and do not require
a specially trained operator [15]. The use of action cameras
can be combined with image processing to conduct oyster
measurements automatically from the captured images.

In this study, we proposed an automatic solution for pearl
oyster growth rate measurement. In the next section, we review
some of the methods and research that has been utilised within
this field previously.



Fig. 1: Morphometric measurements for Pinctada maxima
[16].

II. BACKGROUND AND MOTIVATION

A. Pearl Oyster Shell Measurements

Pinctada maxima oyster has strongly correlated morpholog-
ical measurements (Fig. 1). The three key measurements of
the Pinctada maxima oyster are the doro-ventral measurement
(DVM), anterior-posterior measurement (APM), thickness, and
hinge depth (Fig. 1). DVM is the most common size mea-
surement of an oyster [16], which has a high correlation
(r2 > 0.95) to both the APM and thickness measurements.
APM can be calculated by

APM = 0.84× DVM + 14.9, r2 = 0.96, (1)

similarly, thickness is calculated by

Thickness = 0.23× DVM − 1.89, r2 = 0.95, (2)

with DVM in millimetres [16]. The existence of these high
correlations allows for only one measurement to be extracted
from an oyster to obtain all other key measurements, which
may reduce the complexity of automatic size calculation using
computer vision. However, to compute the size of an oyster,
we must first identify the actual oyster itself, using computer
vision and object detection.

B. Computer Vision and Object Detection

Object detection could be achieved through a computer
vision system by processing images via segmentation, edge
detection and/or feature extraction. For this study, edge de-
tection was the primary technique used, where it could be
defined as the process of identifying sharp discontinuities in
an image [17]–[19]. The discontinuities are abrupt changes in
pixel intensity. The identified discontinuities are then referred
to as edges. Edge detection methods are generally grouped
into two categories, gradient-based methods and Laplacian-
based methods:

• Gradient-based methods: Gradient-based edge detection
is accomplished by taking the first-order derivative of an
image. Different operators known as masks are applied
to the images to calculate a gradient magnitude for an
image signal. The magnitude of the gradient is then used
to calculate edge strength.

• Laplacian-based methods: Laplacian-based edge detec-
tion is completed by searching for zero crossings in the
second derivative of an image signal to find edges [18].

We utilised both methods in this study to determine the best
approach for pearl oysters.

C. Measuring Object Sizes in Aquaculture

In this study, the focus was on obtaining the required mea-
surements (Fig. 1) from singular images. This was achieved
by calculating a pixel size ratio using an object of known
size within a scene or by using the distance of an object and
re-adjusting for lens distortion [20], [21]. Once a pixel size
ratio was calculated, systems could then count the number of
pixels between points within an image to return an estimated
measurement.

The majority of studies in this area focusing on aquaculture
tend to focus on the size extraction for fish [22]–[25], how-
ever, the same techniques still apply to extract size of pearl
oysters. Furthermore, if the oysters are identified and localized
correctly, the actual measurement extraction could be easily
performed using standard software tools, e.g. with OpenCV
computer vision library [26]. Therefore, the main contribution
of this work was in developing a reliable oyster segmentation
technique.

D. Computer Vision for Automatic Oyster Processing

Automatic oyster sizing equipment does exist but it is
primarily focused on oysters consumed for food and not pearl
oysters, which are generally larger [16]. The majority of the
world’s oysters are consumed as food [1]. As such advance-
ments in automatic oyster size measurement are limited to
post-farmed oysters for accurate oyster grading. Oysters pro-
duced for food are generally sold by size, weight and volume
as which they can be separated into 3 main grades: small,
medium and large [17]. Automatic oyster grading machines
are produced commercially but the measuring techniques are
not publicly available as machine design is considered a trade
secret.

The commercial grading equipment requires the use of a
vision chamber or a controlled illumination environment. It
would be difficult to deploy a large vision chamber on small
pearling boats. In addition, since the algorithms/techniques for
detecting and sizing the oysters are undisclosed, the equipment
may not be able to detect and calculate the measurements of
each oyster when there are multiple oysters in one image.

Even the non-commercial systems within the literature [11],
[13] tend to focus on both post-farmed oysters and processing
singular oysters through a controlled lighting environment.
Furthermore, there are no applications of using newer image
processing capabilities such as feature detection, convolutional



layers or modern edge detection on oysters to calculate the
size of a given oyster. There has also been no exploration
in applying computer vision to oysters during the farming
process, where multiple oysters are captured in one image. Our
study attempted to rectify this situation, as well as produce a
practical system that could save both time and resources for
pearl oyster farmers and producers.

III. MATERIALS AND METHODS

In this section, the experimental design, algorithms, and
datasets are explained. As an overview, our experiment was
divided into two stages. We started by utilising a small labelled
dataset in a pilot study. Using this initial dataset we developed
and then evaluated the accuracy of an algorithm for detecting
and then measuring the size of an oyster from an image.
Following this, we applied the developed algorithm to a larger
dataset provided by a commercial pearl oyster farm. The rea-
son for this split methodology was due to the unavailability of
labelled (i.e. measured) data. By first developing our algorithm
on the pilot study and then testing on the larger data set we
were able to have more confidence in our results, even with
the relatively small sample size used in the pilot study.

A. Datasets

1) Validation Dataset: The validation dataset used for the
pilot study, consisted of photographs of 12 physical oyster
shells. Images of oysters were captured using a GoPro Hero
4 Silver from a fixed orientation and height above a wooden
surface. Each oyster shell was oriented with the hinge line
perpendicular to the width of the camera sensor. The images
were captured in an outdoors environment during the day to
replicate the capture setup from the farm images as close
as possible. To assist in algorithm calculations, a visible
tape measure was also placed next to the oyster shells. The
tape measure was planned to be used to calibrate the pixel
value to the actual value ratio for the algorithms measurement
calculations. The DVM and APM measurements of each oyster
were also manually recorded with a ruler after images were
captured.

2) Pearl Oyster Images: This data set consisted of 166
images, where each image contained 16 individual oysters. A
custom image capture table was deployed on oyster cleaning
vessels to gather image data for this research. The table
consisted of a flat wood top with fixed GoPro Hero 4 camera1
mounted directly above the centre of the table. The distance
and orientation between the camera in relation to the table
remained constant for each captured image. Each image cap-
tured in the farm dataset contained one standard oyster net
with sixteen pockets, holding one oyster each. Each oyster
was oriented with the hinge line perpendicular to the camera
sensors width. The net was placed on the table immediately
after being cleaned to have the image captured, see an example
in Fig. 2.

Fig. 2: An example of Pinctada maxima nets during cleaning
[16]

B. Algorithm

Due to the lack of research conducted in this area, a new
sizing algorithm was created, specifically for this study. The
sizing algorithm consisted of the following eight steps:

1) Lens Correction: The fisheye lenses used in the ex-
periment distort the captured image in order to achieve a
greater field of view, however, this resulted in objects within
images being distorted from the true shape and size of the
object. To rectify this, an image correction library, Lensfun
[27], was used. The Lensfun library allowed for camera and
lens configurations to be entered and images to be corrected
by using pre-calibrated image matrixes, stored in the Lensfun
database [27].

2) Image Blur: Gaussian blur was applied to the images to
assist in the reduction of minor features during the edge de-
tection processes. Blurring the images causes the net covering
each oyster to blend into the oyster shell, thereby assisting the
edge detection phases to retrieve the shell outline. Each image
was processed by a 5x5 Gaussian blur implementation of
OpenCV with the results then passed to the rotation correction
sub-routine.

3) Rotation Correction: Rotation correction was used to
position the image with the oyster hinge lines horizontal in
the image. By orienting the images this way, the measurement
algorithm could be designed to make one pass over the pixels
vertically and one pass over the pixels horizontally to retrieve
the measurements. To orient the image correctly the height
and width of the images were retrieved. These values were
compared, and if height was larger than width the image was
rotated 90 degrees, which oriented the oysters within the image
correctly for the algorithm to proceed.

4) Regions of Interest: Region of interest was added to the
algorithm to filter out unnecessary data from the images. Due
to the static and similar nature of each of the images, region
of interest selection was achieved by simply cropping each
image appropriately. In addition to this, each image was also
cropped to produce individual images of each oyster (again
using static cropping) to assist in edge detection.

5) Edge Detection: To determine the most appropriate and
accurate method of edge detection the following techniques
were used:



• Canny edge detection: The first edge detection method
implemented was Canny [26]. This was implemented
using the OpenCV python library and the thresholds that
were used for the detection were a lower bound of 10
and an upper bound of 100.

• Convolutional layer edge detection: Convolutional (Conv)
layers were also tested as edge detectors for the algorithm
via Tensorflow [28]. The decision to use convolution
layers was made to reduce computational expense, as
opposed to using a fully convolutional neural network.
Three kernel sizes were tested in addition to the number
of layers and pooling sizes: 3× 3 kernel, a 5× 5 kernel
and a 7× 7 kernel.

6) Filtering Edges: Due to the nature of the images, edges
within the oyster shells were not as strong as the edges around
the oyster shells and the net. Therefore, these ‘weaker values’
needed to be filtered out. This algorithm took each pixel value
from the edges array returned during the convolution process
and converted it to either a 1 or 0 if the edge value was
less than the specified threshold (0.04 for our purposes). This
threshold needed to be chosen carefully to reduce the amount
of noise in the edges detected inside the oyster shell area,
without compromising on the edges of the outer oyster shells.

7) Pixel Counting: A pixel counting algorithm was de-
veloped for this study. The purpose of the algorithm was to
measure a number of pixels between edges. The pixel counting
algorithm made a horizontal pixel pass and a vertical pixel pass
over the input edge array. The horizontal pixel pass processed
each pixel value across the horizontal dimension of an image
from left to right, moving down to the next row of pixels
with each loop. The vertical pixel pass processed each pixel
down the vertical dimension of the image from top to bottom,
moving across to the next column of pixel values with each
loop.

The algorithm was designed to count the distance between
edges, the logical structure was as follows. The algorithm
processed an array of edge values and sets a starting position
for a measurement when an active pixel was found (pixel value
= 1). The algorithm then reviewed the next pixel in the array
for a value. If the pixel was still active, the starting position of
the measurement was then moved to that pixel. If the pixel was
not active (pixel value = 0) the algorithm counted the number
of pixels until the next edge was found. The distance between
these edges was then returned as a potential measurement.

To remove the oyster net from the potential measurement, a
threshold was implemented to distinguish the pixel distances
of an oyster shell and the distances between the squares of the
net. Each distance between edges found in the pixel counting
process was compared directly to this threshold to determine
if the potential measurement should be kept or not. The pixel
distances between the edges of the square nets in each image
were always smaller than the distances between the edges
of an oyster, which was why suitably picking the threshold
value allows for the easy distinguishing of oyster and net
edge distances. Finally, the algorithm then took the maximum
distance found in the horizontal and vertical pass and return

the number of pixels and the location of the max distance
within the image. The maximum distance was returned as this
gave the DVM or APM of each oyster.

8) Measurements: The final stage of the algorithm was
converting the pixel measurements into quantifiable mea-
surements. To achieve this the pixel count of each detected
measurement was multiplied by a pixel size to actual size ratio
value. The ratio value for this was determined by running the
edge detection algorithm over the length of tape exposed in
the validation oyster images.

Code and parameters for the architectures used in this
experiment were made available1.

C. Pilot Study

Pilot testing was completed by capturing an image of the
oyster shells provided and running them through the algorithm.
The algorithm was run individually using 3 × 3 Conv, 5 × 5
Conv, 7 × 7 Conv and Canny edge detection methods. The
sizing algorithm was calibrated manually using a tape measure
placed next to the oysters. Calibration was done by measuring
100 pixels along the tape measure on the output image and
recording how many centimetres the measurement equated to
on the tape measure. Once the algorithm had been calibrated
the measurement accuracy was then calculated.

To calculate measurement accuracy, the exact measurement
lines from the algorithm’s outputs were then directly measured
and compared on each oyster shell with a ruler. The accuracy
results from the pilot testing were used in combination with the
reliability results from algorithm testing on the larger oyster
farm dataset.

D. Experiment Design for Testing

After pilot tests were completed, the larger oyster farm
dataset was used to determine the reliability of the algorithm
with each edge detection method. All images were run through
the sizing algorithm using 3x3 Conv, 5x5 Conv and Canny
edge detection methods. Due to the lack of access to the
physical measurements of each oyster, testing of reliability
and accuracy was conducted using a combination of visual
sorting and statistical analysis on the outputs.

For visual sorting, each output measurement was reviewed
manually on a per oyster basis. The result was sorted into
one of four categories, both DVM and APM identified, only
DVM identified, only APM identified or neither measurement
identified. The threshold for a measurement being classed
as identified, was for the measurement to appear over the
oyster shell. Finally, the percentage of occurrence for each
identification was recorded as the reliability result for each
edge detection algorithm run. The measurements from each
test were then used in statistical analysis to derive any further
correlations and accuracy findings. Regression analysis was
the statistical analysis method run to review the data.

1https://github.com/Adroso/OysterHonours2018



Fig. 3: Canny edge detection.

IV. RESULTS

In this section we go over the results of our algorithm,
we start by briefly summarising the outcome of each step of
the algorithm and then move onto the specific performance
of our overall process. Steps 1 - 3 (Lens Correction, Image
Blur, Rotation Correction) of the algorithm were simple pre-
processing steps, of which there were no concrete results.
Rather, a simple visual inspection confirmed that each of these
processes performed as intended. Step 4, Regions of Interest,
had a 99.9% reliability of segmenting each oyster into its own
region. Only one image failed to have the oysters segmented
properly, which was due to the net being misplaced on the
table.

In step 5, Canny Edge Detection (Fig. 3) performed well
but, using this technique resulted in a large number of net
edges present over the oyster shell areas. To determine the
most effective convolution layer parameters to use for the final
experiments, 3 × 3, 5 × 5 and 7 × 7 kernel sizes were tested
and max-pooling layers were introduced to further enhance
the edges. The size of max-pooling layers was first tested on
a 3×3 convolution layer, to determine the most effective max-
pooling size in reducing the net edges to use for the algorithm.
The results in Fig. 4 show that the 2 × 2 max-pooling layer
was the most effective in reducing the amount of net edges
over the oyster shell, with the 3×3 max-pooling layer and no
max-pooling layer still identifying net edges over the oyster
shells, this is shown in Fig. 4. Thus the optimal parameters
were found to be 2 × 2 max-pooling, with one convolution
layer and one max-pooling layer. However, the 7 × 7 kernel
resulted in images without edges and was disregarded from

TABLE I: Summary of Results

Edge Detector 3× 3 Conv 5× 5 Conv Canny
No. of Images 166

No. of Segmented
Images

2656

No. of Blank Oysters 133

DVM and APM
Identified (%)

50.1% 44.7% 18.6%

DVM or AVM
Identified (%)

92.1% - -

Regression
Formula
D := DVM

0.69×D + 22.4 0.43×D + 34.79 0.510×D + 47.11

Regression r2 0.44 0.23 0.24

Regression Gradient 1.45 2.33 1.96

further testing.
The filtering utilised in step 6, was shown to have a

positive effect in reducing the unnecessary features (i.e. the net
covering the oyster shells), however fine-tuning was needed
to find the best threshold value for the datasets (for our
purposes this was a threshold of 0.04). Below we review the
performance of the algorithm, in regards to the two datasets
used in the experiment.

A. Pilot Results

The sizing algorithm performed well in accuracy and relia-
bility in the pilot test. The highest performing edge detection
method was the 5 × 5 Conv kernel with a measurement
accuracy of 99.97%. Both Canny and the 3 × 3 Conv kernel
were tested to have an average measurement accuracy of
99.8% and 98.5%, respectively.

B. Farm Image Test Results

The algorithm results from the oyster farm image set were
used to test the reliability of the algorithm, with 3 × 3 Conv
edge detection resulting in the most reliable measurements.
The test compared 3x3 Conv, 5x5 Conv and Canny edge
detection with the same dataset.

The experiments showed 3 × 3 Conv edge detection had
reliability of 92.1% in identifying at least DVM or APM of
an oyster. The 3×3 Conv algorithm was also seen to have the
highest reliability in identifying both APM and DVM of an
oyster. When only one measurement was identified with 3×3
Conv, DVM was the most reliable with an 80.2% reliability,
as opposed to APM identification with a 19.8% reliability.
Finally, 3 × 3 Conv showed the highest r2 result in the
regression analysis. In fact, the other edge detection methods
did not perform as well as 3 × 3 Conv in any evaluation
category.

The 5 × 5 Conv was seen to have a 44.6% reliability in
identifying both APM and DVM from an oyster and Canny
resulted in an 18.6% reliability. The 5× 5 Conv shows to be
more reliable than Canny, however, the regression results show
that 5 × 5 may have lower accuracy than Canny. An overall
summary of the results can be seen in Table I.



Fig. 4: From top, 3× 3 Conv with: no max pool, 2× 2 max
pool and 3× 3 max pool.

V. DISCUSSION

As can be seen from the results, our algorithm was able to
identify at least one of either the DVM or APM of an oyster
with a reliability of 92.1%. This section discusses the impli-
cations of the results and gives a detailed comparison between
the edge detection methods used, based on their performance
metrics. Additionally, the limitations of the proposed algorithm
are discussed. Finally, the overall reliability of the algorithm
was investigated, highlighting key benefits for the use of the
proposed algorithm to replace the current manual work-flow
for measuring pearl oyster growth rate.

A. Edge Detection Method Comparison

The accuracy testing conducted in the pilot test showed that
the 5× 5 Conv kernel was the most accurate, followed by the
3×3 Conv kernel and Canny edge detection. Furthermore, the
5×5 Conv kernel also identified the most features, followed by
the Canny edge detection and the 3×3 Conv kernel. Although
this seemed to indicate that the 5 × 5 kernel was the most
optimal choice for our algorithm, we argue that this is not the
case.

There are two key points that support this argument. Firstly,
the pilot test was conducted on images that did not feature
a net. As such, the high feature identification of the 5 × 5
Conv would actually result in a lot of the net being picked
up as features/edges. Secondly, the pixel counting algorithm
relied on fewer features being detected within the boundaries
of the oyster shell, to count the longest uninterrupted distance
between the boundaries. As the 3×3 kernel identifies the least
features, this would make it optimal for the pixel counting
algorithm. A fact that was reflected in the results of the farm
test data.

During the oyster farm image test, the reliability of each
edge detection algorithm was evaluated using the reliability of
identifying both DVM and APM of each oyster. As seen in the
results section, the 3× 3 Conv was found to have the highest
overall reliability. The OpenCV library executed the Canny
edge detection method on a CPU as opposed to the graphical
processing unit (GPU). We note, however, that execution time
was not a relevant criterion for evaluating the performance
of our algorithm. This is because the entire algorithm can be
run offline (i.e. not on the actual farm itself) and thus, will not
affect the day to day operations of a given pearl farm. Instead,
reliability should be the key metric by which we evaluate the
algorithm.

Overall, it was very clear that the 3×3 Conv version of the
sizing algorithm was the most reliable in the oyster farm image
test. This reliability result of 50.1% for identifying both DVM
and APM (and roughly 92% for identifying either the DVM or
APM) was due to the implementation of the filtering algorithm.
The filtering algorithm removed unnecessary edges after the
3x3 Conv edge detection outputs and this, combined with the
3x3 Convs lower edge feature detection further assisted in
removing the net edges before the pixel counting algorithm
was used.



B. Pixel Counting Algorithm Performance

The pixel counting algorithm was affected by some un-
expected features within the image, which lowered the al-
gorithm’s reliability. The first unexpected feature was the
presence of non-net areas. Specifically, the pixel counting
algorithm sometimes identified the DVM to be the length of
the table that was present after segmentation. The incorrect
identification was not due to an error of the pixel counting
algorithm. The algorithm functioned normally to identify
the longest distance of missing pixels between edges. This
identification issue could be reduced with the use of an object
detection algorithm to initially segment the image before
continuing to the edge detection and pixel counting algorithms.

The second drawback of the pixel counting algorithm was
the incorrect identification of the thicker sections of the net
as edges to count. The algorithm often identified the DVM
and/or APM as the thicker part of the oyster net. This was due
to the thicker sections of the net including an area between
its edges were the pixel counting algorithm could identify a
long string of empty pixels and identify them as the maximum
measurement within the image. The effects of the drawback
would again be improved with the implementation of an object
detection algorithm during the segmentation process. Despite
the drawbacks of the pixel counting algorithm, the overall
sizing algorithm achieved a high reliability when identifying
at least one measurement from the oyster.

C. Algorithm Reliability

Although the algorithm had a somewhat low probability
of identifying both the DVM and APM, it could identify at
least one of these features with an much higher probability
(over 92%). Identifying both DVM and APM would be ideal,
however, we note that the measurement of pearl oyster growth
rate is still viable with only one of these features identified.
This is because a high correlation was identified between the
DVM and APM of Pinctada maxima oysters [16]. With the
existence of this correlation, an accurate estimate can be made
to the length of a missing measurement of an oyster. The
estimated measurement can then be used to determine if the
oyster is still growing with only one measurement identified.
The correlations identified by [16] were also used to validate
the accuracy of the 3× 3 Conv algorithm.

The accuracy of the 3 × 3 Conv algorithm was originally
not possible to retrieve due to the missing measurement
data. However, by using the correlations identified by [16] a
regression comparison was completed comparing 3× 3 Conv
to the regression formula identified by [16]. A regression line
and gradient value were calculated for the 3×3 Conv algorithm
using a DVM value range of 50mm-190mm. The range was
determined from the results of the test as expected sizes of
a pearl oyster. The 3× 3 Conv algorithm showed a moderate
correlation identified by the regression fit:

APM = 0.69× DVM + 22.24, r2 = 0.44, (3)

which was comparable to the Eq. 1 reported by Hart et al.
[16].

As per Table I, the calculated gradient of the 3 × 3 Conv
was 1.45 and the gradient of the regression identified in [16]
was 1.19. This was a comparable result which validated the
results and reliability of our algorithm when used with the
3× 3 architecture. We note that the gap between the lines can
be attributed to the measurement algorithm being incorrectly
calibrated for accurate measurements. If the distance between
the camera and table would have been known for this research,
a more accurate size could be retrieved from the computer
vision algorithm and matching the sizes of the regression
identified by [16].

During the experiments, further benefits for using a com-
puter vision workflow to replace the current manual workflow
for measuring pearl oyster sizes were identified. The most
obvious benefit was that processing speed of the computer
vision algorithm was faster than a manual workflow. The
use of a computer vision algorithm would also increase the
consistency of the correct measurement being identified.

Fig. 5: True maximum distance in oyster measurement.

To calculate the DVM or APM of a pearl oyster, the
maximum distance between the respective edges of the shell
was calculated. In some cases, the true maximum distance
was difficult to identify by a human consistently and ac-
curately. This was in addition to intra-observer variability,
where a human measuring the same object repetitively will
have slightly different measurements each time. The automatic
sizing algorithm created for this research overcomes the issues
with identifying the true maximum distance between shell
edges.

An example is illustrated in Fig. 5, where measuring the
DVM of the oyster, a person may gravitate to measuring
the distance from the protrusion on the left side of the shell
(highlighted in red). The automatic sizing algorithm disagrees
with this and identifies the true maximum distance as shown.
The one example given here will happen multiple times when
reviewing millions of oysters annually. If a manual process is
kept, the accuracy and reliability of the measurements will
not be consistent. The factors of intra-observer variability
and human fatigue will result in a lower consistency in
measurement, which can be avoided with the implementation
of this automatic sizing algorithm.



VI. CONCLUSION

A new automatic algorithm was created and tested on
two data sets of pearl oyster images to determine the most
reliable and accurate technique to measure each oyster from
the images. The new algorithm produced test-reliability and
pilot-accuracy results of 92.1% and 98.5% respectively. The
algorithm was made freely available to be modified in future
to improve the accuracy and reliability results further.

Specifically, the accuracy and reliability of the pixel count-
ing algorithm can be improved by implementing an object de-
tection algorithm to assist in the image segmentation process.
The mis-identification of the DVM and APM measurements
by the pixel counting algorithm was due to the inclusions of
non-oyster net areas and the thicker areas of the oyster net. If
a segmentation technique could be implemented to accurately
identify an oyster within the scene and then process the
segmented oyster through the sizing algorithm, the accuracy
and reliability of identifying both DVM and APM should
increase.
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